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Abstract

Learning an unknown halfspace (also called a perceptron) from labeled examples is one of the
classic problems in machine learning. In the noise-free case, when a halfspace consistent with all the
training examples exists, the problem can be solved in polynomial time using linear programming.
However, under the promise that a halfspace consistent with a fraction (1 —¢) of the examples exists
(for some small constant £ > 0), it was not known how to efficiently find a halfspace that is correct
on even 51% of the examples. Nor was a hardness result that ruled out getting agreement on more
than 99.9% of the examples known.

In this work, we close this gap in our understanding, and prove that even a tiny amount of
worst-case noise makes the problem of learning halfspaces intractable in a strong sense. Specifically,
for arbitrary €, > 0, we prove that given a set of examples-label pairs from the hypercube a fraction
(1 — ¢) of which can be explained by a halfspace, it is NP-hard to find a halfspace that correctly
labels a fraction (1/2 + 4) of the examples.

The hardness result is tight since it is trivial to get agreement on 1/2 the examples. In learning
theory parlance, we prove that weak proper agnostic learning of halfspaces is hard. This settles a
question that was raised by Blum et alin their work on learning halfspaces in the presence of random
classification noise [7], and in some more recent works as well. Along the way, we also obtain a strong
hardness for another basic computational problem: solving a linear system over the rationals.
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1 Introduction

This work deals with the complexity of two fundamental optimization problems: solving a system
of linear equations over the rationals, and learning a halfspace from labeled examples. Both these
problems are “easy” when a perfect solution exists. If the linear system is satisfiable, then a satisfying
assignment can be found in polynomial by Gaussian Elimination. If a halfspace consistent with all the
examples exists, then one can be found using linear programming. A natural question that arises is
thus the following: If no perfect solution exists, but say a solution satisfying 99% of the constraints
exists, can we find a solution that is nearly as good (say, satisfies 90% of the constraints)?

This question has been considered for both these problems (and many others), but our focus here
is the case when the instance is near-satisfiable (or only slightly noisy). That is, for arbitrarily small
¢ > 0, a solution satisfying at least a fraction (1—¢) of the constraints is promised to exist, and our goal
is to find an assignment satisfying as many constraints as possible. Sometimes, the problem is easier
to solve on near-satisfiable instances — notable examples being the Max 2SAT and Max HornSAT
problems. For both of these it is possible to find, in polynomial time, an assignment satisfying a
fraction 1 — f(e) of the clauses f(e) — 0 as € — 0 given a (1 — ¢)-satisfiable instance [20]. Our results
show that in the case of solving linear systems or learning halfspaces, we are not so lucky and finding
any non-trivial assignment for (1 — ¢)-satisfiable instances is NP-hard. We describe the context and
related work as well as our results for the two problems in their respective subsections below.

Before doing that, we would like to stress that for problems admitting a polynomial time algorithm
for satisfiability testing, hardness results of the kind we get, with gap at the right location (namely
completeness 1 — ¢ for any desired € > 0), tend to be hard to get. The most celebrated example
in this vein is Hastad’s influential result [13] which shows that given a (1 — ¢)-satisfiable instance of
linear equations modulo a prime p, it is NP-hard to satisfy a fraction ( % + §) fraction of them (note

that one can satisfy a fraction zl) of the equations by simply picking a random assignment). Recently,
Feldman [10] established a result in this vein in the domain of learning theory. He proved the following
strong hardness result for weak learning monomials: given a set of example-label pairs a (1 —¢) fraction
of which can be explained by a monomial, it is hard to find a monomial that correctly labels a fraction
(1/2 + 9) of the examples. Whether such a strong negative result holds for learning halfspaces also, or
whether the problem admits a non-trivial weak learning algorithm is mentioned as an open question in
[10], and this was also posed by Blum, Frieze, Kannan, and Vempala [7] almost 10 years ago. In this
work, we establish a tight hardness result for this problem. We prove that given a set of example-label
pairs a fraction (1 — €) of which can be explained by a halfspace, finding a halfspace with agreement
better than 1/2 is NP-hard.

1.1 Solving linear systems

We prove the following hardness result for solving noisy linear systems over rationals: For every €,6 > 0,
given a system of linear equations over Q which is (1—¢)-satisfiable, it is NP-hard to find an assignment
that satisfies more than a fraction ¢ of the equations. As mentioned above, a result similar to this was
shown by Hastad [13] for equations over a large finite field. But this does not seem to directly imply any
result over rationals. Our proof is based on a direct reduction from the Label Cover problem. While
by itself quite straightforward, this reduction is a stepping stone to our more complicated reduction
for the problem of learning halfspaces.

The problem of approximating the number of satisfied equations in an unsatisfiable system of linear
equations over Q has been studied in the literature under the label MAX-SATISFY and strong hardness
of approximation results have been shown in [4, 9]. In [9], it is shown that unless NP C BPP, for
every € > 0, MAX-SATISFY cannot be approximated within a ratio of n'~¢ where n is the number of



equations in the system. (On the algorithmic side, the best approximation algorithm for the problem,
due to Halldorsson [12], achieves ratio O(n/logn).) The starting point of the reductions in these
hardness results is a system that is p-satisfiable for some p bounded away from 1 (in the completeness
case), and this only worsens when the gap is amplified.

For the complementary objective of minimizing the number of unsatisfied equations, a problem
called MIN-UNSATISFY, hardness of approximation within ratio 21°6”*°® is shown in [4] (see also [3]).
In particular, for arbitrarily large constants ¢, the reduction of Arora et al [4] shows NP-hardness of
distinguishing between (1 — 7)-satisfiable instances and instances that are at most (1 — ¢y)-satisfiable,
for some . One can get a hardness result for MAX-SATISFY like ours by applying a standard gap
amplification method to such a result (using a O(1/v)-fold product construction), provided v = Q(1).
As presented in [4], however, their reduction works with v = o(1). It is not difficult to modify their
reduction to have v = Q(1). Our reduction is somewhat different, and serves as a warm-up for
the reduction for learning halfspaces, which we believe puts together an interesting combination of
techniques.

