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Abstract

We address well-studied problems concerning the leaiibabfl parities and halfspaces in the presence
of classification noise.

Learning of parities under the uniform distribution witindelom classification noise, also called the noisy
parity problem is a famous open problem in computationahieg. We reduce a number of basic problems
regarding learning under the uniform distribution to leagnof noisy parities, thus highlighting the central
role of this problem for learning under the uniform disttiom. We show that under the uniform distribution,
learning parities with adversarial classification noisduees to learning parities with random classification
noise. Together with the parity learning algorithm of Blahal. [BKWO03], this gives the first nontrivial
algorithm for learning parities with adversarial noise. $¥f®w that learning of DNF expressions reduces to
learning noisy parities of just logarithmic number of vates. We show that learning &fjuntas reduces to
learning noisy parities of variables. These reductions work even in the presence dbrarclassification
noise in the original DNF or junta.

We then consider the problem of learning halfspaces @ewith adversarial noise or finding a halfspace
that maximizes the agreement rate with a given set of exampi@ding the best halfspace is known to be
NP-hard [GJ79, PV88] and many inapproximability results amewn for this problem [ABSS97, HSH95,
AK95, BDELOO, BB02]. We show that even if there is a halfspdes correctly classifies — e fraction of
the given examples, it is hard to find a halfspace that is come a% + € fraction for anye > 0 assuming
P # NP. This gives an essentially optimal inapproximability farcdf 2 — e, improving the factor o2 — e
due to Bshouty and Burroughs [BB02]. Under stronger conipl@ssumptions, we can takdo be as small
as2~ VI ™ wheren is the size of the input.

Finally, we prove that majorities of halfspaces are hardAG€Hearn using any representation, based
on the cryptographic assumption underlying the securitthefAjtai-Dwork cryptosystem. We show that
this result implies that learning halfspaces with high leaf adversarial noise is hard, independent of the
representation of the hypothesis.
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1 Introduction

Parities and halfspaces are two of the most fundamentalepbratasses in learning theory. While efficient
algorithms are known for learning these classes when tleeislgiluaranteed to be noise-free, presence of noise
leads to a number of challenging and important problems. cimplexity of the problems depends on the
process through which the noise is generated. In this ertige study various kinds of classification noise,
where the noise only affects the label of a data point. Thidifferent from the model of malicious errors
defined by Valiant [Val85] (see also [KL93]) where the noisa @ffect both the label and the point itself, and
thus possibly change the distribution of the data-points.

The two natural models for classification noise are randoiseand adversarial noise. In the former model,
the label of each point is flipped independently with probigbiy for somen < 1/2 and then given to the
learner. Asn approached /2 the labels approach an unbiased coin flip and hence the itime of the
learning algorithm is allowed to depend ponnomiaIIy?ihz—n. In the adversarial noise model, an adversary is
allowed to flip the labels of an fraction of the input points. Alternatively, one can vievistas learning in the
agnostic framework of Haussler [Hau92] and Kearns et al. 98§ where we do not make any assumptions
about how the data is generated, our goal is to find a hypathésich does well in comparison to any other
hypothesis from a certain class.

1.1 Learning Noisy Parities Under the Uniform Distribution

A parity function is the XOR of some set of variabl&sC [n]. In the absence of noise, one can identify the set
T by taking samples and running Gaussian elimination. Thbileno of learning parity in the presence of noise
has been well studied in both the adversarial noise modefrenchindom noise model. Both these problems are
closely related to problems in coding theory regarding #eoding of random linear codes. We summarize the
known results about these problem.

e Adversarial Noise: In the adversarial noise model, under arbitrary distrimgij the problem of learning
parity is intractable in the proper learning setting wherelearner must produce a parity as the hypothesis.
This follows from a celebrated result of Hastad [Has97¢ &ve unaware of non-trivial algorithms for this
problem under any fixed distribution, prior to our work. Thelgem of learning parity with adversarial
noise under the uniform distribution is related to the peablof decoding Hadamard codes. If the learner
is allowed to ask membership queries, a celebrated res@blufreich and Levin gives a polynomial time
algorithm for this problem [GL89]. Later algorithms weregn by Kushilevitz and Mansour [KM91] and
Levin [Lev93].

¢ Random Noise: The problem of learning parity in the presence of randomejais the noisy parity
problem is a notorious open problem in computational |legyheory. Blum, Kalai and Wasserman give
algorithms for learning parity functions envariables in the presence of random noise in oz ) for
any constant) [BKWO03]. Their algorithm works for any distribution. We Ww#lso consider the problem
under the promise that the sBtis of size at mosk. A brute force approach to this problem is to take
O(ﬁk log n) samples and find the parity dénvariables that best fits the data through exhaustive search

in time O(n¥). We are unaware of a better algorithm for this problem.

In this work, we focus on learning parities under the unifatistribution. We reduce a number of basic
problems about learning under the uniform distributioretarhing noisy parities, establishing the central role of
noisy parities in this model of learning.



Learning Parities with Adversarial Noise

We show that under the uniform distribution, learning pesitvith adversarial noise reduces to learning parities
with random noise at the cost of a small increase in the neigel.l More precisely, learning parities with
adversarial noise of ratge can be reduced to learning parities with random noise of %ate(% —n)2 In
particular, our reduction and the result of Bluehal. imply the first non-trivial algorithm for learning parity
with adversarial noise under the uniform distribution. Eglently, this gives the first non-trivial algorithm
under any distribution for agnostically learning paritg€sSection 3.1 for the definition of agnostic learning).

Theorem 1 For any constant) < 1/2, parities are learnable under the uniform distribution widversarial
noise of raten in time O (2= ).

Our main technical contribution is to show that an algorittumlearning noisy parities gives an algorithm
that finds heavy Fourier coefficients (i.e. correlated pejtof a function from random samples. Thus an
algorithm for learning noisy parities gives an analoguehef Goldreich-Levin/Kushilevitz-Mansour algorithm
for the uniform distribution, but without queries.

This result is proved using Fourier analysis. The highdlédea of the reduction is to modify the Fourier
spectrum of the functiorf so that it is concentrated at a single point. For this, weodhice the notion of a
probabilistic oracle for real-valued functiorfs: {0,1}"™ — [—1,1]. Informally, such an oracle produces a pair
(z,b) wherez is random vector i{0,1}" andb € {—1,1} is a random bit whose expectation fix). We
present a set of transformation on oracles that allow usda@uoracle for the functiofi to simulate oracles for
many related functions. In particular, one can reduce tthegnce of the smaller Fourier coefficients, and project
f onto Fourier coefficients belonging to a particular subspafc{0,1}". By composing these operations, we
show that one can simulate an oracle which is close (in Statiglistance) to a noisy parity.

Learning DNF formulae

Learning of DNF expressions from random examples is andémous open problem formulated in Valiant's
seminal paper on PAC learning [Val84]. In this problem we giken access to examples of some Boolean
function f randomly chosen with respect to distributiéh ande > 0. The goal is to find a hypothesis that
approximateg with respect ta@ in time polynomial inn, s = DNF- si ze(f) and1/e, whereDNF- si ze(f) is
the number of terms in the DNF formula férwith the minimum number of terms. A straightforward alglonit
for learning DNFs with respect to the uniform distributiasilects all the terms of sizieg (s/¢) + O(1) that are
consistent (in the PAC sense) with the target functiondicenot accept negative points. We are unaware of an
algorithm improving on the)(n!°% (/9)) running time of this algorithm. Jackson [Jac97] proved DsFs are
learnable under the uniform distribution if the learningaithm is allowed to get the value of functighat any
point (or makemembership queri@s This influential result gives essentially the only knowspeoach to learn
unrestricted DNFs in polynomial time.

We establish a connection between these problems provatgahrning of DNF expressions reduces to
learning parities 0B (log (s/€)) variables with noise rate = 1/2 — O(e?/s?) under the uniform distribution.

Theorem 2 Let.A be an algorithm that learns parities &fvariables on{0,1}" for every noise ratey < 1/2

in time T'(n, k, ﬁ) using at mostS(n, k, ﬁ) examples. Then there exists an algorithm that learns DNF

expressions of sizein timeO(i—;1 .T(n,log B, B%) - S(n,log B, B%)), whereB = O(s/).

Learning k-juntas

A Boolean function om variables is &-junta if it depends only o variables out of.. This problem was pro-
posed by Blum and Langley [BL97], as a clean formulation efpnoblem of efficient learning in the presence
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of irrelevant information. In addition, fok < logn, ak-junta can be expressed as a decision tree or a DNF of
sizen. Hence, a polynomial time algorithm for DNFs or decisioregr@inder the uniform distribution would
imply an algorithm for the-junta problem. Thus, learning juntas is a first step towsdming polynomial size
decision trees and DNFs under the uniform distribution. Atéforce approach would be to takEk logn)
samples, and then run through afl subsets of possible relevant variables. The first noratrafigorithm was
given only recently by Mossel et al. [MOSO03], and runs in tireaghly O(n%7%). Their algorithm relies on
some new structural properties of Boolean functions. H@wresven the question of whether one can learn
k-juntas in polynomial time fok = w(1) still remains open.

