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Abstract

We construct a randomness-efficient averaging sampler that is computable by uniform constant-

depth circuits with parity gates (i.e., in uniform AC0[⊕]). Our sampler matches the parameters

achieved by random walks on constant-degree expander graphs, allowing us to apply a variety

expander-based techniques within NC1. For example, we obtain the following results:

• Randomness-efficient error-reduction for uniform probabilistic NC1, TC0, AC0[⊕] and AC0:

Any function computable by uniform probabilistic circuits with error 1/3 using r random bits

is computable by uniform probabilistic circuits with error δ using O(r+log(1/δ)) random bits.

• An optimal explicit ε-biased generator in AC0[⊕]: There exists a 1/2Ω(n)-biased generator

G : {0, 1}O(n) → {0, 1}2n

for which poly(n)-size uniform AC0[⊕] circuits can compute G(s)i

given (s, i) ∈ {0, 1}O(n) × {0, 1}n. This resolves a question raised by Gutfreund and Viola

(Random 2004).

• uniform BP · AC0 ⊆ uniform AC0/O(n).

Our sampler is based on the zig-zag graph product of Reingold, Vadhan and Wigderson (Annals of

Math 2002) and as part of our analysis we give an elementary proof of a generalization of Gillman’s

Chernoff Bound for Expander Walks (FOCS 1998).

1 Introduction

Over the last three decades, expander graphs have found a wide variety of applications in Theoretical

Computer Science. They have been used in designing novel algorithms (e.g., [AKS83], [JS89], [Rei05]),

in the study of circuit complexity (e.g., [Val77], [IW97]) and to derandomize probabilistic computation

(e.g., [CW89], [IZ89]), just to name a few notable examples from this vast literature.
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Many of these applications involve a random walk on an expander. That is, we choose a random

starting node v in an expander graph G, take a k-step random walk and use the k nodes visited by

this walk in some way – often as a substitute for k independently-chosen nodes. Despite its simplicity,

this processes has some remarkable sampling properties which we discuss shortly. For the moment, we

address the computational efficiency of expanders walks.

In applications, one often requires an expander graph that is exponentially large, say on 2n nodes.

In this case, a random walk on the graph is performed using an efficient explicit representation –

that is, a representation in which each node is identified with an n-bit string and it is possible to

efficiently (e.g., in time poly(n)) find all the neighbors of a given node v ∈ G. Several beautiful

constructions [Mar73, GG81, LPS88, RVW02] are known of such explicit constant-degree expander

graphs of exponential size.

At first glance, the act of taking a random walk on an expander graph seems like an inherently sequential

process – indeed, each step of the walk seems to rely on the previous step in an essential way. A

natural question, therefore, is whether the wealth of expander-based techniques from the literature can

be applied within highly-parallel models of computation, such as log-depth circuits (i.e., NC1) or even

constant depth circuits.

The main technical contribution of this work is a sampler which is just as good as a random walk on

an expander graphs (in a sense that is made precise in the next section), but which is computable in

parallel time O(log n), i.e. computable by uniform NC1 circuits. In fact, our sampler is computable by

uniform constant-depth circuits with parity gates (i.e. AC0[⊕]), a class which is strictly weaker than

NC1 as it cannot even compute the majority of n bits [Raz87].

We now discuss the important sampling properties of random walks on expander graphs in order to

better understand what properties we require of our sampler. A more formal definition of expander

graphs will be given in Section 3, but for the moment the reader may simply think of an expander

graph as a constant-degree undirected graph, G, that is “highly-connected”.

A fundamental sampling property of expander walks is the hitting property, first shown by Ajtai,

Komlós and Szemerédi [AKS87]:

The Hitting Property: For any subset S of half the nodes of G, the probability that a k-step random

walk never visits a node in S is at most 2−Ω(k).

This hitting property is quite useful (e.g. to reduce the error of RP algorithms), but some applications

require an even stronger property, which we call the strong hitting property:

The Strong Hitting Property: For any sequence of subsets S1, . . . , Sk, each consisting of half the

nodes of G, the probability that a k-step random walk does not pass through Si on the i-th step for

any i ∈ {1, . . . , k} is at most 2−Ω(k).
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It turns out that this strong hitting property is what is necessary for the randomness-efficient error

reduction techniques of [CW89] and [IZ89] and for the derandomized XOR Lemma of [IW97], as well

as a variety of other applications.

Clearly, the strong hitting property is a generalization of the (non-strong) hitting property. Another

natural generalization of the hitting property is the following, first proved by Gillman [Gil94]:

The Chernoff Bound for Expander Walks: For any subset S of half the nodes of G, the fraction

of time that a k-step random walk spends in S is 1/2 ± ε with probability 1 − 2−Ω(ε2k).

This Chernoff Bound is quite powerful and has applications Markov-Chain Monte Carlo algorithms (see

[Gil94]). However, it is not clear that it subsumes the strong hitting property. The following property,

however, generalizes both the strong hitting property and the Chernoff bound:

The Strong Chernoff Bound for Expander Walks: Fix a sequence of subsets S1, . . . , Sk, each

consisting of half the nodes of G. Then for a k-step random walk on G, the fraction of indices i such

that the i-th step of the walk lands in Si is 1/2 ± ε with probability 1 − 2−Ω(ε2k).

Thus, the Strong Chernoff Bound for Expander Walks subsumes all the aforementioned sampling

properties, and it seems to represent the essential abstract property of random walks on expanders

that is necessary for most natural applications. This bound has only been proved recently – it follows

from a more general result of Wigderson and Xiao [WX05].

