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Abstract

In this note we present an approximation algorithm for MAX 2SAT that given a
(1 − ε) satisfiable instance finds an assignment of variables satisfying a

1 − O(
√

ε)

fraction of all constraints. This result is optimal assuming the Unique Games Conjec-
ture.

The best previously known result, due to Zwick, was 1 − O(ε1/3). We believe that
the analysis of our algorithm is much simpler than the analysis of Zwick’s algorithm.

1 Introduction

In the seminal paper [4], Goemans and Williamson constructed an approximation algorithm
for MAX CUT, that given a 1 − ε satisfiable instance finds an assignment satisfying a
1−O(

√
ε) fraction of all constraints. In 1998, Zwick developed an approximation algorithm

for a more general problem, MAX 2SAT. Given a 1 − ε satisfiable instance his algorithm
satisfies a 1 − O(ε

1

3 ) fraction of all constraints. In this note we close the gap between the
approximation guarantees for these two problems. Namely, we present an algorithm that
satisfies a 1 − O(

√
ε) fraction of all constraint.

Khot, Kindler, Mossel, and O’Donnell [6] showed that the approximation guarantee of
Goemans and Williamson is optimal assuming the Unique Games Conjecture of Khot [5].
Thus our result is also tight assuming the Unique Games Conjecture (since MAX 2SAT is a
generalization of MAX CUT).

Let us now formally define the problem.

Definition 1.1 (MAX 2SAT). We are given a set of boolean variables x1, . . . , xn and a
set of clauses of the form xi → xj, x̄i → xj, x̄i → xj, and x̄i → x̄j. Our goal is to assign a
value “0” or “1” to each variable xi so as to maximize the number of satisfied clauses.
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Remark 1.1. In MAX CUT the clauses are of the form xi ↔ x̄j.

The following table shows the best previously known results for these problems. It is
interesting to note that the approximation guarantees for MAX 2SAT and MAX CUT were
the same for ε < 1/ log n.

Range MAX CUT MAX 2SAT

ε > 1/ log n 1 − O(
√

ε) [4] 1 − ε1/3 [7]

ε < 1/ log n 1 − O(
√

ε log n) [1] 1 − O(
√

ε log n) [1]

2 Approximation Algorithm

2.1 SDP relaxation

In this section we describe the vector program (SDP) for MAX 2SAT. For convenience we
replace each negation x̄i with a new variable x−i that is equal by the definition to x̄i. We
now rewrite all clauses in the form xi → xj , where i, j ∈ {±1,±2, . . . ,±n}.

For each xi, we introduce a vector variable vi in the SDP. We also define a special unit
vector v0 that “corresponds” to the value 1: in the intended (integral) solution vi = v0, if
xi = 1; and vi = −v0, if xi = 0. The SDP contains the constraints that all vectors are unit
vectors; vi and v−i are opposite; and some `2

2-triangle inequalities.
For each clause xi → xj we add the term

1

8

(

‖vj − vi‖2 − 2〈vj − vi, v0〉
)

to the objective function. In the intended solution this expression equals to 1, if the clause
is not satisfied; and 0, if it is satisfied. Therefore, our SDP is a relaxation of MAX 2SAT
(the objective function measures how many clauses are not satisfied). Note that each term
in the SDP is positive due to the triangle inequality constraints.

We get the following SDP:

minimize
1

8

∑

clauses xi→xj

‖vj − vi‖2 − 2〈vj − vi, v0〉

subject to

‖vj − vi‖2−2〈vj − vi, v0〉 ≥ 0 for all clauses vi → vj

‖vi‖2 = 1 for all i ∈ {0,±1, . . . ,±n}
vi = −v−i for all i ∈ {±1, . . . ,±n}

In a slightly different form, this semidefinite program was introduced by Feige and Goe-
mans [3]. Later, Zwick [7] used this SDP in his algorithm.
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2.2 Algorithm and Analysis

We now present the approximation algorithm.

Approximation Algorithm

1. Solve the SDP. Denote by SDP the objective value of the solution and by ε the
fraction of the constraints “unsatisfied” by the vector solution, that is,

ε =
SDP

#constraints
.

2. Pick a random Gaussian vector g with independent components distributed as
N (0, 1).

3. For every i,

(a) Project the vector g to vi:
ξi = 〈g, vi〉.

Note, that ξi is a standard normal random variable, since vi is a unit vector.

(b) Pick a threshold ti as follows:

ti = −〈vi, v0〉
/√

ε .

(c) If ξi ≥ ti, set xi = 1, otherwise set xi = 0.

It is easy to see that the algorithm always obtains a valid assignment to variables: if
xi = 1, then x−i = 0 and vice versa. We will need several facts about normal random
variables. Denote the probability that a standard normal random variable is greater than
t ∈ R by Φ̃(t), in other words

Φ̃(t) ≡ 1 − Φ0,1(t) = Φ0,1(−t),

where Φ0,1 is the normal distribution function. The following lemma gives a lower and upper
bounds on Φ̃(t) (for the proof see, e.g. [2]).

