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Abstract

We present a ck
2k approximation algorithm for the Max k-CSP problem (where c >

0.44 is an absolute constant). This result improves the previously best known algorithm
by Hast, which has an approximation guarantee of Ω( k

2k log k
). Our approximation

guarantee matches the upper bound of Samorodnitsky and Trevisan up to a constant
factor (their result assumes the Unique Games Conjecture).

1 Introduction

In this paper we present an approximation algorithm for the Max k-CSP problem.

Definition 1.1 (Max k-CSP Problem). Given a set of boolean variables and constraints,
where each constraint depends on k variable. The goal is to find an assignment so as to
maximize the number of satisfied constraints.

Note that a random assignment satisfies each constraint with probability at least 1
2k

(except those constraints which cannot be satisfied). Therefore, the random assignment
algorithm gives a 1

2k approximation. Recently, Hast [2] proposed an algorithm with a much

better approximation guarantee Ω
(

k
2k log k

)

. We further improve the approximation ratio

to Ω
(

k
2k

)

. This result is also applicable to Max-k CSP with a larger domain1, it gives a

Ω
(

k log d
dk

)

approximation for instances with domain size d. Our approach is similar to that
of Hast.

Samorodnitsky and Trevisan [5] proved that it is hard to approximate Max k-CSP within
2k
2k for every k ≥ 3), and within k+1

2k for infinitely many k assuming the Unique Games
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1To apply the result to an instance with a larger domain, we just encode each domain value with log d

bits.
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Conjecture of Khot [3]. This shows that our algorithm is asymptotically optimal within a
factor of ≈ 1/0.44 ≈ 2.27.

We use Hast’s reduction of the Max k-CSP problem to the Max k-AllEqual problem.

Definition 1.2 (Max k-AllEqual Problem). Given a set S of clauses of the form l1 ≡
l2 ≡ · · · ≡ lk, where each literal li is either a boolean variable xj or its negation x̄j. The goal
is to find an assignment to the variables xi so as to maximize the number of satisfied clauses.

The reduction works as follows. First, we write each constraint f(xi1 , xi2 , . . . , xik) as a
CNF formula. Then we consider each clause in the CNF formula as a separate constraint;
we get an instance of the Max k-CSP problem, where each clause is a conjunction. The new
problem is equivalent to the original problem: each assignment satisfies exactly the same
number of clauses in the new problem as in the original problem. Finally, we replace each
conjunction l1 ∧ l2 ∧ . . . ∧ lk with the constraint l1 ≡ l2 ≡ · · · ≡ lk. Clearly, the value of this
instance of Max k-AllEqual is at least the value of the original problem. Moreover, it is at
most two times greater then the value of the original problem: if an assignment {xi} satisfies
a constraint in the new problem, then either the assignment {xi} or the assignment {x̄i}
satisfies the corresponding constraint in the original problem. Therefore, a C approximation
guarantee for Max k-AllEqual translates to a C/2 approximation guarantee for the Max
k-CSP. Below we consider only Max k-AllEqual problem.

For brevity, we denote x̄i by x−i. We think of each clause C as a set of indices: clause C
defines the constraint “(for all i ∈ C, xi is true) or (for all i ∈ C, xi is false)”. Without loss
of generality we assume that there are no unsatisfiable clauses in S, i.e. there are no clauses
that have both literals xi and x̄i.

2 Approximation Algorithm

2.1 Relaxation

We consider the following SDP relaxation of Max k-AllEqual problem.

max
1

k2

∑

C∈S

∥

∥

∥

∥

∥

∑

i∈C

vi

∥

∥

∥

∥

∥

2

‖vi‖
2 = 1

vi = −v−i.

This is indeed a relaxation of the problem: in the intended solution vi = e if xi is true, and
vi = −e if xi is false (where e is a fixed unit vector). Then the value of the SDP is greater
than or equal to the value of the Max k-AllEqual problem.

2.2 Algorithm

We use the following theorem of Nesterov [4].
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Theorem 2.1. There exists an efficient algorithm that given a positive semidefinite matrix
A = (aij), and a set of unit vectors vi, assigns ±1 to variables zi, s.t.

∑

i,j

aij zizj ≥
2

π

∑

i,j

aij 〈vi, vj〉.

Observe that the quadratic form

1

k2

∑

C∈S

(

∑

i∈C

zi

)2

is positive semidefinite. Therefore we can use the algorithm from Theorem 2.1. Given vectors
vi as in the SDP relaxation, it yields numbers zi s.t.