In this paper, we give a direct and elementary proof of the Strong Chernoff Bound for Expander Walks

(Theorem 1). In contrast to most of the proofs in this area, our proof uses only basic linear algebra

and, in particular, does not require any perturbation theory or complex analysis in order to obtain a

bound that matches the parameters of Gillman’s (non-strong) Chernoff bound.1 Since this bound is

important to our analysis, we give a more formal statement of the bound before describing our results

in more detail. (In the following, a λ-expander is a regular graph whose normalized second-largest

eigenvalue (in absolute value) is at most λ – see Section 3 for a precise definition.)

Theorem 1 (Implicit in [WX05]). Let G be a regular λ-expander on V . Fix a sequence of subsets

Si ⊆ V each of density ρi = |Si|/|V |, and for a random walk v1, . . . , vk on G, let T be the random

variable that counts the number of steps i such that vi ∈ Si. Then for all ε > 0,

Pr

[∣

∣

∣

∣

∣

T −
k
∑

i=1

ρi

∣

∣

∣

∣

∣

≥ εk

]

≤ 2e−ε2(1−λ)k/36.

1[WX05] also gives a proof of a (strong) Chernoff bound using no perturbation theory, but their bound does not match

Gillman’s. It should be noted, however, that [WX05] considers the more general setting of matrix-valued functions.
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2 Our Results

Our main result is the construction of a sampler that is computable by AC0[⊕] circuits and possesses

all the “sampling properties” of a random walk on a constant-degree expander graphs of size 2n. To

make this notion precise, we recall the following definition (essentially from [Zuc97]):

Definition 2. A function Γ : {0, 1}m → ({0, 1}n)k is said to be a strong (γ, ε)-averaging2 boolean

sampler if: for any sequence of functions fi : {0, 1}n → {0, 1} each with mean µi = Prx[fi(x) = 1],

Pr
s

[∣

∣

∣

∣

∣

1

k

k
∑

i=1

(fi(Γ(s)i) − µi)

∣

∣

∣

∣

∣

≤ ε

]

≥ 1 − γ.

We call m the seed-length of the sampler, and we call k the sample complexity of the sampler.

It is not hard to check that Theorem 1 implies that a random walk on a constant-degree expander (with

λ = 1−Ω(1)) of size 2n is a strong averaging boolean sampler with seed-length m = n+O(log(1/γ)/ε2)

and sample complexity k = O(log(1/γ)/ε2). Our main theorem is that uniform AC0[⊕] can compute

a sampler that is just as good (up to constant factors):

Theorem 3. There exists a strong (γ, ε)-averaging boolean sampler Γ : {0, 1}m → ({0, 1}n)k, with

m = O(n + log(1/γ)/ε2) and k = O(log(1/γ)/ε2), that is computable by uniform AC0[⊕] circuits of

size poly(n, 1/ε, log(1/γ)).

At this point, the reader may wish to disregard the exact parameters of our construction, and instead

think of our construction as computing (intuitively) a walk of length k on a constant-degree expander

graph of size 2n. Indeed, in most natural applications that employ random walks on expander graphs,

one can safely substitute a sampler with the above parameters in place of the expander walk.

Gutfreund and Viola have shown [GV04] that walks on the Margulis/Gabber-Galil expander graph

[Mar73, GG81] with 2n nodes are computable in space O(log n) (and therefore that logspace has strong

samplers that match the above parameters). To the best of our knowledge, ours is the first work that

implies the existence of such strong samplers within the class NC1 of log-depth circuits; in fact, our

construction is in the strictly-weaker class AC0[⊕] ( TC0 ⊆ NC1 ⊆ L.

Since expander walks are a powerful and widely-applicable tool it is not surprising that our sampler

construction should have a variety of applications. Indeed, we apply our construction to obtain the

following new results:

Randomness-Efficient Error Reduction within NC1 One important application of random

walks on expander graphs is in reducing the error of probabilistic algorithms. Such error reduction

2[Zuc97] uses the term “oblivious sampler”. We follow [Gol97] and use the more-accurate “averaging sampler”.
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was achieved for BPP by Cohen and Wigderson [CW89] and Impagliazzo and Zuckerman [IZ89]. Bar-

Yosef, Goldreich and Wigderson [BYGW99] show how to achieve modest-but-optimal error reduction

for randomized logspace, and the expander walks of Gutfreund and Viola [GV04] imply randomness-

efficient error reduction for the class BP ·L.3 By applying our sampler construction, we obtain analogous

error-reduction for a variety of classes below logspace:

Lemma 4. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP ·AC0[⊕]

(respectively, BP ·TC0 or BP ·NC1) circuits with error at most 1/3 using r = r(n) random bits. Then

for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size uniform BP · AC0[⊕] (respectively BP · TC0

or BP · NC1) circuits with error at most δ using O(r + log(1/δ)) random bits.

Combining our sampler with Nisan’s unconditional pseudorandom generator for constant depth circuits

[Nis91], we obtain an even stronger result for uniform AC0:

Lemma 5. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP · AC0

circuits with error at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has

polynomial-size uniform BP ·AC0 circuits with error at most δ using O(min{r,polylog(n)}+log(1/δ))

random bits.

