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Abstract

This paper studies whether quantum proofs are more powtrdul classical proofs, or in complexity terms,
whetherQMA = QCMA. We prove two results about this question. First, we giveumatqum oracle separation”

betweenQMA andQCMA. More concretely, we show that any quantum algorithm ”“é%/%) queries to

find ann-qubit “marked statels), even if given anm-bit classical description df)) together with a quantum black
box that recognizelg)). We also prove a matching upper bound. Second, we showitttag bne previously-known
case where quantum proofs seemed to helgssicalproofs are basically just as powerful. In particular, Watro
gave aQMA protocol for verifying non-membership in finite groups. @nglausible group-theoretic assumptions,
we give aQCMA protocol for the same problem. Even with no assumptionspoatocol makes only polynomially
many queries to the group oracle. Both of our results appliakyg to the problem of quantum versus classical
advice—that is, of whetheBQP /qpoly equalsBQP/poly. We end with some conjectures about quantum versus
classical oracles, and about the problem of achievidgssicaloracle separation betwe@MA andQCMA.

1 Introduction

If someone hands you a quantum state, is that more “usefali bieing handed a classical string with a comparable
number of bits? In particular, are there truths that you déoiently verify, and are there problems that you can
efficiently solve, using the quantum state but not using theg? These are the questions that this paper addresses,
and that it answers in several contexts.

Recall thatQMA, or Quantum Merlin-Arthur, is the class of decision probsefior which a “yes” answer can be
verified in quantum polynomial time, with help from a polyniafrsize quantum witness stdi¢). Many results are
known abouQMA: for example, it has natural complete problems [13], allewsplification of success probabilities
[16], and is contained iRP [16].

Yet as Aharonov and Naveh [2] pointed out in 2002, the verynitedn of QMA raises a fundamental question.
Namely: is it really essential that the witness be quantundoes it suffice for the algorithiwerifyingthe witness to
be quantum? To address this question, Aharonov and Naveteddfie clasQCMA, or “Quantum Classical Merlin-
Arthur,” to be the same a@MA except that now the witness is classitalle can then ask wheth@VIA = QCMA.

Not surprisingly, the answer is that we don’t know.

If we can't decide whether two complexity classes are edhalusual next step is to construatdativized world
that separates them. Even though relativized worlds argvkrto be unrealistic in some cases, they would still
provide some evidence that the classes are different. Biheicase oQMA versusQCMA, even this limited goal
has remained elusive.

Closely related to the question of quantum versus claspigadfs is that of quantum versus classiealvice
Compared to a proof, advice has the advantage that it cangted; but the disadvantage that it can't be tailored to a
particular input. More formally, [eBQP /qpoly be the class of problems solvable in quantum polynomial,tinith
help from a polynomial-size “quantum advice staf¢;,) that depends only on the input length Then the question
is whetheiBQP /qpoly = BQP /poly, whereBQP /poly is the class of problems solvable in quantum polynomial time
with help from polynomial-sizelassicaladvice. Aaronson [1] showed thBQP /qpoly C PP/poly, which at least
tells us that quantum advice is not “infinitely” more powéthan classical advice. But, like ti@MA versusQCMA
question, th8QP /qpoly versusBQP/poly question has remained open, with not even an oracle sepakatown.
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1.1 Our Results

This paper introduces new tools with which to att&dklA versusQCMA and related questions.

First, we achieve an oracle separation betw@® andQCMA, but only by broadening the definition of “oracle.”
In particular, we introduce the notion of@antum oraclgwhich is just an infinite sequence of unitarlés= {U, }, -,
that a quantum algorithm can apply in a black-box fashionst 48 a classical oracle models a subroutine to which
an algorithm has black-box access, so a quantum oracle madglantum subroutine, which can take quantum input
and produce quantum output. We are able to give a quanturtedhat separateQ@MA from QCMA:

Theorem 1 There exists a quantum oradlesuch thatQMAY # QCMAY.

Similarly, there exists a quantum oradlesuch thaBQP" /qpoly % BQP" /poly. Indeed, all of our results about
QMA versusQCMA immediately carry over tBQP /qpoly versusBQP/poly—Ileading us to conjecture that the two
guestions “stand or fall together,” even though we do notkoban implication between them.

Theorem 1 implies that any proof @A = QCMA would require “quantumly nonrelativizing techniques”™ath
is, techniques that are sensitive to the presence of quamnrtaicies. Any classically nonrelativizing technique isals
quantumly nonrelativizing, but we do not know whether thevarse holds.

Underlying Theorem 1 is the following lower bound. Supposmary oraclel/,, acts onn qubits, and suppose
there exists a secretqubit “marked stateli),,) such thatU,, |1,) = — |1,), butU, |¢) = |¢) whenever |y, ) =
0. Then even if a quantum algorithm is givem bits of classical advice abolt),), that algorithm still needs

Q (, / mQ—:I) queries taU,, to find |¢,,). Note that ifm = 0, then this reduces to the standard fact that Grover search

in 2" dimensions require® (v/2") queries. At the other extreme,iif. ~ 2" then our bound gives nothing—not
surprisingly, since the classical advice might containliekpnstructions for preparingy.,,). The key point is that,

if m is notexponentially large, then exponentially many querie&’toare needed. In Section 3.1, we show that our
lower bound is tight whem: > 2n, by giving an algorithm that findig),,) usingO (\/2”/m) queries.

Both the upper and lower bounds hinge on geometric resuttstadartitionings of the unit sphere. We can picture
anm-bit advice string as partitioning th&'-dimensional unit sphere in" “advice regions.” The problem is then
to analyze how long Grover search takes, if the marked gtateis restricted to one of those regions.

Having separate@MA from QCMA by a quantum oracle, we next revisit the question of whethesd classes
can be separated byctassicaloracle. Right now, we know of only one candidate problem famtsa separation in
the literature: the Group Non-Membership{M) problem, which Watrous [22] placed @MA even though Babai
[3] showed that it is not iMA. In this problem, Arthur is given black-box access to a figiteupG, together with
a subgroupH < G specified by its generators and an elemert . Arthur’s goal is to verify thatr ¢ H, using
a number of group operations polynomiallig |G|. (Note that the groumembershiproblem is inNP by an easy
argument.) In Watrous's protocol, the quantum witnessgp$t an equal superpositidi/) over the elements df .
Given such a witness, Arthur can check non-membership bypeoimg the state§) and|zH), and can similarly
check the veracity ofH) by comparing it tdh H ), whereh is an almost-uniformly random element &t

Evidently a classical proof of non-membership would haviedaa@ompletely different. Nevertheless, in Section 4
we show the following:

Theorem 2 GNM has polynomially-bounde@CMA query complexity.