For the problem of learning-juntas, we give a simpler reduction to learning noisy [Esibf sizek, which
also gives a lower noise rate

Theorem 3 Let.A be an algorithm that learns parities &fvariables on{0,1}" for every noise ratey < 1/2
intimeT'(n, k, ﬁ). Then there exists an algorithm that learguntas in timeO (2% - T'(n, k, 2¥)).

This reduction also applies for learnikguntas with random noise. A noisy parity bfvariables is a special
case of &-junta. Thus we can reduce the noisy junta problem to a dpese, at the cost of an increase in the
noise level. By suitable modifications, the reduction froldFbcan also be made resilient to random noise.

Even though our reductions for DNFs and juntas do not givargraved algorithm for at this stage, they
establish connections between well-studied open problew reductions allow one to focus on functions
with known and simple structure viz parities, in exchangehfaving to deal with random noise. They show
that a non-trivial algorithm for learning parities 6flog n) variables will help make progress on a number of
important questions regarding learning under the unifoistridution.

1.2 Hardness of Learning Halfspaces with Adversarial Noise

In the problem of learning a halfspace, we are given a set it R” labeled 4+’ or * —'. Our goal is to
find a halfspace that separates thes'and the s, if such a halfspace exists, else to find one that classifies
most of the data correctly. This is one of the oldest and seestied problems in machine learning, dating back
to work on Perceptrons in the 1950s [Agm64, Ros64, MP69]Jud¢hsa halfspace does exist, one can find it in
polynomial time using efficient algorithms for Linear Pragmiming. In practice, simple greedy algorithms like
the Perception and Winnow are used, which also seem to bstrtwbnoise [Gal90, Ama94]. Much of the recent
research in this area focuses on finding provably good dlgos when the data is noisy [BFKV96, ABSS97,
Coh97, KKMSO05]. Halfspaces are PAC-learnable even in teegarce of random noise: Blum et al. [BFKV96]
show that a variant of the Perceptron algorithm can be ustdsdrsetting (see also [Coh97]).

In the adversarial noise scenario, there is no halfspadectineectly classifies all the data points and our
goal is to find one that does as well as possible. This versigdheohalfspace problem arises frequently in
practice, where the data is often inconsistent. Also, thiblem has important implications for some central
open problems in computational learning, namely PAC leayoif DNFs andAC? circuits.

This problem was known to be NP-complete [GJ79], even whempdints lie in{0, 1}" [PV88]. A number
of results are known on hardness of producing a halfspacseviaie of agreement is within a certain constant
factor of the optimal. Amaldi and Kann [AK95], Ben-Davet al. [BDELOO], and Bshouty and Burroughs
[BB02] prove hardness of approximating agreements witfspates - factor%%, Z%g’ andg—i, respectively.
Further Arora et al. [ABSS97] showed that for any constanthe problem of minimizing the number of points
that are wrongly classified by the halfspace is hard to apprate within factorC'.

The problem we resolve is the following: if there is a halfspdhat correctly classifie$9% of the data,
can one find a halfspace that is correct on e¥E#4? Note that by taking any hyperplane, and deciding which
halfspace to labeH’, one can get &0% success rate. An algorithm with a non-trivial guarantee ld/de a
tremendous breakthrough in computational learning. Inie#n that anyAC? circuit can be approximated by
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the sign of a low-degree polynomial over the reals under &tyiloution [BRS91, ABFR91]. Thus, a non-trivial
algorithm for learning a halfspace would imply th&€° circuits are weakly PAC-learnable. One can then boost
this to get a PAC-learning algorithm fotC? circuits in quasi-polynomial time [KV94]. In contrast, aigsent
the best PAC-learning algorithm even for DNFs (which areexih case ofAC? circuits) runs in time0®'/*)
[KS01]. This connection is well-known, Blum et al. [BFKV96bserve this connection, and state the question
of learning halfspaces with adversarial noise as an impbdpen problem.

We prove a negative result which is essentially optimal. Weawsthat even if there is a halfspace that
correctly classified — e fraction of the input, it is hard to find a halfspace that isreot on a% + ¢ fraction of
the inputs for any > 0 assumingP # NP. Under stronger complexity assumptions, we can tat@be as
small a2~ Vv1°8™ wheren is the size of the input.

Theorem 4 AssumingNP ¢ DTIME(2(1°g”)O(1)), no polynomial time algorithm can distinguish between the
following cases of the halfspace problem o¥epoints:

o 1 — 2-UVIgN) fraction of the points can be correctly classified by soméspake.

« No more thanl /2 + 2~ VIoeN) fraction of the points can be correctly classified by any sgte.

Similar optimal results were only known for the class of piesi [Has97] and, recently, for monomials [Fel06b].

The crux of our proof is to first show a hardness result foriaglgystems of linear equations over the reals.
Equations are easier to work with than inequalities siney #xdmit some tensoring and boosting operations
which can be used for gap amplification. We show that givenstegy where there is a solution satisfying
a1l — e fraction of the equations, it is hard to find a solution sgiigj even are fraction. We then reduce
this problem to the halfspace problem. The idea of repeatpsoting and boosting was used by Khot and
Ponnuswami for equations ov&r, in order to show hardness for Max-Clique [KP06]. The mairhtecal
difference in adapting this technique to work o¥@ris keeping track of error-margins. For the reduction to
halfspaces, we need to construct systems of equations whetre ‘No’ case, many equations are unsatisfiable
by a large margin. Indeed our tensoring and boosting opamtiesemble taking tensor products of codes and
concatenation with Hadamard codes over finite fields. Tlsisltevas proved independently by Guruswami and
Raghavendra [GROG6], their result holds even if the datatpaire restricted to lie if0, 1}™.

We note that the approximability of systems of linear equregtiover various fields is a well-studied problem.
Hastad shows that no non-trivial approximation is possiberZ, [Has97]. Similar results are known for
equations ovefZ, and finite groups [Has97, HERO04]. However, to our knowletlyjs is the first optimal
hardness result for equations ov@r On one hand, the Fourier analytic techniques that work feelfinite
groups and fields do not seem to apply o@erOn the other hand, the fact that we are not restricted totiemsa
with constantly many variables makes our task much simpfenatural open question is whether a similar
hardness result holds for equations of constant size@ver

We note that this is a hardness result for proper learningrevthe algorithm must output a halfspace as a
hypothesis. In order to PAC-leartC? circuits, any hypothesis suffices provided it can be evatliafficiently.

On one hand, halfspaces are the most natural hypothesigjio Wwéh, since many of the known algorithms

for learning halfspaces are proper learning algorithmduing the algorithms for the non-noisy case, as well
as for random classification noise [Coh97]. On the other hangkcent algorithm for agnostically learning

halfspaces under certain distributions due to Kalai etldKNIS05] uses the sign of a low degree polynomial

as a hypothesis, hence it is not a proper learning algoritiiis suggests a natural question of whether it is
possible to learn a halfspace under adversarial noise asiog-degree polynomial. To our knowledge, even
NP-hardness is not known for this problem, even if we retstiie hypothesis to quadratic polynomials.



1.2.1 Thresholds of Halfspaces are not PAC-learnable

As opposed to proper-learning results, once could hopeaw #iat a certain concept class is hard to PAC-learn,
irrespective of the hypothesis representation. Suchteesdically rely on specific cryptographic assumptions
[KV94]. We show such a hardness result for Threshold cisooifitdeptt2. Since a single threshold gate is just a
halfspace, these are thresholds of halfspaces. Suchtsimarrespond to two-level neural networks, which are
used in machine learning [Mit97]. They also capture sevarpbrtant concept classes: a convex polytope is an
intersection of halfspaces R*, whereas a DNF is a union of halfspaces oj&r }".

Thresholds of halfspaces are well studied in the litergiak97, Vem04, KOS02, ABE04, KS06a]. There
are known algorithms for learning various threshold¢ tfalfspaces both ové&™ [BK97, Vem04] and{0, 1}"
[KOSO02] under many distributions. Typically, the runnimgé of these algorithm is exponential i1 There are
numerous negative results known for proper learning of sacttepts [Vem04]. Recent results by Alekhnovich
et al. [ABF"04] show that it is NP-hard to learn the intersectionkof 2 halfspaces by halfspaces for any
constant. They also show that one cannot learn a union by halfspages gDNF) by a union of halfspaces
in polynomial time assuming RP NP. Klivans and Sherstov show lower bounds for learningrastetions
of halfspaces in the Statistical Query model [KS06a]. Thes also been work showing that constant depth
threshold circuits are hard for PAC-learning. Based onagertryptographic assumptions, Kearns and Valiant
showed that constant depth threshold circuits cannot baddeaover a certain distribution using any represen-
tation [KV89]. Kharitonov strengthened this result by allog membership queries, and using the uniform
distribution [Kha95].