Derandomization with Linear Advice Recently, Fortnow and Klivans [FK06] have proved that

RL ⊆ L/O(n) – that is, one can derandomize randomized logspace computation at the cost of only a

linear amount of non-uniform advice. Their approach is based on a clever combination of Nisan’s

pseudorandom generator for space-bounded computation [Nis92] and the logspace expander walks

of Gutfreund and Viola [GV04]. Our techniques yield an analogous result for uniform probabilistic

constant-depth circuits:

Corollary 6. uniform BP · AC0 ⊆ uniform AC0/O(n).

Ajtai and Ben-Or [ABO84] have shown that nonuniform BP ·AC0 = nonuniform AC0; even for deran-

domizing uniform BP ·AC0 [Ajt93], however, their technique seems to require an arbitrary polynomial

amount of non-uniform advice. Theorem 6 quantifies the amount of nonuniformity that is necessary to

derandomize a probabilistic AC0 circuit, and therefore can be viewed as a refinement of their result.

A similar approach, together with a new pseudorandom generator of Viola [Vio05], yields the following:

Corollary 7. Let AC0[⊕log] be the class of boolean functions computable by poly(n)-size AC0 circuits

having O(log n) parity gates, and similarly let AC0[SYMlog] be the class of boolean functions computable

by poly(n)-size AC0 circuits having O(log n) arbitrary symmetric gates (e.g., parity and majority gates).

Then the following inclusions hold:
3BP · L refers to randomized logspace computations that are allowed two-way access to the random bits, whereas the

result of Bar-Yosef et al. refers to algorithms that have only one-way access to the random bits. See the survey of Saks

[Sak96] for a discussion of the subtleties surrounding different notions of randomized space-bounded computation.
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1. BP · AC0[⊕log] ⊆ AC0[⊕]/O(n)

2. BP · AC0[SYMlog] ⊆ TC0/O(n)

An Optimal Explicit ε-Biased Generator in AC0[⊕] Gutfreund and Viola [GV04] study the

complexity of constructing explicit ε-biased generators (see Definition 9). They give a construction in

AC0[⊕] whose seed-length is optimal for ε = Ω(1/poly log log(m)) (where m is the number of output

bits) and sub-optimal for smaller ε. Healy and Viola [HV06] give an optimal construction in TC0

and a sub-optimal construction in AC0[⊕] whose parameters are incomparable to those of [GV04]. In

this work, we resolve this question entirely: using our sampler construction, we construct an optimal

explicit ε-biased generator in AC0[⊕]:

Corollary 8 ([NN90] + [GV04] + Theorem 3). For every ε > 0 and m, there is an ε-biased gener-

ator G : {0, 1}n → {0, 1}m with n = O(log m + log(1/ε)) for which uniform AC0[⊕] circuits of size

poly(n, log m) = poly(n) can compute G(s)i given (s, i) ∈ {0, 1}n × [m].

It can be shown that an explicit ε-biased generators acheiving the parameters of Corollary 8 requires

AC0 circuits of exponential size (see [GV04] and [MNT90]). Therefore, the construction of Corollary

8 is tight both in terms of seed-length and computational complexity.

3 Preliminaries

For a positive integer n, we denote the set {1, . . . , n} by [n].

ε-Biased Sets and Generators Small-biased spaces appear in two ways in this work. First, poly-

size ε-biased sets are used to construct expander graphs on which our sampler construction is based

(Lemma 11). Second, one of the applications of our sampler is to build exponential-size ε-biased sets

which are computable explicitly (see the definition below and Corollary 8).

Definition 9. For a, b ∈ Fm
2 , let 〈a, b〉2 denote the inner product of a and b modulo 2.

A multi-set S ⊆ Fm
2 is ε-biased if for all non-zero y ∈ Fm

2 , Prx∈S [〈x, y〉2 = 1] ∈ [1/2 − ε, 1/2 + ε].

An ε-biased generator is a function Γ : {0, 1}` → {0, 1}m whose range is an ε-biased multi-set.

An explicit ε-biased generator is a function Γ : {0, 1}` × [m] → {0, 1} such that the function Γ′(s) =

(Γ(s, 0),Γ(s, 1), . . . ,Γ(s,m − 1)) is an ε-biased generator.

Expander Graphs Informally, expander graphs are sparse-yet-highly-connected graphs. While there

are a variety of equivalent notions of graph expansion (see, e.g., [Gol99] and the references therein), it
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will be most convenient for us to work with the spectral definition.

Definition 10. A regular graph G of degree d is a λ-expander if the second-largest eigenvalue (in

absolute value) of its probability transition matrix (i.e., 1/d times its adjacency matrix) is at most λ.

We will often abuse language and refer to an “λ-expander”, when we really mean a “family of λ(n)-

expanders of size s(n)” for some function s(n). Also, when we simply refer to an “expander graph”,

without mention of λ, it is understood that we mean a (1 − Ω(1))-expander.

By a random walk v1, . . . , vk on an d-regular graph G, we mean the following process: Choose a random

starting vertex v0 ∈ G, and for i = 1, . . . , k, let vi be a uniformly random neighbor of vi−1 in G. Note

that we are implicitly discarding the start vertex v0 – while it is easy to see that the distribution is

unchanged even if we keep v0, we prefer this convention as it will simplify our notation and presentation.

We also note that such a walk is described by a tuple (v0, s1, . . . , sk) ∈ [|G|]× [d]× · · · × [d], and hence

by a string of O(log |G| + k log d) bits.

