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Abstract

Detecting the relevant attributes of an unknown target concept is an important and well
studied problem in algorithmic learning. Simple greedy strategies have been proposed that
seem to perform reasonably well in practice if a sufficiently large random subset of examples
of the target concept is provided. Introducing a new notion called Fourier-accessibility allows
us to characterize the class of Boolean functions precisely for which a standard greedy learning
algorithm successfully learns all relevant attributes. Technically, this is achieved by deriving new
relations between the learnability of a function and its Fourier spectrum. We prove that if the
target concept is Fourier-accessible, then the success probability of the greedy algorithm can be
made arbitrarily close to one. On the other hand, if the target concept is not Fourier-accessible,
then the error probability tends to one.
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1 Introduction

For many application areas, greedy strategies are natural, important, and efficient heuristics. In
some cases, such as for simple scheduling problems, it has been shown that greedy strategies
actually find a global optimum. To prove such a property, several different proof techniques have
been developed (see, e.g., Kleinberg and Tardos [19, Chapter 4]).

For the vast majority of optimization problems, however, greedy heuristics do not always achieve
optimal solutions. In such cases, the behaviour of greedy algorithms is hardly understood. In
particular, the question, “What is the subset of the input space for which a greedy algorithm
guarantees optimality?” has rarely been answered. One notable exception is the characterization
of transportation problems using the Monge property by Shamir and Dietrich [23].

Sometimes one can at least show that a specific greedy algorithm achieves a certain nontrivial
approximation ratio. This, for example, holds for the SET COVER problem with a logarithmic
approximation factor (see [18, 14, 24]), which has been proven to be best possible by Feige [15].

Confronted with an unknown target concept f : A™ — B on n variables, the problem of de-
tecting which variables x; (also referred to as attributes or features) are relevant to f is known as
relevant feature selection. This problem lies at the heart of many data mining applications; this is
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particularly the case if f depends only on a small number d of all n attributes—such concepts are
called d-juntas. A survey of this topic has been provided by Blum and Langley [11].

To infer relevant attributes from a randomly drawn sample S = (mk,yk)kzl,__,m with zF =
(zh,...,2F) € A" and y* = f(a*) € B, the key task is to find a minimal set of attributes R C
{x1,...,2,} such that S admits a consistent hypothesis h (i.e., h(z*) = y* for all k) that de-
pends only on the variables in R. By standard arguments [12], once the sample size m exceeds
poly(2¢,log n), with high probability there remains only one such hypothesis—the target concept
itself. Finding such a set R is equivalent to solving the following SET COVER instance. The ground
set is the set of all pairs {k, £} such that y* # y*. A pair {k, ¢} may be covered by any attribute ;
such that xf #* xf. The goal is to cover the ground set by as few attributes as possible. This
reduction opens the door to apply well-known greedy heuristics: the most generic one, which we
call GREEDY, successively selects the largest remaining set and deletes all covered elements, see
Johnson [18] or Chvatal [14].

For relevant feature selection, this approach has been proposed by Almuallin and Dietterich [4]
and Akutsu and Bao [1]. Experimental results have been obtained for artificially generated instances
as well as for real-world data from various areas, see Almuallim and Dietterich [4], Akutsu, Miyano,
and Kuhara [2, 3], and Boros et al. [13]. Akutsu et al. [3] have shown how to implement GREEDY
in such a way that its running time is only O(mn).

In this paper, we are mainly concerned with Boolean concepts f, i.e., A = B = {0,1}, and
uniformly distributed attributes. For this case, Akutsu et al. [3] have proved that with high prob-
ability, GREEDY successfully infers the relevant variables for the concept class of conjunctions of
attributes or their negations (i.e., monomials) and that a small sample of size poly (2%, log n)already
suffices. Fukagawa and Akutsu [16] have extended this result to functions f that are unbal-
anced with respect to all of their relevant variables (i.e., for z uniformly chosen at random,
Pr[f(z) = 1|z; = 0] # Pr[f(z) = 1|z; = 1] for each relevant z;).

The main result of this paper is a concise characterization of the class of target concepts for
which GREEDY is able to infer the relevant variables. This class properly contains the concept
classes mentioned above. The new characterization is based on a property of the Fourier spectrum
of the target concept, which we call Fourier-accessibility. A function f : {0,1}" — {0, 1} is Fourier-
accessible if for each relevant variable, one can find a sequence ) C I1 € ... € I C [n] such that
i € I, and for all j € {1,...,s}, [[; \ [j—1] = 1 and f(Ij) # 0. Equivalently, f # 0 is Fourier-
accessible if and only if for every x; that is relevant to f, there exists I C [n] with ¢ € I and a path
from () to I in the Fourier support graph. This graph is the subgraph of the n-dimensional Hamming
cube induced by the Fourier support of f, i.e., the set of subsets I of [n] such that f(I) £ 0.