We obtain a hardness result for threshold circuits of degtid2pendent of the hypothesis representation,
based on the cryptographic assumption used in the AjtaitRVedtice-based cryptosystem [AD97].

Theorem 5 Assuming the security of the Ajtai-Dwork cryptosystemigtieeno weak PAC-learning algorithm
for the concept class of (unweighted) Threshold circuitdegith 2.

For this result, one can even take all the gates to be Majgaitys. To our knowledge, this is the first such re-
sult for depth-2 circuits of any kind. This result followsetheneral outline for proving inherent unpredictability
of [KV89]. We show that the decryption of the Ajtai-Dwork @tpsystem [AD97], (specifically a modification
by Goldreich et al. [GGH97]) can be done by a depth-2 thresbiotuit. This result was obtained independently
by Klivans and Sherstov [KS06b], their reduction allows ¢tmese an AND gate at the second level.

Finally, using the Discriminator Lemma of Hajnel al. [HMP 93], we show that Theorem 5 implies the
hardness of learning halfspaces with adversarial noiségbfiate even when the learning algorithm is allowed
to output a hypothesis of its choice.

Theorem 6 Assuming the security of the Ajtai-Dwork cryptosystemetiegists a polynomiap(n) such that
1

halfspaces (in fact majorities) are not weakly learnabléweidversarial noise of raté ~ 5

This result is incomparable to Theorem 4, since one handiitdependent of the representation of the
hypothesis. On the other hand, it applies only when the naiseis very close té.

This paper is organized as follows: we present our main feahbhemma regarding finding significant
Fourier coefficients in Section 2. We derive various consegas of this Lemma in Section 3. We present our
hardness result for proper learning of halfspaces in Seetion Section 5, we show the hardness of learning
majorities of halfspaces under cryptographic assumptions

2 Learning Parities with Noise

In this section, we describe the main component of our réahgt an algorithm that using an algorithm for
learning noisy parities, finds a heavy Fourier coefficiers 8oolean function if one exists. Following Jackson,
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we call such an algorithmwaeak parity algorithm

2.1 Fourier Transform

Our reduction uses Fourier-analytic techniques which vieseused in computational learning by Liniet al.
[LMN93]. We view Boolean functions as functiorfs: {0,1}" — {—1,1}. All probabilities and expectations
are taken with respect to the uniform distribution unlesscdjrally stated otherwise. For a Boolean vector
a € {0,1}" let xo(z) = (—1)*", where *" denotes an inner product modulo 2, andwWeti ght (a) denote
the Hamming weight of.. For any real-valued functiofi the Fourier coefficient of with indexa is f(a) =
E.[f(x)x.(z)] and itsdegreeis wei ght (a). We say that a Fourier coefficierfi(a) is 6-heavy if|f(a)| > 6.
The functionf can be written ag (z) = 3., f(a)xa(z). Let Lo(f) = E,[(f(x))?]"/2. Parseval’s identity

states that X
(L2(f))” = Eul(f (2)°1 =D fP(a)

We also define the quantity; (f) as

Li(f) = Y_If(a)l.

2.2 Oracle Transformations

Given an oracle for a Boolean functigithe main idea of the reduction is to transform this oracle ari oracle
for a noisy parityy, such thatf(a) is a heavy Fourier coefficient ¢f. First we define probabilistic oracles for
real-valued functions.

Definition 1 For any functionf : {0,1}" — [-1,1] an oracleOQ(f) is the oracle that produces samples
(z,b), wherez is chosen randomly and uniformly frof®, 1} andb € {—1,+1} is a random variable with
expectationf (z).

Our first observation is that f@r € [—1, 1], O(0x,(z)) is exactly the oracle for parity,(x) with noise of
raten = 1/2 — /2. Our second key observation is that if the Fourier spectigaridg are close to each other,
then their oracles are close in statistical distance.

Claim 1 The statistical distance between the output®@f) andQ(g) is upper-bounded b¥ (f — g).

PROOFE The probability tha)(f) outputs(z,1) is %(w) and the probability that it outputa:, —1) is %(‘”)

Therefore the statistical distance betwé¥f) andO(g) equals

Y (f(@) — §(a)xa(=)

a

<2

a

Ee [1/(2) - 9(@)]] = E[ fla) - §(a)| = Lu(s —g)

O
We now describe the transformations on probabilistic esthat will be used in our reductions. For a
function f : {0,1}" — [—1, 1] we definefz(z) as

fo(@) = 3" (F(@)*xa(x)

a

Intuitively, the function f, reduces the influence of the smaller Fourier coefficientg.irNote that if f is a
Boolean function, thet; (f) could be large, howevdr; (f2) = 1.
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Lemma 1 For the functionfy defined above:

1. fa(z) = Eyyayo=z[f (y1) f (y2)]-

2. Given access to the oradl®(f) one can simulate the oraci( f2).

Proof: Part 1 follows from the standard Fourier analysis. To sitieullhe oracléd(f2) get two samples$y;, b1 )
and(ys, be) from Q(f) and return{y; & yo, b1b2). By Part 1, this simulates the oracle ffy. O

For a matrixA € {0,1}™*" define anA-projection off to be

fa(z) = Y. fa)xal)

a€{0,1}",Aa=0™
Lemma 2 For the functionf 4 defined above:

1. fA(.’E) == Epe{(),l}mf(.’ﬂ &) ATp)

2. Given access to the orac® f) one can simulate the oracl®(f4).

Proof: First note that for every € {0,1}" andp € {0,1}™,

xa(ATp) = (=) = (U = 0 (p)
Thus if Aa = 0™ thenE,[x,(A7p)] = 1 otherwise it is). Now let

galz)= E_ [f(z® ATp)
pe{0,1}m

We show thay 4 is the same as the functigiy by computing its Fourier coefficients.

gila) = EE[f(z® ATp)xa(z)]]
= Ep[Eslf(z @ ATp)xa(2)]]
= Eplf(a)xa(4A"p)]
= f(a)Ep[xa(ATp)]

Thereforega(a) = f(a) if Aa = 0™ andga(a) = 0 otherwise. This is exactly the definition ¢f; (z).
For Part 2, we samplér, b), choose random € {0, 1}™ and return{z & AT p,b). The correctness follows
from Part 1 of the Lemma. O

We will use this Lemma to project in a way that separates one of its significant Fourier coeffisi from
the rest. We will do this by choosing to be a randomn x n matrix for appropriate choice af.

Lemma3 Let f : {0,1}" — [—1,1] be any function, and let # 0™ be any vector. Choosé randomly and
uniformly from{0, 1}™>". With probability at lease ™!, the following conditions hold:

A

fa(s) = f(s) (1)
> fale) < Li(pzmH (2)

ae{0,1}7\{s,0"}



Proof: Event (1) holds ifAs = 0™, which happens with probability—"".
For everya € {0,1}" \ {s,0™} and a randomly uniformly chosen vectoe {0,1}",

Prlv-a=0|v-s=0] = 1/2
Therefore 1?4r[Aa =0"|As=0"] = 27™
This implies that
Es [ Yo @] As= 0’”] = Yo 27Mf@] < 2L
a€{0,1}7\{s,0"} a€{0,1}"\{s,0"}

By Markov’s inequality,

1?5 [ . lfa@] =27 L)

a€{0,1}"\{s,0" }

As = om] < 1/2

Thus conditioned on Event (1), Event (2) happens with prifibalat least 1/2. So both events happen with
probability 2~ (m+1), O

This projection does not influenc&0"). But one can clear the coefficierf(0) as follows. Define the
function f~° as

_ 1 :
1@ =3 Y f@)xal)
a#0™
Lemma 4 For the functionf —° defined above, given accessf) one can simulate the oraci@(f ).

Proof: By definition, f(0") = E,[f(z)]. Therefore

) = L)~ LB )] = 31+ B (w) ©

Let (z,b1) and(y, b2) be two random examples frofdx f). With probability § return exampléz, b;) and with
probability% return exampldz, —b). By Equation 3, this simulate®(f~°). O

Finally, we show that by composing these transformatiom& @an use an algorithm for learning noisy
parities to get a weak parity algorithm.