Constant-Depth Circuits We consider three classes of unbounded fan-in constant-depth circuits:

circuits over the bases {∧,∨} (i.e., AC0), {∧,∨,Parity} (i.e., AC0[⊕]), and {∧,∨,Majority} (i.e.,

TC0). Unless explicitly stated otherwise, all circuits are of polynomial size and uniform – specifically,

we adopt the standard of Dlogtime-uniformity, a notion of uniformity which is even more restrictive

than logspace-uniformity and which has become the generally-accepted convention for uniformity in

constant-depth circuits [BIS90]. Informally, a circuit is Dlogtime-uniform if, given indices of two gates

in the circuit, one can determine the types of the gates and whether they are connected in linear time

in the length of the indices (which is logarithmic in the size of the circuit).

When referring to non-uniform circuits, we always indicate this explicitly using slash notation: for

example, AC0/O(n) is the class of boolean functions f that are computable by a Dlogtime-uniform

AC0 circuit family Cn : {0, 1}n × {0, 1}O(n) → {0, 1} for which there is a single advice string an of

length O(n) such that Cn(x, an) = f(x) for all x ∈ {0, 1}n.

The probabilistic classes BP ·AC0, BP ·AC0[⊕], BP ·TC0 and BP ·NC1 are all defined in the natural

way: the circuit takes two inputs, one of n bits and one of r(n) random bits for some polynomially-

bounded function r(n), and for any fixed input x ∈ {0, 1}n, the circuit should correctly compute the

function with probability at least 2/3 over the r(n) random bits.

Recall that AC0 ( AC0[⊕] ( TC0 ⊆ NC1 ⊆ logspace, where the last inclusion holds under logspace

uniformity and the separations follow from works by Furst et al. [FSS84] and Razborov [Raz87], re-

spectively (and hold even for non-uniform circuits). Despite these lower-bounds, AC0 can compute the

approximate majority of n bits [Ajt93] – in particular, for any constant ε > 0, there exists a family of

AC0 circuits that correctly computes the majority function for all inputs with at most a n/2− εn ones
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and for all inputs with at least n/2 + εn ones. See, e.g., [H̊as87, Vol99] for additional background on

constant-depth circuits.

4 The Sampler Construction

In this section, we describe our sampler construction and prove Theorem 3. Recall that our goal is

to construct a sampler Γ : {0, 1}m → ({0, 1}n)k that matches the parameters of random walks on

expander graphs. Naturally, one way to achieve this would be to exhibit a family of constant-degree

expander graphs on 2n nodes and show that walks of length k on these expanders can be computed in

AC0[⊕] of size poly(n, k). Unfortunately, we do not know of any such family of expanders. Instead, we

begin with a family of expander graphs of degree poly(n) where walks are computable in AC0[⊕] – note

that a walk of length k on such a graph is described by a seed of length n + O(k · log n) – and then we

derandomize the walk on this graph to achieve the optimal seed length O(n+k). This derandomization

uses random walks on a smaller expander graph, and its analysis is based on the zig-zag graph product

of [RVW02]. We now describe the construction in more detail.

Our first graph, G, is a Cayley graph on the group Fn
2 . Specifically, we construct a 1/n-biased set

S ⊂ Fn
2 of size poly(n) (see Definition 9) and let {v,w} be an edge if and only if v − w ∈ S. The

following well-know fact guarantees that G has second-largest eigenvalue at most 2/n (e.g., see [AR94]).

Lemma 11. A Cayley graph on Fn
2 with generators S ⊂ Fn

2 is a 2ε-expander if and only if S is ε-biased.

Before continuing, let us see how walks on G can be computed in AC0[⊕]. First, we note that a

1/n-biased set S of size poly(n) can be constructed in AC0. For instance, we may use the “Powering

Construction” of an ε-biased generator from [AGHP92] together with the results on field arithmetic of

[HV06].4 (Note that if we only wished to give a non-uniform construction, we could simply hard-wire

such an ε-biased set into the circuit.)

Thus, given the description a walk (v, s1, . . . , sk) ∈ {0, 1}n × {0, 1}O(log n) × · · · × {0, 1}O(log n), to

determine the i-th vertex visited by the walk, the circuit need only compute from each index sj (in

parallel) the appropriate vector vsj
∈ S and then compute the sum

v +

i
∑

j=1

vsj
.

4Specifically, let m = log n (assuming that log n is an integer for simplicity) and consider the finite field F22m with

22m elements (viewed as the ring of polynomials over F2 modulo an irreducible polynomial of degree 2m). The generator

outputs 24m = n4 vectors vα,β of dimension 2m = n, indexed by pairs of elements α, β ∈ F22m , where the i-th bit of vα,β

is given by 〈αi, β〉 (mod 2). It is shown in [AGHP92] that such a generator has bias less than 2m/22m = 1/n, and it is

shown in [HV06] that all the necessary field arithmetic can be carried out in uniform AC0 of size poly(n) for this range

of parameters.
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Since the summation is modulo 2, this is easily seen to be computable in AC0[⊕] of size poly(n, k).

Now we turn to the problem of producing a pseudorandom sequence of steps si, with the goal of

reducing the seed length of a walk on G, while at the same time preserving the sampling properties

of such walks. Our approach is motivated by the zig-zag product of Reingold, Vadhan and Wigderson

[RVW02]. Roughly speaking, one may interpret their results as saying the following: to derandomize

a walk on a graph G of degree d, it suffices to choose the steps in G according to a random walk on a

constant-degree expander graph H of size d. (For technical reasons, their result requires the graph H

to be the square of an expander graph, but we will ignore this for the moment.) Specifically, to take a

pseudorandom k-step walk in G:

1. Choose a random starting vertex v0 ∈ G

2. Choose a random w0 ∈ H and take a random walk of length k, visiting nodes w1, . . . , wk

3. View w1, . . . , wk as indices in [d] = [|H|]

4. Use w1, . . . , wk as the steps of a walk (starting at v0) in G

5. Output the nodes v1, . . . , vk ∈ G visited by this walk

Note that the seed-length of such a sampler is of size |v0|+(|w0|+O(k)) = n+log |H|+O(k) = O(n+k),

as desired. Moreover, one can show (using the results of [RVW02]) that the above construction is a

strong averaging sampler. What is not clear, however, is how to compute this sampler in AC0[⊕].

