Approximation Algorithm for the Max k-CSP Problem

Moses Charikar* Konstantin Makarychev ${ }^{\dagger}$ Yury Makarychev ${ }^{\ddagger}$ Princeton University

Abstract

We present a $\frac{c k}{2^{k}}$ approximation algorithm for the Max k-CSP problem (where $c>$ 0.44 is an absolute constant). This result improves the previously best known algorithm by Hast, which has an approximation guarantee of $\Omega\left(\frac{k}{2^{k} \log k}\right)$. Our approximation guarantee matches the upper bound of Samorodnitsky and Trevisan up to a constant factor (their result assumes the Unique Games Conjecture).

1 Introduction

In this paper we present an approximation algorithm for the Max k-CSP problem.
Definition 1.1 (Max k-CSP Problem). Given a set of boolean variables and constraints, where each constraint depends on k variable. The goal is to find an assignment so as to maximize the number of satisfied constraints.

Note that a random assignment satisfies each constraint with probability at least $\frac{1}{2^{k}}$ (except those constraints which cannot be satisfied). Therefore, the random assignment algorithm gives a $\frac{1}{2^{k}}$ approximation. Recently, Hast [2] proposed an algorithm with a much better approximation guarantee $\Omega\left(\frac{k}{2^{k} \log k}\right)$. We further improve the approximation ratio to $\Omega\left(\frac{k}{2^{k}}\right)$. This result is also applicable to Max- k CSP with a larger domain ${ }^{1}$, it gives a $\Omega\left(\frac{k \log d}{d^{k}}\right)$ approximation for instances with domain size d. Our approach is similar to that of Hast.

Samorodnitsky and Trevisan [5] proved that it is hard to approximate Max k-CSP within $\frac{2 k}{2^{k}}$ for every $k \geq 3$), and within $\frac{k+1}{2^{k}}$ for infinitely many k assuming the Unique Games

[^0]Conjecture of Khot [3]. This shows that our algorithm is asymptotically optimal within a factor of $\approx 1 / 0.44 \approx 2.27$.

We use Hast's reduction of the Max k-CSP problem to the Max k-AllEqual problem.
Definition 1.2 (Max k-AllEqual Problem). Given a set S of clauses of the form $l_{1} \equiv$ $l_{2} \equiv \cdots \equiv l_{k}$, where each literal l_{i} is either a boolean variable x_{j} or its negation \bar{x}_{j}. The goal is to find an assignment to the variables x_{i} so as to maximize the number of satisfied clauses.

The reduction works as follows. First, we write each constraint $f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$ as a CNF formula. Then we consider each clause in the CNF formula as a separate constraint; we get an instance of the Max k-CSP problem, where each clause is a conjunction. The new problem is equivalent to the original problem: each assignment satisfies exactly the same number of clauses in the new problem as in the original problem. Finally, we replace each conjunction $l_{1} \wedge l_{2} \wedge \ldots \wedge l_{k}$ with the constraint $l_{1} \equiv l_{2} \equiv \ldots \equiv l_{k}$. Clearly, the value of this instance of Max k-AllEqual is at least the value of the original problem. Moreover, it is at most two times greater then the value of the original problem: if an assignment $\left\{x_{i}\right\}$ satisfies a constraint in the new problem, then either the assignment $\left\{x_{i}\right\}$ or the assignment $\left\{\bar{x}_{i}\right\}$ satisfies the corresponding constraint in the original problem. Therefore, a C approximation guarantee for Max k-AllEqual translates to a $C / 2$ approximation guarantee for the Max k-CSP. Below we consider only Max k-AllEqual problem.

For brevity, we denote \bar{x}_{i} by x_{-i}. We think of each clause C as a set of indices: clause C defines the constraint "(for all $i \in C, x_{i}$ is true) or (for all $i \in C, x_{i}$ is false)". Without loss of generality we assume that there are no unsatisfiable clauses in S, i.e. there are no clauses that have both literals x_{i} and \bar{x}_{i}.

2 Approximation Algorithm

2.1 Relaxation

We consider the following SDP relaxation of Max k-AllEqual problem.

$$
\begin{aligned}
& \max \frac{1}{k^{2}} \sum_{C \in S}\left\|\sum_{i \in C} v_{i}\right\|^{2} \\
& \left\|v_{i}\right\|^{2}=1 \\
& v_{i}=-v_{-i} .
\end{aligned}
$$

This is indeed a relaxation of the problem: in the intended solution $v_{i}=e$ if x_{i} is true, and $v_{i}=-e$ if x_{i} is false (where e is a fixed unit vector). Then the value of the SDP is greater than or equal to the value of the Max k-AllEqual problem.

