Approximation Algorithm for the Max k-CSP Problem

Moses Charikar* Konstantin Makarychev† Yury Makarychev‡
Princeton University

Abstract

We present a $\frac{ck^2}{2^k}$ approximation algorithm for the Max k-CSP problem (where $c > 0.44$ is an absolute constant). This result improves the previously best known algorithm by Hast, which has an approximation guarantee of $\Omega\left(\frac{k^2}{2^k \log k}\right)$. Our approximation guarantee matches the upper bound of Samorodnitsky and Trevisan up to a constant factor (their result assumes the Unique Games Conjecture).

1 Introduction

In this paper we present an approximation algorithm for the Max k-CSP problem.

Definition 1.1 (Max k-CSP Problem). Given a set of boolean variables and constraints, where each constraint depends on k variable. The goal is to find an assignment so as to maximize the number of satisfied constraints.

Note that a random assignment satisfies each constraint with probability at least $\frac{1}{2^k}$ (except those constraints which cannot be satisfied). Therefore, the random assignment algorithm gives a $\frac{1}{2^k}$ approximation. Recently, Hast [2] proposed an algorithm with a much better approximation guarantee $\Omega\left(\frac{k}{2^k \log k}\right)$. We further improve the approximation ratio to $\Omega\left(\frac{k}{2^k}\right)$. This result is also applicable to Max-k CSP with a larger domain, it gives a $\Omega\left(\frac{k \log d}{d^k}\right)$ approximation for instances with domain size d. Our approach is similar to that of Hast.

Samorodnitsky and Trevisan [5] proved that it is hard to approximate Max k-CSP within $\frac{2k}{2^k}$ for every $k \geq 3$, and within $\frac{k+1}{2^k}$ for infinitely many k assuming the Unique Games Conjecture.

†http://www.cs.princeton.edu/~kmakaryc/ Supported by a Gordon Wu fellowship.
‡http://www.cs.princeton.edu/~ymakaryc/ Supported by a Gordon Wu fellowship.

1To apply the result to an instance with a larger domain, we just encode each domain value with $\log d$ bits.
Conjecture of Khot [3]. This shows that our algorithm is asymptotically optimal within a factor of \(\approx 1/0.44 \approx 2.27\).

We use Hast’s reduction of the Max k-CSP problem to the Max k-AllEqual problem.

Definition 1.2 (Max k-AllEqual Problem). Given a set \(S\) of clauses of the form \(l_1 \equiv l_2 \equiv \cdots \equiv l_k\), where each literal \(l_i\) is either a boolean variable \(x_j\) or its negation \(\bar{x}_j\). The goal is to find an assignment to the variables \(x_i\) so as to maximize the number of satisfied clauses.

The reduction works as follows. First, we write each constraint \(f(x_{i_1}, x_{i_2}, \ldots, x_{i_k})\) as a CNF formula. Then we consider each clause in the CNF formula as a separate constraint; we get an instance of the Max k-CSP problem, where each clause is a conjunction. The new problem is equivalent to the original problem: each assignment satisfies exactly the same number of clauses in the new problem as in the original problem. Finally, we replace each conjunction \(l_1 \land l_2 \land \ldots \land l_k\) with the constraint \(l_1 \equiv l_2 \equiv \cdots \equiv l_k\). Clearly, the value of this instance of Max k-AllEqual is at least the value of the original problem. Moreover, it is at most two times greater than the value of the original problem: if an assignment \(\{x_i\}\) satisfies a constraint in the new problem, then either the assignment \(\{x_i\}\) or the assignment \(\{\bar{x}_i\}\) satisfies the corresponding constraint in the original problem. Therefore, a \(C\) approximation guarantee for Max k-AllEqual translates to a \(C/2\) approximation guarantee for the Max k-CSP. Below we consider only Max k-AllEqual problem.

For brevity, we denote \(\bar{x}_i\) by \(x_{\bar{i}}\). We think of each clause \(C\) as a set of indices: clause \(C\) defines the constraint “(for all \(i \in C\), \(x_i\) is true) or (for all \(i \in C\), \(x_i\) is false)”’. Without loss of generality we assume that there are no unsatisfiable clauses in \(S\), i.e. there are no clauses that have both literals \(x_i\) and \(\bar{x}_i\).

2 Approximation Algorithm

2.1 Relaxation

We consider the following SDP relaxation of Max k-AllEqual problem.

\[
\max \frac{1}{k^2} \sum_{C \in S} \left\| \sum_{i \in C} v_i \right\|^2
\]

\[
\left\| v_i \right\|^2 = 1
\]

\[
v_i = -v_{\bar{i}}.
\]

This is indeed a relaxation of the problem: in the intended solution \(v_i = e\) if \(x_i\) is true, and \(v_i = -e\) if \(x_i\) is false (where \(e\) is a fixed unit vector). Then the value of the SDP is greater than or equal to the value of the Max k-AllEqual problem.

2.2 Algorithm

We use the following theorem of Nesterov [4].
Theorem 2.1. There exists an efficient algorithm that given a positive semidefinite matrix $A = (a_{ij})$, and a set of unit vectors v_i, assigns ± 1 to variables z_i, s.t.

$$\sum_{i,j} a_{ij} z_i z_j \geq \frac{2}{\pi} \sum_{i,j} a_{ij} \langle v_i, v_j \rangle.$$

Observe that the quadratic form

$$\frac{1}{k^2} \sum_{C \in S} \left(\sum_{i \in C} z_i \right)^2$$

is positive semidefinite. Therefore we can use the algorithm from Theorem 2.1. Given vectors v_i as in the SDP relaxation, it yields numbers z_i s.t.

$$\frac{1}{k^2} \sum_{C \in S} \left(\sum_{i \in C} z_i \right)^2 \geq \frac{2}{\pi} \frac{1}{k^2} \sum_{C \in S} \left\| \sum_{i \in C} v_i \right\|^2$$

$z_i \in \{\pm 1\}$

$z_i = -z_{-i}$

(Formally, v_{-i} is a shortcut for $-v_i$; z_{-i} is a shortcut for $-z_i$).