Theorem 2 implies that it is pointless to try to prove a clealsoracle separation betwe@MA and QCMA by
lower-bounding the quantum query complexity of Group Noarwbership. If such a separation is possible, then a
new approach will be needed.

The idea of the proof of Theorem 2 is that Merlin can “pull thewp out of the black box.” In other words,
he can claim an embedding of a model grdujnto G. This claim is entirely classical, but verifying it require
solving the Normal Hidden Subgroup ProbleNHSP) in I".  This problem has low query complexity by a result of
Ettinger, Hgyer, and Knill [10], but is not known to be BQP. In addition, analyzing the description bfis not
known to be computationally efficient. Nonetheless, in Bec#.1 we discuss evidence thatISP is in BQP and
that non-membership fdr is in NP. Based on this evidence, we conjecture the following:

20f course, we assume here that we are comparinggtremtumcomplexity classes, for which the notion of a quantum oratékes sense!
Otherwise, one could argue that there exists a quantumeoraeltive to which (sayBQP ¢ PSPACE, since aPSPACE machine cannot access a
quantum oracle.



Conjecture 3 GNM is in QCMA.

Given our results in Section 4, the question remains of wérdtiere is some other way to prove a classical oracle
separation betweeQMA andQCMA. In Section 5, we conjecture that the answer is yes:

Conjecture 4 There exists a classical oraclé such thatQMA“ £ QCMA“. Furthermore, this can be proven by
exhibiting an oracle problem with polynomi@QMA query complexity but exponent@QCMA query complexity.

In other words, we conjecture that separati’ddA from QCMA by a classical oracle is much easier than separating
them in the unrelativized world.

The reason we believe Conjecture 4 is that it seems pos§ibblejany purposes, to “encode” a quantum oracle
into a classical one. In Section 5 we explain more concretélgt we mean by that, and present some preliminary
results. For example, we show that there exidQ® algorithm that maps an oracle strivigto ann-qubit pure state
[t4), such that ifA is uniformly random, them 1) is (under a suitable metric) close to uniformly random urtder
Haar measure. On the negative side, we show that any qualgonitlam that applies afv-dimensional unitary/ 4
after making a single quantum query to a classical ord¢lean apply at most? distinct unitaries.

We end in Section 6 with some open problems.

2 Preliminaries

Throughout this paper, we refer to the set\dfdimensional pure states & ! (that is, complex projective space
with N — 1 dimensions). We usBr to denote probability, anH to denote expectation.

We assume familiarity with standard complexity classe©asBQP andMA. For completeness, we now define
QMA, QCMA, BQP /gpoly, andBQP/poly.

Definition 5 QMA is the class of languagels C {0, 1}" for which there exists a polynomial-time quantum verifier
Q and a polynomiap such that, for all: € {0,1}":

() If z € L then there exists @ (n)-qubit quantum proofy) such thatQ accepts with probability at least/3
given|z) |¢) as input.

(i) If 2 ¢ L thenQ accepts with probability at most/3 given|z) |) as input, for all purported proofgp).
The clasQCMA is defined similarly, except thap) is replaced by a classical string € {0, 1}p(").

Definition 6 BQP/qgpoly is the class of languages C {0,1}" for which there exists a polynomial-time quantum
algorithm Q, together with a set of statg$),) },,»., (where[y,,) has sizep (n) for some polynomiat), such that for
allz e {0,1}™

(i) If x € L thenQ accepts with probability at leagt/3 given|z) |¢,,) as input.
(i) If x ¢ LthenQ accepts with probability at most/3 given|z) |¢,,) as input.

The clasBQP/poly is defined similarly, except that,,) is replaced by a classical string, € {0, 1}”(").

Let us now explain what we mean by a “quantum oracle.” For agiamtum oracle is simply an infinite sequence
of unitary transformationg/ = {U, },,.,. We assume that eaéh, acts orp (n) qubits for some known polynomial
p. We also assume that given arbit string as input, a quantum algorithm calls oly, notU,, for anym # n.
This assumption is only made for simplicity; our results ¥dogo through without i When there is no danger of
confusion, we will refer td/,, simply asU.

We now describe the oracle access mechanism. Assume a gquenoputer’s state has the form

D) =Dz |2)[B) =) 4
z,b

3If one made the analogous assumptiorcliassicalcomplexity—that given an input of length, an algorithm can query the oracle only on
strings of lengtlm—one could simplify a great many oracle results without arsglof conceptual content.



where|z) is a workspace registell) is a control qubit, ande, ) is ap (n)-qubit answer register. Then to “query
U,,” means to apply thép (n) 4+ 1)-qubit unitary transformation that mapB) to

1) = 12) (@2010) |62.0) + st 1) Un [621)) -

Let C be a quantum complexity class, and 1ét= {U,},., be a quantum oracle. Then By, we will mean the
class of problems solvable byCamachine that, given an input of length can queryU,, at unit cost as many times as
it likes.

In defining the notion of quantum oracle, several choicesgntthemselves that have no counterpart for classical
oracles. Even though these choices will not matter for osults, it seems worthwhile to mention them, since they
might arise in future work on the subject. First, we implicassumed that if we can apply, then we can also apply
controlled¥ (that is,U conditioned on the control qubjit)). Should we make such an assumption? Second, should
we assume that if we can apdly, then we can also apply —'?

Arguably the answer to both questions should be ‘yes'—sgigen a quantum circuit fot/, we could produce
a quantum circuit for controlled or U~ in a completely routine way, one that leaves the circuitsrall structure
intact? Still, it would be interesting to know whether disallowingrtrolled{/ or U ~* would enable us to prove more
guantum oracle separations. (Note that if we disallow tlogsezations, then the set of inequivalent quantum oracles
becomedarger.)

