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Abstract

We consider the problems of attribute-efficient PAC learning of two well-studied concept
classes: parity functions and DNF expressions over {0, 1}n. We show that attribute-efficient
learning of parities with respect to the uniform distribution is equivalent to decoding high-
rate random linear codes from low number of errors, a long-standing open problem in
coding theory. This is the first evidence that attribute-efficient learning of a natural PAC
learnable concept class can be computationally hard.

An algorithm is said to use membership queries (MQs) non-adaptively if the points
at which the algorithm asks MQs do not depend on the target concept. Using a simple
non-adaptive parity learning algorithm and a modification of Levin’s algorithm for locating
a weakly-correlated parity due to Bshouty et al. (1999), we give the first non-adaptive and
attribute-efficient algorithm for learning DNF with respect to the uniform distribution.
Our algorithm runs in time Õ(ns4/ε) and uses Õ(s4 · log2 n/ε) non-adaptive MQs, where
s is the number of terms in the shortest DNF representation of the target concept. The
algorithm improves on the best previous algorithm for learning DNF (of Bshouty et al.,
1999) and can also be easily modified to tolerate random persistent classification noise in
MQs.

Keywords: attribute-efficient, non-adaptive, membership query, DNF, parity function,
random linear code

1. Introduction

The problems of PAC learning parity functions and DNF expressions are among the most
fundamental and well-studied problems in machine learning theory. Along with running
time efficiency, an important consideration in the design of learning algorithms is their
attribute-efficiency. A class C of Boolean functions is said to be attribute-efficiently learnable
if there is an efficient algorithm which can learn any function f ∈ C using a number of
examples which is polynomial in the “size” (description length) of the function f to be
learned, rather than in n, the number of attributes in the domain over which learning takes
place. Attribute-efficiency arises naturally from a ubiquitous practical scenario in which the
total number of potentially influential attributes is much larger than the number of relevant
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attributes (i.e., the attributes on which the concept actually depends), whereas examples
are either scarce or expensive to get.

Learning of DNF expressions and attribute-efficient learning of parities from random
examples with respect to the uniform distribution are both long-standing challenges in
learning theory. The lack of substantial progress on these questions has resulted in attempts
to solve them in stronger learning models. The most well-studied such model is one in which
a membership query oracle is given to the learner in addition to the example oracle. The
learning algorithm may query this oracle for a value of the target function at any point of its
choice. Jackson (1997) gave the first algorithm that learns DNF from membership queries
(MQs) under the uniform distribution and later Bshouty, Jackson, and Tamon (1999) gave
a more efficient and attribute-efficient algorithm for learning DNF in the same setting. The
first algorithm for attribute-efficient learning of parities using MQs is due to Blum et al.
(1995), and their result was later refined by Uehara et al. (1997).

A restricted model of membership queries, which addresses some of the disadvantages of
the MQ model, is the model in which MQs are asked non-adaptively. An algorithm is said to
use MQs non-adaptively if the queries of the algorithm do not depend on the target concept
(in our context we will often call it non-adaptive for brevity). In other words, the learning
algorithm can be split into two stages. In the first stage, given the learning parameters,
the algorithm generates a set S of queries for the membership oracle. In the second stage,
given the answers to the queries in S, the algorithm produces a hypothesis (without further
access to the oracle). An immediate advantage of this model (over the usual MQ model) is
the fact that the queries to the membership oracle can be parallelized. This, for example,
is crucial in DNA sequencing and other biological applications where tests are very time-
consuming but can be parallelized (Farach et al., 1997; Damaschke, 1998, and references
therein). Another advantage of a non-adaptive learner is that the same set of points can be
used to learn numerous concepts. This is conjectured to happen in the human brain where
a single example can be used to learn several different concepts and hence systems that
aim to reproduce the learning abilities of the human brain need to possess this property
(Valiant, 1994, 2000, 2006).

As it is detailed later, attribute-efficiency is easy to achieve using a simple technique that
relies on adaptive MQs but there is no known general method to convert a learning algorithm
to an attribute-efficient one using MQs non-adaptively. It is important to note that in the
two practical applications mentioned above, attribute-efficiency is also a major concern. It
is therefore natural to ask: which classes can be PAC learned attribute-efficiently by non-
adaptive MQs? We refer to this model of learning as ae.naMQ learning. This question was
first explicitly addressed by Damaschke (1998) who proved that any function of r variables
is ae.naMQ learnable when it is represented by the truth table of the function (requiring
r log n + 2r bits). Later Hofmeister (1999) gave the first ae.naMQ algorithm for learning
parities and Guijarro et al. (1999a) gave an algorithm for learning functions of at most logn
variables in the decision tree representation. But the question remains open for numerous
other representations used in learning theory.
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1.1 Previous Results

Blum et al. (1995) were the first to ask whether parities are learnable attribute-efficiently
(in the related on-line mistake-bound model). They also presented the first algorithm to
learn parity functions attribute-efficiently using MQs. Their algorithm is based on the
following approach: first all the relevant attributes are identified and then a simple (not
attribute-efficient) algorithm restricted to the relevant variables is used to learn the concept.
Since then other algorithms were proposed for attribute-efficient identification of relevant
variables (Bshouty and Hellerstein, 1998; Guijarro et al., 1999b). All the algorithms are
based on a binary search for a relevant variable given a positive and a negative example.
Binary search and the fact that queries in the second stage depend on the variables identified
in the first stage only allows for the construction of adaptive algorithms via this approach.
Uehara et al. (1997) gave several algorithms for attribute-efficient learning of parities that
again used adaptiveness in an essential way.