We prove that GREEDY correctly infers all relevant variables of Fourier-accessible d-juntas
f:{0,1}" — {0,1} under the uniform distribution from m = poly(2%,logn,log(1/J)) examples
with probability at least 1 — J. On the other hand, we show that if a function f is not Fourier-
accessible, then the error probability of GREEDY is at least 1 — d?/(n — d). In particular, this
probability tends to 1 as d is fixed and n — oo or as d — oo and n € w(d?).

In a previous paper [6], we have considered an alternative greedy strategy, called GREEDY
RANKING. It ranks the sets of the set cover instance by their size and then successively picks
the largest ones (without deleting anything) until all elements are covered. We have shown that
GREEDY RANKING successfully infers all relevant variables of a function f if a certain gap condition
A;(f) > 0is satisfied for each relevant variable x;. The gap A;(f) measures how much the expected
number of pairs covered by x; differs from the expected number of pairs covered by some irrelevant
variable. In this paper, we show that the gap condition is equivalent to the statement that for all
relevant variables x;, f (i) # 0. This, in turn, is equivalent to Fukagawa and Akutsu’s condition
of f being unbalanced with respect to all of its relevant attributes. We call functions that satisfy



this property 1-low. Prominent examples of 1-low functions are monotone functions, monomials
and clauses of arbitrary literals, and random functions (see Blum and Langley [11] and Mossel et
al. [22] for the latter item).

In general, for ¢ € {1,...,n}, a function f: {0,1}" — {0,1} is said to be t-low (see also [7]) if
for each relevant variable x; of f, there exists I C [n] with ¢ € I such that |I] < ¢ and f(I) # 0.

Similarly to the analysis of GREEDY, we obtain that GREEDY RANKING learns exactly the class
of 1-low functions. Since all 1-low functions are Fourier-accessible (but not vice versa), these results
also provide an analytic argument that the dynamic variant GREEDY (that adjusts the covering
sets after each round) is in general preferable to the static version GREEDY RANKING.

There is a long tradition of relating algorithmic learning problems to spectral properties of
Boolean functions, see, e.g., Linial, Mansour, and Nisan [20], Mansour [21], Blum et al. [10].
Specifically, Mossel, O’Donnell, and Servedio [22] have combined spectral and algebraic methods
to reduce the worst-case running time for learning the class of all n-ary d-juntas to roughly n%7¢
(a trivial approach is to test all ©(n?) sets of potentially relevant variables).

Here we extend this kind of approach to derive our new results. The GREEDY algorithm inves-
tigated in this paper does not exploit any properties of the Fourier spectrum explicitly. However,
we show that Fourier-accessibility is necessary and sufficient for this algorithm to work successfully.
Thus, we obtain a purely analytical characterization for the correctness set of a nontrivial greedy
algorithm.

This paper is organized as follows. The terminology and the learning model are introduced in
Section 2. The reduction to SET COVER and the GREEDY algorithm are presented in Section 3.
Section 4 provides two major lemmas used in the proof of our main results for GREEDY, which are
presented in Section 5. Some variations of GREEDY are discussed in Section 6.1. Further results for
generalizations to functions f : Z — {0,1} and non-uniform distributions are given in Section 6.2.
In Section 6.3, a few more open problems are posed.

2 Preliminaries

For n € N, let [n] = {1,...,n}. We consider the problem of inferring the relevant variables of an
unknown function f : {0,1}" — {0, 1} from randomly drawn examples. Such a function f will also
be called a concept. Variable x; is relevant to f if fy,—0 # fz,=1, where f;,—, denotes the restriction
of f with variable z; set to a. The set of variables that are relevant to f is denoted by rel(f), whereas
irrel(f) denotes the set of variables that are irrelevant (i.e., not relevant) to f. A function with
|rel(f)] < d is called a d-junta. Let D : {0,1}" — [0,1] be a probability distribution. We assume
that an algorithm for inferring the relevant variables receives a sequence S of randomly generated
examples (z¥,y*), k € [m], where ¥ € {0,1}" is drawn according to D and y* = f(2*) € {0, 1}.
Such a sequence is called a sample for f of size m. If for another concept h, y* = h(z¥) for all
k € [m], h is said to be consistent with S.

A concept f:{0,1}" — {0,1} may also be considered as a Bernoulli random variable, thus we
will use the notation Pr[f = b] = Pry.p[f(z) = 0] for b € {0,1} and Var(f) = Pr[f = 0] Pr[f = 1].