Another question is whether we could prove more oracle sgipas by allowinghonunitaryquantum oracles—
that is, oracles that map pure states to mixed states. Ilrtdlsis, as long as the unitary ora€ldas not required to
come withU —!, the answer seems to be no. For given aryubit quantum operatiofi, we can construct 2n-qubit
unitary operatiort/, whose induced action on the firstqubits is€. This U might potentially reveal information in
the seconah qubits. However, we should be able to prevent that by comgdsiwith a unitary that “scrambles” the
second qubits (so that they might as well be thrown away), withofe@fng the firstn qubits.

All quantum oracles considered in this paper will be unitang self-inverse (that i§/ = U~'). Also, while our
algorithm in Section 3.1 will need to apply controlléd-that is only for the technical reason that we will deflfieso
thatU |) = — |¢) if |¢) is the marked state, arld |©) = |p) wheneverp|y) = 0. If we stipulated instead that
U ) |b) = |9) |b@ 1) andU |¢) |b) = |¢) |b) wheneveKy|y) = 0, thenU alone would suffice.

3 Quantum Oracle Separations

The aim of this section is to prove Theorem 1: that there sxsuantum oracl& such thatQMAY # QCMAY.
The same ideas will also yield a quantum ordclsuch thaBQP" /qpoly # BQP"Y /poly.

To prove these oracle separations, we first need some lenbuas@robability measures on quantum states. Let
1 be the uniform probability measure ovat-dimensional pure states (that is, o@#”" ~!). The following notion
will play a key role in our argument.

Definition 7 For all p € [0, 1], a probability measure overCP" ! is calledp-uniform if po < p.

Intuitively, a p-uniform measure is what we end up with if we start with thefemmn prior over all pure statelg)),
and then condition otvg 1/p bits of classical information abolip).
We are interested in the following question: amongpallniform probability measures, which is the one that

maximizesE| ¢ [| <w|0>|2} ? We can think oCP"Y ! as a container, which contains a fluidhat is gravitationally

attracted to the stat®). Then intuitively, the answer is clear: the way to maximizg, [|<w|0>|2} is to “fill the

container from the bottom,” subject to the density constrar < p. In other words, the optimat should be the
uniform measure over the regi@ (p) given by|(¢|0)| > h (p), whereh (p) is chosen so that the volume Bf(p) is
ap fraction of the total volume of P ~*. The following lemma makes this intuition rigorous.

Lemma 8 Among allp-uniform probability measures over CP" !, the one that maximizes, ¢, {|<w|0>|2] is
7 (p), the uniform measure over the regi®(p) defined above.

40ne might object that the arithmetization at the heart o fhe= PSPACE theorem [19] also leaves a circuit’s “overall structurefaict. But
inverting a gate or conditioning it on a control qubit seeessldrastic to us than enlarging its base field.



Proof. Since](1|0)|” is nonnegative, we can write

£ [wor] = [ pr [ = .

[¢)€a [¥)eo

We claim that setting := 7 (p) maximizes the integrand for every valuewpf Certainly, then, setting := 7 (p)
maximizes the integral itself as well.
To prove the claim, we consider two cases. Firs, i & (p)°, then

Pr 0)* > y| =1,
P Wil 2 )

which is certainly maximal. Second,gjf> h (p)°, then

1 2
Pr O 2 > = —. Pr O > )
WPz, WIOF 2 9] =2 Pr [Iw0)f* 2 4]
This is maximal as well, since
1 2
Pr 0 2 > <. Pr 0 > )
‘WQDWHl_ﬂ_p|w@DWHI_ﬂ

for all p-uniform probability measures. =
Lemma 8 completely describes the probability measure taaimizesEX |, ¢, [| (1]0) |2] , except for one detail:
the value ofh (p) (or equivalently, the radius & (p)). The next lemma completes the picture.

h(p)—m_@w@)

)Nfl

Lemma 9 For all p,

Proof. We will show that for allr,

_ _ 12
Pr 0 = K= (1-h

)

wherey is the uniform probability measure ov&P” ~'. Settingp := Priyyeu [[(1[0)] > h] and solving forh then
yields the lemma.

Let 2 = (2o,...,2n_1) be a complex vector; then 16t = (ro,...,7N_1) and 6 = (6, ...,0n_1) be real
vectors such that, = e for each coordinaté. Also, letD be a Gaussian probability measure©f, with
density function

7 7Y = eI
P(Z)=P(7)=—e 2.

™



Letd 7 be shorthand fodry - - - dry—1. Then we can express the probability that|0)| > h as

v 1610)] = hf = Pr lzof = Al B

|w>6u
= ?P% [ro > h||7|l,]
Z/ - P(?) ro--"TrnN-1 d?d?
7,0 :r02h|‘7|‘2
1 _ 2
= (27T)N/ —e 17112 T rN_1 dT
7o,
— e~ Toradra | 2V le= 1= =R 1 g s d
= —— odro e ridry - TN—1drN—1
T1,.TN—1=0 To= h\/ L - h2 =1
o0 2 2
:/ 87(r1+---+rN,1)-h /(1=h )2N—18—7‘1—»~—TN P P n
T1,..,TN—1=0
* N—1,—(ri++r%_,)/(1-h?)
= 2 e 1 N-1 ridry - ry_1dry—1
T1,..,TN—1=0
o0 2 2 N-1
= / 9¢~ /(1R )rdr>
r=0
| ]

By combining Lemmas 8 and 9, we can now prove a key fact: that)iis drawn from ap-uniform probability
measure, then for every mixed statehe squared fidelity betweén) andp has a small expectation.

Lemma 10 Leto be ap-uniform probability measure ovetP” —*

B 1+logl/p
B [wlplv] =0 (FERET).

. Then for allp,

Proof. If p < e~ () then the lemma is certainly true, so supppse e~ “(V), Since the concluding inequality
is linear inp, we can assume without loss of generality thas a pure state. Indeed, by symmetry we can assume

thatp = [0) (0]. So our aim is to upper-bourig ¢, [|<w|0>|2}, whereo is anyp-uniform probability measure.

By Lemma 8, we can assume without loss of generality ¢that 7 (p) is the uniform measure over ail) such that
|()]0)| > h (p). Then letting

V) =agl0) + - +an_1|N —1),
r= \/|CV1|2 +o oo




we have

B [lwlo)r] =

E_laof]
l¥)er(p) [4) : leo|2h(p)

= E [1 — 7“2}
[¥) : 72<1—h(p)?

fo 1—h(p)* F2N-3 (1 _ rz) dr
I 1=h(P)* 2N-3 g,

|:T2N—2 T2N:| \% 1_h(17)2

2N—2 = 2N

B 1+1logl/p
_0( o1,

where the last line follows from Lemma %
We are finally ready to prove the main result of this sectibat any quantum algorithm neeﬂs(, / wf—ﬂ) queries

to find ann-qubit marked stat@y), even if givenm bits of classical advice aboip).