In what follows, we assume that $k \geq 3$ — for $k = 2$ we can use the MAX CUT algorithm by Goemans and Williamson [1] to get a better approximation2.

We now present the approximation algorithm.

Approximation Algorithm for the Max k-AllEqual Problem

1. Solve the semidefinite relaxation. Get vectors v_i.

2. Apply Theorem 2.1 to vectors v_i as described above. Get values z_i.

3. Let $\delta = \sqrt{\frac{2}{k}}$. For each $i \geq 1$ assign $x_i = 1$ (true) w.p. $\frac{1 + \delta z_i}{2}$, assign $x_i = -1$ (false) w.p. $\frac{1 - \delta z_i}{2}$.

2.3 Analysis

Theorem 2.2. The approximation algorithm finds an assignment satisfying at least $c \frac{k}{2^k} \text{OPT}$ clauses (where $c > 0.88$ is an absolute constant), given that OPT clauses are satisfied in the optimal solution.

2Our algorithm works for $k = 2$ with a slight modification: δ should be less than 1.
Proof. Denote $Z_C = \frac{1}{k} \sum_{i \in C} z_i$. Then Theorem 2.1 guarantees that

$$
\sum_{C \in S} Z_C^2 = \frac{1}{k^2} \sum_{C \in S} \left(\sum_{i \in C} z_i \right)^2 \geq \frac{2}{\pi} \frac{1}{k^2} \sum_{C \in S} \left\| \sum_{i \in C} v_i \right\|^2 = \frac{2}{\pi} \text{SDP} \geq \frac{2}{\pi} \text{OPT},
$$

where SDP is the SDP value.

Note that the number of z_i equal to 1 is $\frac{1 + Z_C}{2} k$, number of z_i equal to -1 is $\frac{1 - Z_C}{2} k$. The probability that a constraint C is satisfied equals

$$
\Pr (C \text{ is satisfied}) = \Pr (x_i = 1 \text{ for all } i \in C) + \Pr (x_i = -1 \text{ for all } i \in C)
= \prod_{i \in C} \frac{1 + \delta z_i}{2} + \prod_{i \in C} \frac{1 - \delta z_i}{2}
= \frac{1}{2^k} \left((1 + \delta) \frac{1 + Z_C}{2} k \cdot (1 - \delta) \frac{1 - Z_C}{2} k + (1 - \delta) \frac{1 - Z_C}{2} k \cdot (1 + \delta) \frac{1 + Z_C}{2} k \right)
= \frac{1}{2^k} (1 - \delta^2)^{k/2} \left(\frac{1 + \delta}{1 - \delta} Z_C^{k/2} + \frac{1 - \delta}{1 + \delta} Z_C^{k/2} \right)
= \frac{1}{2^k} 2(1 - \delta^2)^{k/2} \cosh \left(\frac{1}{2} \ln \frac{1 + \delta}{1 - \delta} \cdot Z_C k \right).
$$

Here, $\cosh t \equiv \frac{e^t + e^{-t}}{2}$. Let α be the minimum of the function $\frac{\cosh t}{t^2}$. Numerical computation shows that $\alpha > 0.93945$. We have,

$$
2(1 - \delta^2)^{k/2} \cosh \left(\frac{1}{2} \ln \frac{1 + \delta}{1 - \delta} \cdot Z_C k \right) > 2(1 - \delta^2)^{k/2} \alpha \left(\frac{1}{2} \ln \frac{1 + \delta}{1 - \delta} \cdot Z_C k \right)^2.
$$

We now lower bound the right hand side. Recall that $\delta = \sqrt{2/k}$ and $k \geq 3$. We have

$$
(1 - \delta^2)^{k/2} = (1 - \frac{2}{k})^{k/2} \geq (1 - \frac{2}{k}) \frac{1}{e}.
$$

Then

$$
\left(\ln \frac{1 + \delta}{1 - \delta} \right)^2 \geq (2\delta)^2 = \frac{8}{k}.
$$

Combining these bounds we get,

$$
2\alpha(1 - \delta^2)^{k/2} \left(\frac{1}{2} \ln \frac{1 + \delta}{1 - \delta} \cdot Z_C k \right)^2 \geq \left(1 - \frac{2}{k}\right) \frac{4\alpha k}{e} Z_C^2.
$$

However, it turns out that the factor $1 - \frac{2}{k}$ is not necessary; the following bound holds,

$$
2\alpha(1 - \delta^2)^{k/2} \left(\frac{1}{2} \ln \frac{1 + \delta}{1 - \delta} \cdot Z_C k \right)^2 \geq \frac{4\alpha k}{e} Z_C^2.
$$
We get,
\[\Pr \left(C \text{ is satisfied} \right) \geq \frac{4\alpha}{e} \frac{k}{2^k} Z_C^2. \]

So the expected number of satisfied constraints is
\[\sum_{C \in S} \Pr \left(C \text{ is satisfied} \right) \geq \sum_{C \in S} \frac{4\alpha}{e} \frac{k}{2^k} Z_C^2 = \frac{4\alpha}{e} \frac{k}{2^k} \sum_{C \in S} Z_C^2 \geq \frac{4\alpha}{e} \frac{k}{2^k} \cdot \frac{2}{\pi} \cdot \text{OPT}. \]

We conclude that the algorithm finds an \(\frac{8\alpha}{\pi e} \frac{k}{2^k} > 0.88 \frac{k}{2^k} \) approximation with high probability.

References