We will mostly be concerned with the case that D is the uniform distribution on {0,1}".
Extensions to f : Z' — {0,1} and to non-uniform attribute distributions D are discussed in
Section 6.2. The following well-known Chernoff bound can, e.g., be found in Alon and Spencer [5].

Fact 2.1 (Chernoff Bound). Let X be a random variable that is binomially distributed with
parameters n and p, and let ;1 = pn be the expectation of X. For all e with 0 < e < 1, Pr[|X —p| >
en] < 2e72n,



Consider the space R{%1" of real-valued functions on the hypercube. The inner product (f,g9) =
27" Y seqoaye f(@)g(z) turns R{%1}" into a Hilbert space of dimension 2" with orthonormal basis

(x1 | I C [n]), where xj(z) = (—=1)Zier® for z € {0,1}", see for example Bernasconi [9).
Let f:{0,1}" — R and I C [n]. The Fourier coefficient of f at I is

fy=27 % fl@)-xix).

z€{0,1}"

If I = {i}, we write (i) instead of f({i}). We have the Fourier exzpansion f(x) = > 1Cn] () -xr(z)
for all z € {0,1}". N

Definition 2.1 (Fourier support). Let f : {0,1}" — {0,1}. The Fourier support of f is
supp(f) = {I C [n] | f(I) # 0}. The Fourier support graph FSG(f) of f is the subgraph of the
n-dimensional Hamming cube induced by the sets in supp(f).

Fourier coefficients are connected to relevant variables as follows (cf. [22, 7]):

Lemma 2.1. Let f: {0,1}" — {O,Al}. Then for all i € [n], x; is relevant to f if and only if there
exists I C [n] such that i € I and f(I) # 0.

Hence whenever we find a nonzero Fourier coefficient f (I), we know that all variables x;, i € I,
are relevant to f. Moreover, all relevant variables can be detected in this way, and we only have to
check out subsets of size at most d = |rel(f)|. However, there are ©(n?) such subsets, an amount
that one would generally like to reduce. For the class of all n-ary d-juntas, the best known learning
algorithm to date that for all concepts is guaranteed to find the relevant attributes is due to Mossel
et al. [22] and runs in time roughly n% 7. As discussed above, greedy heuristics require only time
polynomial in n with an exponent independent of d.

For our characterization of the functions to which GREEDY is applicable, we introduce the
concept of Fourier-accessibility.

Definition 2.2 (Fourier-accessible). Let f : {0,1}" — {0,1} and ¢ € [n]. Variable z; is accessible
(with respect to f) if there exists a sequence ) C I1 C ... € Iy C [n] such that

1. iel,

2. for all j € [s], |I; \ Ij—1| =1, and

3. for all j € [s], f(I;) # 0.
The set of variables that are accessible with respect to f is denoted by acc(f), whereas the set of
inaccessible variables with respect to f is denoted by inacc(f). The function f is called Fourier-
accessible if and only if every variable that is relevant to f is also accessible, i.e., acc(f) = rel(f).

Equivalently, z; is accessible if and only if there exists I € supp( f ) with 4 € I such that there is
a path in FSG(f) from 0 to I. Since f(0) = Pr[f(z) = 1], 0 € supp(f) whenever f # 0. Hence f is
Fourier-accessible if and only if the union of all subsets I € supp( f ) that belong to the connected
component of () in FSG(f) equals rel(f).

Throughout the paper, if f is clear from the context, we call a variable that is relevant to f
simply relevant. Similarly, a variable that is accessible with respect to f is simply called accessible.

Simple examples of a Fourier-accessible function f; and a non-Fourier-accessible function fs are
given in Table 1. The corresponding Fourier support graphs are presented in Figure 1.

For R C [n] and v € {0,1}%, denote by fr., the restriction of f, in which the variables z;,
1 € R, are set to the values provided by v. The following lemma reveals a connection between
vanishing Fourier coefficients of functions and their restrictions.



flavas,xs) [ fO) fO) f@) fB) fdL2h) fdL3h fd2.3D) f({1,2,3})
fi=x1® (k2 Amg) | 1/2 —1/4 0 0 —1/4 —1/4 0 1/4
fo=(x1®x2) N3 1/4 0 0 —1/4 —1/4 0 0 1/4

Table 1: Examples of Boolean functions and their Fourier spectra.
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Figure 1: Fourier support graphs of functions f; and fo presented in Table 1.

Lemma 2.2. Let f : {0,1}" — {0,1}, R C [n], and i € [n]\ R. If for all I C R, f(IU{i}) =0,
then for all v € {0, 1}, fr_,(i) = 0.