1

k2

∑

C∈S

(

∑

i∈C

zi

)2

≥
2

π

1

k2

∑

C∈S

∥

∥

∥

∥

∥

∑

i∈C

vi

∥

∥

∥

∥

∥

2

zi ∈ {±1}

zi = −z−i

(Formally, v−i is a shortcut for −vi; z−i is a shortcut for −zi).
In what follows, we assume that k ≥ 3 — for k = 2 we can use the MAX CUT algorithm

by Goemans and Williamson [1] to get a better approximation2.
We now present the approximation algorithm.

Approximation Algorithm for the Max k-AllEqual Problem

1. Solve the semidefinite relaxation. Get vectors vi.

2. Apply Theorem 2.1 to vectors vi as described above. Get values zi.

3. Let δ =

√

2

k
. For each i ≥ 1 assign xi = 1 (true) w.p.

1 + δzi

2
, assign xi = −1

(false) w.p.
1 − δzi

2
.

2.3 Analysis

Theorem 2.2. The approximation algorithm finds an assignment satisfying at least c k
2k OPT

clauses (where c > 0.88 is an absolute constant), given that OPT clauses are satisfied in the
optimal solution.

2Our algorithm works for k = 2 with a slight modification: δ should be less than 1.
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Proof. Denote ZC = 1
k

∑

i∈C zi. Then Theorem 2.1 guarantees that

∑

C∈S

Z2
C =

1

k2

∑

C∈S

(

∑

i∈C

zi

)2

≥
2

π

1

k2

∑

C∈S

∥

∥

∥

∥

∥

∑

i∈C

vi

∥

∥

∥

∥

∥

2

=
2

π
SDP ≥

2

π
OPT,

where SDP is the SDP value.
Note that the number of zi equal to 1 is 1+ZC

2
k, number of zi equal to −1 is 1−ZC

2
k. The

probability that a constraint C is satisfied equals

Pr (C is satisfied) = Pr (xi = 1 for all i ∈ C) + Pr (xi = −1 for all i ∈ C)

=
∏

i∈C

1 + δzi

2
+
∏

i∈C

1 − δzi

2

=
1

2k

(

(1 + δ)
1+ZC

2
k · (1 − δ)

1−ZC

2
k + (1 − δ)

1+ZC

2
k · (1 + δ)

1−ZC

2
k
)

=
1

2k
(1 − δ2)k/2

(

(

1 + δ

1 − δ

)ZCk/2

+

(

1 − δ

1 + δ

)ZCk/2
)

=
1

2k
2(1 − δ2)k/2 cosh

(

1

2
ln

1 + δ

1 − δ
· ZCk

)

.

Here, cosh t ≡ et+e−t

2
. Let α be the minimum of the function cosh t

t2
. Numerical computation

shows that α > 0.93945. We have,

2(1 − δ2)k/2 cosh

(

1

2
ln

1 + δ

1 − δ
· ZCk

)

> 2(1 − δ2)k/2α

(

1

2
ln

1 + δ

1 − δ
· ZCk

)2

.

We now lower bound the right hand side. Recall that δ =
√

2/k and k ≥ 3. We have

(1 − δ2)k/2 = (1 −
2

k
)k/2 ≥ (1 −

2

k
)
1

e
.

Then
(

ln
1 + δ

1 − δ

)2

≥ (2δ)2 =
8

k
.

Combining these bounds we get,

2α(1 − δ2)k/2

(

1

2
ln

1 + δ

1 − δ
· ZCk

)2

≥ (1 −
2

k
)
4αk

e
Z2

C .

However, it turns out that the factor 1 − 2
k

is not necessary; the following bound holds,

2α(1 − δ2)k/2

(

1

2
ln

1 + δ

1 − δ
· ZCk

)2

≥
4αk

e
Z2

C .
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We get,

Pr (C is satisfied) ≥
4α

e

k

2k
Z2

C .

So the expected number of satisfied constraints is

∑

C∈S

Pr (C is satisfied) ≥
∑

C∈S

4α

e

k

2k
Z2

C =
4α

e

k

2k

∑

C∈S

Z2
C ≥

4α

e

k

2k
·
2

π
OPT.

We conclude that the algorithm finds an
8α

πe

k

2k
> 0.88

k

2k
approximation with high probabil-

ity.
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