Unique k-SAT is as Hard as k-SAT

Subhas Kumar Ghosh
Honeywell Technology Solutions Laboratory
151/1, Doraisanipalya, Bannerghatta Road,
Bangalore, India, 560076
Email:subhas.kumar@honeywell.com
June 29, 2006

Abstract
In this work we show that Unique k-SAT is as hard as k-SAT for every $k \in \mathbb{N}$. This settles a conjecture by Calabro, Impagliazzo, Kabanets and Paturi [4]. To provide an affirmative answer to this conjecture, we develop a randomness optimal construction of Isolation Lemma for k-SAT.

1 Introduction

The problem of finding a satisfiable assignment (SAT) for a propositional formula in CNF (conjunctive normal form) is notably the most important problem in theory of computation. The decision problem for CNF-SAT was one of the first problem shown to be NP-complete[5, 10]. This problem is mostly believed to require deterministic algorithm of super polynomial, or even exponential, time complexity. Best known algorithm for CNF-SAT runs in time $O \left(2^n \cdot \frac{1}{\log m} \right)$, where m is the number of clauses[15]. A syntactically restricted version of general CNF-SAT is k-SAT, where each clause of a given CNF contains at most k literals, for some constant $k \geq 3$. This restriction seem to be of help, and existing algorithms have $O \left(2^{n^k} \right)$ time complexity for some constant $0 < \epsilon_k < 1$ dependent on k. Several work exists on faster algorithms for k-SAT (cf. [6], [11], [12], [13], [14], [9], [7]).

While, NP-complete search problems are likely to be intractable, it is essentially under the worst-case complexity measures. Not necessarily every instances of k-SAT, for a fixed $k \geq 3$ show worst-case behaviors. This leads to an important natural question about the hardness of Satisfiability is following: “Is an instance of CNF-SAT hard because it has smaller or bigger cardinality of solution space?” Intuition seems to provide contradictory ideas. One might feel that the instances having few satisfiable assignments would be harder. However, algorithms using local search techniques might do worst if there are many unrelated solutions that are equally attractive.

Valiant and Vazirani [17] has shown that if uniqueness of solution for problems in NP helps one to design a polynomial time procedure to recognize them, then NP = RP. Formally, If $(\exists Q \\exists \mathbf{USAT}_Q \in \mathbf{P}) \Rightarrow \mathbf{NP} = \mathbf{RP}$, where $Q(\cdot)$ is a unary Boolean predicate. Using hashing techniques, they give a randomized polynomial-time reduction from Formula
SAT to the instances of Formula SAT having unique solution. Implied a probabilistic polynomial time algorithm for Unique Formula SAT is unlikely.

However, we can ask a slightly different question: “which is harder? Unique Formula SAT or Formula SAT having more than one solution?” In other words, Satisfiability for formulas with many satisfying assignments and formulas with fewer satisfying assignments, are they strictly easier from one another? While progress towards this question seems harder. In their work Calabro, Impagliazzo, Kabanets and Paturi [4] has shown enough evidence that Unique k-SAT is possibly as hard to solve as general k-SAT. Where Unique k-SAT is a version of general k-SAT having one or no solutions. For each $k \geq 1$, let $s_k = \inf \{ \delta \geq 0 : \exists \ O (2^{\delta n})$-time randomized algorithm for k-SAT $\}$ and, similarly let $\sigma_k = \inf \{ \delta \geq 0 : \exists \ O (2^{\delta n})$-time randomized algorithm for Unique k-SAT $\}$. Denoting $s_\infty = \lim_{k \to \infty} s_k$ and $\sigma_\infty = \lim_{k \to \infty} \sigma_k$, main result of [4] is following:

Theorem 1.1. $s_\infty = \sigma_\infty$.

While they were able to show that $s_\infty = \sigma_\infty$, they conjecture:

Conjecture 1. $\forall k, s_k = \sigma_k$

Main contribution of this work is an affirmative answer to this conjecture.