Proof. Consider the real multi-linear polynomial p with variables z; = (—1)%¢ that represents f,
ie., p(z1,...,20) = f(x1,...,2,) for all x € {0,1}". The coefficient of [[,c; 2 in p is f(I). Since
all coefficients f(IU{i}), I C R, vanish in p, the coefficient f(i) must also vanish in the polynomial
p that represents fr. ,. Hence jg:v(z) =0. O

Using a standard result due to Blumer et al. [12], Almuallim and Dietterich [4] proved that if
the sample size is sufficiently large, then the target concept is the only concept that depends on at
most d variables and that is consistent with the sample:

Lemma 2.3 ([4]). Let f : {0,1}" — {0,1}, d = |rel(f)|, and 6 > 0. Let S be a uniformly
distributed sample of size

1
m > 24 (lng+dlnn+2dln2> (1)

for f. Then with probability at least 1 — 40, f is the only hypothesis with at most d relevant variables
that is consistent with S. In particular, (1) is implied by

m > 224+1 ln% .

3 The Reduction to Set Cover and the Greedy Algorithm

With a sample S = (2%, 9")repm € ({0,1}" x {0,1})™, we associate the functional relations
graph Gg = (V,E) which is defined as follows (see also [3, 6]). Its vertices correspond to the
examples of S, i.e., V = [m]. They are partitioned into the subset of examples A with y* = 0,
and the examples A1) with y* = 1. Gg is the complete bipartite graph with the vertex set partition
[m] = A©® U AD . Given S, our primary goal is to determine a set of variables R C {z1,...,2,}
such that there exists some concept g : {0,1}" — {0,1} with rel(g) C R that is consistent with
the sample. In this case, R is said to explain the sample. Note that g may not be identical to the
original concept f, nor may the set R contain all relevant variables of f.



GREEDY

1: input S = ((xlf, . ,x’fl),yk)ke[m]

2 B {{k,0} | k¢ € [m],y* £y}

3: R—1)

4: while E#( do

5: for i=1 to n do

6: E; — {{k,£} € E | z¥ # 2%}

7:  select i € [n] with maximum |E;|
8: E—FE\E

9: R<—RU{$Z}

10: output GREEDY(S) =R

Figure 2: Algorithm GREEDY.

In order to find an explaining set of variables, we have to specify, for each edge {k,(} € E, a
relevant variable that differs in 2% and xf. Such a variable is said to explain the edge. Formally, an
edge {k,?} € E may be covered by attribute x; iff xf #+ xf The set of edges that may be covered
by x; is denoted by FE;. The characteristic vector of an edge e = {k, ¢} € E is

cle) = (c1(e),...,en(e)) = (x]f @x{,...,xﬁ @xfl) . (2)

It is sometimes referred to as a conflict which may be covered by any variable x; such that ¢;(e) = 1,
see e.g. Almuallim and Dietterich [4].

A set R of variables thus explains the sample S if and only if these variables explain all edges.
The previous discussion is formally summarized by the following lemma:

Lemma 3.1. Let S € ({0,1}" x {0,1})™ be a sample and R C {x1,...,x,}. Then R explains S if
and only if E = Ug,crE;, where E is the edge set of the functional relations graph Gg.

The lemma provides a reduction from the problem of inferring small sets of explaining variables
to the problem of finding a small cover of E by sets from F71, ..., E,. This allows us to use algorithms
for the set cover problem to find explaining variables. The best known and most generic algorithm
for this problem is a greedy algorithm that successively picks a set that covers the largest amount
of elements not covered so far. This algorithm, which we call GREEDY, is presented in Figure 2.

If there are several sets of maximum cardinality in step 7 of GREEDY, it picks one of them at
random. The notion of success for GREEDY is captured as follows.

Definition 3.1 (A-success). Let f:{0,1}" — {0,1}, S be a sample for f, and A > 1. GREEDY is
A-successful on input S if and only if [GREEDY(S)| < A-|rel(f)| and GREEDY(S) 2 rel(f). GREEDY
is successful (or succeeds) if and only if it is 1-successful, i.e., GREEDY(S) = rel(f), otherwise we
say that it fails. GREEDY A-fails if and only if it is not A-successful.

4 Two Crucial Lemmas

In this section, we provide two key lemmas that will be used in the proofs of our main results
in Section 5. For technical reasons, it proves useful to consider the expanded attribute space of



attributes

xy = EBJU, for I C [n]
i€l
and the corresponding edge sets

By ={{k, ¢} € E| 2} # 2t} .

Lemma 4.1 shows how to express the cardinality of E; \ (E;, U...UE;,) in terms of the cardinalities
of the sets Er, I C {i1,...,is}. Lemma 4.2 then shows how to estimate the cardinalities of the
latter sets.