The reason is that it requires a long walk on the graph H, and while H is small (only poly(n) nodes)

compared to G (which has 2n nodes), we do not know how to take such a long walk on any constant-

degree expander family in AC0[⊕] (or even in NC1 for that matter).

In order to circumvent this obstacle, we derandomize the walk on G by using many short walks on H,

rather than a single long walk.

Construction 12.

1. Choose a random starting vertex v0 ∈ G

2. Take k/ log n random walks of length log n in H, where the i-th walk visits w
(i)
1 , . . . , w

(i)
log n ∈ H

3. View w
(1)
1 , . . . , w

(1)
log n, w

(2)
1 , . . . , w

(2)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as indices in [d] = [|H|]

4. Use w
(1)
1 , . . . , w

(1)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as the steps of a walk (starting at v0) in G

5. Output the nodes v1, . . . , vk ∈ G visited by this walk

This sampler has seed-length

|v0| +
k/ log n
∑

i=1

(|w(i)
0 | + O(log n)) = n +

k

log n
· O(log n) = O(n + k).
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Furthermore, we show below that this construction is a strong averaging sampler, achieving essentially

the same parameters as a random walk on an expander graph. Before proving this, however, we observe

that it is computable in AC0[⊕]. Indeed, it is known how to compute walks of length O(log n) on poly-

sized explicit expanders of constant degree in AC0 [Ajt93, GV04],5 and thus each of the five steps

above is computable in constant depth.

We now show that Construction 12 is a strong averaging sampler. In particular, Theorem 3 is a

consequence of the following lemma:

Lemma 13. Let H = H̃2 where H̃ is a constant-degree expander graph on poly(n) nodes. Then

Construction 12 is a strong averaging boolean sampler with seed length O(n + log(1/γ)/ε2) and sample

complexity O(log(1/γ)/ε2).

Proof. Our proof relies on the zig-zag product of [RVW02], so we briefly recall that construction.

Zig-Zag Product Let G be a regular graph of degree d on vertices VG whose edges are labeled with

the names 1, . . . , d in such a way that no two incident edges share the same label.6 (Note that under

such a labeling, if w is the “i-th neighbor of v”, then v is the “i-th neighbor of w” – the graph G,

defined above, clearly has this property, as it is a Cayley graph on a group of characteristic 2.) Then if

g is a regular graph on vertices Vg where |Vg| = d, we may form the zig-zag product graph G©z g where:

• G©z g has vertices VG × Vg

• {(v,w), (v′ , w′)} is an edge if there is an x ∈ g such that v′ is the x-th neighbor of v in G and

(w, x,w′) is a path in g. (Note that the labeling condition on G ensures this is symmetric.)

Thus, if we start at (v,w) ∈ G©z g, a step to a random neighbor (v′, w′) has following form:

• Choose a random neighbor x of w in g.

• Set v′ to be the x-th neighbor of v in G.

• Choose a random neighbor w′ of x in g.

In particular, if we only consider the VG-coordinate of a random walk of length ` in G©z g (starting at

a random vertex), it has the same distribution as the following process:

• Choose a random start vertex v0 ∈ VG.

5As with the 1/n-biased set S above, the delicate issue here is the uniformity of the circuits; if we only wish to give a

nonuniform construction we could simply hard-wire all the possible walks of length log n into the circuit.
6The zig-zag product of [RVW02] actually holds in much greater generality; however, this simplification suffices for

our application.
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• Take a random walk w1, w2 . . . , w` in g2.

• For i > 0, let vi to be the wi-th neighbor of vi−1 in G.

• Output v1, v2, . . . , v`.

Thus, each of of the segments of length k/ log n in our sampler construction corresponds to a random

walk on G©z H̃, projected onto the VG-coordinate. But what about the boundaries between these

segments? In this case, Construction 12 says we choose a new, entirely-random node of H̃ and then

continue the walk on G. This is equivalent to taking a step on G©z Kd, i.e. the zig-zag product of

G with a complete graph (with self-loops) on d nodes. Therefore, the output of our sampler is the

projection onto the VG-coordinate of a random walk on a time-varying graph that is G©z H̃ most of

the time, and G©z Kd once every log n steps. We now show that this output satisfies Definition 2 for

the desired parameters.

First we note for any function f : VG → {0, 1} there is a natural lift of f to f̂ : VG × VH̃ → {0, 1},
defined by f̂(v,w) = f(v). It is clear that the lift f̂ has the same average as f . Therefore, to conclude

that the projection of a random walk yields a strong averaging sampler, it suffices to show that a

random walk on the time-varying graph is a strong averaging sampler. By the remark after the proof

of Theorem 1, it does not matter if the graph is varying over time: as long as it is a regular λ-expander

at every point in time, Theorem 1 holds (and so the random walk is a good sampler). Thus, we are

left with the task of showing that G©z H̃ and G©z Kd are expanders. For this, we apply the following

consequence of the main theorem of [RVW02]:

Lemma 14 ([RVW02], Corollary to Theorem 4.3). Let G be a regular graph of degree d whose edges are

labeled with 1, . . . , d in such a way that no two incident edges share the same label, and let g be a regular

graph on d nodes. If G is a λG-expander and g is a λg-expander, then G©z g is a (λG + λg)-expander.

