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Abstract

In this work we show that Unique k-SAT is as hard as k-SAT for every k ∈ N. This
settles a conjecture by Calabro, Impagliazzo, Kabanets and Paturi [4]. To provide an
affirmative answer to this conjecture, we develop a randomness optimal construction
of Isolation Lemma for k-SAT.

1 Introduction

The problem of finding a satisfiable assignment (SAT) for a propositional formula in CNF
(conjunctive normal form) is notably the most important problem in theory of compu-
tation. The decision problem for CNF-SAT was one of the first problem shown to be
NP-complete[5, 10]. This problem is mostly believed to require deterministic algorithm of
super polynomial, or even exponential, time complexity. Best known algorithm for CNF-

SAT runs in time O
(

2n(1− 1
log m )

)

, where m is the number of clauses[15]. A syntactically

restricted version of general CNF-SAT is k-SAT, where each clause of a given CNF con-
tains at most k literals, for some constant k ≥ 3. This restriction seem to be of help, and
existing algorithms have O (2εkn) time complexity for some constant 0 < εk < 1 dependent
on k. Several work exists on faster algorithms for k-SAT (cf. [6], [11], [12], [13], [14], [9],
[7]).

While, NP-complete search problems are likely to be intractable, it is essentially under
the worst-case complexity measures. Not necessarily every instances of k-SAT, for a fixed
k ≥ 3 show worst-case behaviors. This leads to an important natural question about the
hardness of Satisfiability is following: “Is an instance of CNF-SAT hard because it has
smaller or bigger cardinality of solution space?” Intuition seems to provide contradictory
ideas. One might feel that the instances having few satisfiable assignments would be harder.
However, algorithms using local search techniques might do worst if there are many unrelated
solutions that are equally attractive.

Valiant and Vazirani [17] has shown that if uniqueness of solution for problems in NP
helps one to design a polynomial time procedure to recognize them, then NP = RP.
Formally, If (∃Q) [USATQ ∈ P] ⇒ NP = RP, where Q (·) is a unary Boolean predicate.
Using hashing techniques, they give a randomized polynomial-time reduction from Formula
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SAT to the instances of Formula SAT having unique solution. Implying a probabilistic
polynomial time algorithm for Unique Formula SAT is unlikely.

However, we can ask a slightly different question: “which is harder? Unique Formula
SAT or Formula SAT having more than one solution?” In other words, Satisfiability for
formulas with many satisfying assignments and formulas with fewer satisfying assignments,
are they strictly easier from one another? While progress towards this question seems
harder. In their work Calabro, Impagliazzo, Kabanets and Paturi [4] has shown enough
evidence that Unique k-SAT is possibly as hard to solve as general k-SAT. Where Unique
k-SAT is a version of general k-SAT having one or no solutions. For each k ≥ 1, let
sk = inf{δ ≥ 0 : ∃ a O

(

2δn
)

-time randomized algorithm for k-SAT } and, similarly let

σk = inf{δ ≥ 0 : ∃ a O
(

2δn
)

-time randomized algorithm for Unique k-SAT }. Denoting
s∞ = limk→∞ sk and σ∞ = limk→∞ σk, main result of [4] is following:

Theorem 1.1. s∞ = σ∞.

While they were able to show that s∞ = σ∞, they conjecture:

Conjecture 1. ∀k, sk = σk

Main contribution of this work is an affirmative answer to this conjecture.
Before we describe our method, it would be important to understand why method used

by Calabro, Impagliazzo, Kabanets and Paturi in the [4] does not help to answer this
conjecture. Calabro, Impagliazzo, Kabanets and Paturi gave a modified version of so called
Isolation Lemma of Valiant and Vazirani[17] for k-CNFs. We start by describing Isolation
Lemma of Valiant and Vazirani[17], followed by Isolation Lemma for k-CNF in [4].

Lemma 1.1. Isolation Lemma [17, Theorem 4, restated]:There is a randomized poly-
nomialtime algorithm I that, given an n-variable CNF φ, outputs an nO(1)-variable CNF
φ′, such that

1. if φ is unsatisfiable, then so is φ′, and

2. if φ is satisfiable, then, with probability at least 1/4, φ′ has a unique satisfying assign-
ment.