Theorem 11 Suppose we are given oracle access tamagubit unitaryU, and want to decide which of the following
holds:

(i) There exists am-qubit “quantum marked stateli)) such thatU |¢) = — |¢), butU |¢) = |¢) whenever
(pl¢) = 05 or

(i) U = I isthe identity operator.

Then even if we have an-bit classical witness in support of case (i), we still neéd( mQ—L) queries to verify
the witness, with bounded probability of error.

Proof. If m = Q (2™) then the theorem is certainly true, so suppoese: o (2"). Let A be a quantum algorithm that
queriesU/. Also, letUy be ann-qubit unitary such that/,,y [v) = — [¢), butU) |¢) = |¢) whenever|y) = 0.
ThenA’s goal is to accept if and only i/ = U,y for somejy)).

For eachn-qubit pure statéy)), let us fix a classical witness € {0,1}" that maximizes the probability that
accepts, givei/|,y as oracle. Leb (w) be the set ofy)'s associated with a given witness Since theS (w)’s form

a partition ofCP?" 1, clearly there exists a witness, caltit, such that

i} 1
Pr () € S > o

Fix thatw* (or in other words, hardwire* into A). Then to prove the theorem, it suffices to establish theatg
claim: A cannot distinguish the cage = U, from the casé/ = I by makingo (1 /mQ—;l) queries talU, with high

probability if |¢) is chosen uniformly at random fros (w*).

To prove the claim, we use a generalization of the hybrid et of Bennett et al. [6]. Suppose thaimakesl’
queries ta/. (Technically speaking, we should also allow queries tamied-U, but this will make no difference
in our analysis.) Thenforall <t < T, let|®,;) be the final state ofl, assuming thal/ = I for the firstt queries,
andU = U}y, for the remainindl’ — ¢ queries. Thusgd,) is the final state in case (i), whil@r) is the final state



in case (ii). We will argue thdtb,) cannot be very far from®,_; ), with high probability over the choice of marked
state|v). Intuitively, this is because the computationg®f) and|®;_;) differ in only a single query, and with high
probability that query cannot have much overlap with. We will then conclude, by the triangle inequality, théb)
cannot be far from®) unlessT is large.

More formally, letp, be the marginal state of the query register just beforgthguery, assuming the “control
case"U = 1. Also, letp: = > pi i) (p:| be an arbitrary decomposition pf into pure states. Then for everythe
component ofy;) orthogonal tdv) is unaffected by thé'* query. Therefore

@) = [P1—1) |, < Zpi 2 (i)
= QZPM/ (Plpi) (pil)

< 2\/21%' (Plpi) (pil)

= 2v/(¥lpel¥),

where the third line uses the Cauchy-Schwarz inequality #ilerage of the square root is at most the square root of
the average). Now let be the uniform probability measure ou&fw*), and observe that is 2~ -uniform. So by
Lemma 10,

E Dy) — [Py <2 E
JE e~ @)l <2 B |

<2 [ E [Wlnlv)

W]

oy 1+ln;}z/2* )

m+1

where the second line again uses the Cauchy-Schwarz iriiggUgihally,

T
E D7) —|P < E D) — | Py
AN (LRRLOTPED S SN (LA

m+1
_0<T E )

by the triangle inequality. This implies that, fgbr) and|®,) to be distinguishable witk (1) bias, we must have

T:Q(,/wf_tl). n

Using Theorem 11, we can immediately show a quantum orapkraton betweeQMA andQCMA.
Proof of Theorem 1. Let L be a unary language chosen uniformly at random. Then théedtae- {U,}, -, is
defined as follows: 0™ € L, thenU,, negates a randomly chosen marked stétg; otherwiseU,, is the identity
operation om qubits. ClearlyL € QMAY; the witness is justy,) itself. On the other hand, Theorem 11 implies
thatL ¢ QCMAV with probabilityl. We omit the standard diagonalization argumamt.

We can similarly show a quantum oracle separation bet&d/qpoly andBQP/poly.

Theorem 12 There exists a quantum oradlésuch thaBQPY /qpoly # BQPY /poly.

Proof. In this casel,, will act on 2n qubits. LetL be a binary language chosen uniformly at random, and let
L(z)=1if z € LandL (z) = 0 otherwise. Also, for alh, let|¢,,) be ann-qubit state chosen uniformly at random.
ThenU,, acts as follows: for alk € {0,1}",

Un ([n) |2)) = (—=1)"®) |9p,) |z)



but
Un (16) |2)) = [9) |z)

whenever(¢|,) = 0. ClearlyL € BQPY /qpoly; we just takd+,,) as the advice. On the other hand, Theorem 11
implies thatZL ¢ BQPY /poly with probability1. m

3.1 Upper Bound

In this section we show that the lower bound of Theorem 11 schdly tight. In particular, lel/ be ann-qubit
guantum oracle, and suppose we are givemabit classical proof thal/ is not the identity, but instead conceals a
marked statéy)) such thalU’ [)) = — [¢b). Then provide®n < m < 2", a quantum algorithm can verify the proof

by makingO (M?”/m) oracle calls td/. This matches our lower bound when> 2n.5

Let N = 2" be the dimension of/’s Hilbert space. Then the idea of our algorithm is to use asimi@f states
|61) ..., |on) € CPY 1, atleast one of which has nontrivial overlap with every pstege inCP" . A classical
proof can then help the algorithm by telling it thig) that is closest tdy)). More formally, define thé-ball about
|¢) to be the set ofy) such that(¢|e)| > h. Then define ark-mesh forCP" ! of sizeM to be a set of states
|¢1) 5 ..., |oar) such that everyy) € CPY ! is contained in théi-ball about|¢;) for somei. We will rely on the
following theorem, which follows from Corollary 1.2 of Biczky and Wintsche [7].

Theorem 13 ([7]) For all 0 < h < 1, there exists ah-mesh foilCP" ! of size

o <N3/2 log (1 + Nh2)>

(1—h2)"

Unfortunately, Boroczky and Wintsche do not provide aplieit construction of such ah-mesh; they only prove
that it exists$ We will return to this issue later.
We now prove the upper bound.