2.2 Algorithm

We use the following theorem of Nesterov [4].

Theorem 2.1. There exists an efficient algorithm that given a positive semidefinite matrix $A=\left(a_{i j}\right)$, and a set of unit vectors v_{i}, assigns ± 1 to variables z_{i}, s.t.

$$
\sum_{i, j} a_{i j} z_{i} z_{j} \geq \frac{2}{\pi} \sum_{i, j} a_{i j}\left\langle v_{i}, v_{j}\right\rangle
$$

Observe that the quadratic form

$$
\frac{1}{k^{2}} \sum_{C \in S}\left(\sum_{i \in C} z_{i}\right)^{2}
$$

is positive semidefinite. Therefore we can use the algorithm from Theorem 2.1. Given vectors v_{i} as in the SDP relaxation, it yields numbers z_{i} s.t.

$$
\begin{aligned}
\frac{1}{k^{2}} \sum_{C \in S}\left(\sum_{i \in C} z_{i}\right)^{2} & \geq \frac{2}{\pi} \frac{1}{k^{2}} \sum_{C \in S}\left\|\sum_{i \in C} v_{i}\right\|^{2} \\
z_{i} & \in\{ \pm 1\} \\
z_{i} & =-z_{-i}
\end{aligned}
$$

(Formally, v_{-i} is a shortcut for $-v_{i} ; z_{-i}$ is a shortcut for $-z_{i}$).
In what follows, we assume that $k \geq 3$ - for $k=2$ we can use the MAX CUT algorithm by Goemans and Williamson [1] to get a better approximation ${ }^{2}$.

We now present the approximation algorithm.

Approximation Algorithm for the Max k-AllEqual Problem

1. Solve the semidefinite relaxation. Get vectors v_{i}.
2. Apply Theorem 2.1 to vectors v_{i} as described above. Get values z_{i}.
3. Let $\delta=\sqrt{\frac{2}{k}}$. For each $i \geq 1$ assign $x_{i}=1$ (true) w.p. $\frac{1+\delta z_{i}}{2}$, assign $x_{i}=-1$ (false) w.p. $\frac{1-\delta z_{i}}{2}$.

2.3 Analysis

Theorem 2.2. The approximation algorithm finds an assignment satisfying at least c $\frac{k}{2^{k}} O P T$ clauses (where $c>0.88$ is an absolute constant), given that OPT clauses are satisfied in the optimal solution.

[^1]Proof. Denote $Z_{C}=\frac{1}{k} \sum_{i \in C} z_{i}$. Then Theorem 2.1 guarantees that

$$
\sum_{C \in S} Z_{C}^{2}=\frac{1}{k^{2}} \sum_{C \in S}\left(\sum_{i \in C} z_{i}\right)^{2} \geq \frac{2}{\pi} \frac{1}{k^{2}} \sum_{C \in S}\left\|\sum_{i \in C} v_{i}\right\|^{2}=\frac{2}{\pi} S D P \geq \frac{2}{\pi} O P T,
$$

where $S D P$ is the SDP value.
Note that the number of z_{i} equal to 1 is $\frac{1+Z_{C}}{2} k$, number of z_{i} equal to -1 is $\frac{1-Z_{C}}{2} k$. The probability that a constraint C is satisfied equals

$$
\begin{aligned}
\operatorname{Pr}(C \text { is satisfied }) & =\operatorname{Pr}\left(x_{i}=1 \text { for all } i \in C\right)+\operatorname{Pr}\left(x_{i}=-1 \text { for all } i \in C\right) \\
& =\prod_{i \in C} \frac{1+\delta z_{i}}{2}+\prod_{i \in C} \frac{1-\delta z_{i}}{2} \\
& =\frac{1}{2^{k}}\left((1+\delta)^{\frac{1+Z_{C}}{2} k} \cdot(1-\delta)^{\frac{1-Z_{C}}{2} k}+(1-\delta)^{\frac{1+Z_{C}}{2} k} \cdot(1+\delta)^{\frac{1-Z_{C}}{2} k}\right) \\
& =\frac{1}{2^{k}}\left(1-\delta^{2}\right)^{k / 2}\left(\left(\frac{1+\delta}{1-\delta}\right)^{Z_{C} k / 2}+\left(\frac{1-\delta}{1+\delta}\right)^{Z_{C} k / 2}\right) \\
& =\frac{1}{2^{k}} 2\left(1-\delta^{2}\right)^{k / 2} \cosh \left(\frac{1}{2} \ln \frac{1+\delta}{1-\delta} \cdot Z_{C} k\right) .
\end{aligned}
$$