Before we describe our method, it would be important to understand why method used by Calabro, Impagliazzo, Kabanets and Paturi in the [4] does not help to answer this conjecture. Calabro, Impagliazzo, Kabanets and Paturi gave a modified version of so called Isolation Lemma of Valiant and Vazirani[17] for k-CNF. We start by describing Isolation Lemma of Valiant and Vazirani[17], followed by Isolation Lemma for k-CNF in [4].

Lemma 1.1. Isolation Lemma [17, Theorem 4, restated]: There is a randomized polynomial time algorithm I that, given an n-variable CNF ϕ, outputs an $n^{O(1)}$-variable CNF ϕ', such that

1. if ϕ is unsatisfiable, then so is ϕ', and
2. if ϕ is satisfiable, then, with probability at least $1/4$, ϕ' has a unique satisfying assignment.

[17] describes a polynomial time randomized reduction, which takes a Boolean formula ϕ as input and outputs a Boolean formula ϕ' such that with probability at least inverse polynomial in size of ϕ, ϕ' has unique satisfiable assignment, and only if input ϕ is a satisfiable formula. Output of the reduction is in Unique Formula SAT, where Unique Formula SAT is the set of all Boolean formulas (not necessarily CNF) having exactly one satisfiable assignment. Let ϕ be any CNF in n variables x_1, x_2, \ldots, x_n. Let $[n] = \{1, 2, \ldots, n\}$ be the coordinates of n-dimensional solution space of ϕ. For any CNF ϕ in n variables, we define a witness set of ϕ

$$S \overset{\text{def}}{=} \{ x : (x \in \{0, 1\}^n) \land \{ x \text{ is a satisfiable assignment of } \phi \} \}$$

We will view truth assignments to the variables x_1, x_2, \ldots, x_n as n-dimensional $\{0, 1\}$ vectors from the vector space F_2^n, where $F_2 = GF(2)$. For $u, v \in \{0, 1\}^n$ we denote by $u \cdot v$ the inner product over F_2 of u and v. Isolation Lemma of [17] is based on two important observations.
1. If ϕ is any CNF in n variables x_1, x_2, \ldots, x_n, and $w_1, \ldots, w_k \in \{0,1\}^n$ then one can construct in linear time a formula ϕ'_k whose solution x' satisfy ϕ and have $x' \cdot w_1 = x' \cdot w_2 = \ldots = x' \cdot w_k = 0$, and from ϕ'_k one can construct a formula ϕ_k with $n^{O(1)}$ new variables such that there is a bijection between solutions of ϕ'_k and ϕ_k defined by equality on the x_1, x_2, \ldots, x_n values.

2. Let ϕ be any CNF in n variables x_1, x_2, \ldots, x_n, and let $S \subseteq \{0,1\}^n$ is its solution space. For $w \in \{0,1\}^n$ chosen uniformly at random from $\{0,1\}^n$, let us define $S^{(0)} \triangleq \{ x : (x \in S) \land (w \cdot x = 0) \}$ and $S^{(1)} \triangleq \{ x : (x \in S) \land (w \cdot x = 1) \}$. Then $\Pr[|S^{(0)}| = |S^{(1)}|]$ is very high.

These two observation leads to a RP reduction of Formula SAT to Unique Formula SAT. On input ϕ randomly choose $k \in [n]$ and choose k vectors $w_1, \ldots, w_k \in \{0,1\}^n$ and intersect the solution space S of ϕ. Define formula $\phi'_k \triangleq \phi \land (x_{i_1} \oplus \ldots \oplus x_{i_k} \oplus 1)$, where x_{i_k} are the variables that have value 1 in w_i. If x' satisfies ϕ'_k, and $w_1 \cdot x' = 0$, then x' satisfies ϕ. Now define formula $\phi_k = \phi \land (y_1 \oplus x_{i_1} \oplus x_{i_1}) \land (y_2 \oplus y_1 \oplus x_{i_2}) \land \ldots \land (y_{j-1} \oplus y_{j-2} \oplus x_{i_j}) \land (y_{j-1} \oplus 1)$. Clearly number of new variables are $n^{O(1)}$, and bijection in solution space of ϕ_k and ϕ'_k is straightforward. Now consider following sets: $H_i = \{ x : v \cdot w_i = 0 \}$, $S \subseteq \{0,1\}^n$, the solution space of ϕ, and $S_i = S \cap H_1 \cap \ldots \cap H_i$. Since $\Pr[|S^{(0)}| = |S^{(1)}|]$ is very high it follows that ϕ_i has roughly $2^{-1} |S|$ solutions, as each H_i roughly halves the solution space S.