[17] describes a polynomial time randomized reduction, which takes a Boolean formula
φ as input and outputs a Boolean formula φ′ such that with probability at least inverse
polynomial in size of φ, φ′ has unique satisfiable assignment, if and only if input φ is a
satisfiable formula. Output of the reduction is in Unique Formula SAT, where Unique
Formula SAT is the set of all Boolean formulas (not necessarily CNF) having exactly
one satisfiable assignment. Let φ be any CNF in n variables x1, x2, . . . , xn. Let [n] =
{1, 2, . . . , n} be the coordinates of n-dimensional solution space of φ. For any CNF φ in n
variables, we define a witness set of φ

S
def
= {x : (x ∈ {0, 1}n) [x is a satisfiable assignment of φ]}

We will view truth assignments to the variables x1, x2, . . . , xn as n-dimensional {0, 1} vectors
from the vector space F

n
2 , where F2 = GF (2). For u, v ∈ {0, 1}n we denote by u ·v the inner

product over F2 of u and v. Isolation Lemma of [17] is based on two important observations.
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1. If φ is any CNF in n variables x1, x2, . . . , xn, and w1, . . . , wk ∈ {0, 1}n then one can
construct in linear time a formula φ′k whose solution x′ satisfy φ and have x′ · w1 =
x′ · w2 = . . . = x′ · wk = 0, and from φ′k one can construct a formula φk with nO(1)

new variables such that there is a bijection between solutions of φ′k and φk defined by
equality on the x1, x2, . . . , xn values.

2. Let φ be any CNF in n variables x1, x2, . . . , xn, and let S ⊆ {0, 1}n is its solu-
tion space. For w ∈ {0, 1}n chosen uniformly at random from {0, 1}n, let us de-

fine S(0) def
= {x : (x ∈ S) [w · x = 0]} and S(1) def

= {x : (x ∈ S) [w · x = 1]}. Then
Pr
[
∣

∣S(0)
∣

∣ =
∣

∣S(1)
∣

∣

]

is very high.

These two observation leads to a RP reduction of Formula SAT to Unique Formula SAT.
On input φ randomly choose k ∈ [n] and choose k vectors w1, . . . , wk ∈ {0, 1}n and intersect

the solution space S of φ. Define formula φ′k
def
= φ∧

(

xi1 ⊕ . . .⊕ xij
⊕ 1
)

, where xik
are the

variables that have value 1 in wi. If x′ satisfies φ′k, and wi · x′ = 0, then x′ satisfies φ. Now
define formula φk = φ ∧ (y1 ⇔ xi1 ⊕ xi2 ) ∧ (y2 ⇔ y1 ⊕ xi3 ) ∧ . . . ∧

(

yj−1 ⇔ yj−2 ⊕ xij

)

∧
(yj−1 ⊕ 1). Clearly number of new variables are nO(1), and bijection in solution space of φk

and φ′k is straightforward. Now consider following sets: Hi = {v : v · wi = 0}, S ⊆ {0, 1}n,
the solution space of φ, and Si = S ∩H1 ∩ . . . ∩Hi. Since Pr

[
∣

∣S(0)
∣

∣ =
∣

∣S(1)
∣

∣

]

is very high
it follows that φi has roughly 2−i |S| solutions, as each Hi roughly halves the solution space
S.

However, their proof does not imply Unique k-SAT is the worst case of k-SAT, or Unique
CNF-SAT is the worst case of CNF-SAT. As shown in [4], by reduction of [17], resulting
formula ψ will not be a k-CNF even if the input formula φ is a k-CNF. After applying
standard algorithm for converting any Boolean formula into k-CNF we will obtain a formula
with Ω

(

n2
)

new variables. Thus using their reduction we will convert a satisfiable k-CNF

formula on n-variables to a uniquely satisfiable k-CNF on Ω
(

n2
)

-variables. If there is an

algorithm for Unique k-SAT on n variables with running time O
(

2nO(1)
)

, then reduction

in [17] can be used to create an algorithm for general k-SAT with running time O
(

2nO(1)
)

.

However, this reduction will not allow us the answer the kind of question we asked above, if
working hypothesis is that Unique k-SAT requires time 2Ω(n). Because, by their reduction

a O
(

2
√

n
)

algorithm for Unique k-SAT on n variables implies a O
(

2Ω(n)
)

algorithm for

k-SAT on n variables.

Lemma 1.2. Isolation Lemma for k-CNFs [4]: For every k ∈ N, ε ∈
(

0, 1
4

)

, there is a
randomized polynomialtime algorithm Ik,ε that, given an n-variable k-CNF φ, outputs an
n-variable k′-CNF φ′ for k′ = max

{⌈

1
ε ln 2

ε

⌉

, k
}

, such that

1. if φ is unsatisfiable, then so is φ′, and

2. if φ is satisfiable, then, with probability at least
(

32n23nH2(2ε)
)−1

, φ′ has a unique
satisfying assignment.

where, H2(x) = −x log2 x− (1 − x) log2 (1 − x), is the binary entropy function.