Here, $\cosh t \equiv \frac{e^{t}+e^{-t}}{2}$. Let α be the minimum of the function $\frac{\cosh t}{t^{2}}$. Numerical computation shows that $\alpha>0.93945$. We have,

$$
2\left(1-\delta^{2}\right)^{k / 2} \cosh \left(\frac{1}{2} \ln \frac{1+\delta}{1-\delta} \cdot Z_{C} k\right)>2\left(1-\delta^{2}\right)^{k / 2} \alpha\left(\frac{1}{2} \ln \frac{1+\delta}{1-\delta} \cdot Z_{C} k\right)^{2}
$$

We now lower bound the right hand side. Recall that $\delta=\sqrt{2 / k}$ and $k \geq 3$. We have

$$
\left(1-\delta^{2}\right)^{k / 2}=\left(1-\frac{2}{k}\right)^{k / 2} \geq\left(1-\frac{2}{k}\right) \frac{1}{e} .
$$

Then

$$
\left(\ln \frac{1+\delta}{1-\delta}\right)^{2} \geq(2 \delta)^{2}=\frac{8}{k}
$$

Combining these bounds we get,

$$
2 \alpha\left(1-\delta^{2}\right)^{k / 2}\left(\frac{1}{2} \ln \frac{1+\delta}{1-\delta} \cdot Z_{C} k\right)^{2} \geq\left(1-\frac{2}{k}\right) \frac{4 \alpha k}{e} Z_{C}^{2}
$$

However, it turns out that the factor $1-\frac{2}{k}$ is not necessary; the following bound holds,

$$
2 \alpha\left(1-\delta^{2}\right)^{k / 2}\left(\frac{1}{2} \ln \frac{1+\delta}{1-\delta} \cdot Z_{C} k\right)^{2} \geq \frac{4 \alpha k}{e} Z_{C}^{2}
$$

We get,

$$
\operatorname{Pr}(C \text { is satisfied }) \geq \frac{4 \alpha}{e} \frac{k}{2^{k}} Z_{C}^{2} .
$$

So the expected number of satisfied constraints is

$$
\sum_{C \in S} \operatorname{Pr}(C \text { is satisfied }) \geq \sum_{C \in S} \frac{4 \alpha}{e} \frac{k}{2^{k}} Z_{C}^{2}=\frac{4 \alpha}{e} \frac{k}{2^{k}} \sum_{C \in S} Z_{C}^{2} \geq \frac{4 \alpha}{e} \frac{k}{2^{k}} \cdot \frac{2}{\pi} O P T
$$

We conclude that the algorithm finds an $\frac{8 \alpha}{\pi e} \frac{k}{2^{k}}>0.88 \frac{k}{2^{k}}$ approximation with high probability.

References

[1] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, vol. 42, no. 6, pp. 1115-1145, Nov. 1995.
[2] G. Hast. Approximating Max kCSP - Outperforming a Random Assignment with Almost a Linear Factor. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, pp. 956-968, 2005.
[3] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 767-775, 2002.
[4] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE Discussion Paper 9719, March 1997.
[5] A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Variables, and PCPs. To appear in Proceedings of the 38th ACM Symposium on Theory of Computing, 2006.

[^0]: *http://www.cs.princeton.edu/~moses/ Supported by NSF ITR grant CCR-0205594, NSF CAREER award CCR-0237113, MSPA-MCS award 0528414, and an Alfred P. Sloan Fellowship.
 ${ }^{\dagger} h t t p: / / w w w . c s . p r i n c e t o n . e d u /{ }^{\sim} k m a k a r y c / S u p p o r t e d ~ b y ~ a ~ G o r d o n ~ W u ~ f e l l o w s h i p . ~$
 ${ }^{\ddagger} h t t p: / / w w w . c s . p r i n c e t o n . e d u / \sim y m a k a r y c / S u p p o r t e d ~ b y ~ a ~ G o r d o n ~ W u ~ f e l l o w s h i p . ~$
 ${ }^{1}$ To apply the result to an instance with a larger domain, we just encode each domain value with $\log d$ bits.

[^1]: ${ }^{2}$ Our algorithm works for $k=2$ with a slight modification: δ should be less than 1 .