However, their proof does not imply Unique k-SAT is the worst case of k-SAT, or Unique CNF-SAT is the worst case of CNF-SAT. As shown in [4], by reduction of [17], resulting formula ψ will not be a k-CNF even if the input formula ϕ is a k-CNF. After applying standard algorithm for converting any Boolean formula into k-CNF we will obtain a formula with $\Omega(n^2)$ new variables. Thus using their reduction we will convert a satisfiable k-CNF formula on n-variables to a uniquely satisfiable k-CNF on $\Omega(n^2)$-variables. If there is an algorithm for Unique k-SAT on n variables with running time $O \left(2^{\sqrt{\frac{n}{2}}} \right)$, then reduction in [17] can be used to create an algorithm for general k-SAT with running time $O \left(2^{O(n^{1/2})} \right)$. However, this reduction will not allow us the answer the kind of question we asked above, if working hypothesis is that Unique k-SAT requires time $2^{\Omega(n)}$. Because, by their reduction a $O \left(2^{\sqrt{n}} \right)$ algorithm for Unique k-SAT on n variables implies a $O \left(2^{O(n^{1/2})} \right)$ algorithm for k-SAT on n variables.

Lemma 1.2. Isolation Lemma for k-CNFs [4]: For every $k \in \mathbb{N}, \epsilon \in (0, \frac{1}{4})$, there is a randomized polynomialtime algorithm $I_{k, \epsilon}$, that, given an n-variable k-CNF ϕ, outputs an n-variable k'-CNF ϕ' for $k' = \max \{ \left\lfloor \frac{1}{\epsilon} \log \frac{1}{\epsilon} \right\rfloor, k \}$, such that

1. if ϕ is unsatisfiable, then so is ϕ', and

2. if ϕ is satisfiable, then, with probability at least $(32n^{2^{3nH_2(2\epsilon)}})^{-1}$, ϕ' has a unique satisfying assignment.

where, $H_2(x) = -x \log_2 x - (1-x) \log_2 (1-x)$, is the binary entropy function.

Isolation Lemma of [4] results in a randomized reduction from k-SAT on n variables to Unique k-SAT on n variables with expected time $O \left(2^{\epsilon k n} \right)$, where $\epsilon k \to 0$, as $k \to \infty$. This implies that if general k-SAT requires time $2^{\delta n}$ for some k and $\delta > 0$, then for any $\delta' < \delta$, Unique k'-SAT requires time $2^{\delta' n}$ for sufficiently large k'.
Isolation Lemma of [4] takes a family of size $\Omega(2^n)$ to isolate an element of an arbitrary set of size 2^n, by intersecting with randomly chosen sets from the family. To show that $\forall k, s_k = \sigma_k$, we need a stronger form of reduction which does not expand the number of variable much, and has success probability inverse polynomial in input size. In other words, one need to construct polynomial size families, i.e. $\Omega(s^{O(1)})$ size families, to isolate an element of an arbitrary set of size 2^n.

1.1 Results

For each $k \geq 1$, let $s_k \equiv \inf \{ \delta \geq 0 : \exists a \mathcal{O}(2^{kn})$-time randomized algorithm for k-SAT $\}$ and, similarly let $\sigma_k \equiv \inf \{ \delta \geq 0 : \exists a \mathcal{O}(2^{kn})$-time randomized algorithm for Unique k-SAT $\}$. We can state our main result as follows:

Theorem 1.2. $\forall k, s_k = \sigma_k$

Remainder of this paper: In Section-2 we state and prove our main technical result, an Isolation Lemma for k-CNFs. Section-3 contains the proof of main result (Theorem-1.2).