1.2 Halfspace learning

Learning halfspaces (also called Perceptrons or linear threshold functions) is one of the oldest problems
in machine learning. Formally, a halfspace on variables z1,...,z, is a Boolean function I[wiz; +
woZe + -+ - + wpxy > 0] for reals wy, ..., wy, 0 (here I[E] is the indicator function for an event E). For
definiteness, let us assume that variables z; are Boolean, that is, we are learning functions over the
hypercube {0,1}". In the absence of noise, one can formulate the problem of learning a halfspace as a
linear program and thus solve it in polynomial time. In practice, simple incremental algorithms such
as the famous Perceptron Algorithm [1, 18] or the Winnow algorithm [17] are often used.

Halfspace-based learning algorithms are popular in theory and practice, and are often applied to
labeled exampled sets which are not separable by a halfspace. Therefore, an important question that
arises and has been studied in several previous works is the following: what can one say about the
problem of learning halfspaces in the presence of noisy data that does not obey constraints induced by
an unknown halfspace?

In an important work on this subject, Blum, Frieze, Kannan, and Vempala [7] gave a PAC learning
algorithm for halfspaces in the presence of random classification noise. Here the assumption is that
the examples are generated according to a halfspace, except with a certain probability n < 1/2, the
label of each example is independently flipped. The learning algorithm in [7] outputs as hypothesis a
decision list of halfspaces. Later, Cohen [8] gave a different algorithm for random classification noise
where the output hypothesis is also a halfspace. (Such a learning algorithm whose output hypothesis
belongs to the concept class being learned is called a proper learner.) These results applied to PAC
learning with respect to arbitrary distributions, but assume a rather “benign” noise model that can be
modeled probabilistically.

For learning in more general noise models, an elegant framework called agnostic learning was in-
troduced by Kearns at al [16], Under agnostic learning, the learner is given access to labeled examples
(z,y) from a fixed distribution D over example-label pairs X x Y. However, there is no assumption
that the labels are generated according to a function from specific concept class, namely halfspaces
in our case. The goal of the learner is to output a hypothesis h whose accuracy with respect to the
distribution is close to that of the best halfspace — in other words the hypothesis does nearly as well
in labeling the examples as the best halfspace would.

In a recent paper [14], Kalai, Klivans, Mansour and Servedio gave an efficient agnostic learning al-
gorithm for halfspaces when the marginal Dx on the examples is the uniform distribution on the hyper-
cube. For any desired £ > 0, their algorithm produces a hypothesis h with error rate Pr(, ,ycp[h(z) # ]



at most opt + ¢ if the best halfspace has error rate opt. Their output hypothesis itself is not a halfspace
but rather a higher degree threshold function.

When the accuracy of the output hypothesis is measured by the fraction of agreements (instead
of disagreements or mistakes), the problem is called co-agnostic learning. The combinatorial core of
co-agnostic learning is the Mazimum Agreement problem: Given a collection of example-label pairs,
find the hypothesis from the concept class (a halfspace in our case) that correctly labels the maximum
number of pairs. Indeed, it is well-known that an efficient a-approximation algorithm to this problem
exists iff there is an efficient co-agnostic proper PAC-learning algorithm that produces a halfspace that
has agreement within a factor « of the best halfspace.

The Maximum Agreement for Halfspaces problem, denoted HS-MA, was shown to be NP-hard to
approximate within some constant factor for the {0,1,—1} domain in [3, 6] (the factor was 261/262+¢
in [3] and 415/418 + ¢ in [6]). The best known hardness result prior to work was due to Bshouty and
Burroughs, who showed an inapproximability factor of 84/85 + ¢, and their result applied also for the
{0,1} domain. For instances where a halfspace consistent with (1 — ¢) of the examples exists (the
setting we are interested in), an inapproximability result for HS-MA was not known for any fixed factor
a < 1. For the complementary objective of minimizing disagreements, hardness of approximating
within a ratio 200°8" 1) is known [4, 3]. The problem of whether an a-approximation algorithm exists
for HS-MA for some a > 1/2, i.e., whether a weak proper agnostic learning algorithm for halfspaces
exists, remained open.

In this paper, we prove that no (1/2 + ¢)-approximation algorithm exists for HS-MA for any § > 0
unless P = NP. Specifically, for every €, > 0, it is NP-hard to distinguish between instances of
HS-MA where a halfspace agreeing on a (1 — €) fraction of the example-label pairs exists and where no
halfspace agrees on more than a (1/24¢) fraction of the example-label pairs. Our hardness result holds
for examples drawn from the hypercube. Our result indicates that for proper learning of halfspaces in
the presence of even small amounts of noise, one needs to make assumptions about the nature of noise
(such as random classification noise studied in [7]) or about the distribution of the example-label pairs
(such as uniform marginal distribution on examples as in [14]).

A similar hardness result was proved independently by Feldman et al [11] for the case when the
examples are drawn from R”. In contrast, our proof works when the data points are restricted to the
hypercube {0,1}", which is the natural setting for a Boolean function. Much of the complexity of our
reduction stems from ensuring that the examples belong to the hypercube.