Theorem 7 Let. A be an algorithm that learns parities @fvariables over0, 1}" for every noise ratey < 1/2
in timeT'(n, k, %) using at mos8(n, k, ﬁ) examples. Then there exists an algorith® Rthat for every
functionf : {0,1}" — [—1, 1] that has &-heavy Fourier coefficient of degree at most, given access tQ( f)
findss in time O(T'(n, k,20~2) - S(n, k,20~2)) with probability at leastl /2.

Proof: The algorithmWP- R proceeds in the following steps:
1. Square the coefficients ¢fand obtainO(fz).
2. CIearf}(O") and obtain the oracl®(f; ).
3. Letm = [log S(n,k,207%)] + 2. Let A € {0,1}™*" be a randomly chosen matrix afi{f, 3 ) be the

oracle forA-projection off;o. Run the algorithmA4 on (O)(fig).

8



4. If A stops inT'(n, k,26~2) steps and outputswith wei ght (r) < k, check that is at least)/2-heavy
and if so, output it.

Let s be af-heavy Fourier coefficient of degree at m&stOur goal is to simulate an oracle for a function
that is close to a noisy version gf ().

The first step transformg into a function fo with small L; norm L1 (f2) = 1), Whlle at the same time
f2(s) = 62 sos stays a reasonably heavy coefficient. The second step d:llmmefﬁuentfg(()”) and halves
the rest of the/cgeffluents. By Lemma 3, in the third stephitobability at lease~~! , we create a function

fo,4 such thatf, 3(s) > 62/2 and

1
< 27 mtlp, < ———m———
AN AR TN )

By Claim 1, the statistical difference between the or@qﬁg) and oracIeO)(fQ‘,g(s)xs(;c)) is small. Since
A uses at mos§(n, k, 20~2) samples, with probability at least 1/2 it will not notice ttiéference between the

two oracles. But()(f, 9 (s)xs(z)) is exactly the noisy parity; with noise rate

n = 1/2—172{9,/2 < 1/2-6%/4

Hence we gefl — 2n)~! < 262, so the algorithmA will learn the paritys. We can check that the coeffi-
cient produced byA is indeed heavy using Chernoff bounds, and repeat until weesd. UsingD(2™) =
O(S(n, k,20~2)) repetitions, we will get &-heavy Fourier coefficient of degréewith probability at least /2.

O

Remark 1 A functionf can have at mosk3(f)/6? 6-heavy Fourier coefficients. Therefore by repeatitiy R
O(log (Lo(f)/0)) times we can, with high probability, obtain all tideheavy Fourier coefficients of as it is
required in some applications of this algorithm.

3 Applications

3.1 Agnostic Learning of Parities and Adversarial Noise

We start by defining the agnostic PAC model of Haussler [Hhag# Kearnst al. [KSS94] more precisely. For
two Boolean functiong’ andh and a distributiorD over{0, 1}"™ we defineAp(f, h) = Prp[f # h]. Similarly,
for a class of Boolean functioand a functionf defineAp(f,C) = minpec{Ap(f,h)}. We say that a class
C is PAC learnable in the agnostic model under the distrilbufibif there exists an algorithm that for every
Boolean functionf ande > 0, runs in time polynomial im and1/e and, with probability at least 1/2, produces
a hypothesig such thatAp(f,h) < Ap(f,C) + €

An equivalent way to think of functiotf is as a function irC corrupted by adversarial classification noise
of rate Ap(f,C). A minor difference arises from the fact that the noise rateat explicitly mentioned in the
agnostic setting. But we note thateif< 1/2 — 5 then a constant function will be a good agnostic hypothesis.
Therefore any algorithm that is polynomial iffe will also be polynomial inﬁ.

Theorem 7 gives the following reduction from adversarialaiodom noise.

Theorem 8 Let A be an algorithm that learns parities @f variables over{0, 1}" for every noise rate) <
1/2 in timeT(n, k, - 2 ) smg at mostS(n, k, 1 2 ) examples. Then parities with adversarial noigeare

learnable in timeO(T'(n, k, s T2 ) ) - S(n,k, - 2n )2)+e 2) with probability at leastl /2.

9



Proof: Let f be a parityy, corrupted by noise of ratgf. Thenf(s) = E[fxs] > (1 —7/) + (—1)y' =1 — 21/

We now apply the reduction from Theorem 7 with a minor modifara We make the estimates of Fourier

coefficients withine to make sure that we return a coefficient that is at Iéast2r — ¢, meaning that the error

of our hypothesis is at mogt + ¢ (as required by the definition). O
Blum et al. give a sub-exponential algorithm for learning noisy parity

Lemma 5 [BKWO03] Parity functions on{0,1}" can be learned in computation-time and sample-complexity
2090esn) in the presence of random noise of ragtéor any constang) < %

If the rate of adversarial nois¢ is a constant then the rate of random noise that our reduptioduces
n= % — (% —n')? is also a constant. Therefore Theorem 8 together with Lemgiees Theorem 1.

3.2 Learning DNF Expressions

Jackson [Jac97] in his breakthrough result on learning DiFesssions with respect to the uniform distribution
gives a way to use an algorithm for locating correlated @ariand the boosting algorithm due to Freund [Fre90]
to build a DNF learning algorithm. We can adapt Jackson's@ggh to our setting. We give an outline of the
algorithm and omit the now-standard analysis.

We view a probability distributiorD as a density function and define ifig, norm. Jackson’s algorithm is
based on the following Lemma (we use a refinement from [BF02])

Lemma 6 ([BF02](Lemma 18)) For any Boolean functiorf of DNF-sizes and any distributiorD over{0,1}"
there exists a parity functiog, such thatEp[fxa]| > 23+1 andwei ght (a) <log ((2s + 1)L (2"D)).

This lemma implies that DNFs can be weakly learned by findinga@ty correlated withf under distri-
butionD(z) which is the same as finding a parity correlated with the fonc"D(z) f () under the uniform
distribution. The range df"D(z) f(z) is not necessarily—1, 1], whereas ouv\P- R algorithm was defined for
functions with this range. So in order to apply Theorem 7, wst ficale2”D(z) f () to the rangd—1, 1] and
obtain the functiorD’(z) f (z), whereD'(z) = D(z)/Ls (2"D) (Lo (D) is known to the boosting algorithm).
We then get the probabilistic oradl¥D’ () f (x)) by flipping a+1 coin with expectatiorD’(z) f (z). Therefore
af-heavy Fourier coefficient di"D(z) f(x) can be found by finding /L, (2"D)-heavy Fourier coefficient
of D'(z) f(xz) and multiplying it by L. (2"D). We summarize this generalization in the following lemma.

Lemma 7 Let.A be an algorithm that learns parities éfvariables over{0,1}" for every noise ratey < 1/2

in time T'(n, k, = 2n) using at mostS(n, k, 1= 277) examples. Then there exists an algoriti® R' that for
every real-valued function that has a#-heavy Fourier coefficiert of degree at most, given access to random
uniform examples o, findss in time O(T'(n, k,2(Leo(9)/0)?) - S(n,k,2(Leo(4)/0)?)) with probability at
least1/2.

The running time ofAP- R depends ot (2"D) (polynomially if 7" is a polynomial) and therefore gives
us an analogue of Jackson'’s algorithm for weakly learning-BNHence it can be used with a boosting algorithm
that produces distributions that grelynomially-closeo the uniform distribution; that is, the distribution func
tion is bounded by2~" wherep is a polynomial in learning parameters (such boosting élyos are called
p-smooth. In Jackson’s result [Jac97], Freund’s boost-by-majasiorithm [Fre90] is used to produce distri-
bution functions bounded b@ (e~ 2ﬂ“f’)) (for arbitrarily small constang). More recently, Klivans and Servedio
have observed [KS03] that a later algorithm by Freund [Frp8&duces distribution functions bounded@{(e)
Putting the two components together, we get the proof of idme@.
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3.3 Learning Juntas

For the class ok-juntas, we can get a simpler reduction with better pararadte noise. We first clear the
coefficientf (0). Since there are at mogt non-zero coefficients and each of them is at leastt*-heavy, for
a suitable choice ofn, the projection step is likely to isolate just one of them.isTleaves us with an oracle
O(f (s)xs). Sincef(s) > 27*+1 the noise parameter is boundedfy< 1/2 — 27*. Using Remark 1 we
will obtain the complete Fourier spectrum pby repeating the algorith®(k) times. The proof of Theorem 3
follows from these observations.

3.4 Learning in the Presence of Random Noise

Our reductions from DNFs anktjuntas can be made tolerant to random noise in the origuradtion.