2 Isolation Lemma for k-CNFs

Objective of this section will be to prove the following Lemma:

Lemma 2.1. (Isolation Lemma for k-CNFs). Let $k, n \in \mathbb{N}$, and q be a prime. For $\epsilon \in (0, \frac{1}{4})$, there is a randomized polynomial time algorithm $I_{k,q}$, that, given an n-variable k-CNF ϕ, outputs an n-variable k'-CNF ψ' for $k' = \max \{ \left\lceil \frac{\log 2}{q} \right\rceil, k \}$, such that

1. if ϕ is unsatisfiable, then so is ψ', and
2. if ϕ is satisfiable, then, with probability at least $\frac{1}{2^{qn^2}} (\epsilon)^{3n^2}, \psi'$ has a unique satisfying assignment.

Proof. Proof will have two steps. Let ϕ be any CNF in n variables x_1, x_2, \ldots, x_n. Let $[n] = \{1, 2, \ldots, n\}$ be the coordinates of n-dimensional solution space of ϕ. For any $\text{CNF} \phi$ in n variables, we define a witness set of ϕ

$$S \overset{\text{def}}{=} \{ x : (x \in \{0, 1\}^n) [x \text{ is a satisfiable assignment of } \phi] \}$$

In the first step we will intersect S, by a family of sets $\mathcal{A} = \{A_1, \ldots, A_m\}$ for which we will provide a construction of the family \mathcal{A}, as required. We will define constraints on the intersection that S will have with \mathcal{A}. Let C denote such constraint, if $\psi = \phi \land (C = \text{true})$ is a formula such that $x \in S$ is a common solution for both ϕ and ψ, then in first step we will show that all such solutions will be concentrated in a small solution space. In second step we will show how to isolate a single assignment from this space. With probability at least $\frac{1}{n}$, we can guess an integer $s \in \left[\log |S|, \log |S| + 1 \right]$, for rest of our argument, let us assume that our guess is correct, and $|S| = 2^n$.

STEP-I: CONCENTRATION

Let $[n] = \{1, 2, \ldots, n\}$, q be a prime, $\mathbb{F} = \mathbb{Z}/q\mathbb{Z}$ be a finite field, and let $L \subseteq \{0, 1, \ldots, q - 1\}$ be a set of t integers, also set $\epsilon = \ln 2/ (q^2 - 1)$. For integers r and q we say $r \in L \pmod{q}$ if $r \equiv l \pmod{q}$ for some $l \in L$, we say $r \not\in L \pmod{q}$ otherwise. For m to be determined later, let $\mathcal{A} = \{A_1, A_2, \ldots, A_m\}$ be a family of m sets such that following holds:
1. \((\forall i : 1 \leq i \leq m) [A_i \subseteq [n]]\).
2. \((\forall i : 1 \leq i \leq m) [|A_i| \notin L \text{ (mod q)}]\).
3. \((\forall i, j : 1 \leq i \neq j \leq m) [|A_i \cap A_j| \in L \text{ (mod q)}]\).

Such set system with modular intersection has been considered by Frankl and Wilson in [8], and Alon in [1], towards explicit construction of Ramsey Graphs. Our proof is based on techniques used in [2], and construction is essentially the construction of [8]. With each vector \(x \in \{0,1\}^n\) we associate its characteristic vector \(x = (x_1, x_2, \ldots, x_n) \in \{0,1\}^n \subseteq \mathbb{F}^n\). For \(A = \{A_1, A_2, \ldots, A_m\}\), let \(a_i = (a_{i1}, a_{i2}, \ldots, a_{in}) \in \{0,1\}^n \subseteq \mathbb{F}^n\) be the characteristic vector of \(A_i\). Where, \(a_{ij} = 1\) if \(j \in A_i\) and \(a_{ij} = 0\) otherwise. For \(x, y \in \mathbb{F}^n\), let \(x \cdot y = \sum_{i=1}^n x_i \cdot y_i\), denote their standard inner product over \(\mathbb{F}^n\). For each \(A_i \in A\) define the following polynomial:

\[
 f_i(x) \overset{def}{=} \prod_{l \in L} (a_i \cdot x - l)
\]

A polynomial is multilinear if it has degree in each variable at most 1. A monic multilinear polynomial is the product of distinct variables.