2 Preliminaries

The first of the two problems, studied in this paper is the following;:

Definition 2.1. For constants c, s, satisfying 0 < s < ¢ < 1, LINEQ-MA(c, s) refers to the following
Promise problem: Given a set of linear equations over variables X = {z1,...,zn}, with coefficients
over @, distinguish between the following two cases:

o There is an assignment of values to the variables X, that satisfies more than a c fraction of the
equations.

o No assignment satisfies more than s fraction of the equations.

In the problem of learning a halfspace to represent a boolean function, the input consists of a set
of positive and negative examples all from the boolean hypercube. These examples are embedded in
the real n-dimensional space R”, by some natural embedding. The objective is to find a hyperplane in
R" that separates, the positive and the negative examples.



Definition 2.2. Given two disjoint multisets of vectors ST,5~ C {—1,1}", a vector a € R"*, and a
threshold 6, the agreement of the halfspace a -v > 6 with (S*,S57) is defined to be the quantity

H{vlv e ST,a-v >0} + |{vjve S ,a-v <8} .

where the cardinalities are computed, by counting elements with repetition. In the HS-MA problem, the
goal is to find a,0 such that the halfspace a - v > 0 mazimizes this agreement.

Notice that there is no loss of generality in assuming the embedding to be {—1,1}". Our hardness
results translate to other embeddings as well, because the learning problem in the {—1,1}" embedding
can be shown to be equivalent to the learning problem on most natural embeddings such as {0,1}".
Further, our hardness result holds even if both the inequalities {>, <} are replaced by strict inequalities
{>,<}.

To study the hardness of approximating HS-MA, we define the following promise problem:

Definition 2.3. For constants c,s satisfying 0 < s < ¢ < 1, define HS-MA(c, s) to be the following
Promise problem: Given multisets of positive and negative ezamples ST,8~ C {—1,1}" distinguish
between the following two cases:

e There is a halfspace a - v > 0, that has agreement at least c|ST U S~| with (S*,57).
e Ewvery halfspace has agreement at most s|St U S~| with (ST,57).

The hardness results in this paper are obtained by reductions from the Label Cover problem, which
can be defined as follows:

Definition 2.4. An instance of LABELCOV ER(c, s) represented as I' = (U, V, E,%,1I), consists of
a bipartite graph over node sets U,V with the edges E between them, such that all nodes in U are of
the same degree. Also part of the instance is a set of labels 3, and a set of mappings 7o : ¥ — X
for each edge e € E. An assignment A of labels to vertices is said to satisfy an edge e = (u,v), if
me(A(u)) = A(v). The problem is to distinguish between the following two cases:

o There exists an assignment A that satisfies at least a fraction c of the edge constraints 11
o FEvery assignment satisfies less than a fraction s of the constraints in II.
The reductions in this paper use the following inapproximability result for Label Cover.

Theorem 2.5. [19, 5] There exists an absolute constant v > 0 such that for all large enough R, the

gap problem LABELCOV ER(1, %) is NP-hard, where R = |X| is the size of the alphabet.

Throughout this paper, we use the letter E to denote a linear equation/function, with coefficients
{0,1,—1}. For a linear function E, we use V(E) to denote the set of variables with non-zero coefficients
in E. Further ,the evaluation E(A) for an assignment A of real values to the variables is the real value
obtained on substituting the assignment in the equation E. Hence, an assignment A satisfies the
equation E if E(A) = 0. For the purposes of the proof, we make the following definitions.

Definition 2.6. An equation tuple T consists of a set of linear equations Ei,...,Er and a linear
function E called the scaling factor.

Definition 2.7. A tuple T = ({E1,Es,...,Ex},E) is said to be disjoint if the sets of variables
V(E)1 < i < k and V(E) are all pairwise disjoint. An equation tuple is said to be of constant
arity, if the arity of each of its equations and the scaling factor are bounded by a constant.



Definition 2.8. An assignment A is said to satisfy an equation tuple T, if for every E; 1 < i <k,
E;(A) =0 and the scaling factor E(A) > 0. An assignment A is said to S-satisfy an equation tuple T
if for each 1 < i < k,|E;(A)| < B-|E(A)| and moreover E(A) > 0.

Definition 2.9. An assignment A is said to be C-far from [-satisfying an equation tuple T, if for
some C distinct equations E,,, ..., E,, in the tuple T, we have |E,;(A)| > 8- |E(A)|.

7 ac

3 Overview of the Proof

Both the hardness results use a reduction from the Label Cover problem. The proof of hardness of
HS-MA proceeds in three stages as described below.

In the first stage the label cover problem is reduced to a set of equation tuples 7 using Verifier
I such that for a NO instance of label cover, any assignment A can (§-satisfy a very tiny fraction of
tuples in 7. However the tuples 1" € T are not disjoint.

In the second stage, Verifier II takes as input the set 7 and creates a set of equation tuples 7.
The tuples in 7' are disjoint, they are all over the same set of variables, and each variable appears
in exactly one equation of every tuple. Further, in the soundness case, almost all tuples are at least
C-far from being e-satisfied. Verifier II thus plays two roles: (i) it makes the equations in each tuple
have disjoint support, and (ii) in the soundness case, every assignment not just fails to e-satisfy most
of the tuples, but is in fact C-far from e-satisfying most of the tuples. Both these facts are exploited
by Verifier III in the third stage.

Verifier 111 checks if an assignment A is C-close to satisfying a tuple T' by checking inequalities.
The inequalities are based on a random linear combination of the equations of the tuple with +1
coefficients (the random choice is made from a small sample space of vectors with +1 coefficients). In
the completeness analysis, if all equations are satisfied, i.e., evaluate to 0 on A, then any +1 combination
also vanishes. In the soundness analysis, most tuples have at least C' equations with non-trivial absolute
value, and this implies that their linear combination is unlikely to be small (a careful choice of the
sample space of linear combinations is crucial to conclude this).