Isolation Lemma of [4] results in a randomized reduction from k-SAT on n variables to
Unique k-SAT on n variables with expected time O (2εkn), where εk → 0, as k → ∞. This
implies that if general k-SAT requires time 2δn for some k and δ > 0, then for any δ′ < δ,
Unique k′-SAT requires time 2δ′n for sufficiently large k′.
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Isolation Lemma of [4] takes a family of size Ω (2s) to isolate an element of an arbitrary
set of size 2s, by intersecting with randomly chosen sets from the family. To show that
∀k, sk = σk, we need a stronger form of reduction which does not expand the number of
variable much, and has success probability inverse polynomial in input size. In other words,
one need to construct polynomial size families, i.e. Ω

(

sO(1)
)

size families, to isolate an
element of an arbitrary set of size 2s.

1.1 Results

For each k ≥ 1, let sk
def
= inf{δ ≥ 0 : ∃ a O

(

2δn
)

-time randomized algorithm for k-SAT

} and, similarly let σk
def
= inf{δ ≥ 0 : ∃ a O

(

2δn
)

-time randomized algorithm for Unique
k-SAT }. We can state our main result as follows:

Theorem 1.2. ∀k, sk = σk

Remainder of this paper : In Section-2 we state and prove our main technical result, an
Isolation Lemma for k-CNFs. Section-3 contains the proof of main result (Theorem-1.2).

2 Isolation Lemma for k-CNFs

Objective of this section will be to prove the following Lemma:

Lemma 2.1. (Isolation Lemma for k-CNFs). Let k, n ∈ N, and q be a prime. For
ε ∈

(

0, 1
4

)

, there is a randomized polynomial time algorithm Ik,ε that, given an n-variable

k-CNF φ, outputs an n-variable k′-CNF ψ′ for k′ = max
{⌈

ln 2
ε

⌉

, k
}

, such that

1. if φ is unsatisfiable, then so is ψ′, and

2. if φ is satisfiable, then, with probability at least 1
2qn2 (ε)

3n
√

ε
, ψ′ has a unique satisfying

assignment.

Proof. Proof will have two steps. Let φ be any CNF in n variables x1, x2, . . . , xn. Let
[n] = {1, 2, . . . , n} be the coordinates of n-dimensional solution space of φ. For any CNF φ
in n variables, we define a witness set of φ

S
def
= {x : (x ∈ {0, 1}n) [x is a satisfiable assignment of φ]}

In the first step we will intersect S, by a family of sets A = {A1, . . . , Am} for which we
will provide a construction of the family A, as required. We will define constraints on the
intersection that S will have with A. Let C denote such constraint, if ψ = φ ∧ (C = true)
is a formula such that x ∈ S is a common solution for both φ and ψ, then in first step we
will show that all such solutions will be concentrated in a small solution space. In second
step we will show how to isolate a single assignment from this space. With probability at
least 1/n, we can guess an integer s ∈ [log |S|, log |S| + 1], for rest of our argument, let us
assume that our guess is correct, and |S| = 2s.
STEP-I: CONCENTRATION
Let [n] = {1, 2, . . . , n}, q be a prime, F = Z/qZ be a finite field, and let L ⊆ {0, 1, . . . , q − 1}
be a set of t integers, also set ε = ln 2/

(

q2 − 1
)

. For integers r and q we say r ∈ L (mod q)
if r ≡ l (mod q) for some l ∈ L, we say r /∈ L (mod q) otherwise. For m to be determined
later, let A = {A1, A2, . . . , Am} be a family of m sets such that following holds:
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1. (∀i : 1 ≤ i ≤ m) [Ai ⊆ [n]].

2. (∀i : 1 ≤ i ≤ m) [|Ai| /∈ L (mod q)].

3. (∀i, j : 1 ≤ i 6= j ≤ m) [|Ai ∩Aj | ∈ L (mod q)].