Theorem 14 Suppose we have anqubit quantum oracld/ such that either (iU = U, for some|y), or (ii)
U = I is the identity operator. Then given am-bit classical withess in support of case (i), there exists a quantum

algorithm that verifies the witness usiﬁg(\/%/m + 1) gueries tol/, providedm > 2n.

Proof. By Theorem 13, there exists &meshs for CP?" ! of cardinality

23n/21 1 2nh2
5= o (el 2 )
(1—n?)

Setting|S| = 2™ gives us

3n 1
< —+271
m < 2—|— og(1

—h2) +0O(1+1logn).

Solving forh, we obtain

B> \/m—3n/2—2n0(1—|—10gn)7

which isQ (\/m/2") providedm > 2n. So there exists a collection 8f = 2™ states|¢1) , ..., |¢r) € CP? 1,

such that for everyw)), there exists ansuch that(¢;|¢)| > h whereh = Q (\/m/zn).

Given an oraclé/ = U}y, the witnessv € {0,1}" will simply encode an indexsuch that(¢;|i)| > h. If we
preparel¢;) and feed it tol/, then the probability of finding the marked state is |(¢;|¢)|°> > h2. Furthermore,

SWhenm < 2n, the best upper bound we know is the tri\@l(\/2n>. However, we conjecture th& (\/2”/m> is achievable in this case

as well.

6Note that we cannot just start from an explicit constructiéra sphere-packing, and then double the radius of the sphemget a covering.
We could do that if we wanted a covering ®P~ —! by smallballs. But in our case is close to zero, which means that the balls already have
close to the maximal radius.



if we do find|), we will know we did (i.e. a control qubit will b¢l) instead ofl0)). From these facts, it follows
immediately from the amplitude amplification theorem of @o[11] and Brassard et al. [8] that we can figd with

probability$2 (1) using
1 2n
O<,/Wl> :o(./EH)
oracle callstd/. m

Of course, if we care abogebmputationacomplexity as well as query complexity, then it is not enotghthe
h-mesh|¢1) ..., |¢rr) to exist. We also need there to be an efficient algorithm theptarege; ) giveni. One of us
(Kuperberg) has found an explicit constructiomefeshes based on BCH codes, for which such an algorithnmsexist
Details will be provided in a subsequent paper.

4 Group Non-Membership

The Group Non-Membershiga(NM) problem is defined as follows. We are given a finite gr@gpa subgroup
H < G, and an element € G. The problem is to decide whetherz H.

But how areGG, H, andx specified? To abstract away the details of this question, iNleuge Babai and Sze-
merédi's model oblack-box group$4]. In this model, we know generators féf, and we know how to multiply and
invert the elements af7, but we “do not know anything else.” More formally, we areajivaccess to a group oracle
O, which represents each element G by a randomly-chosen labél(z) € {0,1}" for somen > log, |G|. We are
also given the labels of generatdrfs, ..., h;) for H. We are promised that every element has a unique label.

Suppose that our quantum computer’s state has the form

|®) = Z Qg y,z [(z), ¢ (y))|2),

z,ye€G, 2z

where/ (z) and/ (y) are labels of group elements apd is a workspace register. Then the ora@lenaps this state
to

0®) = Z gy |0 (), £ (2y™ ")) |2) .
z,yeqG, z
Note that if the first register does not contain valid labdlgrmup elements, the® can behave arbitrarily. Thus,
from now on we will ignore labels, and talk directly about tir@up elements they represent. Usifigit is easy to
see that we can perform group inversion (by putting the ileaemente in thex register) and multiplication (by first
invertingy, then puttingy—! in they register), as well as any combination of these operations.

We will show thatGNM has polynomially-bounde@CMA query complexity. In other words, if ¢ H, then
Merlin can provide Arthur with @oly (n)-bit classical witness of that fact, which enables Arthuréafy it with high
probability usingpoly (n) quantum queries to the group oracle

To prove this result, we first need to collect various factsrfrfinite group theory. Caly, ..., gi anefficient
generating sefor a finite groupG if (i) £ = O (log|G|), and (ii) everyz € G is expressible ag;* - - - g;* where
e1,...,ex € {0,1}. The following lemma follows immediately from a theorem otiBs and Rényi [9], and can also
be proven directly.

Lemma 15 Every finite group> has an efficient generating set.

Given finite group$” andG, we say that functiong, g : I' — G aree-closeif

Pr[f(2) £ g (a)] <.

zel

Also, recall thatf : T' — G is a homomorphism iff (zy) = f(z) f (y) for all z,y € T. The following two
propositions relate-closeness to homomorphisms.

Proposition 16 If two homomorphismg, g : I' — G are (1/2 — ¢)-close for any > 0, thenf = g.
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Proof. Fix z € T'; then for ally € T', we havef (z) = f (y) f (v 'z) andg (z) = g(y) g (y"'z). By the union
bound,
Pr W =gWAf(y'z)=g(y 'z)] >1- Prif(w)#9]-Pr [f(y~'e) #g(y )]
> 0.

Hence there existsgasuch thatf (y) = g (y) andf (y'z) = g (y"'z). Butthis implies thatf (z) = g (z). m
In particular, Proposition 16 implies that if a functigris 1/5-close to a homomorphism, then itig5-close to a
uniguehomomorphismi/5 being an arbitrary constant less thigfi).

Proposition 17 (Ben-Or et al. [5]) Given finite group$’ andG, a functionf : I' — G, and a real numbet > 0, if
Pr [f(zy) # f(2) f(y)] <e
z,yel

thenf is e-close to a homomorphism.
Together, Propositions 16 and 17 have the following easyllzoy.

Corollary 18 Given finite group$' andG and a functionf : I' — G, there exists a randomized algorithm that makes
O (1) oracle queries tof, accepts with probabilityl if f is a homomorphism, and rejects with probability at least
2/3if f is not1/5-close to a homomorphism. Also,fifis 1/5-close to some homomorphiéfvnthen there exists a
randomized algorithm that, given an inpute I', make<O (r) oracle queries tof, and output§(x) with probability
atleastl — 1/2".