This is easy to see in the casefefuntas. An oracle forf with classification noise’ is the same as an
oracle for the functioril — 27') f. By repeating the reduction used fofuntas, we get an oracle for the function
O((1 — 2/) fsxs). Hence we have the following theorem:

Theorem 9 Let.A be an algorithm that learns parities &fvariables on{0, 1}" for every noise ratg < 1/2in
randomized tim&'(n, k, - 2 ). Then there exists an algorithm that learbguntas with random noise of rate

n' intimeO (2% - T'(n, k, 25~ 2,, 7)-

A noisy parity ofk variables is a special case okgunta. Thus we have reduced the noisy junta problem to
a special case viz. noisy parity, at the cost of an increaigeinoise level.

Handling noise in the DNF reduction is more subtle since Ra&uboosting algorithms do not necessarily
work in the presence of noise, in particular Jackson’s palalgorithm does not handle noisy DNFs. Never-
theless, as shown by Feldman [Fel06a], the effect of noiséeaffset if the weak parity algorithm can handle
a “noisy” version of2"D(x) f(z). More specifically, we need a generalization of W R algorithm that for
any real-valued functiog(z), finds a heavy Fourier coefficient ¢{z) given access t®(z), where®(z) is an
independent random variable with expectatigm) and Ly, (®(z)) < 2L°°("’) . Itis easy to see thAfP- R can
handle this case. Scaling Hy,,(®(z)) will give us a random vanabl@’( ) in the rangg—1, 1] with expec-
tation ¢(z)/ Lo (®(z)). By flipping a+1 coin with expectationd’(z) we will get a+1 random variable with
expectationp(z) /L (®(x)). ThereforeWP- R algorithm will find a heavy Fourier coefficient gf(z) (scaled
by Loo(®(z)) < 2L°°(¢ ). Altogether we obtain the following theorem for learningjisy DNFs.

Theorem 10 Let.A be an algorithm that Iearns parities @fvariables on{0,1}" for every noise ratey < 1/2

intimeT(n,k, 1—5- 2 ) using at mosiS(n, k, =5 2 ) examples. Then there exists an algorithm that learns DNF
expressions of sizewith random noise of ratg’ in tlmeO(— T(n,log B, (-2~ o —5-)2) - S(n,log B, B?)) where
B = O(s/e).

4 Hardness of Learning a Halfspace with Adversarial Noise

The following is the combinatorial version of the problemleérning a halfspace ovép™ with adversarial
noise (as stated in Arora et al. [ABSS97]).

Definition 2 Let ST and .S~ be two sets of points fro@™. Given a pair(S*,S~) as input, the goal of the
halfspace learning problem is to find a hyperplaﬁ}éj":1 a;z; = b that correctly classifies as many points as
possible. A point: € St is said to be correctly classifieddfz > b and a pointz € S~ is said to be correctly
classified ifa.z < b.
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A trivial factor 2 algorithm for this problem is to just take arbitrary hyperplane and decide which one
of the two sides of the hyperplane to mark as positive. We ghaivthis is essentially the best approximation
possible. The proof is by reduction from the gap version oédular vertex cover to the learning halfspaces
problem. The main steps in the reduction are as follows:

e Obtain a(N, ¢, s, t) instance of MaxLing from the vertex cover instance for some fixed constants
andt (see Definition 3).

e Convert the above instance td&',1 — ¢, ¢,t') gap wheree is a very small function ofV’. To achieve
this, we use two operations calleehsoringandboosting

e Convert the instance of the MaxLi@-problem obtained to an instance of the halfspace problem.

We begin by defining the MaxLi) problem. Informally, we are given a system of equations cationals
and we are expected to find an assignment that satisfies asagaatjons as possible. We will show that even if
a large fraction, sa99%, of the equations can be satisfied, one can not efficientlydmdssignment such that
more thanl% of the equations are “almost” satisfied. That is, the difieeein the left hand side and right hand
side of all but1% of the equations is “large”.

Definition 3 Given a system of linear equations with rational coeffigent
m
{az + Z a;jzj = 0}iz12,..,N
j=1

as input, the objective of the MaxL{@-problem is to findz1, zo, ..., z,) € Q" that satisfies the maximum
number of equations. A system of equations is said to p¥,a, s,t) MaxLin<Q instance if the number of
equations in the system 2 and one of the following conditions holds:

e AtleastcN of the equations can be satisfied by some assignment, or

¢ In any assignment,
m
|az~0 + Z aija:j| <t
j=1
is true for at moss NV values ofi € 1,2,..., N.

The goal of the MaxLirf) problem when given such an instance is to find out which ofvileecases is true. If
the system of equations satisfies the first condition, wet fagicompleteness In the other case, we say it has
soundness under tolerance.

An instance of MaxLing€ can be specified by a matrix

aig ail e A1m

a0 asl e a2m,
A=

anNg aN1 --- QAGNm

We will refer to A itself as an instance of MaxLi@. We may also use the rows &f to represent the equations
in the instance. The MaxLif@ problem is to find a vectaX = (1, 1,2, ..., z,) such thatA X has as many
zeros as possible. In all the instances of MaxQirthat we consider, the number of variables will be less than
the number of equations in the system. Also, the size of eatly ef the matrix will be proportional to the
number of equations. Hence, we referatself as the size of the instance.

12



4.1 A Small Hardness Factor for MaxLin-Q

We first state the gap version of th&-hardness result for regular vertex cover.

Lemma 8 [PY91, ALM"98] There exist constani$ and ¢ such that given a 5-regular graph with vertices,
it is NP-hard to decide whether there is a vertex cover of sizén or every vertex cover is of size at least
(1+¢)dn.

Arora et al. [ABSS97] give a reduction from the above gap ieer®f vertex cover of regular graphs to
MaxLin-QQ. They show that if there is a “small” vertex cover, the redutiproduces a MaxLirf) instance in
which a “large” fraction of the equations can be satisfiedt \Bloen there is no small vertex cover, only a small
fraction of the equations can be exactly satisfied. We shaivthie proof can be strengthened so that if there is
no small vertex cover, only a small fraction of equations lsasatisfied even within a certain tolerance.

Lemma 9 There exists a polynomial time algorithm that when givenradidar graphG = (V, E) with n
vertices as input produces(&, co, so, to) MaxLin<Q instanceA overn variables as output whe®y = n9),
co andsg are absolute constants satisfying < ¢y, to = 1/3 and:

e If G has a vertex cover of sizin, then at least fraction of the equations il can be satisfied.

¢ If G has no vertex cover smaller thgm + ¢)dn, then for any vectolX = (1,z1,z2,...,z,), at least
(1 — sp) fraction of the entries iM X have magnitude> .

Proof: The instanceA contains one variable; for every vertexy; € V. Corresponding to every vertex, there
is a constraintz; = 0. Corresponding to every edge betwegmndv;, we add three constraints

—14+z;+xy=0
—14+z;,=0
—1—|—:l?i/:0

In all, A hasn + 3M equations, wher@d/ = |E| = 5n/2. If there is a vertex cove¥; of sizedn, setz; = 1 if
v; € Vy andz; = 0 otherwise. This satisfies at ledst— d)n + 2M equations.

Suppose there is no vertex cover smaller thiarA- ¢)dn. We will show that not too many of the + 3M
equations inA can be satisfied under a tolerancelg8. Under a tolerance of/3, the n equations for the
vertices relax tgz;| < 1/3, and the equations for an edge relax to

| -1+ z;+zy| <1/3
| —1+z;<1/3
| —1+zy| <1/3
Note that no more than two of the three inequalities for areezin be simultaneously satisfied. We will show
that given any rational assignment to ths, there is §0, 1} assignment that is just as good or better. Consider
any X = (1,z1,x9,...,%,), Wherez; € Q. Sety; = 0if z; < 1/3 andy; = 1 otherwise. It is clear thaj;
satisfies the inequality for vertex if z; does. Now suppose at least one of the three inequalitiesnfedge

(vi,v;) is satisfied. Then, either; > 1/3 orz; > 1/3. In this case, at least one gf andy; is set to 1. But
then two of the equalities

yit+yr =1
yi=1
yy =1
are satisfied. Therefore, thygare at least as good an assignment agthe
LetY = (1,y1,%2,-..,yn). If there is no vertex cover of size less thén+ ¢)dn, AY must contain at
least(1 + ¢)dn + M entries that are 1. That idY contains at mostl — (1 + ¢)d)n + 2M zeros. The claim
about the soundness follows. O
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4.2 Amplifying the Gap for MaxLin- Q

We define two operations callédnsoringandboosting Tensoring converts &V,1 — ¢,1 — 4,¢) MaxLin-Q
instance to dN2,1 — €2,1 — 62, t2) MaxLin-Q instance. We use this to get the completeness close to 1sBut a
a side-effect, it also gets the soundness close to 1. We wastithg to overcome this problem. (&, p)-boosting
converts aN, ¢, s,t) MaxLin-Q instance to g0(p)? N, ¢?, s, ¢/2) MaxLin-Q instance. Note that there
must be a reasonable gap between the completeness and sssibdfore we can use boosting. We amplify the
(¢, s) gap for MaxLinqQ in four steps:

e Obtain a(1 — ¢,1 — Ke) gap for very large constadt .

e Obtain a(1—¢, €y) gap for a very small constarag > 0 by a boosting operation. The first step guarantees
that we can use boosting without destroying the gap.

e Improve the completeness even furtherlte o(1) while keeping the soundnessegt This is done by
alternately tensoring and boosting many times.

