
On page 6 we want to calculate Pr[f(x) = f(y)]. Knowing that f(x) =
∑

Ai∈A

λifi(x), this

probability is equal to Pr[
∑

Ai∈A

λi(fi(x) − fi(y)) = 0].

Then I don’t understand the line Pr[f(x) = f(y)] =

m∏

i=1

(Pr[fi(x) = fi(y)|λi 6= 0]Pr[λi 6=

0]).
As far as I understand, we have, due to the linearly independance of the fi :

Pr[f(x) = f(y)] =
m∏

i=1

Pr[λi(fi(x) − fi(y)) = 0]

Thus we have

Pr[f(x) = f(y)] =

m∏

i=1

(Pr[λi(fi(x) − fi(y)) = 0|λi = 0]Pr[λi = 0] + Pr[λi(fi(x) − fi(y)) =

0|λi 6= 0]Pr[λi 6= 0])
Which leads to

Pr[f(x) = f(y)] =

m∏

i=1

(Pr[λi = 0] + Pr[fi(x) = fi(y)|λi 6= 0]Pr[λi 6= 0])

An then, because the λi were chosen randomly uniformly

Pr[f(x) = f(y)] =

m∏

i=1

(
1

q
+ Pr[fi(x) = fi(y)]

q − 1

q
)

Pr[f(x) = f(y)] =
1

q

m m∏

i=1

(1 + Pr[fi(x) = fi(y)](q − 1))

Which is not exactly the same. And assuming that the line I don’t understand is true,
then I still don’t understand why the probability that λi 6= 0 would be equal to 1

q
and not

q−1
q

And the same thing about conditional probabilities is done on next page (page 7). The
authors ensure that Pr[fi(x) = fi(y)] ≤ Pr[fi(x) = fi(y)|r, r′ /∈ L(modq)]Pr[r, r′ /∈ L(modq)].

And I’d rather say that it’s greater or equal, not less or equal. Because I think that the
correct equality is

Pr[fi(x) = fi(y)] = Pr[fi(x) = fi(y)|r, r′ /∈ L(modq)]Pr[r, r′ /∈ L(modq)] + Pr[fi(x) =
fi(y)|rorr′ ∈ L(modq)]Pr[rorr′ ∈ L(modq)].

In the proof of the last inequality, I truly don’t understand how we can fix both m and q.
We have m log q = s, so if I correctly understood, fixing m to 2n+log n−1+log q

log q
and fixing q to

3
√

n implies that
2n + 4

3 log n − 1 = s which is not always true.

Also I won’t write down all the little typing error but one of them, on page 3, is quite

1

Electronic Colloquium on Computational Complexity, Comment 2 on Report No. 62 (2006)

ISSN 1433-8092

important, it’s written
Since Pr[|S(0)| 6= |S(1)|] is very high
instead of
Since Pr[|S(0)| = |S(1)|] is very high

Finally, the paper implicitly says that the random constraint f(x) = b can be put in CNF,
but do we have a polynomial algorithm that does it ? It’s not clear to me how to make this
constraint into a CNF.

Thank you very much for the time you spent reading this and I hope I’ll receive an answer
that will make me understand better this paper.

2

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