Such set system with modular intersection has been considered by Frankl and Wilson in
[8], and Alon in [1], towards explicit construction of Ramsey Graphs. Our proof is based
on techniques used in [2], and construction is essentially the construction of [8]. With each
vector x ∈ {0, 1}n we associate its characteristic vector x = (x1, x2, . . . , xn) ∈ {0, 1}n ⊆ F

n.
For A = {A1, A2, . . . , Am}, let ai = (ai1, ai2, . . . , ain) ∈ {0, 1}n ⊆ F

n be the characteristic
vector of Ai. Where, aij = 1 if j ∈ Ai and aij = 0 otherwise. For x, y ∈ F

n, let x · y =
∑n

i=1 xi · yi, denote their standard inner product over F
n. For each Ai ∈ A define the

following polynomial:

fi (x)
def
=
∏

l∈L

(ai · x− l)

A polynomial is multilinear if it has degree in each variable at most 1. A monic multilinear
polynomial is the product of distinct variables.

Proposition 2.1. Let F
n be a field and Ω = {0, 1}n ⊆ F

n. If g is a polynomial of degree
≤ t in n variables over F

n then there exists a multilinear polynomial ĝ of degree ≤ t in the
same variables such that ∀x ∈ Ω, g (x) = ĝ (x).

Proof. Since in the domain Ω, x2
i = xi for each variable, every polynomial is multilinear:

expand the polynomial as sum of monomials and for each monomial reduce the exponent of
each variable occurring in monomial to 1.

Claim 2.1. Polynomials f1, f2, . . . , fm, as functions from Ω = {0, 1}n to F, are linearly
independent.

Proof. To observe this assume contrary, and let
∑m

i=1 λifi (x) = 0 be a nontrivial linear
dependence relation, where λi ∈ F. Let i0 be a smallest subscript such that λi0 6= 0. We
substitute ai0 for x in the linear relation. Observe that all terms vanishes since ∀i, j : i 6=
j, |Ai ∩Aj | ∈ L (mod q), except fi0 (ai0) since |Ai| /∈ L (mod q) with consequence λi0 = 0,
a contradiction.

Claim 2.2. Polynomials f1, f2, . . . , fm are basis of a space of cardinality
∑t

i=0

(

n
i

)

. In other
words

|A| ≤
t
∑

i=0

(

n

i

)

Proof. By proposition-2.1, each polynomial fi remains valid after replacing fi by corre-
sponding multilinear polynomial f̂i. Each f̂i is of degree deg f̂i ≤ |L| = t. That is, each f̂i

is a linear combination of monic multilinear polynomials with deg f̂i ≤ t, and they form a
basis of a space of cardinality at most ≤∑t

i=0

(

n
i

)

.

We will first show how to construct such families following ideas of [8]. Let n > 2q2.
Consider set of all subsets of [n] of cardinality q2 − 1. We will consider only those subsets
for which following hold:

|A ∩B| ≡/ − 1 (mod q), and A,B ⊆ [n] , and |A| = |B| = q2 − 1
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Imagine a graph G (n, q), on these subsets with vertex set as set of all subsets of [n] of
cardinality q2−1, and edge between any two subset is included iff for i 6= j, |Ai ∩Aj | ≡/ −1
(mod q), holds.

Claim 2.3. A clique on graph G (n, q) satisfies the required properties of the family of sets
A = {A1, . . . , Ar}, with L = {0, 1, . . . , q − 2} and |L| = q − 1.

Proof. If |Ai ∩Aj | ≡/ − 1 (mod q) for all i 6= j, then |Ai ∩Aj | ∈ L (mod q), when L =
{0, 1, . . . , q − 2}. Also, |Ai| /∈ L (mod q), ∀i since ∀i, |Ai| = q2 − 1 /∈ L (mod q).

Claim 2.4. Let q be a prime, and n > 2q2. Graph G (n, q) has
(

n
q2−1

)

vertices and no clique

of size more than 2
(

n
q−1

)

.

Proof. By claim-2.2

|A| ≤
t
∑

i=0

(

n

i

)

Now note that |L| = t = q − 1 ≤ n/4, as 2q2 < n. With t ≤ n/4, we have that

|A| ≤
q−1
∑

i=0

(

n

i

)

≤
(

n

q − 1

)

[

1 +

q−2
∑

i=0

(

n
i

)

(

n
q−1

)

]

≤ 2

(

n

q − 1

)

Claim-2.3, and Claim-2.4 together shows the existence of the family of sets with desired

properties. By [8], with n = q3, we can have a graph G (n, q) on qO(q2) vertices having
clique size no more than qO(q), choosing n = q3. We note that such families are explicitly
constructable, i.e. there exists an algorithm that given m, i, outputs Ai ∈ A in time T =
poly (logm, i), see [3] for a discussion. Note that for our randomized reduction we will
require any m such subsets of A such that they are linearly independent, i.e. |A ∩B| ≡/ −1
(mod q).

