On page 6 we want to calculate $\operatorname{Pr}[f(x)=f(y)]$. Knowing that $f(x)=\sum_{A_{i} \in \mathcal{A}} \lambda_{i} f_{i}(x)$, this probability is equal to $\operatorname{Pr}\left[\sum_{A_{i} \in \mathcal{A}} \lambda_{i}\left(f_{i}(x)-f_{i}(y)\right)=0\right]$.

Then I don't understand the line $\operatorname{Pr}[f(x)=f(y)]=\prod_{i=1}^{m}\left(\operatorname{Pr}\left[f_{i}(x)=f_{i}(y) \mid \lambda_{i} \neq 0\right] \operatorname{Pr}\left[\lambda_{i} \neq\right.\right.$ $0]$).

As far as I understand, we have, due to the linearly independance of the f_{i} :
$\operatorname{Pr}[f(x)=f(y)]=\prod_{i=1}^{m} \operatorname{Pr}\left[\lambda_{i}\left(f_{i}(x)-f_{i}(y)\right)=0\right]$
Thus we have
$\operatorname{Pr}[f(x)=f(y)]=\prod_{i=1}^{m}\left(\operatorname{Pr}\left[\lambda_{i}\left(f_{i}(x)-f_{i}(y)\right)=0 \mid \lambda_{i}=0\right] \operatorname{Pr}\left[\lambda_{i}=0\right]+\operatorname{Pr}\left[\lambda_{i}\left(f_{i}(x)-f_{i}(y)\right)=\right.\right.$ $\left.\left.0 \mid \lambda_{i} \neq 0\right] \operatorname{Pr}\left[\lambda_{i} \neq 0\right]\right)$

Which leads to
$\operatorname{Pr}[f(x)=f(y)]=\prod_{i=1}^{m}\left(\operatorname{Pr}\left[\lambda_{i}=0\right]+\operatorname{Pr}\left[f_{i}(x)=f_{i}(y) \mid \lambda_{i} \neq 0\right] \operatorname{Pr}\left[\lambda_{i} \neq 0\right]\right)$
An then, because the λ_{i} were chosen randomly uniformly
$\operatorname{Pr}[f(x)=f(y)]=\prod_{i=1}^{m}\left(\frac{1}{q}+\operatorname{Pr}\left[f_{i}(x)=f_{i}(y)\right] \frac{q-1}{q}\right)$
$\operatorname{Pr}[f(x)=f(y)]=\frac{1}{q}^{m} \prod_{i=1}^{m}\left(1+\operatorname{Pr}\left[f_{i}(x)=f_{i}(y)\right](q-1)\right)$
Which is not exactly the same. And assuming that the line I don't understand is true, then I still don't understand why the probability that $\lambda_{i} \neq 0$ would be equal to $\frac{1}{q}$ and not $\frac{q-1}{q}$

And the same thing about conditional probabilities is done on next page (page 7). The authors ensure that $\operatorname{Pr}\left[f_{i}(x)=f_{i}(y)\right] \leq \operatorname{Pr}\left[f_{i}(x)=f_{i}(y) \mid r, r^{\prime} \notin L(\bmod q)\right] \operatorname{Pr}\left[r, r^{\prime} \notin L(\bmod q)\right]$.

And I'd rather say that it's greater or equal, not less or equal. Because I think that the correct equality is
$\operatorname{Pr}\left[f_{i}(x)=f_{i}(y)\right]=\operatorname{Pr}\left[f_{i}(x)=f_{i}(y) \mid r, r^{\prime} \notin L(\bmod q)\right] \operatorname{Pr}\left[r, r^{\prime} \notin L(\bmod q)\right]+\operatorname{Pr}\left[f_{i}(x)=\right.$ $f_{i}(y) \mid$ rorr $\left.^{\prime} \in L(\bmod q)\right] \operatorname{Pr}\left[\right.$ rorr $\left.^{\prime} \in L(\bmod q)\right]$.

In the proof of the last inequality, I truly don't understand how we can fix both m and q . We have $m \log q=s$, so if I correctly understood, fixing m to $\frac{2 n+\log n-1+\log q}{\log q}$ and fixing q to $\sqrt[3]{n}$ implies that
$2 n+\frac{4}{3} \log n-1=s$ which is not always true.

Also I won't write down all the little typing error but one of them, on page 3 , is quite
important, it's written
Since $\operatorname{Pr}\left[\left|S^{(0)}\right| \neq\left|S^{(1)}\right|\right]$ is very high
instead of
Since $\operatorname{Pr}\left[\left|S^{(0)}\right|=\left|S^{(1)}\right|\right]$ is very high

Finally, the paper implicitly says that the random constraint $f(x)=b$ can be put in CNF, but do we have a polynomial algorithm that does it? It's not clear to me how to make this constraint into a CNF.

Thank you very much for the time you spent reading this and I hope I'll receive an answer that will make me understand better this paper.