Each of the inequalities checked by Verifier III has all the variables with coefficients {—1,1}, and
has a common variable (a threshold ) on the right hand side. Hence the checks made by the combined
verifier correspond naturally to training examples in the learning problem.

For the hardness of LINEQ-MA, the set of tuples T output by Verifier I are rather easily converted
in to a set of equations. This is achieved by creating several equations for each equation tuple T € T,
such that a large fraction of these are satisfied if and only if T is satisfied.

4 Verifier 1

Let (U,V, E,%,1I) be an instance of Label Cover with |3| = R. This verifier produces a set of equation
tuples, which are tested using Verifier I1. The equation tuples have variables u1, ..., upg for each vertex
u € UU V. The solution that we are targeting is an encoding of the assignment to the label cover
instance. So if a vertex w is assigned the label i by an assignment A, then we want u; = 1 and
uj =0 for j #14,0 <j < R. We construct an equation tuple for every ¢-tuple of variables corresponding
to vertices in U, for a suitable parameter ¢ that will be chosen shortly.



For each t-tuple X of variables corresponding to vertices in U, construct the equation tuple T' as
follows.

e Pi: For every pair of vertices u,v € U UV, an equation
R R

Sy u=o
i—1 j=1

e Py:For each edge e = (u,v) € E the label cover constraint for the edge

Z uj—v; =0foralll <:<R

jenz (i)

e Ps:For each variable v € X,
v=>0

e The scaling factor is Pjy: Zﬁ: , u; for some fixed vertex u € U UV

Output the tuple T'= (P U P2 U P3, Py)

Theorem 4.1. For every 61,61 > 0 there exists a sufficiently large R = R(e1,061) such that if T' =
(U,V,E,x,1I) is an instance of label cover with |X| = R then with the choice of ' = % the following
holds:

o If T is satisfiable, then there is an assignment A that satisfies at least 1 — e fraction of the output
tuples.

o If no assignment to I satisfies a fraction % of the edges, then every assignment A [3'-satisfies

less than a fraction 61 of the output tuples.

Proof: Let us choose parameters cg = In(1/61) and t = 4coR' ™7, for a sufficiently large R. We present
the completeness and soundness arguments in turn.

Completeness: Given an assignment A to the Label Cover instance, that satisfies all the edges, the
corresponding integer solution satisfies :

e All equations in P; and Ps.
e (1-— }—12) fraction of the equations in Ps for each edge e.

Since ¢ equations of the form Ps are present in each tuple, the assignment A satisfies at least (1— E)t >
1 — &1 of the tuples for large enough R.

Soundness: Suppose there is an assignment A that 3’-satisfies at least a fraction d; of the tuples
generated. Clearly A must 3'-satisfy all the equations P; and P, since they are common to all the
tuples. Further by definition of 3’-satisfaction, the scaling factor P4(A) > 0. Normalize the assignment
A such that the scaling factor Py is equal to 1. As all the equations in P; are ('-satisfied, we get

R
1-8' <> vi<14p, forallve UUV (1)
=1



Further, we claim that the assignment A ('-satisfies at least a fraction (1 — %) of the equations in P3
. Otherwise, with ¢ of these equations belonging to every tuple, less than (1 — CTO)t < 61 tuples will be
B'-satisfied by A. Recall that all vertices in U have same degree. Hence by an averaging argument, for
at least half the edges e = (u,v), at least (1 — 22) of the constraints u; = 0 are '-satisfied. Let us call
these edges good Edges.

For every vertex , define the set of labels Pos as follows,

Pos(u) = {ieX|u; >88'}ifuelU

Pos(v) = {j€XZ|v; >80 (R+1)}ifveV

The set Pos(w) is non-empty for each vertex w € U UV, because otherwise Zf; Jwi <8F'(R+1)-R<
1— ', a contradiction to (1). Further if e = (u,v) is a good edge then for at least 1 — 2% of the labels
1 < i < R, we have u; < '. Hence |Pos(u)| < (2%)}2 = & Further, since all the constraints P are
B'-satisfied, we know that

Z uj — v

icms ' ()

<p

Thus for every label, j € Pos(v), there is at least one label ¢ € Pos(u) such that 7.(i) = j. For every
vertex w € UUV, assign a label chosen uniformly at random from Pos(w). For any good edge e = (u,v),
the probability that the constraint 7. is satisfied is at least m > %. Since at least half of the
edges are good, this shows that there is an assignment to the labei cover instance that satisfies at least

a fraction 1/R7” of the edges. O

5 Linear equations over Rationals

Theorem 5.1. For all ¢,6 > 0, the problem LINEQ-MA(1 — ¢,6) is NP-hard.

Proof: Given a label cover instance II with alphabet size R, the reduction outlined in Theorem 4.1 is
applied to obtain a set of equation tuples 7. From 7, a set of equations over QQ is obtained as follows:
For each tuple ' = ({E1,..., En}, E) € T, include the following set of equations:

Ei4+y-Ey+9y* - Cs+...4y" 'E,+y"(E—-1) = 0

for all values of y =1,2,...,t, where t = ”R—ﬁl.
Completeness: Observe that if IT is satisfiable, then the corresponding assignment A, has a scaling
factor E(A) = 1. Further for every equation tuple 7' that is satisfied by A, E;(A) = 0,1 < i < n.
Hence A satisfies at least 1 — }% fraction of the equations.
Soundness: Suppose there is an assignment that satisfies A that satisfies more than % fraction of
the equations. Hence for at least % fraction of the tuples, at least % fraction of the equations are
satisfied. Let us refer to these tuples as nice. If a nice tuple T, is not satisfied by A, then at most
"TH < % fraction of the equations corresponding to 7' can be satisfied. Hence every nice tuple T
is satisfied by A. So the assignment A satisfies at least % of the tuples, which is a contradiction to
Theorem 4.1.