Proposition 2.1. Let \(\mathbb{F}^n\) be a field and \(\Omega = \{0,1\}^n \subseteq \mathbb{F}^n\). If \(g\) is a polynomial of degree \(\leq t\) in \(n\) variables over \(\mathbb{F}^n\) then there exists a multilinear polynomial \(\hat{g}\) of degree \(\leq t\) in the same variables such that \(\forall x \in \Omega, g(x) = \hat{g}(x)\).

Proof. Since in the domain \(\Omega, x_i^2 = x_i\) for each variable, every polynomial is multilinear: expand the polynomial as sum of monomials and for each monomial reduce the exponent of each variable occurring in monomial to 1.

Claim 2.1. Polynomials \(f_1, f_2, \ldots, f_m\), as functions from \(\Omega = \{0,1\}^n\) to \(\mathbb{F}\), are linearly independent.

Proof. To observe this assume contrary, and let \(\sum_{i=1}^m \lambda_i f_i(x) = 0\) be a nontrivial linear dependence relation, where \(\lambda_i \in \mathbb{F}\). Let \(i_0\) be a smallest subscript such that \(\lambda_{i_0} \neq 0\). We substitute \(a_{i_0}\) for \(x\) in the linear relation. Observe that all terms vanishes since \(\forall i, j : i \neq j, |A_i \cap A_j| \in L \text{ (mod q)}\), except \(f_{i_0}(a_{i_0})\) since \(|A_i| \notin L \text{ (mod q)}\) with consequence \(\lambda_{i_0} = 0\), a contradiction.

Claim 2.2. Polynomials \(f_1, f_2, \ldots, f_m\) are basis of a space of cardinality \(\sum_{i=0}^t \binom{n}{i}\). In other words

\[
|A| \leq \sum_{i=0}^t \binom{n}{i}
\]

Proof. By proposition-2.1, each polynomial \(f_i\) remains valid after replacing \(f_i\) by corresponding multilinear polynomial \(\hat{f}_i\). Each \(\hat{f}_i\) is of degree \(\deg \hat{f}_i \leq |L| = t\). That is, each \(\hat{f}_i\) is a linear combination of monic multilinear polynomials with \(\deg \hat{f}_i \leq t\), and they form a basis of a space of cardinality at most \(\sum_{i=0}^t \binom{n}{i}\).

We will first show how to construct such families following ideas of [8]. Let \(n > 2q^2\). Consider set of all subsets of \([n]\) of cardinality \(q^2 - 1\). We will consider only those subsets for which following hold:

\[
|A \cap B| \neq -1 \pmod{q}, \text{ and } A, B \subseteq [n], \text{ and } |A| = |B| = q^2 - 1
\]
Imagine a graph $G(n,q)$, on these subsets with vertex set as set of all subsets of $[n]$ of cardinality $q^2 - 1$, and edge between any two subset is included if for $i \neq j, |A_i \cap A_j| \neq -1$ (mod q), holds.

Claim 2.3. A clique on graph $G(n,q)$ satisfies the required properties of the family of sets $\mathcal{A} = \{A_1, \ldots, A_r\}$, with $L = \{0, 1, \ldots, q - 2\}$ and $|L| = q - 1$.

Proof. If $|A_i \cap A_j| \neq -1$ (mod q) for all $i \neq j$, then $|A_i \cap A_j| \in L$ (mod q), when $L = \{0, 1, \ldots, q - 2\}$. Also, $|A_i| \notin L$ (mod q), $\forall i$ since $\forall i, |A_i| = q^2 - 1 \notin L$ (mod q). \hfill \Box

Claim 2.4. Let q be a prime, and $n > 2q^2$. Graph $G(n,q)$ has $\binom{n}{q^2-1}$ vertices and no clique of size more than $2\binom{n}{q-1}$.