Now we construct following system of equations:

f (x)
def
=

∑

Ai∈A
λi

∏

l∈L

(ai · x− l) = b. where ∀i, λi and b ∈ F (1)

by choosing b ∈ F and each λi ∈ F independently and uniformly at random. We shall
intersect the solution set S of input formula φ with f (x) = b. In other words we will extract
the vectors in S which are also solution of f (x) = b, and we will show that all surviving
assignments are concentrated in a small space. On this direction, first we shall bound the
probability that two vectors x, y ∈ {0, 1}n that are reasonably far from each other will be
separated by this constraint. Let dist (x, y), be the Hamming distance between x, y, i.e.
number of coordinates in which x and y differ.

Claim 2.5. For any two vectors x, y ∈ {0, 1}n with dist (x, y) ≥ r = dεne we have

Pr [f (x) = f (y)] ≤
(

3

4q

)m
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Proof. Let us start by considering the event fi (x) 6= fi (y). For any two vectors x, y ∈ {0, 1}n

with dist (x, y) ≥ r and any i ∈ {1, 2, . . . ,m}, we have

Pr [fi (x) 6= fi (y)]

≥ Pr
[

fi (x) 6= fi (y) | (x− y)Ai
6= 0
]

Pr
[

(x− y)Ai
6= 0
]

Where, (x− y)Ai
is the vector restricted to the coordinates from Ai. If (x− y)Ai

6= 0, and
define ci,x = |x ∩Ai| for any vector x ∈ {0, 1}n. We have either ci,x ∈ L (mod q) or ci,x /∈ L
(mod q). When ci,x ∈ L (mod q) we have fi (x) = 0, and when ci,x /∈ L (mod q) we have
fi (x) 6= 0. Consider fi (x) 6= 0, then the only value taken by fi (x) is q − 1, thus:

Pr
[

fi (x) 6= fi (y) | (x− y)Ai
6= 0
]

= 1/2

and we have,

Pr [fi (x) 6= fi (y)]

≥ 1

2
· Pr

[

(x− y)Ai
6= 0
]

≥ 1

2
· Pr

[

∃j ∈ Ai : (x− y)j 6= 0
]

≥ 1

2
·
(

1 −
(

n−r
|Ai|
)

(

n
|Ai|
)

)

≥ 1

2
·
(

1 − (1 − ε)
|Ai|
)

With |Ai| = q2 − 1 = ln 2
ε , we have,

Pr [fi (x) 6= fi (y)] ≥ 1

2

(

1 − (1 − ε)
ln 2

ε

)

≥ 1

2

(

1 − e−ε( ln 2
ε )
)

≥ 1

4

Hence,

Pr [f (x) = f (y)]

= Pr [f (x) = f (y) | (∀i : 0 ≤ i ≤ m) [λi 6= 0]]

m
∏

i=0

Pr [λi 6= 0]

=

(

1

q

)m m
∏

i=0

(1 − Pr [fi (x) 6= fi (y)])

≤
(

1

q

)m(

1 − 1

4

)m

≤
(

3

4q

)m

as required.

Now we define the set of semi-isolated solutions as

si = {x ∈ S : (∀y ∈ S) [dist (x, y) ≥ r → f (x) 6= f (y)]} (2)

For each x ∈ S, we have

Pr [x ∈ si] = 1 − Pr [∃y ∈ S (dist (x, y) ≥ r ∧ f (x) = f (y))]

≥ 1 −
∑

y∈S,dist(x,y)≥r

Pr [f (x) = f (y)]

≥ 1 − |S| 2−m log 4q/3
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Where, the last inequality follows from Claim-2.5. Hence, selecting m = s/ log q we have:

Pr [x ∈ si] ≥ 1 − |S| 2−m log 4q/3 ≥ 1/2 (3)

Alternatively,
∑

x∈S

Prλi,b [x ∈ si ∧ f (x) = b]

=
∑

x∈S

Pr [x ∈ si]Prλi,b [f (x) = b|x ∈ si] ≥ |S|
2qm+1

≥ 1

2q
2s−m log q ≥ 1

2q
(4)

Where, last inequality follows from equation-3, with choice ofm, and by the fact that ∀i, λi, b
was chosen uniformly and independently at random.