For a sufficiently large R, we have }% < eand % < ¢, and hence the result follows.

O

The coefficients of variables in the above reduction could be exponential in n (their binary repre-
sentation could use polynomially many bits). In Appendix A, we discuss an alternate reduction which
yields the same hardness with coefficients bounded by a constant depending only on ¢, §, and moreover

the arity of all the equations is also bounded by a constant.



6 Verifier 11

The main ideas in the construction of the second verifier are described below.

The equation tuple T that needs to be tested, may not be disjoint. i.e there could be a variable that
occurs in more than one equation in 7. This problem can be solved by using multiple copies of each
variable, and using different copies for different equations. However, it is important to ensure that the
different copies of the variables are consistent. To ensure this the verifier does the following : it has
a very large number of copies of each variable in comparison to the number of equations. On all the
copies that are not used for equations in 7', the verifier checks pairwise equality. Any given copy of a
variable is used to check an equation in 7" for only a very small fraction of cases, and for most random
choices of Verifier I , the copy of the variable is used for consistency checking. This way most of the
copies are ensured to be consistent with each other.

The pairwise consistency checks made between the copies must also satisfy the disjointness property.
So the verifier picks a matching at random, and performs pairwise equality checks on the matching.
It can be shown that even if there are a small number of bad copies, they will get detected by the
matching with high probability.

If a single equation is unsatisfied in 7', at least C equations need to be unsatisfied on the output
tuple. This is easily ensured by checking each equation in 7" on a many different copies of the variables.
As all the copies are consistent with each other, if one equation is unsatisfied in 7' a large number of
equations in the output tuple will be unsatisfied.

The verifier makes use of sets of k-wise 7-dependent permutations. A set of k-wise n-dependent
permutations is defined as follows:

Definition 6.1. Two distributions D1, Dy over a finite set  are said to be n-close to each other if the
variation distance |[D1 — Ds|| = 13" o |Di1(w) — Da(w)| is atmost n

Definition 6.2. A family of permutations II (can have repetitions) of [1...M] is said to be k-
wise n-dependent if for every k-tuple of distinct elements (z1,...,zx) € [1...M], the distribution
(f(z1), f(z2),..., f(zg)) for f € II chosen uniformly at random is n-close to the uniform distribution
on k-tuples.

Polynomial size constructions of such permutations have been presented in [15].

Let us say the tuple T consists of equations FEi,...,E, and a scaling factor E over variables
U1,-..,Uy. Let us denote by ny the maximum arity of equation in 7. We use superscripts to identify
different copies of the variables. Thus u/ refers to the variable corresponding to 4§ copy of the variable
u;. Further for an equation/linear function E, the notation E7 refers to the equation E over the j%
copies of variables V(E). By the notation M;(j, k), we refer to the following pairwise equality check:

Mi(j,k): w —uf=0.
Let M, P be even constants whose values will be chosen later. The set of variables used by Verifier 11
consists of

e M copies for variables not in V(E)
e M + 1 copies of variables in V(E)

Let II denote a set of Cj-wise almost independent (n-dependent) permutations of {1,..., M} for
some constants C1,7, which we will choose later.



Pick an equation tuple T' € 7 uniformly at random.

Pick a number & uniformly at random from {1,..., M +1}. Choose E* as the scaling factor.
Re-number the remaining M copies of V(E), with {1,...,M}.

Choose a permutation 7 uniformly at random from the set IT of C-wise n-dependent permu-
tations. Construct sets of equations P and M as follows

For each E; € T .
P={Ef91<i<m,(P—1)i+1<j<Pi}

M = {Mi(x(§),(j + 1))|u] ¢ V(P), ] : odd}

Output the tuple (P UM, EF).

Theorem 6.3. For all e2,05 > 0 and a positive integer C, there exists constant parameter choices
M, P,C4,n for Verifier II such that: Given a set of equation tuples T of which each tuple is of constant
arity(ng) and has the same scaling factor E, the following is true

o If an assignment A, satisfies a fraction 1 —eo of the tuples T € T then there exists an assignment
A" which satisfies 1 — g9 fraction of the tuples output by the verifier..

e If no assignment [3'-satisfies a fraction %2 of the tuples T € T, then no assignment A’ is C-close

from B = %—satisfymg a fraction 6o of the output tuples.

Proof: The completeness proof is clear, since an assignment A’ consisting of several copies of A satisfies
the exact same tuples that A satisfies.

Suppose an assignment A’ is C-close to [S-satisfying do-fraction of the output tuples. Then for at
least %2 choices of input tuple T € T, at least %2 fraction of the output tuples are C-close to being
[B-satisfied. Let us call these input tuples T' to be good. For a good tuple T, there are at least %’
fraction of choices of k for which with probability more than %, the output tuple is C-close to being
[-satisfied. These values of k are said to be nice with respect to T'.

Lemma 6.4. Let E* be a scaling factor that is nice with respect to some good tuple T. For every
variable u;, all but a constant number Cy of copies of u; are 28| E¥(A')| close to each other.

A (u) — A'(ul)| < 28| E*(A")]

Proof: As EF is a nice scaling factor for T, for at least %2 choices of m € TI the assignment A’ is less
than C-far from S-satisfying the tuple P U M. In particular, this means that with probability at least
%2, at most C of the consistency checks in M are -violated.