By Lemma 11, G is a 2/n-expander, and by assumption H̃ is a (1−Ω(1))-expander, and so by Lemma

14, G©z H̃ is a (1 − Ω(1))-expander.

It is not hard to see that Kd, the complete graph (with self-loops) on d nodes, is a 0-expander, and

therefore by Lemma 14, G©z Kd is a 2/n-expander.

Thus our sampler stretches a seed of length O(n+k) into k samples of n bits each that satisfy the bound

from Theorem 1 with λ = 1−Ω(1). Specifically, the sampler approximates the mean of the fi’s with error

ε and confidence 1− γ = 1− e−Ω(ε2k); in other words, the seed length is O(n+ k) = O(n+log(1/γ)/ε2)

and the sample complexity is k = O(log(1/γ)/ε2).
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5 Proofs of Other Results

Lemma 4. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP ·AC0[⊕]

(respectively, BP ·TC0 or BP ·NC1) circuits with error at most 1/3 using r = r(n) random bits. Then

for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size uniform BP · AC0[⊕] (respectively BP · TC0

or BP · NC1) circuits with error at most δ using O(r + log(1/δ)) random bits.

Proof sketch. Let Cf be a circuit computing f . Construct the circuit that, on input x ∈ {0, 1}n,

runs k = Θ(log(1/δ)) copies of Cf in parallel, using independent random r-bit blocks of randomness,

and then computes the (5/12, 7/12)-approximate majority of the outputs [Ajt93]. (For BP · TC0 and

BP ·NC we can just compute the majority exactly.) Now, instead of using independent random bits for

each block, we apply the construction of Γ : {0, 1}O(r+k) → ({0, 1}r)k from Theorem 3 (with ε = 1/12

and γ = δ) to generate the necessary random bits from a seed of length O(r + k).

For any fixed input x, the probability that a randomly chosen O(r + k)-bit random string causes the

algorithm to fail (i.e. that more than 5/12 of the outputs of Γ fall in the ≤ 1/3 fraction of random

strings that cause Cf to fail) is at most 2−Ω(k) = 2−Ω(Θ(log 1/δ)) since Γ is an averaging sampler. By

choosing the constants appropriately, this is at most δ and the result follows.

Lemma 5. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP · AC0

circuits with error at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has

polynomial-size uniform BP ·AC0 circuits with error at most δ using O(min{r,polylog(n)}+log(1/δ))

random bits.

Proof sketch. Let Cf be a circuit computing f . By applying Nisan’s pseudorandom generator for

BP · AC0 [Nis91] (which has been shown to be computable in AC0 in [Vio04]), we may assume, with

no loss of generality, that Cf uses only r′ = r′(n) = min{r(n), logc(n)} random bits for some constant

c that may depend on f .

By applying the construction of Lemma 4 with δ(n) = 2−r′ , we obtain a BP · AC0 circuit that has

error at most δ(n) = 2−r′ and uses O(r′) bits of randomness. (The circuit is in BP · AC0, and not

just BP · AC0[⊕] because one can readily check that all the necessary parities are on r′ = O(logc n)

bits, and can therefore be computed in AC0.) By applying Θ(n/r′) such circuits in parallel (on the

same input, but independent random strings), and taking the approximate majority of their Θ(n/r′)

outputs, we have a circuit taking O(r′) · Θ(n/r′) = O(n) random bits and having error less than 2−n

(by a standard Chernoff bound and an appropriate setting of constants).
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Derandomization with Linear Advice

Corollary 6. uniform BP · AC0 ⊆ uniform AC0/O(n).

Proof. Apply Lemma 5 to obtain a BP · AC0 circuit with error less than 2−n using r = O(n) random

bits. By a union bound, at least one r-bit string causes the circuit to correctly decide all inputs. Fix

one such string as the non-uniform advice and the result follows.

Corollary 7. Let AC0[⊕log] be the class of boolean functions computable by poly(n)-size AC0 circuits

having O(log n) parity gates, and similarly let AC0[SYMlog] be the class of boolean functions computable

by poly(n)-size AC0 circuits having O(log n) arbitrary symmetric gates (e.g., parity and majority gates).

Then the following inclusions hold:

1. BP · AC0[⊕log] ⊆ AC0[⊕]/O(n)

2. BP · AC0[SYMlog] ⊆ TC0/O(n)

Proof sketch. The proof is similar to the proof of Lemma 5 and Theorem 6, except that we use the

generator of Viola [Vio04] instead of Nisan’s. Specifically, the generator from [Vio04] allows us to as-

sume, without loss of generality, that any function f ∈ BP ·AC0[⊕log] (respectively, BP ·AC0[SYMlog])

can be computed by a BP · AC0[⊕] (respectively, BP · TC0) circuit using only no(1) random bits. By

applying Lemma 4, we may reduce the error to less than 2−n using only O(no(1) + n) = O(n) random

bits. Finally, a union bound yields a single advice string of O(n) bits that works for all inputs.

Optimal explicit ε-biased generator in AC0[⊕]

Corollary 8 ([NN90] + [GV04] + Theorem 3). For every ε > 0 and m, there is an ε-biased gener-

ator G : {0, 1}n → {0, 1}m with n = O(log m + log(1/ε)) for which uniform AC0[⊕] circuits of size

poly(n, log m) = poly(n) can compute G(s)i given (s, i) ∈ {0, 1}n × [m].