On the other hand given f and b, number of semi-isolated solutions x ∈ S such that
f (x) = b can be at most 2nH2(ε). Since every pair of such solutions must be Hamming
distance less than r apart. Where H2(x) = −x log2 x − (1 − x) log2 (1 − x) is the binary
entropy function. Implying:

∑

x∈S

Pr [x ∈ si ∧ f (x) = b] ≤ 2nH2(ε)Pr [(∃x ∈ S) [x ∈ si ∧ f (x) = b]] (5)

Combining inequality-4 and inequality-5, we obtain:

Pr [(∃x ∈ S) [x ∈ si ∧ f (x) = b]] ≥ 1

2q
2−nH2(ε) (6)

This completes STEP-I of the lemma.
STEP-II: ISOLATION
This step follow the steps of [4]. Let φ be any CNF in n variables x1, x2, . . . , xn. Suppose
that formula ψ = φ ∧ (f (x) = b) is satisfiable, and solutions are in a Hamming ball of
radius less than r, and diameter d ≤ 2 bεnc. Where, f (x) = b is a random constraint as
defined in equation-1. Consider assignments u and v to disjoint set of variables of φ. Let
uv denote union of variables in u and v. Let uv and uv′ denote two distinct solutions of
φ ∧ (f (x) = b) that are farthest apart. Let C be the set of variables on which uv and uv′

differ. Surely, |C| ≤ d. Fix D ⊇ C such that |D| = d. Let βD be an assignment to the
variables in D such that ∀i ∈ C, xi = vi and ∀i ∈ D \ C, xi = ui. Our reduction algorithm
chooses a random set D′ with |D′| = d, and a random assignment αD′ to the variables in
D′. Let ψ′ = φ ∧ (f (x) = b) ∧ (xD′ = αD′). Now observe that by the arguments above, if
D′ = D and αD′ = βD, then uv is the unique solution to ψ′, as any other solution wv to ψ′

would also be a solution to ψ = φ ∧ (f (x) = b), but dist (wv, uv′) > dist (uv, uv′). Finally,
probability of guessing D and βD is at least:

2−d

(

n
d

) ≥ 2−n(2ε+H2(2ε)) (7)

Combining equation-7 with Step-I (equation-6), and noting that with probability at least
1/n we can guess an integer s ∈ [log |S|, log |S| + 1], for ψ′ = φ ∧ (f (x) = b) ∧ (xD′ = αD′)
we have:

Pr [ψ′ has unique solution]

≥ 1

2qmn
2−n(H2(ε)+2ε+H2(2ε))

≥ 1

2qn2
2−n(H2(ε)+2ε+H2(2ε))
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Now observe that ε = O
(

1/q2
)

, thus with large enough q, we also observe that largest term
of H2(x) is −x log2 x, with this we modify the above inequality to obtain:

Pr [ψ′ has unique solution]

≥ 1

2qn2
2−n(−ε log ε−2ε log 2ε+2ε)

≥ 1

2qn2
23n

√
ε log ε

≥ 1

2qn2
(ε)

3n
√

ε

With this we conclude the proof of lemma.

3 Application of Isolation Lemma

In this section we prove the Main Theorem (Theorem-1.2).

Lemma 3.1. sk ≤ σk + O
(

3
√
ε log 1

ε

)

.

Proof. Let ε = ln 2/
(

q2 − 1
)

. For every γ > 0 and every k, we have a randomized al-

gorithm Uk,γ for Unique k-SAT that runs in time O
(

2(σk+γ)n
)

. Now given any k-CNF
φ we apply Isolation Lemma - 2.1 to obtain a ψ′ using our randomized polynomial time

reduction algorithm Ik,ε with success probability p ≥ 1
2qn2 (ε)

3n
√

ε
, that if φ is satisfiable,

then, with probability at least p, ψ′ has a unique satisfying assignment. Running Ik,ε,
O
(

p−1
)

times with same input φ, and then running algorithm Uk,γ on the obtained for-
mula ψ′ on each run, we obtain a randomized algorithm for k-SAT that has running time

O
(

(1/ε)
3n

√
ε · 2(σk+γ)n

)

≤ O
(

2(σk+γ+O(3
√

ε log 1/ε))n
)

. As γ → 0, lemma follows.

Observe that our Main Theorem-1.2, ∀k ∈ N, sk = σk, follows directly from the proof of
the Lemma-3.1, by taking sufficiently large n and q, as 3

√
ε log 1

ε → 0 when n→ ∞.
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