Define a copy of ug to be bad, if it is B|E*(A’)| far from more than half the other copies. i.e
|A'(ul) — A'(ul')| > B|E*(A’)| for half the values of j;. Suppose there are more than Cj bad copies of
the variable u;. Without loss of generality we can assume that the first Cy copies {u},u?,... ,ufo} are
bad. The probability that the permutation 7 maps some two of these copies to consecutive locations
is at most ((’;0)%

Further the probability that one of these Cj copies, is used for an equation in P is at most Cj - Pﬁm.
Now comnsider the case in which each of these copies is checked for consistency with some other copy of
the variable.



A bad copy uf ,1 < 5 < Cj creates a B-violation in M, whenever a distant copy is mapped next to it.
Therefore with probability at least %, a bad copy produces a (-violation. Even if the bad copies share
many of the distant neighbors, since M >> Cj, the probability that a bad copy produces a violation
is at least % Since IT is a set of C; > 2Cj-wise almost independent (n-dependent) permutations, the
probability that there are less than C violations in M is at most (%9) (%)(CO_C) + 27

Therefore,

Co\ C P Co\ ,2 )
Pr[Verifier II accepts] < < 20) MO +Cp - Vm + (C?) (§)<c0_(:) +2n < 22
for M > max (%ﬁl’ %3) and sufficiently large constant Cy, % O

Lemma 6.5. Given a nice scaling factor EE of T, and an equation E; € T, there exists at least P — Cy
values of j for which |E!(A")| < B|E*(A")]

Proof: Since E* is a nice scaling factor, at least for one permutation 7 € II, the tuple generated is
less than C-far from being 3 satisfied. Since each equation E; is checked on P different copies, at least
P — C of the copies must §-satisfy F;. O

Let T, be a good tuple. Define kg to be its nice value for which the corresponding scaling factor
EF(A') has the smallest absolute value. From Lemma 6.4, we know that all but a constant Cy of the
copies of every variable are 23| E*o(A')| close to each other. Delete all the bad copies(at most Cy) of
each variable. Further, delete all the variables in V (E*0). Now define an assignment A as follows: The
value of A(u;) is the average of all the copies of u; that have survived the deletion. We claim that the
assignment A, 3'-satisfies all the good tuples T € T.

Observe that the arity of E* is at most ng, and at most Cy + 1 copies of each variable are deleted.
Since %M > ny(Cp + 1), there exists a nice scaling factor E*1 of T such that no variable of V (E*1) is
deleted. Further by definition of ko, |E*1 (A’)| > |E*0(A")|.

i From Lemma 6.4, we know that for the average assignment A, and any variable u;,

[Aui) — u]| < 26| E*(A)] < 26" (4)] )
Using the above equation for the variables in V(E*1), we get
(1 —28n0)|[E* (A')] < |E(A)]
Substituting back in 2, we get
2
(1 —2Bno)

Consider any good tuple T" € T. By the same argument as T', it can be shown that there exists a
nice scaling factor E7°, none of whose variables have been deleted. Hence we have

| E%(A)] < |E(A)| +48 - no| E(A)]

|A(us) — ul] < |E(A)| < 48|E(A)] (3)

Using Lemma 6.5, and the fact P — C' > ngCy, we can conclude for every equation E; € T', there
exists j; such that |E/' (A’)| < B|E’°(A")|, and no variable of V(E}') is deleted. Using equation 3 with
variables in V(E]°), we get

|Ei(A)| < [BIN(A)| + 48 - no| E(A))|
Therefore,
|Ei(A)| < (B + 4B%n0 + 4Bno)|[E(A)| < 9Bno| E(A)| = B E(A)|

Thus the assignment A [’-satisfies the tuple 7'. Hence the assignment A [3'-satisfies all the good
tuples, and since at least a fraction /2 of the tuples are good, the result follows. O
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7 Verifier 111

Given a equation tuple T' = ({E4,..., E, }; E), Verifier III checks if the assignment A is C-close to (-
satisfying T'. Towards this, we define the following notation : For a tuple of equations £ = (Ey,..., E,),
and a vector v € {—1,1}", define £-v =" | v;E;.

Let V; for an integer 4, denote a 4-wise independent subset of {—1,1}. Polynomial size constructions
of such sets are well known, see for example [2, Chap. 15]. The details of the verifier are described
below.

e Partition the set of equations {E1,..., E,} using n random variables that are C-wise inde-
pendent and take values {1,...,m}. Let us say the partitions are &,1 < i < m.

e For each partition &;, pick a random vector, v; € V,, where n; = |£;|. Compute linear
functions B;,1 <i<m
Bi=¢& v

Construct B = (B, Ba,...,Bp)
e Pick a vector w uniformly at random from {—1,1}"™.

e With probability %, check if either of the following inequalities is satisfied by A:

B-w+E > 0 (4)
B-w—FE < 0 (5)

Accept if the check is satisfied, else Reject.

Polynomial size spaces for C-wise independent variables taking values {1,...,m}, can be obtained
using BCH codes with alphabet size m, and minimum distance C + 1.

Theorem 7.1. For every 3,03 > 0 there exists constants C = C(,d3), m such that the following holds:
Given the equation tuple T = ({En,...,Ey}, E) and an assignment A,

o If the assignment A satisfies T, then with 8 = 0, the verifier accepts with probability 1.

o If the assignment A is C-far from B-satisfying the tuple T, then irrespective of the value of 8, the
verifier accepts with probability less than % + %3.

Proof: For an assignment A that satisfies the tuple T', we have E;(A) = 0,1 < j <n, and E(A) > 0.
Hence for all the random choices, B = 0, and E > 0. Therefore, with the choice 8 = 0, all the checks
made by the verifier succeed.

Suppose the assignment A is C-far from S-satisfying the tuple T'. If E(A) < 0, then clearly at most
one of these two inequalities 4 can satisfied, and the proof is complete. Hence, we assume E(A) > 0.