¢ Using one more boosting operation, decrease the soundi@sgives thg N, 1—e, ¢, t') instance where
e = 272WVlog N') a5 desired.

We define the first operation called tensoring. This opemdtaimilar to an operation defined by Dumer et
al. [DMS99] on linear codes. Informally, the tensoring ofyatem of equations contains one equation for the
“product” of every pair of equations. In this product, weleg@ the occurance af;, z;, with z;, ;, andz; with
xo; respectively.

Definition 4 The tensoring of the system of equations
m
{az0 + Z a;jzj = 0}i=12,...N
j=1

is the system

m m m m
{1106450 + iy0( Y GinjsTojy) + @is0( D @ijyTog) + (D D Giyjy Bingn T )
j2:1 j1:1 j1:1 j2:1
= 0}21 jg2=1,....N
In the matrix representation, the tensoring of
aig a1 oo Q1m 1
ano agl e aom, X1
=0
ano ani1 ... GNm Tm
is the system

aig a1l ... Q1m 1 Zo1 .- ZOm aig a0 ... QpNO

ao a1 . ao2m, o1 11 ... Tim a1l asi e an1 0

anNg anN1 --- aNm Zom Tml --- Tmm a1m A2m  --- AGNm

where the ther;;s in the second matrix are the variables in the new instance.
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Lemma 10 Let A be a(N,c¢, s, t) instance of MaxLinQ. Let B be obtained by tensoringl. ThenB is a
(N2,1—(1-¢)?,1— (1 - s)%?) instance

Proof: Suppose there is a vect& = (1, z1, z2,. .., T, ) such thatA X has a zero irN fraction of the entries.
Definezo; = z; andz;,j, = zj,zj, for ji > 1. This satisfies all bufl — ¢)2N? of the equations iB. It
remains to show the claim about the soundness.

Suppose that for any vectdf = (1, z1,z9, ..., Tn), atleass fraction of the entries i X have magnitude
greater than or equal to Consider any assignment to the varial{les ;,) in B. Let X* denote the matrix

1 Z0o1 oo TOm
Tor T11 ... Tim
Zom Tml -+ Tmm

We will show that at leagtl —s)2N? entries inA X * AT have magnitude #2. Let X = (1, zq1, 02, - - - , Tom)-
The vectorAX has at leasfl — s) N entries with magnitude> ¢. Let.J be the set of indices of these entries.
Let V = (AX*)T. Note that since the first column &* is X, V has at leastl — s) N entries in the first
row that have magnitude ¢. Let V; denote thej™® column of V. Note that ifj € J, AV ; contains at least
(1 — s)N entries that have magnituget?. Therefore AX*AT = VT AT = (AV)" has at leastl — s)2N?
entries with magnitude> ¢2. O

We now define an operation called boosting. Roughly speakimgpick o equations at a time from the
MaxLin-Q instanceA. We addp? linear combinations of these to the boosted instaBceThe intention is
that even if one of the equations fails under some assignment, a lot ofgtheorresponding equations B
must fail. This is accomplished by using a construction lsinto Hadamard code. 1A hasN equations,B
will have (pN)? equations. Though this suffices to prove & e hardness factor for the halfspace problem for
constant, the size of the boosted system becomes crucial when we waohteves = o(1). Therefore, instead
of generating all theV possible combinations af equations, we pseudorandomly generate @A) N of
them. To accomplish this, we construct an expander on thatieqg of A and perform random walks of length
oonit.

Definition 5 A walk of lengthr on a graphG is an ordered sequence of vertides, vs, . . . , v, ) such that there
is an edge between andv;; inGforall 1 <i < o.

Definition 6 Let A be a MaxLing) instance withN equations. Lep, o be two arbitrary numbers. We define
the (p, o)-boosting to be the MaxLif@ instanceB obtained as follows. Let/y be the 5-regular Gabber-
Galil graph on N vertices. Associate every vertexof G to an equation4, in A. For every possible walk
(v1,v2,...,vs) Oflengthe onG x and avectorpy, po, - - -, ps) € [p], add arowp; Ay, +p2Ay,+...+ps Ay,

to B. We call thep? rows of B that correspond to a walk on the rows dfa cluster.

The idea behind addingf equations to each cluster is the followingb{f> ¢, then for anyb, p1b; + b lies
in the interval(—¢/2,¢/2) for at most one value gf; € [p]. Similarly, for any given values gfo, .. ., p, and
ba, ..., by, > iy pibi, liesin the interva(—t/2,¢/2) for at most one value gf; € [p]. An analogy to Hadamard
codes is that if a bit in a string is 1, then half of the posiiamits Hadamard code are 1.

The specific kind of expander used in boosting is not impaértafle would like to point out that since
Gabber-Galil graphs are defined only for integers of the @pf) we might have to add some trivially satisfied
equations tod. This only improves the completenessAf The soundness suffers by at meXtl /+/N), which
is a negligible increase if the soundness of the instaheeere constant. Hence, we ignore this issue from now
on. Before we analyze boosting, we mention some resultstaxpanders that will be useful.
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Lemma 11 Let W denote a subset of the vertices of a regular grgphlf [W| > (1 — €)N, then at moste
fraction of the walks of length contain a vertex froni.

Proof: Pick a walk uniformly at random from all possible walks ofdgimo on G. The probability that theé”
vertex of the walk is contained i is at most. This is because the graph is regular and hence all vertiees a
equally likely to be visited as th#" vertex. Applying union bound over all trepossible locations for a vertex
in the walk, the probability that at least one of the verticethe walk is contained i is no more thame. [

Lemma 12 [LW95, Section 15] LetV be a subset of the vertices Gfy. Let|W| < sN for some constani.
There exists an absolute constghsuch that for sufficiently largd/, at mosts?¢ fraction of all walks of length
o in G do not contain a vertex frov .

Lemma 13 Let A be a(N,¢,s,t) MaxLinQ instance. LetB be a(p,o) boosting ofB. ThenB is a
(5°71p"N,1 — a(1 — ¢), s?7 + p~1,¢/2) instance.

The number of walks of length beginning from each vertex in a graghy is 5°~'. Corresponding to each
walk, we addo” rows toB. This proves the claim about the sizeBf

Fix an assignment that satisfiefraction of the equations id. Let W denote the set of equations_that
are satisfied by this assignment. From Lemma 11, we know thabsto (1 — ¢) fraction of walks of lengthr
visit a row fromW . If all of the o rows visited by a walk are satisfied, then all the equationB af the cluster
corresponding to this walk are also satisfied under the sasigrament.

Now suppose for anX = (1,z1,x2,...,Zy), at leastsN fraction of the entries il X have magnitude
> t. Fix any assignmenk to the variables ilA. Considers rows A,,, A,,, ..., A,, from A. Now suppose
|Ay, X| > t. Letb € Q. Then, for at most one value pf € [p], p1A,, X + b has magnitude less thay2.
Therefore, for all but 4 /p fraction of (p1, p2, ..., ps) € [p]°,

|(p1 Ay, + p2Ay, +... + paAvp)X| > t/2

If (Ay,, Ay,y,...,Ay,) is arandom walk o7y, then from Lemma 12, the probability that none 4f, X,

A, X,..., A, X have magnitude> ¢ is at mosts®?. Therefore, at most®® + (1 — s%7)p~! < 57 + p~!

fraction of the entries ilBBX have magnitude less thay2. This proves the claim about the soundness. O
We now use tensoring and boosting to obtain-a ¢, versuse; gap for MaxLing).

Lemma 14 For any constantg; > 0,0 < s < ¢ < 1 andt > 0, there exists a polynomial time algorithm that
when given N, ¢, s, t) MaxLin<Q instanceA as input produces &N, 1 — €, €9, t1) instance where; > 0 is
a constant.