Lemma 4.1. Let S € ({0,1}" x {0,1})™ be a sample and Gg = (V,E) be the corresponding
functional relations graph. Let R C [n] and i* € [n]\ R and define E' = J;cp Es. Then

B \ E'| = 27 B (| Bromy
ICR

Proof. Recall the definition (2) of the characteristic vector ¢(e) € {0,1}" of an edge e € E. Using
the notation of the expanded variable space, we write cr(e) = @, ci(e). Clearly, we can write
|Er| =3 ccpcile) for all I C [n]. Let I C R. Since for e € E'\ Ej«, we have ¢y« (e) = cr(e),

|Erugy| — |Er] = Z (crugiy(e) —cir(e)) -

eCl,;x

—|Eq]) -

For e € E;«, we have

-1 ifee Ey
copyle) —erl) =y o

Now for all j € R and all e € E;, we have e € Ey for exactly half of the sets I C R, so that
>_rcrlerugiy(e) —cr(e)) = 0 in this case. Consequently,

S (B = 1B = D0 > (eupsye) —er(e) = Y > (erugsyle) — erle)) -

ICR e€E;x ICR e€E\E' ICR

On the other hand, if e € E;- \ ', then e & Ey for all I C R. Hence, 3¢ p(cruq-y(e) —cr(e)) = 217

in this case and thus
> (B
ICR

—|E) =28 |Ex \ E| |

proving the claim. O

Before stating the second lemma, let us briefly take a closer look at the cardinalities |E;| for
irrelevant variables z;. Given examples (2, y*) and (z¢,y"), k # ¢, the probability that {k,¢} € E;
is Pr[zF # xf A y* # y¥]. Since for irrelevant z;, the value of z¥ is independent of the classification
y*, the probability equals

Prlaf # af] - Prly* # y] = § - 2Pe[f = 0] Pa[f = 1] = Var(f) .

Hence the expectation of |E;| is 3 Var(f)m(m — 1) ~ 1 Var(f)m? since there are $m(m — 1) pairs

{k, £} with k,¢ € [m] and k # ¢. A moment’s reflection shows that also for I C [n] with I Z rel(f),
the expectation of |E| equals Var(f)m(m —1)/2.

The following lemma generalizes this result to arbitrary I C [n], revealing an unexpected rela-
tionship between the cardinalities |E;| and the Fourier coefficients f(I). This connection is spelled
out in combination with a Chernoff style mass concentration of the cardinalities |Ey|. Note that

A~

for I C [n] with I Z rel(f), f(I) =0 by Lemma 2.1.



Lemma 4.2. Let f : {0,1}" — {0,1}. Then there exist c1,ca > 0 such that for all I C [n] and
arbitrary € with 0 <e <1,

Pr H|E1| - quz‘ > em2] < 01670262’” )

where

L (Var(f) + f(D?) . (3)

Proof. For a,b € {0,1}, let % = Prlz; = a A f(x) = b]. It follows that af! + at! = Pr[f(z) = 1].
We first prove that

ay

11, 10 01
ar = aWal + a0 . (4)

Note that f(I) =2"" > zefoyn f(@) - (=1)* = % — all. We have

offaf! +affadl —3Var(f) = (3-afal' +(; ~af)af! — 3 Pr(f(@) = 0] Pr{f(x) = 1]
= % (04}1 + % — 4%l — Pr[f(z) = 1] + Pr[f(x) = 1]2)
F(T)2

= LPrf(e) =12 2o}l = }

Let S be a uniformly distributed sample of size m and for a,b € {0,1}, let A‘}b denote the set of
example indices k such that (z%,y*) = (a,b). Since E; has an edge between all pairs (z*, f(z*))
and (2%, f(z)) with 2% # 24 and f(z*) # f(2*), we obtain E; = {{k, ¢} | k € AC}’O,E € A}fa’l,a €
{0,1}} and hence
|Br| = |AP] - [AF | + |AL°] - | AT

The expected number of examples with x]; = a and y* = b clearly is a‘}bm. By the Chernoff bound
(Fact 2.1), with probability at least 1 — 2e~20m” |A% — a%*m| < dm. Thus we can find ¢;,cy > 0
such that

1Bd] - arm?| = ||| |43+ A2 - JAY| - (Pa! + aftafm?] < e
as claimed (¢; =8, co = 1/2, and § = €¢/2 do the job). O

We should mention that in fact, for all I C [m], the expectation of |E;| is equal to

(Pl + a0 ym(m — 1) = 3 <Var(f) + f(])2> m(m — 1) = aym? .