This implies that at least C' of the values {E;(A)|1 < j < n} have absolute value greater than
B|E(A)|. Let us refer to these E; as large. The probability that one of the partitions &; contains less
than Cy = % large values is at most m(((;;)(l — %)C_CO. From Lemma 7.2, for a partition &; that has
at least Cy large values,

PrBi(A) > [B(A)] > o

11



Assuming, that all the partitions have at least Cy large values, we bound the probability that less than
i partitions have |B;(A)| > |E(A)|. Towards this, we use the Chernoff bounds, to obtain

Prl| {i : |Bi(A)| > |BA)} |< ] <e 8

Consider the case in which there are at least mo = §; partitions with |B;(A4)| > |E(A)|. In this case,
from Lemma 7.3 we can conclude

(mn;72)
2mo— 1

Pr(B-w e [0 — E(A),0 + E(A)]) <

Overall we have,

Pr(B-w € [0 — B(4),0+ E(4))) < m< g ) (- L)oo o Sr,/)

The value of Cy = 2’% is fixed, so for large enough values of C,m with C > m the above probability is
less than d3/2. Observe that if B-w ¢ [0 — E(A),0+ E(A)], at most one of the two checks performed by
the verifier can be satisfied. Hence the probability of acceptance of the verifier is less than %—I— d3/2. O

Lemma 7.2. For all B > 0, and a constant Cy > %, if V.C {—1,1}", is a 4-wise independent space
of vectors then for any a € R with at least Cy of its components greater than § in absolute value,

1

P . 1] >
tflacol > 1> o

where the probability is over random choice of v € V.

Proof: Define a random variable z = |a - v|? for v chosen uniformly at random from V. Then it can
be shown that,

E[z] = |lal?
E[2’] = 3llal3 —2llal} < 3llal3

Since at least Cy components of a are larger than 3, we have ||a||3 > Cy8% > 2. Therefore, if Pr[ja-v| >
1] =a < 15, then

12
Elrle>1 > ~(lali—(1—a)-1) > =|al}
o 2¢
Using the Cauchy-Schwartz inequality, we know
Ble?le > 1] > Bzl > 1)> > —all
Therefore, we get

1
E[:cQ] > E[x2|:c > 1|Pr[z > 1] > EHGH% > 3|a||‘21

which is a contradiction. O
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Lemma 7.3. For every vector a € R™ with at least K of its components > 1 in absolute value and a
number 6 € R,

(x)2)

K/2

2K71

Prf—-1<a-v<60+1]<
where the probability is over random choice of v € {—1,1}™.

Proof: Without loss of generality, we can assume that a; > 1 for 1 < i < K. For a vector v € {—1,1}™,
we write v = V| 0 Vj,— g Where v g € {—1, 1}K, Vim—k €{—1, 1}™~K and o denotes the concatenation
of the two vectors. Denote by -1, and 1 the K dimensional vectors consisting of all —1s and all
1s respectively. Consider a path P on the hypercube, starting at ug = -1 o v,_g and reaching
ug = 10v,_g by changing one variable from —1 to 1 at each step. If u;,u;,1 are the i** and i + 1
nodes on the path P, then we know

a- U1 —a-u; =a; > 1

Therefore, at most two points on the path P can belong to an interval [0 — 1,0 + 1]. In total there are
K! paths P from ug to ug. Further any vector v' of the form v = v" K © Vlm—K 18 present on at least

%!%! different paths. Hence, we can conclude

K
Pr(0 <6+1]< 2(xo)
rf—1<a-v<6+1]< o
O
8 Hardness of HS-MA: Putting the Verifiers Together
Theorem 8.1 (Main Result). For all £,0 > 0, the problem HS-MA(1 — ¢, % + 6) is NP-hard.
Proof: Given a label cover instance I', we use Verifier I with parameters d; = %, €1 = € to obtain a
set of equation tuples 7. Let R = R(e1,61) denote the parameter obtained in theorem 4.1. Using the

set of equation tuples 7 as input, Verifier II with parameters eo = 1,9 = g, B = %, generates a set

of equation tuples 7’. Apply Theorem 7.1 with d3 = 6,3 = ﬁ to check one of the equation tuples
TeT'.

Completeness: If the label cover instance I' is satisfiable, Verifier I outputs a set of tuples, such that
there is an assignment satisfying 1 — e; = 1 — ¢ of the output tuples. Hence by applying Theorems
6.3,7.1, it is clear that there is an assignment A, that satisfies at least 1 — € of the inequalities.
Soundness: Suppose there is an assignment A, which satisfies % + § fraction of the inequalities, then
for at least % fraction of the tuples T' € T, Verifier III accepts with probability atleast %+ g. Therefore
A is C-close to (-satisfying at least g = do-fraction of the tuples T' € 7’. Using Theorem 6.3, it is
clear, that there exists an assignment A’ which '~ satisfies at least a fraction %2 = g = 4y fraction of
tuples T € 7. Hence by Theorem 4.1, the label cover instance " has an assignment that satisfies at
least a fraction % of its edges.

The number of random bits used by the Verifier I is given by O(R'~7logn). In Verifier II a total
of R"logn + log M + C1log M + log% = O(logn) random bits are needed. Verifier IIT uses at most
(C—1)logn+23" logn;+m = O(logn) random bits. Hence the entire reduction from LABELCOV ER
to HS-MA is a polynomial time reduction. O

By choosing the parameters of the above reduction appropriately, and using almost independent
sets of random variables, the following stronger hardness result can be shown

13



Theorem 8.2. For all ¢ > 0, there exists a constant v > 0, such that the problem HS-MA(1 —

1

1

STogmT 3 T (logln)c) is Quasi-NP-hard.
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A Linear Systems over Rationals

We now prove that solving linear systems remains hard for sparse systems with bounded coefficients,
specifically when the coefficients as well as the number of non-zero coefficients per equation are both
bounded by a constant. If a system has coefficients bounded in absolute value by B and each equation
involves at most b variables, we say that the system is B-bounded with arity b.