Proof idea. We follow the approach of [GV04] and implement the ε-biased generator of Naor and Naor

[NN90]. This generator requires a 7-wise independent generator and a long walk on an expander graph.

Constructions of 7-wise independent generators in AC0[⊕] are known [GV04, HV06]. Since the use of

an expander walk in [NN90] is simply as a hitting generator, our construction from Section 4 is more

than adequate for this purpose.
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6 The Proof of Theorem 1

In this section we give an elementary proof of the following generalization of Gillman’s Chernoff Bound

for Expander Walks [Gil94].

Theorem 1. Let G be a regular λ-expander on V . Fix a sequence of subsets Si ⊆ V each of density

ρi = |Si|/|V |, and for a random walk v1, . . . , vk on G, let T be the random variable that counts the

number of steps i such that vi ∈ Si. Then for all ε > 0,

Pr

[∣

∣

∣

∣

∣

T −
k
∑

i=1

ρi

∣

∣

∣

∣

∣

≥ εk

]

≤ 2e−ε2(1−λ)k/36.

Wigderson and Xiao [WX05] have recently established the same bound (up to constants) using tech-

niques from perturbation theory – Gillman’s proof (which treats the case S1 = · · · = Sk) also employs

results from perturbation and complex analysis to obtain a simlar bound. In contrast, the proof

presented here has only very modest prerequisites, which are summarized in the following paragraph.

Background Throughout, we work with a regular undirected graph G on N nodes. For any such

graph, its probability transition matrix P is clearly real and symmetric, and therefore we may form an

orthogonal basis of RN consisting of eigenvectors of P . Since G is regular, the vector 1 = (1, . . . , 1)

is an eigenvector with eigenvalue λ1 = 1. By the Perron-Frobenius Theorem, all other eigenvalues

λ2 ≥ . . . ≥ λn are between 1 and −1. We denote by λ, the quantity max{|λ2|, |λn|}. For any vector

v ∈ RN , we let v‖ denote the component of v in the direction of 1 and we let v⊥ denote the component

of v that lies in the orthogonal complement of 1; that is, v‖ = 〈1,v〉u and v⊥ = v−v‖ = v− 〈1,v〉u,

where u = (1/N, . . . , 1/N). Since RN has an orthogonal basis of eigenvectors of P , it is not hard to

see that ‖Pv⊥‖ ≤ λ‖v⊥‖ for any vector v ∈ RN .

Proof of Theorem 1. We shall bound the quantity Pr [T −∑i ρi ≥ εk] and the same bound will follow

for Pr [T −
∑

i ρi ≤ −εk] by replacing the sets Si with their complements. Let r ≤ min{1, log(1/λ)/2}
be a positive parameter to be specified later.

Pr

[

T −
∑

i

ρi ≥ εk

]

= Pr

[

T ≥ εk +
∑

i

ρi

]

= Pr
[

erT ≥ er(εk+
P

i ρi)
]

≤ E
[

erT
]

er(εk+
P

i ρi)
(1)

where the last step follows by applying Markov’s inequality.

We now bound E
[

erT
]

. Let P be the probability transition matrix for G, and for each set Si let Ei be

a diagonal matrix with ej,j = er if j ∈ Si and ej,j = 1 otherwise. It is not hard to see that

E
[

erT
]

= 1T EkPEk−1P · · ·E1Pu. (2)

To bound this quantity, we require the following lemma.
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Lemma 15. Let P be as above, and assume that r ≤ log(1/λ)/2. Let S ⊆ V be of density ρ = |S|/|V |,
and let E be the diagonal matrix with ej,j = er for j ∈ S and ej,j = 1 otherwise. Then for any v ∈ RN :

• ‖(EPv)‖‖ ≤ (1 + ρ(er − 1)) · ‖v‖‖ + (er − 1) · ‖v⊥‖

• ‖(EPv)⊥‖ ≤ (er − 1) · ‖v‖‖ +
√

λ · ‖v⊥‖.

Proof. By the triangle inequality ‖(EPv)‖‖ = ‖(EPv‖)‖ + (EPv⊥)‖‖ ≤ ‖(EPv‖)‖‖ + ‖(EPv⊥)‖‖.

(EPv‖)‖ = (Ev‖)‖ = 〈1, Ev‖〉u = 〈1, Eu〉v‖ = (1 − ρ + ρer)v‖. (3)

(EPv⊥)‖ = 〈1, EPv⊥〉u = 〈1, (E − I)Pv⊥〉u + 〈1, Pv⊥〉u = 〈1, (E − I)Pv⊥〉u,

and by the Cauchy-Schwartz inequality,

‖〈1, (E − I)Pv⊥〉u‖ ≤ ‖1‖ · ‖(E − I)Pv⊥‖ · ‖u‖ ≤ (er − 1) · ‖Pv⊥‖ ≤ (er − 1) · ‖v⊥‖.

Similarly, for the second item, ‖(EPv)⊥‖ = ‖(EPv‖)⊥ + (EPv⊥)⊥‖ ≤ ‖(EPv‖)⊥‖ + ‖(EPv⊥)⊥‖.

(EPv‖)⊥ = (Ev‖)⊥, and by equation (3),

(Ev‖)⊥ = Ev‖ − (Ev‖)‖ = Ev‖ − (1 + ρ(er − 1))v‖ = (E − (1 + ρ(er − 1))I)v‖.