Proof. The first algorithm simply choos&3 (1) pairsz,y € I" uniformly at random, accepts jf (zy) = f (z) f (v)
for all of them, and rejects otherwise. Let= O (r). Then the second algorithm choosgs. . ., z; € T uniformly
at random, and outputs the plurality answer amgig:) f (217 ') .. ... f (zx) f (2; ‘=) (breaking ties arbitrarily).
]

Interestingly, despite the simplicity of the next resultsinot known how to prove it without using the Classifica-
tion of Finite Simple Groups.

Theorem 19 Let F' (V) be the number of groups of ordéf up to isomorphism. TheR (N) = NO((ogz N)?)

Proof. Let Fyimple (V) be the number o§implegroups of ordetV up to isomorphism. Neumann [18] showed in

1969 that if Fyimpie (N) = NO((os2 N?) thenF (N) = NO((52M)%) a5 well. Since the Classification of Finite
Simple Groups established th&. 1. (V) < 2 (see Lubotzky [15] for example), the theorem folloves.

Finally, recall that the Hidden Subgroup ProbleHP) is defined as follows. We are given a finite gro@p
and oracle access to a functign: G — Z. We are promised that there exists a “hidden subgrdiéipX G such
that f () = f (y) if and only if z andy belong to the same left coset &f. The problem is then to output a set of
generators folH. WhetheISP can be solved in quantum polynomial time, for various noakah groupsz, is one
of the most actively studied questions in quantum computidgwever, if we only care about query complexity, then
Ettinger, Hayer, and Knill [10] proved the following usefeisult.

Theorem 20 ([10]) For all finite groups, there exists a quantum algorithm that sol&P using onlypolylog (|G])
guantum queries tg (together with a possibly exponential amount of postprsices.

We can now prove Theorem 2: th@iNM has polynomially-bounde@CMA query complexity.
Proof of Theorem 2. Let G be a group of order at mogt', and letO be a group oracle that maps each elemertt of
to ann-bit label. Also, given (the labels of) group element, ..., h,, € G, let H be the subgroup af generated
by (h1,...,hn). Thenthe problem is to decideif¢ H.

In our QCMA protocol for this problem, Merlin’s witness will consist tife following:

e An explicit “model group'T", of order at mos2™.

e Alist of elementsys, ...,y € I', wherek = O (log |T']).

11



e Acorresponding lisyy, ..., gx € G.

e Anotherlistz, A\1,..., A\, €T

By Theorem 19, there are at ma@sPy(®) groups of ordefT’| < 2" up to isomorphism. From this it follows that
Merlin can specify the witness using onyly (n) bits.
Now if Merlin is honest, then the witness will satisfy theléaling three properties:

(1) 7,---,7 is an efficient generating set fbr
(2) =z ¢ A, whereA is the subgroup df generated byAy, ..., A).

(3) There exists an embeddirig: I' — G, such that (i)f (;) = g; foralli € {1,...,k}, (i) f () = h; for all
je{1,...,m}, and (ji) f (z) =

Suppose for the moment that (1)-(3) all hold. Then theretgxa embeddingN: I' — @, which maps the set
(y1,-.., ) inT tothe setgy, ..., gx) in G. Furthermore, this embedding satisffes\) = H andf (z) = z. Since
z ¢ A by (2), it follows thatx ¢ H as well, which is what Arthur wanted to check.

So it suffices to verify (1)-(3). In the remainder of the proat will explain how to do this using a possibly
exponential amount of computation, but oplyly (n) quantum queries to the group oracle

First, since properties (1) and (2) only involve the expligoupI’, not the black-box grougr, Arthur can verify
these properties “free of cost.” In other words, regardtédsow much computation he needs, he never has to query
the group oracle.

The nontrivial part is to verify (3). It will be convenient split (3) into the following sub-claims:

(3a) There exists a homomorphigm I — G such tha’g}“v('yl-) =g;foralli e {1,... k}.
(3b) f satisfiesf (z) = z andf (\;) = h; forall j € {1,...,m}.
(3¢) fis injective (i.e. is an embedding int®).

To verify (3a), first Arthur fixes a “canonical representatiof each elementy € T'. This representation has the
form

Y=

where(v1,...,7%) is the efficient generating set fof, andey,...,e; € {0,1} are bits depending om. Next he
defines a functiorf : I' — G by

fO) =gt g
forall v € . By using the canonical representatiomofArthur can evaluatg () using at mosk — 1 queries to
the group oracl®. Finally Arthur appeals to Corollary 18. [fis not1/5-close to a homomorphism, then by using
O (1) queries tof, with high probability Arthur can detect thdtis not a homomorphism. In that case Merlin has
been caught cheating, so Arthur rejects. On the other hhfidsil /5-close to some homomorphisfnthen by using
O (log |T|) queries tof, with high probability Arthur can “correct}f to f. Inthat case it remains only to check that
f(y) =g forallic {1,... k}.

Once Arthur has an efficient procedure for computjfvr-rgthat is, a procedure that involves onlyly (n) queries
to O—he can then verify property (3b) directly.

To verify (3c), Arthur runs the algorithm of Ettinger, Hgyeand Knill [10] for the Hidden Subgroup Problem.
Notice that, smcg‘ I' — G is a homomorphism, there must be a “hidden subgrdiip I'—namely the kernel of
f—such thatf is constant on cosets & and distinct on distinct cosets. Furthermq;fes injective if and only if
is trivial. But deciding whethek is trivial is just an instance dfiSP, and can therefore be solved usingly (n)
guantum queries by Theorem 2A.

12



4.1 Computational Complexity

Theorem 2 showed that one can always verify group non-meshigeusing a polynomial-size classical witness,
together with polynomially many quantum queries to the grotacleO. Unfortunately, while thguerycomplexity is
polynomial, thecomputationatomplexity might be exponential. However, as mentionedsicti®n 1.1, we conjecture
that this shortcoming of Theorem 2 can be removed, and3batl is in QCMA for any group oracle.

In our QCMA protocol, the main computational problem that needs to bedads not the generdlSP, but rather
the Normal Hidden Subgroup Probleti{SP)—that is,HSP where the hidden subgroup is normal. This is because
the kernel of a homomorphism is always a normal subgrouplgkéad, Russell, and Ta-Shma [12] showed K&tSP
is in BQP for any explicit groupl’, provided the quantum Fourier transform ovecan be implemented efficiently.
Furthermore, Moore, Rockmore, and Russell [17] showedtfzaty classes of finite grougshave an explicit model
I" = @G for which this assumption holds.