Proof. By claim-2.2

$$|\mathcal{A}| \leq \sum_{i=0}^{q-1} \binom{n}{i}$$

Now note that $|L| = t = q - 1 \leq n/4$, as $2q^2 < n$. With $t \leq n/4$, we have that

$$|\mathcal{A}| \leq \sum_{i=0}^{q-1} \binom{n}{i} \leq \binom{n}{q-1} \left[1 + \sum_{i=0}^{q-2} \frac{\binom{n}{i}}{\binom{n}{q-1}}\right] \leq 2 \binom{n}{q-1}$$

\hfill \Box

Claim-2.3, and Claim-2.4 together shows the existence of the family of sets with desired properties. By [8], with $n = q^3$, we can have a graph $G(n,q)$ on $q^{O(q^2)}$ vertices having clique size no more than $q^{O(q)}$, choosing $n = q^3$. We note that such families are explicitly constructable, i.e. there exists an algorithm that given m,i, outputs $A_i \in \mathcal{A}$ in time $T = \text{poly}(\log m,i)$, see [3] for a discussion. Note that for our randomized reduction we will require any m such subsets of \mathcal{A} such that they are linearly independent, i.e. $|A \cap B| \neq -1$ (mod q).

Now we construct following system of equations:

$$f(x) \overset{def}{=} \sum_{A_i \in \mathcal{A}} \lambda_i \prod_{l \in L} (a_i \cdot x - l) = b. \text{ where } \forall i, \lambda_i \text{ and } b \in \mathbb{F}$$

(1)

by choosing $b \in \mathbb{F}$ and each $\lambda_i \in \mathbb{F}$ independently and uniformly at random. We shall intersect the solution set S of input formula ϕ with $f(x) = b$. In other words we will extract the vectors in S which are also solution of $f(x) = b$, and we will show that all surviving assignments are concentrated in a small space. On this direction, first we shall bound the probability that two vectors $x,y \in \{0,1\}^n$ that are reasonably far from each other will be separated by this constraint. Let $\text{dist}(x,y)$, be the Hamming distance between x,y, i.e. number of coordinates in which x and y differ.

Claim 2.5. For any two vectors $x,y \in \{0,1\}^n$ with $\text{dist}(x,y) \geq r = \lceil \epsilon n \rceil$ we have

$$\Pr[f(x) = f(y)] \leq \left(\frac{3}{4q}\right)^m$$
Proof. Let us start by considering the event \(f_i (x) \neq f_i (y) \). For any two vectors \(x, y \in \{0, 1\}^n \) with \(\text{dist} (x, y) \geq r \) and any \(i \in \{1, 2, \ldots, m\} \), we have

\[
\Pr [f_i (x) \neq f_i (y)] \\
\geq \Pr [f_i (x) \neq f_i (y) \mid (x - y)_{A_i} \neq 0] \Pr [(x - y)_{A_i} \neq 0]
\]

where \((x - y)_{A_i}\) is the vector restricted to the coordinates from \(A_i\). If \((x - y)_{A_i} \neq 0\), and define \(c_{i,x} = |x \cap A_i|\) for any vector \(x \in \{0, 1\}^n\). We have either \(c_{i,x} \in L \mod q\) or \(c_{i,x} \notin L \mod q\). When \(c_{i,x} \in L \mod q\) we have \(f_i (x) = 0\), and when \(c_{i,x} \notin L \mod q\) we have \(f_i (x) \neq 0\). Consider \(f_i (x) \neq 0\), then the only value taken by \(f_i (x)\) is \(q - 1\), thus:

\[
\Pr [f_i (x) \neq f_i (y) \mid (x - y)_{A_i} \neq 0] = 1/2
\]

and we have,

\[
\Pr [f_i (x) \neq f_i (y)] \\
\geq \frac{1}{2} \cdot \Pr [(x - y)_{A_i} \neq 0] \\
\geq \frac{1}{2} \cdot \Pr [\exists j \in A_i : (x - y)_j \neq 0] \\
\geq \frac{1}{2} \cdot \left(1 - \frac{(n-r)}{n}\right) \\
\geq \frac{1}{2} \cdot \left(1 - (1 - \epsilon)^{|A_i|}\right)
\]

With \(|A_i| = q^2 - 1 = \frac{m^2}{2}\), we have,

\[
\Pr [f_i (x) \neq f_i (y)] \geq \frac{1}{2} \left(1 - (1 - \epsilon) \frac{m^2}{2}\right) \geq \frac{1}{2} \left(1 - e^{-\epsilon \frac{m^2}{4}}\right) \geq \frac{1}{4}
\]