The matrix E − (1 + ρ(er − 1))I has diagonal entries (1 − ρ)(er − 1) and −ρ(er − 1) each of which is

at most (er − 1) in absolute value. Therefore, ‖(EPv‖)⊥‖ ≤ (er − 1) · ‖v‖‖.

Finally, ‖(EPv⊥)⊥‖ ≤ ‖(EPv⊥)‖ ≤ er·‖Pv⊥‖, and ‖Pv⊥‖ ≤ λ·‖v⊥‖. Thus, ‖(EPv⊥)⊥‖ ≤ erλ·‖v⊥‖,
and since we assume that r ≤ log(1/λ)/2, this is at most

√
λ · ‖v⊥‖.

We now define a sequence of vectors v0 = u and vi = EiPvi−1 for i > 0, noting that

E
[

erT
]

= 1T EkPEk−1P · · ·E1Pu = 〈1,vk〉 = 〈1,v
‖
k〉 ≤ ‖1‖ · ‖v‖

k‖ =
√

N · ‖v‖
k‖. (4)

By Lemma 15,

• ‖v‖
i ‖ ≤ (1 + ρi(e

r − 1)) · ‖v‖
i−1‖ + (er − 1) · ‖v⊥

i−1‖

• ‖v⊥
i ‖ ≤ (er − 1) · ‖v‖

i−1‖ +
√

λ · ‖v⊥
i−1‖.

Recursively applying the bound on ‖v⊥
i ‖ and noting that ‖v⊥

0 ‖ = 0,

‖v⊥
i ‖ ≤ (er − 1) ·

i−1
∑

j=0

(
√

λ)j‖v‖
i−j−1‖,

and substituting into the bound for ‖v‖
i ‖,

‖v‖
i ‖ ≤ (1 + ρi(e

r − 1)) · ‖v‖
i−1‖ + (er − 1)2 ·

i−2
∑

j=0

(
√

λ)j‖v‖
i−j−2‖
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which is at most


1 + ρi(e
r − 1) + (er − 1)2 ·

i−2
∑

j=0

(
√

λ)j



max
j<i

{‖v‖
j‖} ≤

(

1 + ρi(e
r − 1) +

2(er − 1)2

1 − λ

)

max
j<i

{‖v‖
j‖}.

Recalling that ‖v‖0‖ = 1/
√

N , by induction on j it is clear that for all j ≥ 0

‖v‖
j‖ ≤ 1√

N
·

j
∏

i=1

(

1 + ρi(e
r − 1) +

2(er − 1)2

1 − λ

)

and in particular, by equation (4)

E
[

erT
]

≤
√

N · ‖v‖
k‖ ≤

k
∏

i=1

(

1 + ρi(e
r − 1) +

2(er − 1)2

1 − λ

)

.

Using the fact that er − 1 ≤ r + r2 ≤ 2r for 0 ≤ r ≤ 1,

E
[

erT
]

≤
k
∏

i=1

(

1 + ρi(r + r2) +
8r2

1 − λ

)

≤
k
∏

i=1

(

1 + rρi +
9r2

1 − λ

)

.

Taking logarithms and using the fact that log(1 + x) ≤ x for all x ≥ 0, we have

log E
[

erT
]

≤ k · 9r2

1 − λ
+ r ·

k
∑

i=1

ρi.

Thus, by equation (1),

log Pr

[

T −
∑

i

ρi ≥ εk

]

≤ log
(

E
[

erT
])

− r

(

εk +
∑

i

ρi

)

≤ k

(

9r2

1 − λ
− εr

)

.

Finally, we minimize the right-hand side by setting r = ε(1 − λ)/18, noting that r is indeed at most

min{1, log(1/λ)/2} simply because 1 − λ ≤ log(1/λ) for all λ ∈ [0, 1].

log Pr

[

T −
∑

i

ρi ≥ εk

]

≤ k

(

9

1 − λ
· ε2(1 − λ)2

182
− ε2(1 − λ)

18

)

= −ε2(1 − λ)k

36
.

Remark 16. One can readily see that the same proof works even if the graph is different for each

of the k steps, as long as it is a λ-expander at each step. This is observation is important for the

proof of correctness of our sampler (Theorem 3), as that construction concerns a walk on an expander

graph that is varying from one step to the next step. This observation is not unique to our proof of

the Chernoff bound, and this same property has been exploited before, most notably in the hardness

amplification result of Goldreich et al. [GIL+90] (although there, they only require the hitting property

of expander walks, and not the stronger sampling properties guaranteed here).
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7 Open Questions

It is well-known that expander walks yield averaging-samplers that are optimal (up to constants) for

ε = Ω(1), but sub-optimal for smaller ε. Since pairwise-hashing is in AC0[⊕] [GV04, HV06], one can

implement the median-of-averages sampler of [BGG93] in TC0 by using our sampler in lieu of the

expander walks. (Majority gates are only necessary to compute the medians and averages – the actual

samples can be computed in AC0[⊕].) Can AC0[⊕] compute an optimal averaging sampler?

There is also the question of lower-bounds. We suspect that AC0 cannot compute samplers that match

the parameters of our AC0[⊕] construction. One approach to showing this is to use the equivalence

of samplers and extractors from [Zuc97] and show that AC0 cannot compute a (strong) extractor for

sources of high constant min-entropy. Viola [Vio04] has shown that AC0 cannot compute an extractor

for sources of low min-entropy; however, his techniques do not seem to apply directly in this setting.
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