However, even if it can be shown thidHSP is in BQP, there are two remaining obstacles to showing stV
is in QCMA. First, we need to be able to verify group non-membershipéreixplicit model group'—possibly with
the help of additional classical information from Merlin.nésecond, we need an efficient algorithm to compute the
functionf: I' —» G foreveryy € T', even thougifis explicitly defined only on the generatoys . . ., yk.

More precisely, we need that for every finite grapthere should exist an explicit model grolip® G, together
with a list of generatorsy, . ..,y € I' with £ = O (polylog |G|), such that

(i) NHSP overI'isin BQP,
(i) GNM is overT’ in QCMA, and
(iii) Every v € T" can be efficiently decomposed into a productgf. . ., ys.

These steps have already been completed for several clafsgesips. For example, i is abelian, then there
existsamoddl' = Z/ry x - - - x Z/r, for whichNHSP is in BQP by the work of Shor [20] and Kitaev [14GNM is in
P by linear algebra; and the classification of finite abeliaougs yields an efficient decomposition.dfis isomorphic
to the symmetric groug’,, then for the moddl’ = S,,, we have thalNHSP is trivial (since the only normal subgroup
is A,); GNM is in P by the work of Sims [21]; and,, is efficiently generated by transpositions. Indeed, Babai
[3] has conjectured that every finite groGphas an explicit model group for which GNM is in NP N coNP. We
conjecture that all three steps can be completed—first fdefaimple groups, using their classification, and then for
arbitrary groups using Jordan-Holder composition series.

5 Mimicking Random Quantum Oracles

We have seen, on the one hand, that there exists a quantuta separatindMA from QCMA; and on the other
hand, that separating these classes Isjaasicaloracle seems much more difficult. Together, these resulie e
general question: how much “stronger” are quantum orablas tlassical ones? In particular, are there complexity
classe€ andD that can be separated by quantum oracles, but such thaatiagahem by classical oracles is almost
as hard as separating them in the unrelativized world? Wheathe answer, we conjecture tHMA and QCMA
arenotexamples of such classes. The reason is that it seems gossbig only classical oracles, to approximate
guantum oracles similar to ones that would sepafdt\ from QCMA.

To illustrate, leto be the uniform probability measure ov&t x 2™ unitary diagonal matrices. (In other words,
each diagonal entry db € ¢ is a random complex number with nortt) Also, let H®" be a tensor product of
Hadamard matrices. Then lgtbe the probability measure ov&'t x 2™ unitary matrices

U= D H®"D),_H®" ... H®"D; H®"™

induced by drawing eacP; independently frona. In other words[J € ¢ is obtained by first applying a Hadamard
gate to each qubit, then a rand@fmx 2™ diagonal matrix, then Hadamard gates again, then anothdonadiagonal
matrix, and so or times.

Note that we can efficiently apply suciUa—at least to polynomially many bits of precision—if givenlassical
random oracled. To do so, we simply implement the random diagonal mafrjas

dYooalw)— Y WPy a),

x€{0,1}" z€e{0,1}"
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whereA (i, z) is a uniformly randomu-bit integer indexed by andz, andw = ¢27%/2",

Now let 1 be the uniform probability measure oVt x 2" unitary matrices. I < 2™, theng is not close to
w in variation distance, since the former has o@lyk2") degrees of freedom while the latter agk4™).” On the
other hand, we conjecture that/adrawn fromg, will “look random” to any polynomial-time algorithm, andahthis
property can be used to prove a classical oracle separataebrQMA andQCMA.

Let us explain what we mean in more detail. Suppose we areé gigeess to an-qubit unitary oracld/, and
want to decide whether

(i) U was drawn uniformly at random (that is, from), or
(i) U was drawn uniformly at random conditioned on there existifig-qubit pure states)) and|p) such that
U (102" [0)) = 10)°"7% ).

In case (i), the statdg)) and|) will exist only with negligible probability It follows that the above problem is
in QMAY—since if case (i) holds, then a succinct quantum proof ef fact is justley) itself. We now state three
conjectures about this problem, in increasing order ofaiffy.

Conjecture 21 The above problem is not @CMAV . In other words, if case (i) holds, there is no succinct slaal
proof of that fact that can be verified with high probabilityimg poly (n) quantum queries t&'.

Presumably Conjecture 21 can be proved using ideas simitéiose in Section 3. If so, then the next step is to
replace the uniform measureby the “pseudorandom” measuge

Conjecture 22 Suppose that instead of being drawn frpanthe unitaryU is drawn fromg;, for somek = Q (n).
Then the probability that there exist/2-qubit stateg+) and |¢) such thatU (|()>®”/2 |11)>) & |O>®"/2 lp) is still
negligibly small.

Now suppose we want to decide whether
(") U was drawn fromy, or

(i) U was drawn fromy, conditioned on there existing/2-qubit stateg:) and|y) such that/ (|0>®”/2 |w>) ~

10)27% ).

Also, let A be a classical oracle that encodes the diagonal matkiges . , Dy such that
U=D,H®"D),_H®" ... H®" D, H®".

If Conjecture 22 is true, then case (ii’) can be verifieIA*. So to obtain a classical oracle separation between
QMA andQCMA, the one remaining step would be to prove the following.

Conjecture 23 Case (ii’) cannot be verified iQCMA?.

5.1 From Random Oracles to Random Unitaries

The previous discussion immediately suggests even simplestions about the ability of classical oracles to mimic
guantum ones. In particular, couldBQP machine use a classical random oracle to prepare a unifoaniyjom
n-qubit pure state? Also, could it use such an oracle to appydomn-qubit unitary?

In this section we answer the first question in the affirmatwel present partial results about the second question.
We first need a notion that we call the-8moothing” of a probability measure.

7Admittedly, it is still conceivable that the finite-preaisi version ofg, is close in variation distance to the finite-precision amsof ..
However, a more sophisticated argument that counts digshgble unitaries rules out that possibility as well.

8Indeed, the reason we did not ask far— 1)-qubit stategs) and|p) such thaly (|0) |+4)) = |0) |¢) is that such states will exist generically.
Asking for (n — 2)-qubit stategy) and|e) such thaty (]00) |1)) = |00) |¢) might suffice, but we wish to stay on the safe side.
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Definition 24 Let o be a probability measure oven) < CP?"~'. Then thez-smoothing ofr, or S; (o), is the
probability measure obtained by first drawing a state from o, and then drawing a statey) uniformly at random
subject to(p|y) > 1 —e.