Lemma 2.1. For every positive t,

t√
2π(t2 + 1)

e−
t2

2 < Φ̃(t) <
1√
2πt

e−
t2

2 .

Corollary 2.2. There exists a constant C such that for every positive t, the following in-

equality holds Φ̃(t) ≤ C 1√
2π

e−
t2

2 .
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A clause xi → xj is not satisfied by the algorithm if ξi ≥ ti and ξj ≤ tj (i.e. xi is set to
1; and xj is set to 0). The following lemma bounds the probability of this event.

Lemma 2.3. Let ξi and ξj be two standard normal random variables with covariance 1−2∆2

(where ∆ ≥ 0). For all real numbers ti, tj and δ = (tj − ti)/2 we have (for some absolute
constant C)

1. If tj ≤ ti,
Pr (ξi ≥ ti and ξj ≤ tj) ≤ C min(∆2/|δ|, ∆).

2. If tj ≥ ti,
Pr (ξi ≥ ti and ξj ≤ tj) ≤ C(∆ + 2δ).

Proof. First note that if ∆ = 0, then the above inequalities hold (since ξj = ξi almost surely).
If ∆ ≥ 1/2, then the right hand sides of the inequalities are greater than 1 (for sufficiently
large C) and thus the inequalities hold. So we assume 0 < ∆ < 1/2.

1. Let ξ = (ξj +ξi)/2 and η = (ξi−ξj)/2. Notice that Var [ξ] = 1−∆2, Var [η] = ∆2; and
random variables ξ and η are independent. We estimate the desired probability as follows:

Pr (ξj ≤ tj and ξi ≥ ti) = Pr

(

η ≥
∣

∣

∣

∣

ξ − tj + ti
2

∣

∣

∣

∣

+
ti − tj

2

)

=

∫ +∞

−∞
Pr

(

η ≥
∣

∣

∣

∣

ξ − tj + ti
2

∣

∣

∣

∣

+
ti − tj

2
| ξ = t

)

dFξ(t).

Note that the density of the normal distribution with variance 1 − ∆2 is always less than
1/

√

2π(1 − ∆2) < 1, thus we can replace dFξ(t) with dt.

Pr (ξj ≤ tj and ξi ≥ ti) ≤
∫ +∞

−∞
Φ̃





∣

∣

∣
t − tj+ti

2

∣

∣

∣
+

ti−tj
2

∆



 dt

=

∫ +∞

−∞
Φ̃

( |t| + |δ|
∆

)

dt = ∆

∫ +∞

−∞
Φ̃ (|s| + |δ| /∆) ds

(by Corollary 2.2) ≤ C ′∆ · 1√
2π

∫ +∞

−∞
e−(|s|+|δ|/∆)2/2ds = 2C ′∆ · Φ̃(|δ| /∆)

(by Lemma 2.1) ≤ 2C ′ min(∆2 /|δ| , ∆).

2. We have

Pr (ξj ≤ tj and ξi ≥ ti) ≤ Pr (ξj ≤ tj and ξi ≥ tj) + Pr (ti ≤ ξi ≤ tj)

≤ C(∆ + 2δ).

For estimating the probability Pr (ξj ≤ tj and ξi ≥ tj) we used part 1 with ti = tj .
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Theorem 2.4. The approximation algorithm finds an assignment satisfying a 1 − O(
√

ε)
fraction of all constraints, if a 1 − ε fraction of all constraints is satisfied in the optimal
solution.

Proof. We shall estimate the probability of satisfying a clause xi → xj . Set ∆ij = ‖vj−vi‖/2
(so that cov(ξi, ξj) = 1− 2∆2

ij) and δij = (tj − ti)/2 ≡ 〈vj − vi, v0〉/(2
√

ε). The contribution
of the term to the SDP is equal to cij = (∆2

ij + δij

√
ε)/2.

Consider the following cases (we use Lemma 2.3 in all of them):

1. If δij ≥ 0, then the probability that the constraint is not satisfied is at most

C(∆ij + 2δij) ≤ C(
√

2cij + 4cij/
√

ε).

2. If δij < 0 and ∆2
ij ≤ 4cij , then the probability that the constraint is not satisfied is at

most
C∆ij ≤ 2C

√
cij .

3. If δij < 0 and ∆2
ij > 4cij , then the probability that the constraint is not satisfied is at

most
C∆2

ij

|δij |
=

C∆2
ij

(∆2
ij − 2cij)/

√
ε
≤ C

√
ε∆2

ij

∆2
ij − ∆2

ij/2
= 2C

√
ε.

Combining these cases we get that the probability that the clause is not satisfied is at most

4C(
√

cij + cij/
√

ε +
√

ε).

Summing over all clauses and using convexity of the function
√ · we get that the expected

fraction of unsatisfied constraints is O(
√

ε).
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