Theorem A.l. For any constants €,6 > 0, there exist B,b > 0 such that LINEQ-MA(1 — ¢,0) is
NP-hard even on B-bounded systems of arity b.

We first prove the following Gap-Amplification lemma, that is useful in the course of the proof.

Lemma A.2. If for some 0 < s < ¢ < 1, and some constants Tl > 0, LINEQ-MA(c, s) is NP-hard on
T-bounded systems of arity £, then for any positive integer k and constant € > 0, LINEQ-MA(s* + ¢, ¢¥)
is NP-hard on T (k/e)*-bounded systems of arity (k.

Proof: Let Z = (E,X) be an instance of LINEQ-MA with E = {Ej,...,E,} set of equations over
variables X = {z1,...,z,}. Each equation is of the form E; = 0.
Define an instance ZF = (E*, X) as follows

1. The set of variables is the same, X.

2. For any k-tuple of equations (FE1, ..., Ey) introduce the following block of equations,

E1+y-E2+y2-E3+...+yk_1Ek = 0

for all values of y = 1,2,...,%, where t = %
Clearly, if the original system is T-bounded, then the new system is T'(k/¢)*-bounded. Also, clearly
the number of nonzero coefficients in each of the new equations is bounded by /k.
Completeness: There is an assignment that satisfies ¢ fraction of the equations E, therefore the same
assignment satisfies at least ¢* fraction of the new constraints.

Soundness: Suppose there is an assignment A that satisfies more than s* + ¢ fraction of the equations
E*. We claim that A satisfies at least s fraction of the original equations E.
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Suppose not, let us say they satisfy a fraction s; of the equations for some s; < s. Then s¥ of
the k-tuples have all their equations satisfied. So for s¥ tuples, the block of ¢ equations are satisfied.
For any k-tuple with not all equations satisfied, at most & — 1 of the equations in its block can be
satisfied. Therefore at most s¥ + k—;l fraction of the constraints are satisfied. This is a contradiction
since s¥ +¢ < sF +¢. O

Proof of Theorem A.1: We employ a reduction from the LABELCOV ER problem. Let (U, V, E, ¥, 1I)
be an instance of Label Cover with |X| = R. The LINEQ-MA instance that we construct has variables
u1,...,upR for each vertex u € U U V. The solution that we are targeting to obtain, is an encoding of
the assignment to the label cover instance. So if a vertex u is assigned the label 7 by an assignment A,
then we want

U; = 1
uj = 0 forj#4,0<j5<R.

Towards this, the following equations are introduced:
For each edge e = (u,v) we introduce a block of linear combinations of the following equations.

o for Y ui=1
e fi: Zf;l v, =1
® g;: Zje,]re—l(i) uj =v; forall1 <7 < R.
The set of constraints corresponding to an edge e = (u,v) is given by

Pei: fo+yfi +v2g + ... +yf 20 + yF3u; =0 foralll1 <y <t=10(R+1)

Completeness: Given an assignment A to the Label Cover instance, that satisfies all the edges, the
corresponding integer solution satisfies:

e All equations fi, f2,9;,1 <1 < R for each edge e.
e A fraction (1 — %) of the equations {u; = 0 | i € X} for each edge e.

So in total atleast (1 — 11—2) fraction of the equations are satisfied.

Soundness: Let m = 16R!~7. Suppose there is an assignment that satisfies 1 — % fraction of the
equations, or equivalently which violates at most % of the constraints. For at least half the edges e, at
most % of the equations P, ; are violated. Let us call these edges as good edges.

Let e = (u,v) be a good edge. Observe that for e all the equations fo, f1,91,...,9r are satisfied. If
one of the equations fy, f1,91,---,9gr is not satisfied, then at most R+ 4 of the ¢ equations are satisfied.
Therefore at most a fraction % < 0.5 of the equations in P, ; are satisfied. This is a contradiction,
since e is a good edge. Further, at least 1 — % of equations of the form u; = 0 are satisfied, because
otherwise the total fraction of equations satisfied is less than (1 — £) + %% <1-2.

m
For every vertex u, let Pos(u) denote the set of labels 4 such that u; > 0,

Pos(u) = {ie€X|u; >0}
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For every vertex u with Pos(u) non-empty, assign a label chosen uniformly at random from Pos(u).
Assign arbitrary labels to the remaining vertices. Observe that if e = (u,v) is a good edge, then Pos(u)
and Pos(v) are both non-empty, because the constraints 3, u; =1 and 3, v; = 1 are satisfied. Since
at most £ of the constraints u; = 0 are violated, |[Pos(u)] < R- £ = 2R?. Furthermore, for any
choice of the label [, from Pos(v), there is some label in Pos(u) that maps to [,, because the constraint

. _—1,.,u; = v; i satisfied for edge e. Therefore the probability that the random assignment satisfies
jenst (@) M &

the constraint 7, is satisfied is at least —— > 2. Since at least half the edges are good, this implies
[Pos(w)] = RY 8 8

that there is an assignment that satisfies at least a fraction % . % = % of the edges.

Therefore we have shown that LINEQ-MA(1—%,1— m%_w) is NP-hard on (10(R+1))%*3-bounded
systems with arity 10R(R + 1), for all large R. Now we use the gap amplification Lemma A.2 with
k = O(R'™) to obtain a gap of 1 —¢,d for any small £, on B-bounded systems with arity b where
B, b are constants depending on &, d.
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