Proof: Let B be the instance obtained by repeatedly tensoAnigimes. ThenBis a(N%,1 - (1 —¢)F,1 -
(1 — s)E, tI') MaxLin-Q instance, wheré = 2!. Choosd large enough so that

(1= ")L L in(2/e0) < e

1-s/) B

Now we useg(p, o)-boosting onB wherep = 2 /¢, and
_ In(2/€)
- B -s)t

The result is d N1, c1, s1,t1) instance where

In(2/eo)

chl_a(l_c)LZl_,B(l—s)L

(1-¢)f >1—¢
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and
(1= (1= )% < (1)) = 70 = 2

Therefores; = (1 — (1 — 5)E)87 4 p~1 < o andt; = tF/2. O
We would like to point out that combining Lemma 14 with Lemnf&asuffices to show & — e hardness
factor for the halfspace problem for any constant 0. The next theorem makes this parameter sub-constant.

Theorem 11 There exists 21°6™)°" time reduction that when given a 5-regular gra@tonn vertices outputs
a MaxLinQ instanceA, of sizeN, = 2006)°Y gych that

o If there is a vertex cover of sizi, then there is an assignment that satisfies 2—VIog N2) fraction of
the equations.

e If every vertex cover is of size (1 + ({)dn, then under any assignment, at mpst(vV1es M2) fraction of
the equations can be satisfied within a tolerance as largz&§vios M),

whered and( are the constants mentioned in Lemma 8

We first use Lemma 9 and Lemma 14 to convert a vertex covemiost® a(N1,1 — €, €y, 1) MaxLin-
Q instanceA;. We alternately tensor and boadt; so that the soundness stayseg@t but the completeness
progressively comes closer 1o As a final step, we boost once more so that the completenéss isand the
soundness isfor a small value: as desired.

Proof: Fix ¢y large enough such that
€0 IOg(GO/Q) < 1/2

Blog(2ep — €3)

Fix og such that
_ log(eo/2)
) — -7 - 57
Blog(2ep — €3)

and letpy = 2/¢p.

We first use Lemma 9 and Lemma 14 to convert the graph (&al — €, €9, t1) MaxLin-Q instance
A;, whereN; = n91. SupposeB; is the result of tensoring anghy, og)-boostingA; once. ThenB; is
a(O(N1)%, 1 — oped, (1 — (1 — €)2)P7 + p,!,t2/2) instance. Note thatgeg < 1/2 < 1and(1 — (1 —
€0)2)P7 + pyt = (2¢0 — €3)P70 + py ' < 2/ep + 2/€0 = 0. This implies that after one round of tensoring and
boosting, the completeness comes closer to 1 and the sasdoes not get worse. Now, ldt, be the result of
repeatedly tensoring ar{gy, og)-boostingA; I times. LetL, = 2!. ThenA; is a(No, ¢z, so, t2) instance where
Ny = O(Nl)L, co=1-— O(l)L, S2 = € andt2 = Q(l)L.

. . 1+ L
As a final step, we now us,, o2)-boosting ond, wherepy, = 2.2, oy = +

Blog(1/eo)
a (N3, cs, s3, t3) instance wheréVs = O(p2)?2 Ny = 200°)INL ¢ = 1 — O(L)O(1)E =1 - O(1)L, 53 =
b + po' < 27L, andty = Q(1)L. Choosel = log N;. Thenlog N3 = O(log® N1), which implies
L = Q(y/Iog N3). That is, A3 is a(N3, 1 — 2~ (Vg Na3) 9—Q(VIog Ns) 9-0(vlog N3)y instance. a

. This produces

4.3 From MaxLin-Q to the Halfspace Problem

Lemma 15 There exists a polynomial time algorithm that when givefiVac, s, t) instanceA of MaxLinQ
produces a instance of the halfspace problem &fthpoints such that:

e If there is a solution to the MaxLif@ instance that satisfies ¢N of the equations, there is a halfspace
that correctly classifies> 2cN of the points.
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¢ If A has soundnessunder tolerance, then no halfspace can correctly classify more tlian- s) N of
the points.

Proof. We can rewrite each equation df as two inequalities

n
—t' < ajo + Z T < v
Jj=1

for anyt’ € Q satisfyingd < ¢’ < t. Homogenizing the above, one can rewidtes a system dfN inequalities

(aio +t")zo + Z?:l aj;jz; >0 )
(aio — t')zo + D77 aijz; <0

wheres € {1,2,...,N}. If we could satisfycN equations in4, the new system has a solution satisfyitagv
inequalities by setting to 1. Note that if we set, to some value< 0, then we can not satisfy more than half
of the inequalities. Suppose there is a solution satisfying s) N of the inequalities in (4). Sincey > 0, we
can scale the values afs so thatg is 1. Then,(z1, z2, ... z,) IS a solution taA that satisfies fraction of the
equalities within tolerancé < t.

Select a value of such tha0 < ¢’ < ¢ andt’ ¢ {+£aio}i=1,2..~. The second condition oti ensures that
the coefficient ofzy in none of the2 NV inequalities of (4) is zero. Now divide each inequality bg ttoefficient
of zy and flip the direction of the inequality if we divided by a néga number. This way, we can convert the
system (4) to an equivalent system2d¥ inequalities, where each inequality is of the form

n n
Ty + Z hijz; >0 or xzo+ Z hijz; <0 (5)
j=1 j=1
where; € {1,2,...,2N}. We now define the halfspace instance. The halfspace irstamoduced is oveR™.

For an inequality of the first form in (5), add the poit1, hi2, - - -, hin) to ST. For an inequality of the second
form add the pointh;1, hi2, - .., hiy) t0S™.

Suppose that there is an assignmmnt z1, . . . , z,,) satisfying2cN inequalities in (4). Then the hyperplane
zo + Y54 z7h; = 0 correctly classifies N points in(S*, 7).

Now suppose there is a hyperplangt Z?:1 zjh; = 0 that correctly classifie€l +s) N points in(S*, S™)
for somes > 0. Clearly,zy > 0. Scale ther; so thatry = 1. Now, (z1, z9, ..., x,) iS an assignment satisfying
(1+ s)N inequalities in (5), and equivalently in (4). This compgetke proof of the lemma. O

We can now prove Theorem 4.

Proof: We give a reduction from the vertex cover problem on 5-raggtaphs mentioned in Lemma 8. The
reduction will have running timeoen)°Y for , vertex graphs.

Let G be the input graph wit, vertices. We use the reduction mentioned in Theorem 11 tduse a
(Ng, co, S, t2) MaxLin-Q instanceA, wherecy = 1 — ¢, so = ¢, € = 2 UV108N2) gnd¢ = 2-O(WVlogN2) ),
We transformA, to a halfspace instand&™, S~) as described in Lemma 15. Note thét = |ST| + |S~| =
4N5. Now, if there is a vertex cover of sizé dn in G, there is a halfspace that correctly classifie$raction
of the points. On the other hand, if there is no vertex covesioé smaller tharfl + ¢)dn in G, there is no
halfspace that correctly classifies1/2(1 + sy) fraction of the points.

Therefore the gap obtainedds/(1/2(1 + s2)) = 2(1 —€)/(1 + €) = 2(1 — O(¢)) = 2 — 2~ WVIe N')

5 Thresholds of Halfspaces are not PAC-learnable

We show that under certain cryptographic assumptions, ribtspossible to learn a circuit of depth 2 with
unweighted threshold gates.
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Definition 7 Given a set of vectorg, , as, . ..,a, € R™, the objective of SVP is to find the shortest non-zero
vector in the sef = {}_7  ciailei, co, ..., ¢, € Z}. The set of point$ is called the lattice generated by the
basis vectorsi;, as, . .., ay.

We say a lattice ig(n)-unique if every vector of the lattice which is of length astgn) times the shortest
vector is an integer multiple of the shortest vector. pfw)-unique SVP is the problem of finding the shortest
vector in ap(n)-unique lattice.

Assumption 1 There does not exist a randomized polynomial time algorfitmm®-unique SVP.

Under the above assumption, Goldreich et al. [GGH97] caost public-key encryption schen(k, £, D)
and show it to be secure. Herk, £ andD are the key generation, encryption and decryption algosth
respectively. The encryption scheme of Goldreich et al. 9@ builds on that of Ajtai-Dwork [AD97].
We use the former because decryption in that scheme is feeear-This is particularly convenient for getting
hardness results for noise-free learning models. We n&ftyodescribe the encryption scheme of Goldreich et
al. [GGH97].

K when given a security parameteras input generates a uniformly random veaioe R” from the unit
sphere inn. dimensions. The coordinates wfand all real numbers that follow need to be only specified up to
n bits of precision. Letn = n3. It then picks random vectors, ag, . . . , a, from the set{z|z.u € Z} (B,
whereB is a ball of “big” radiusR = 20(*1°81) centered at the origin. Each vecigris perturbed by a “small”
vectord; to obtain vectow;. Letiy denote the smallest indéxor which the parallelepiped generated by vectors
Vit1, Vit2, Vien has widthn=2R. It is shown in [AD97] that such an index exists with high pabbity and is
less thanm /2. Letw; = vij41, w2 = Vig42,...,Wn = Vig4n. Letd; be an index such that.a;, is an odd
integer (such an index exists with probability closd te 2=™). Then,(u, e) is the private-key public-key pair
wheree = ('1}1,’()2, ce ,'Um,i(),il).