5 Analysis of Greedy

5.1 Greedy Succeeds for all Functions that are Fourier-Accessible

In this section, we state and prove our main results. Let us start with the positive result, the class
of functions for which GREEDY is successful.

Theorem 5.1. There is a polynomial p such that for every Fourier-accessible function f : {0,1}" —
{0,1} and every § > 0, given a uniformly distributed sample S for f of sizem > p(2%,logn,log(1/5)),
where d = |rel(f)|, GREEDY outputs exactly the variables in rel(f) with probability at least 1 — 6.

Proof. We first show that with high probability, GREEDY outputs at least d variables, provided
that m is sufficiently large. By Lemma 2.3, with probability at least 1 — 0/2, any d-junta that
is consistent with a sample S for f of size m > mg = 22¢+1 ln%” must be f itself. Thus, with
probability at least 1 —§/2, E cannot be covered by less than d sets E; since such a covering would



yield a consistent concept that depends on strictly less than d variables. Now assume that GREEDY
indeed outputs at least d variables. Let the sequence of variables output by GREEDY start with
Tiyy ..., T, For s € [d], let Ry = {i1,...,is}. We prove that with high probability, each variable
that is output is relevant to f. This implies that GREEDY halts exactly after d steps since F can
always be covered by the sets E;, x; € rel(f).

Let e = 27343 For each I C [n] with 1 < |I| < d, we have Pr[||E;| — aym?| > em?] < ¢cje—c2¢'m
by Lemma 4.2. Consequently,

VI C [n] such that 1 < |I| < d: ||E;| — arm?| < em? (5)

with probability at least n =1 — n? - cle*C”Qm. In the following, we assume that (5) holds. Thus,
all subsequent consequences of (5) hold with probability at least 7.

We show by induction on s € [d] that R C rel(f). For s =0, Ry = () C rel(f).

For the induction step, let s € {0,...,d — 1} and assume that R, C rel(f). For i € [n]\ R,
denote by Ei(s) the set of remaining edges in F; after the s-th step of GREEDY, i.e., Ei(s) =
Ez\{Ezl U... UEis}-

Our goal is to show that there exists a relevant variable x;+ such that El(f ) is larger than E](.S)
for all irrelevant variables ;. Since we have not found all relevant variables after step s, there is
an i* € rel(f) \ Rs and an I* C R, such that f(I* U {i*}) # 0 and hence |f(I* U {i*})] > 27<.
Otherwise, none of the variables x; with i € rel(f) \ Rs would be accessible, contradicting the
assumption that f is Fourier-accessible. For arbitrary z; € irrel(f), Lemma 4.1 implies

|E§f)|—|E](s)| = 27 Z (IEwgn| = |Erognl)
PCICRs
> 27 Z ((Oélu{i*}—€)m2—(oqu{j}+e)m2)
PCICR;
> o 3 ((Eva(n+ i gn? - ) m? — (2 var(f) + ) m?
- 0CICR 2 2 2

v

1 .
27¢ <§f(I* Ui +2°- (—26)> m?
> (27371 _2am? > 27322 >0 .

Consequently, in step s + 1, GREEDY prefers the relevant variable x;= to all irrelevant variables. In
particular, GREEDY selects some relevant variable in step s + 1.

It suffices to choose m > my = ¢y ' - 2646(dlnn + In(2¢1 /8)) to have n > 1 — §/2. In total, we
can choose m = max{mg, m;}, which is polynomial in 2¢, logn, and log(1/4), to guarantee that
GREEDY outputs exactly the relevant variables of f. O

5.2 Greedy Fails for all Functions that are not Fourier-Accessible

Lemma 5.1. Let f:{0,1}" — {0,1} be a concept that is not Fourier-accessible and S be a sample
for f of arbitrary size m. Let x;,,...,x; be the variables output by GREEDY on input S. Let
s €{0,...,t — 1} and define Ei(s) =FE;\ (E;, U...UE;,) fori € [n]. Given that {x;,...,z; } C
acc(f) Uirrel(f), the following statements hold.

(a) Let x; be a variable that is relevant but not accessible. Then the random variables ]Ei(s)\ and
all |Ej(s)|, xj & rel(f), conditional to any fived values of af ,...,a¥ and y* = f(a*), k € [m],
are independent and identically distributed.