Hence,

\[
\Pr [f (x) = f (y)] \\
= \Pr [f (x) = f (y) \mid (\forall i : 0 \leq i \leq m) |\lambda_i \neq 0| \prod_{i=0}^{m} \Pr [\lambda_i \neq 0] \\
= \left(\frac{1}{q}\right)^m \prod_{i=0}^{m} (1 - \Pr [f_i (x) \neq f_i (y)]) \\
\leq \left(\frac{1}{q}\right)^m \left(1 - \frac{1}{4}\right)^m \leq \left(\frac{3}{4q}\right)^m
\]

as required. \(\square\)

Now we define the set of semi-isolated solutions as

\[
\text{si} = \{ x \in S : (\forall y \in S) |\text{dist} (x, y) \geq r \rightarrow f (x) \neq f (y)\}\] (2)

For each \(x \in S\), we have

\[
\Pr [x \in \text{si}] = 1 - \Pr [\exists y \in S (\text{dist} (x, y) \geq r \land f (x) = f (y))] \\
\geq 1 - \sum_{y \in S, \text{dist}(x,y) \geq r} \Pr [f (x) = f (y)] \\
\geq 1 - |S| 2^{-m \log 4q/3}
\]

7
Where, the last inequality follows from Claim-2.5. Hence, selecting \(m = s/ \log q \) we have:

\[
\Pr [x \in si] \geq 1 - |S| 2^{-m \log 4q/3} \geq 1/2
\]

(3)

Alternatively,

\[
\sum_{x \in S} \Pr_{\lambda_i, b} [x \in si \land f (x) = b] = \sum_{x \in S} \Pr [x \in si] \Pr_{\lambda_i, b} [f (x) = b|x \in si] \geq \frac{|S|}{2^{qn+1}} \geq \frac{1}{2q} 2^{s-m \log q} \geq \frac{1}{2q}
\]

(4)

Where, last inequality follows from equation-3, with choice of \(m \), and by the fact that \(\forall i, \lambda_i, b \) was chosen uniformly and independently at random.

On the other hand given \(f \) and \(b \), number of semi-isolated solutions \(x \in S \) such that \(f (x) = b \) can be at most \(2^{nH_2(r)} \). Since every pair of such solutions must be Hamming distance less than \(r \) apart. Where \(H_2(x) = -x \log_2 x - (1-x) \log_2 (1-x) \) is the binary entropy function. Implying:

\[
\sum_{x \in S} \Pr [x \in si \land f (x) = b] \leq 2^{nH_2(r)} \Pr_{\beta_2} [(\exists x \in S) [x \in si \land f (x) = b]]
\]

(5)

Combining inequality-4 and inequality-5, we obtain:

\[
\Pr [(\exists x \in S) [x \in si \land f (x) = b]] \geq \frac{1}{2q} 2^{-nH_2(r)}
\]

(6)

This completes STEP-I of the lemma.

STEP-II: ISOLATION

This step follow the steps of [4]. Let \(\phi \) be any \(\text{CNF} \) in \(n \) variables \(x_1, x_2, \ldots, x_n \). Suppose that formula \(\psi = \phi \land (f (x) = b) \) is satisfiable, and solutions are in a Hamming ball of radius less than \(r \), and diameter \(d \leq 2 |\epsilon n| \). Where, \(f (x) = b \) is a random constraint as defined in equation-1. Consider assignments \(u \) and \(v \) to disjoint set of variables of \(\phi \). Let \(uv \) denote union of variables in \(u \) and \(v \). Let \(uv \) and \(uv' \) denote two distinct solutions of \(\phi \land (f (x) = b) \) that are farthest apart. Let \(C \) be the set of variables on which \(uv \) and \(uv' \) differ. Surely, \(|C| \leq d \). Fix \(D \supseteq C \) such that \(|D| = d \). Let \(\beta_D \) be an assignment to the variables in \(D \) such that \(\forall i \in C, x_i = v_i \) and \(\forall i \in D \setminus C, x_i = u_i \). Our reduction algorithm chooses a random set \(D' \) with \(|D'| = d \), and a random assignment \(\alpha_{D'} \) to the variables in \(D' \). Let \(\psi' = \phi \land (f (x) = b) \land (x_{D'} = \alpha_{D'}) \). Now observe that by the arguments above, if \(D' = D \) and \(\alpha_{D'} = \beta_D \), then \(uv \) is the unique solution to \(\psi' \), as any other solution \(uv \) to \(\psi' \) would also be a solution to \(\phi \land (f (x) = b) \), but \(\text{dist} (uv, uv') > \text{dist} (uv, uv') \). Finally, probability of guessing \(D \) and \(\beta_D \) is at least:

\[
2^{-d} \left(\binom{n}{d} \right) \geq 2^{-n(2 \epsilon + H_2(2 \epsilon))}
\]

(7)

Combining equation-7 with Step-I (equation-6), and noting that with probability at least \(1/n \) we can guess an integer \(s \in [\log |S|, \log |S| + 1] \), for \(\psi' = \phi \land (f (x) = b) \land (x_{D'} = \alpha_{D'}) \) we have:

\[
\Pr [\psi' \text{ has unique solution}] \geq \frac{1}{2qmn} 2^{-n(H_2(\epsilon) + 2 \epsilon + H_2(2 \epsilon))}
\]

\[
\geq \frac{1}{2qmn} 2^{-n(H_2(\epsilon) + 2 \epsilon + H_2(2 \epsilon))}
\]

(8)
Now observe that $\epsilon = \mathcal{O}(1/q^2)$, thus with large enough q, we also observe that largest term of $H_2(x)$ is $-x \log_2 x$, with this we modify the above inequality to obtain:

$$\Pr [\psi' \text{ has unique solution}] \geq \frac{1}{2q n^2} 2^{-n(-\epsilon \log \epsilon - 2\epsilon \log 2 \epsilon + 2\epsilon)} \geq \frac{1}{2q n^2} 2^{3n\sqrt{\epsilon} \log \epsilon} \geq \frac{1}{2q n^2} (\epsilon)^{3n\sqrt{\epsilon}}$$

With this we conclude the proof of lemma.

\[\Box \]

3 Application of Isolation Lemma

In this section we prove the Main Theorem (Theorem-1.2).

Lemma 3.1. $s_k \leq \sigma_k + \mathcal{O}(3\sqrt{\epsilon} \log \frac{1}{\epsilon})$.

Proof. Let $\epsilon = \ln 2/(q^2 - 1)$. For every $\gamma > 0$ and every k, we have a randomized algorithm $U_{k,\gamma}$ for Unique k-SAT that runs in time $\mathcal{O}(2^{(\sigma_k + \gamma)n})$. Now given any k-CNF ϕ we apply Isolation Lemma - 2.1 to obtain a ψ' using our randomized polynomial time reduction algorithm $I_{k,\epsilon}$ with success probability $p \geq \frac{1}{2q n^2} (\epsilon)^{3n\sqrt{\epsilon}}$, that if ϕ is satisfiable, then, with probability at least p, ψ' has a unique satisfying assignment. Running $I_{k,\epsilon}$, $\mathcal{O}(p^{-1})$ times with same input ϕ, and then running algorithm $U_{k,\gamma}$ on the obtained formula ψ' on each run, we obtain a randomized algorithm for k-SAT that has running time $\mathcal{O}((1/\epsilon)^{3n\sqrt{\epsilon}}, 2^{(\sigma_k + \gamma)n}) \leq \mathcal{O}(2^{(\sigma_k + \gamma + \mathcal{O}(3\sqrt{\epsilon} \log 1/\epsilon))n})$. As $\gamma \to 0$, lemma follows. \[\Box \]

Observe that our Main Theorem-1.2, $\forall k \in \mathbb{N}$, $s_k = \sigma_k$, follows directly from the proof of the Lemma-3.1, by taking sufficiently large n and q, as $3\sqrt{\epsilon} \log \frac{1}{\epsilon} \to 0$ when $n \to \infty$.

References