To encrypt a O£ picks bitsby, by, . .., by, at random and reduces the vectoe= 7", b;v; modulo the
parallepipedP generated byv;, ws, . .., w,. By reducingy modulo P, we mean finding a vectar € P such
thatv = v' + > c;w;, wheree; € Z. The cipher-text is then the vectot € P. To encrypt a 1€ picks bits
bi,bs, ..., by, as before. The vectarin this case is computed ag /2 + >, b;v;. The cipher-texv’ is once
again computed as modulo P. Let E.(z) denote the distribution on cipher-texts when theabis encrypted
by algorithm& using public keye.

To decrypt a cipher-text’ using private ke, Algorithm D computesu.v’. If u.v' € Z + [-2/n,2/n],

v’ is decrypted as a O (IA, B C R, we denote byd + B the set{a + bla € A,b € B}). Otherwiseu.v’ is
guaranteed to satisfy.v’ € Z+ 1/2 + [-2/n,2/n] andv’ is decrypted as a 1. Goldreich et al. [GGH97] prove
the following about the encryption scheme.

Lemma 16 Suppose there exists a randomized polynomial time algorih that when giver{e, p) as input,
wheree is a random public key generated by Algoritiifron parametem, andp is either the encryption of a 0
or 1 outputs a bit denoted ' (e, p) satisfying

Pr[D'(e, E(0)) = 0] — Pr[D'(e, Ee(1)) = 0] > ¢(n)
wheree(n) is an inverse polynomial im, and the probabilities are taken over the key generatiomyygtion
and the computation @’. Thenn®-unique SVP has a randomized polynomial time algorithm.

Definition 8 An unweighted threshold gate (or majority gate) is a gate thhen given(z1, z2,...,zE) €
{0, 1}* outputs 1 if more than half of its inputs are 1 and outputs @otlise. Le"CY denote the class of depth
two polynomial (in the number of inputs) sized circuits withjority gates.

Lemma 17 For any key to the encryption scheme of [GGH97], the decoyptian be done by ZCY circuit of
size polynomial im, the security parameter.
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Proof: Let the cipher-text be the vectar= (z1,zo,...,z,), where each of the coordinatesis specified up
to a precision of bits. That is we are given bits;; wherez; =3 27z;;. Then the decoding algorith® just
computess.z and checks if it is strictly withir2 /» of an integer. The quantity.z can be computed as

5 UiT; = E u; 5 V= E u;2) 245
i J Y]

i

Let f;; denote the fractional part af;2’. Then the fractional part af.z is the same as that Ff fijzij. Also,
a; = Y. fijzij is @ quantity in the range frofito N for someN = O(n?). Since eithen, € Z + [~2/n,2/n]
oraz € Z+1/2+ [—2/n,2/n], we can round off all the weightf; to 4logn decimal places. This results in
an error of at mosi.1/n* = O(1/n?) in calculatinga,. Thereforey is the cipher-text 0 if and only if a, is
within O(1/n) of an integer.

We now specify how to check if the numbey is close to an integer using2CY circuit with 2N + 3 gates,
provideda, € [0, N]. Note that for any: € Z and anya € R, at least one of the two constrainis< z + 1/8
anda > z — 1/8 is satisfied. Both the constraints are met if and only & (z — 1/8, z + 1/8). Therefore, for
anya € [0,N], at leastN + 1 of the2N + 2 constraintss < z + 1/8 anda > z — 1/8 are satisfied, where
z € {0,1,2,...,N}. If a is within 1/8 of some integer, then exactly + 2 of the constraints are satisfied.
Otherwise exactlyV + 1 of the constraints are satisfied. Each of the constraintg;z;; < z + 1/8 (and by
a similar argument, the constrairn}s f;;z;; > z — 1/8) can be checked by a majority gate. This is because
2tlogn £ is an integer in the rangkthroughn?. Consider a polynomial sized list in which we aattif;; copies
of the variabler;;. We want to check if less thau(z + 1/8) entries in the list are 1. This can be done using
a majority gate. Checking wheth@f + 1 or N + 2 of these2 N + 2 gates evaluate to true can be done using
another majority gate. O

We use the notation of Kearns and Valiant [KV89] to define aarting problem for depth 2 threshold
circuits.

Definition 9 We say the concept clagsis weakly PAC learnable if there exists a randomized polyabtime
algorithm A and a polynomially evaluatable hypothesis cl@svith the following properties:

¢ (Input:) The algorithm is given access to oracles POS and Ni&Bgenerate points from some distribu-
tions D} and D over the positive and negative examples respectively oheeptc. It is also given a
confidence parameter.

¢ (Output:) With probabilityl — 4, the algorithm outputs a hypothedisc H such that
Pr[h(z) = 1whenc(z) =1] > 1/2+ p(n)

Pr[h(z) = 0 when ¢(z) = 0] > 1/2 + p(n)

for some polynomigh(n).

Theorem 12 If the concept clas#'CY is weakly PAC learnable, then there exists a polynomial tanelomized
algorithm forn8-unique SVP.

Proof: Suppose there exists a weakly PAC learning algorithfor the class"CY. We construct an algorith®’

for decoding a bit encrypted using the scheme of Goldreich[@GH97] with a reasonable success probability.
Let e be the public key used generated by the key-generationitlgoiC. This key specifies a distribution

E.(0) and E.(1) on the cipher-texts of 0 and 1 (the positive and negative elesj respectively. It is easy to

sample from these distributions since the public key andeti@yption algorithm are known. We also know

that there is &'CY circuit that correctly identifies if its input is the encrignt of a 0 or 1. AlgorithmD’ uses
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Algorithm A to learn this circuit. Suppose that with probability1 — §, Algorithm A outputs a hypothesis
such that
Pr[h(z) = 0|z €g E¢(0)] — Pr[h(z) = 0|z €r E.(1)] > €(n)

for somee(n) that is inverse polynomial in. Then,D’ when given a string that is the random encryption of a 0
or a 1 can usé to decode the input with reasonable success:

Pr[D’ outputs 0 when given random encryption of 0]

— Pr[D’ outputs 0 when given random encryption of 1] > 2(1 — 6)e(n)

Using Lemma 16, this implies an algorithm fef-unique SVP. O

5.1 Further Hardness of Learning Halfspaces with Adversaral Noise

We now show that our result on hardness of learridg circuits easily implies hardness of learning halfspaces
with adversarial noise of high rate even when the learniggrihm is allowed to output any circuit. The proof
is immediate from the “discriminator lemma” due to Hajeakl. [HMP193].

Lemma 18 ((HMP*93]) For any Boolean functiong,...,gx on X, f = M AJ(g1,92,---,g;) and any dis-
tribution D on X there exists < k such that Prp[f = g;] — | > 57.

If it holds thatPrp[f = ¢;] > %+ % then examples of drawn from distributioriD can be seen as examples
of g; with adversarial noise of rate— 5z. Similarly, if Prp[f = g;] < 3 — 5, then the examples are equivalent
to examples of~g; with adversarial noise of rat§ — ﬁ The negation of a halfspace is a halfspace (in fact
the negation of a majority is a majority of negated variapl&bus the discriminator lemma implies thal'&"
circuit is equivalent to a halfspace with adversarial noidence Theorem 5 implies Theorem 6.

6 Conclusions

We have shown connections between some well-studied omdatepns in learning under the uniform distri-
bution. Our reductions imply that in a sense, the class ofynparities is the hardest concept class for this
model of learning. A natural question is whether one cancedearning noisy parities @ (log n) variables to
learning DNF. On the positive side, a non-trivial algoritifion learning parities o (logn) variables will help
make progress on a number of important questions regarearging under the uniform distribution. Indeed it
is plausible that there exists a better algorithm than esthaisearch for this variant of the problem, as in the
case of (unrestricted) noisy parity [BKWO3].

For halfspaces, a natural question is whether one can ertemidardness result for learning halfspaces to
more general concept classes. One possible generalizadiad be to allow the sign of a low-degree polynomial
as hypothesis. Kalai et al. [KSS94] use this hypothesissdasdesign algorithms for agnostic learning of
halfspaces under some natural distributions. Similaolyttie problem of learning parity with adversarial noise,
one could allow the algorithm to produce a low degree polyiabaver Z, as hypothesis. To the best of our
knowledge, there are no negative results known for thedaqures.
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