(b) The probability that x;_,, is relevant to f but not accessible is at most |1L§ee11((§))\?mzl?cc7(m{2‘}|

Proof. (a) We show that for a,b € {0,1} and v € {0,1}%,

Prlz; =a | (zi,...,zi,) =0 A f(x) =b] =

)

N[

just as for the irrelevant variables: Let R = {i1,...,is} and I C R. If I C acc(f), then since x;

is not accessible, f(I U {i}) = 0. Otherwise, I contains some irrelevant variable index, and hence
f(IU{i}) =0 by Lemma 2.1. By Lemma 2.2, fr_,(i) = 0 for all v € {0,1}%. Since

fR<—U(i) = Pr[xi:O/\f}%—v(x) ]

=1] = Prz; = L A frey(z) = 1]
= PI‘[.%'Z' =1A fR<—v(x) = O]

—Pr 1

— PI‘[.%'Z' =0A fR<_v(.%') = 0] ,

and since Prlz; = O A frey(z) = b] + Prjx; = 1 A frey(z) = b] = Pr[fr—y(x) = b], we have
Priz; = a A freo(z) = b] = 3 Pr[fr (z) = b. Consequently, writing 2% for (z;,,...,2;,), we
obtain

Prlz; =aAzlt=vA f(z)=b = Priz;=an f(z)=0b|z% =] -Pr2ft =
= Pr[zi = aA frey(x) =b] - Prlzfl = ]

] .
= %Pr[fRH,(x) = b] - Pr[zft = 0]

= 1Pr[f(z) =b|2® =] Prlz® =
1
= §Pr[f(x) =bAzlt=0] .
Thus, Pr[z; = a | 2 = v A f(x) = b] = 1/2, which proves the claim.
As a consequence of the latter, conditional to the values of xfl, e ,xfs and f(z¥), k € [m], the

cardinalities |Ei(s)| and all |E](.s)|, xj & rel(f), are identically distributed (since these cardinalities
only depend on the outcomes of xf, f (wk), and xfl, ... ,xfs, k € [m], and since all examples are
drawn independently). The independence is obvious.

(b) For a fixed variable x; that is relevant but not accessible, the probability that x; ,, = x; is

at most as large as the probability that x; , = x; conditional to
xi ., € {xip U (irvel(f) \ {ziy, ..., 24, }) -

Since all cardinalities |Ei(s)| corresponding to the variables in {z; }U(irrel(f)\{zi,, ..., x;, }) are iden-
tically distributed, the probability that x; is selected then is at most 1/(] irrel(f)\{xi,, ...,z }+1).
Hence the probability that x; , , is relevant but not accessible is at most

[rel(f) N inacc(f)|/|irrel(f) \ {zi,.--, i }| -
|

The following negative result, the class of functions for which GREEDY fails, complements
Theorem 5.1.

Theorem 5.2. Let f: {0,1}™ — {0,1} be a concept that is not Fourier-accessible and X > 1. Given
a sample S for f of arbitrary size, GREEDY A-fails on input S with probability at least 1 — n)\—;‘lid’

where d = |rel(f)].
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Proof. Let x;,,...,z; be the variables output by GREEDY. For fixed s € {0,...,t — 1}, the
probability that {x;,...,2;,} C acc(f) Uirrel(f) and that x; _, is relevant but not accessible
is at most as large as the probability that x; _, is relevant but not accessible conditional to
{xiy, ... @i, } Cace(f)Uirrel(f), which is at most d/(|irrel(f) \ {zs,, ..., =i, }|) by Lemma 5.1 (b).

Suppose that GREEDY is A-successful on input S, i.e., t < A-d and {z;,,...,2; } 2 rel(f). Since
f is not Fourier-accessible, there exists s € {0,...,t — 1} such that x;,,...,x;, € acc(f) U irrel(f)
and x;,_, is relevant but not accessible. The probability for the latter event is at most ¢ - %.
Hence the probability that GREEDY fails is at least 1 — n>‘_d; 7 U

Note that Theorem 5.2 not only says that GREEDY (with high probability) fails for concepts
that are not Fourier-accessible, but that GREEDY even fails to find all relevant variables of the
target concept in A - |rel(f)| rounds for any A > 1. In addition, note that the claim in Theorem 5.2
is independent of the sample size.

In the past, it has often been emphasized that GREEDY has a “logarithmic approximation
guarantee” (see [1, 3, 11, 16]), i.e., given a sample S for f of size m, GREEDY finds a set of at

most (2lnm + 1) - |rel(f)| variables that explain S. Theorem 5.2 shows that if f is not Fourier-
(21n m+1)d>

n—(2Inm+1)d’
variables (where d = |rel(f)]). Thus, given a sample that originates from a target concept that is
not Fourier-accessible, GREEDY misses some relevant variable with high probability, provided that
m € 2°(")_ In other words, the positive approximability properties of the greedy strategy for the

SET COVER problem do not translate to the learning situation.

accessible, then with probability at least these variables do not contain all relevant