Let 4 be the uniform measure oveP?" !, Also, let@ be a quantum algorithm that queries a classical oracle
Suppose that, gived® as input,Q“ outputs the pure statg4) € CP?"~'. Thenwe say thaf) “approximates the
uniform measure withia” if, as we range over uniform randorh C {0, 1}", the induced probability measuseover
[ta) satisfied|S; (o) — p]] < e.

Theorem 25 For all polynomialsp, there exists a quantum oracle algoritiipnthat runs in expected polynomial time,
and that approximates the uniform measure withirt (™).

Proof Sketch. The algorithm@ is as follows: first prepare a uniform superposition owdyit strings. Then, using
the classical random orackeas a source of random bits, map this state to

W= Xl (VislaPlo+am).

z€{0,1}"™

where eachy, is essentially a Gaussian random variable. More precitetly, (n) = (n+ p(n))>. Then each
o is drawn independently from a complex Gaussian distriloutiith mean0 and variance /g (n), with the two
technicalities that (1. is rounded tay (n) bits of precision, and (2) the cutdfi,| < 1is imposed. (By a tail bound,
with overwhelming probability we will havéy,| < 1 for all z anyway.)

Next measure the second registef®j in the standard basis. The outcopgwill be observed with probability
Q(1/q (n)). Furthermore, conditioned dim) being observed, one can check that the distributi@ver the reduced
state of the first register satisfiés, .., (o) — u|| < 27P(). (We omit the calculation.) Hence it suffices to repeat
the algorithmO (g (n)) times. =

Theorem 25 shows that, by using a classical random oraclee can efficiently prepare a uniformly random
n-qubit stateji4). But what if we want to use a random oracle to apply a uniforratlydomn-qubit unitary U, ?

It is clear that we can do this if we have exponential timeegian oracled, we simply query an exponentially long
prefix A* of A, and then treatl* as an explicit description of a quantum circuit i@x. But what if we can make
only polynomially many quantum queries ## We do not know whether that suffices for applying a randortauyti
indeed, we do not even have a conjecture about this.

What wecanshow is that a single quantum querydaoes not suffice for applying a random unitary. In particular
suppose every entry of arrqubit unitary matrixU 4 is a degree-polynomial in the bits ofA (as it must be, it/ 4 is
the result of a single quantum query). THén can assume at mos$t~ distinct values as we range over the possible

A’s, as opposed to the ") that would be needed to approximate evergubit unitary. To prove this statement,
we first need a lemma about matrices satisfying a certairtbedgerelation.

Lemma 26 Let Fy,. .., Ey be nonzerdV x N matrices overC, and suppose tha‘l?iE;f + EJ»EiT =0forall i # j.
ThenM < 2N.

Proof. Suppose by contradiction thaf > 2N. Let egk) be vector inCY corresponding to th&*" row of E;. Then
the conditionEl-Ej- + E;E! = 0 implies that
egk) . eg-l) + eg-k) . egl) =0

for all i # j andk,(, where- denotes the complex inner product. Now foriallet % () be the minimuntk such that
egk) # 0, and consider the vectoeék(l)), ceey 65\’;“”)) € CN. Certainly these vectors are not all orthogonal—indeed,
sinceM > 2N, there must exist # j such thaRe (el(.k(i)) . eg.k(j))) # 0. There are now two cases:kf(i) = k (j),
then _ _ _ _

Ek(z)) . egk(l)) + eg_k(l)) ,el(_k(z)) £0
and we are done. On the other hand; {f) # & (5), then

(&
) (O (D) (KG)
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is nonzero. Hence'*™ and e§k<j>> must themselves be nonzero. Butkifi) > & (j), then this contradicts the
minimality of k (¢), while if & (i) < k (j) then it contradicts the minimality df (). m
We can now prove the main result.

Theorem 27 LetU (X) be anN x N matrix, every entry of which is a degréecomplex polynomial in variables
X = (21,...,21). Supposé/ (X) is unitary for all X € {0,1}*. ThenU (X) can assume at mosf" distinct
values as we range ovef € {0,1}".

Proof. By suitable rotation, we can assume without loss of gertgrdlat (Ok) isthe N x N identity /. LetX; be
the k-bit string with a ‘1’ only in the i*" position, and lef; := U (X;) — I. Then for alli,

BiB| = (U (X) - D (U(X) - 1)
=T-UX;)-UX) +1
= —E;,—E.

Next, for alli # j, let X;; be thek-bit string with ‘1's only in thei* and ;" positions. Sincé/ (X) is an affine
function of X, we havelJ (X,;) = I + E; + E;. Therefore

0=U(Xi)U (X))l =1
- (I+Ei+Ej)(IT+EJ+E}) —1
- (EET +EjEj.) + (EEJT + EjEj) + (E + Ej) + (Ej +Ej)
= E;E] + E;E].

Here the first line uses unitarity, and the fourth line usesfétt that?; + E] = —E,E] andE; + E] = —E;E].
Lemma 26 now implies that there can be at mStnonzeroE;’s. HenceU (X) can depend nontrivially on at most
2N bits of X, and can assume at magt¥ values.m

6 Open Problems

The most obvious problems left open by this paper are, fogirdve a classical oracle separation betw@&hA and
QCMA, and second, to prove that the Group Non-Membership proldéemQCMA. We end by listing four other
problems.

e The clasQMA (2) is defined similarly tadQMA, except that now there are two quantum provers who are guar-
anteed to share no entanglement. Can we give a quantum ogatiee to whichQMA (2) # QMA?

e Can we give a quantum oracle relative to whiBQP /qpoly ¢ QMA/poly? This would show that Aaronson’s
containmenBQP /qpoly C PP/poly [1] is in some sense close to optimal.

e Canwe use the ideas of Section 5 to give a classical oraelévesto whichBQP ¢ PH? What about a classical
oracle relative to whiciNP € BQP butPH ¢ BQP?®

¢ |s there a polynomial-time quantum oracle algoritynsuch that for every,-qubit unitary transformatio/,
there exists a classical oraclesuch thatQ“ approximately implements? Alternatively, can we prove that
any such algorithm would require more thaaly (n) queries taA?'°
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