6 Concluding Remarks

6.1 Variations of the Greedy Algorithm

In previous work [6], we have introduced the gap A;(f, D) of variable z; with respect to the
target concept f and the attribute distribution D. It has been shown that the GREEDY RANKING
algorithm (see Section 1) is successful provided that A;(f, D) > 0 for all x; € rel(f). If D is the
uniform distribution, one can prove using (4) that A;(f,D) = a; — 3 Var(f) = %f(z)Q Hence
Ay(f,D) > 0 if and only if f(i) # 0. Moreover, A;(f, D) > 0 for all z; € rel(f) iff f is 1-low.
Similar reasoning to the proof of Theorem 5.2 shows that for functions that are not 1-low, GREEDY
RANKING fails with high probability. Clearly, all 1-low functions are Fourier-accessible. A simple
example of a function that is Fourier-accessible but not 1-low is given by the function f; in Table 1.
Thus, Fourier-accessibility is strictly weaker than 1-lowness — and hence by Theorem 5.1, GREEDY
can cope with a strictly larger class than what has been provided by Fukagawa and Akutsu [16].

An example of a function that is 2-low but not Fourier-accessible (and thus not 1-low either)
is the not-all-equal function NAE : {0,1}¢ — {0,1} defined by NAE(x) = 1 iff there exist 4,5 € [d]
such that x; # x;. For concepts which restricted to their relevant variables become equal to NAE,
it suffices to check for all I C [n] with |I| = 2, whether f(I) # 0. This motivates us to seek
for an extension of the greedy approach that is also able to cope with ¢-low juntas for ¢ > 1.
Allowing GREEDY RANKING to also select new attributes z; with |I| < ¢, yields an algorithm
that is applicable exactly to the class of t-low juntas. Thus, such an algorithm provides an analog
to the Fourier-based algorithm that simply checks for each Fourier coefficient f(I), I C [n] with
1 < |I| <t, whether it vanishes or not, see [22, 7].

We conjecture that allowing GREEDY to use attributes z; with [I| < ¢ yields an algorithm
that can cope exactly with the class of t-Fourier-accessible functions, where t-Fourier-accessible

11



is defined in the same way as Fourier-accessible except that in item 2 of Definition 2.2, we allow
|I; \ I;—1| < t for all j € [s]. While the generalization of Theorem 5.1 is straightforward, finding an
appropriate analog of Theorem 5.2 seems to need more careful reasoning.

6.2 Multi-Valued Attributes and Non-Uniform Distribution

Since it is straightforward to extend the greedy algorithms to multi-valued attributes, it is natural
to ask whether there is still a connection between the cardinalities |E;| and the corresponding
Fourier coefficients. Indeed, using Fourier analysis of functions on finite Abelian groups, we can
prove that for f : Z* — {0,1}, if A;(f, D) = 0, then also f(e;) = 0. Although the converse is false
in general, it does hold if r is prime.

Quantitatively, we can show that A;(f) € ©(|f(i)|?) for r € {2,3,4,6}, whereas somewhat
oddly, for r = 5 or r > 7, there are functions such that | f(e;)|> € o(A;(f)). The latter circumstances
are essentially due to the fact that for r € {2,3,4,6}, Z[w,| is a discrete lattice in C, whereas for
r=>5orr>7, Zwy] is dense in C.

For non-uniform attribute distributions — although a generic notion of Fourier coefficients can
be given [8, 17] — Lemma 4.2 with a similar definition of a; does not hold any more. In fact, it is
easy to find examples such that

(a) there are z;, z; € irrel(f) such that the expected sizes of E; and Ej differ or

(b) there are i € re}(f) and x; € irrel(f) such that the expected sizes of E; and E; are equal,
although f(i) = f(j) =0.

6.3 Further Open Problems

The first issue left for future research is the investigation of the performance of the greedy algorithm
in variations of the learning scenario considered in this paper: attributes and classifications may
take more than two values, attributes may be non-uniformly distributed, the given data may contain
noise, etc.

The second issue is to stick to the learning scenario and investigate further variants of the
greedy heuristic: for which functions can greedy algorithms that use a different weighting scheme
find the relevant variables? In our case, the weight of variable x; is equal to the number of edges in
the functional relations graph that can be covered by z;. However, if an edge is labeled by exactly
one variable, then this variable has to be selected in order to explain the sample. For this reason,
Almuallim and Dietterich [4] proposed to assign the weight > .. W to z; and then find a set
cover by selecting variables of maximum weight. Since for n > |rel(f)|, each edge is labeled by
roughly n/2 irrelevant variables, such a weighting is unlikely to help much during the first rounds
of the algorithm. Consequently, it is not clear whether the class of functions for which this heuristic

succeeds becomes any larger.
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