Hofmeister gave the first ae.naMQ algorithm for learning parities based on BCH error-
correcting codes. When learning the class of parities on at most k variables his algorithm has
running time of O(kn) and uses O(k log n) non-adaptive MQs. While the complexity of this
algorithm is asymptotically optimal it is based on the relatively complex Berlekamp-Massey
algorithm for creating and decoding BCH codes (Massey, 1969).

Little previous work has been published on attribute-efficient learning of parities from
random examples only. Indeed, the first non-trivial result in this direction has only recently
been given by Klivans and Servedio (2004). They prove that parity functions on at most k

variables are learnable in polynomial time using O(n1− 1

k log n) examples.

1.1.1 Learning DNF

Efficient learning of unrestricted DNF formulae under the uniform distribution begins with
a famous result by Jackson (1997). The algorithm, while polynomial-time, is somewhat
impractical due to the Õ(ns10/ε12) bound on running time (where s is the number of terms in
the target DNF). By substantially improving the key components of Jackson’s algorithm, the
works of Freund (1992), Bshouty et al. (1999), and Klivans and Servedio (2003) resulted in
an algorithm that learns DNF in time Õ(ns6/ε2) and uses Õ(ns4/ε2) MQs.1 This algorithm
is non-adaptive, but is also not attribute-efficient. Using the algorithm for identification of
relevant variables by Bshouty and Hellerstein mentioned above, Bshouty et al. (1999) gave
an attribute-efficient version of their algorithm running in time Õ(rs6/ε2 + n/ε) and using
Õ(rs4 log n/ε2) adaptive MQs, where r is the number of relevant variables.

Bshouty et al. (2003) give an algorithm for learning DNF expressions from examples
generated by a random walk on the Boolean hypercube. This model is more passive than
non-adaptive MQs but their algorithm is not attribute-efficient as it is an adaptation of the
non-attribute-efficient algorithm of Bshouty and Feldman (2002). In fact, it is information-
theoretically impossible to learn anything non-trivial attribute-efficiently in this model.

1. Bshouty et al. claimed sample complexity Õ(ns2/ε2) but this was in error as explained in Remark 19.
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1.2 Our Results

We give a simple and fast randomized algorithm for ae.naMQ learning of parities (Theorem
9) and provide a transformation that converts a non-adaptive parity learning algorithm
into an algorithm for finding significant Fourier coefficients of a function while preserving
attribute-efficiency and non-adaptiveness (Theorem 13). Using these components we give
the first ae.naMQ algorithm for learning DNF expressions with respect to the uniform
distribution (Theorem 24). It runs in time Õ(ns4/ε) and uses Õ(s4 log2 n/ε) MQs. The
algorithm improves on the Õ(ns6/ε2)-time and Õ(ns4/ε2)-query algorithm of Bshouty et al.
(1999). In Theorem 28 we also show a simple and general modification that allows the above
algorithm to efficiently handle random persistent classification noise in MQs (see Section
2.1 for the formal definition of the noise model). Earlier algorithms for learning DNFs that
handled persistent classification noise were based on Jackson’s DNF learning algorithm and
therefore are substantially less efficient (Jackson et al., 1997; Bshouty and Feldman, 2002).

Alongside our ae.naMQ algorithm for learning of parities we establish the equivalence
between attribute-efficient learning of parities from random uniform examples and decoding
high-rate random linear codes from a low number of errors, a long-standing open problem in
coding theory widely believed to be intractable (Theorems 6 and 8). Thus we may consider
this equivalence as evidence of the hardness of attribute-efficient learning of parities from
random examples only. Previously hardness of attribute-efficient learning results were only
known for specially designed concept classes (Decatur et al., 1999; Servedio, 2000).

The connection between attribute-efficient learning of parities by membership queries
and linear codes was earlier observed by Hofmeister (1999). His result allows to derive
attribute-efficient parity learning algorithms from efficiently decodable linear codes with
appropriate parameters. Our result can be seen as an adaptation of this connection to
random and uniform examples. The restriction to the uniform distribution allows us to
prove the connection in the other direction, giving the above-mentioned negative result for
attribute-efficient learning of parities from random examples only.

1.3 Organization

In the next section we describe the models and tools that will be used in this work. In
Section 3, we give the required background on binary linear codes and prove the equivalence
between attribute-efficient learning of parities from random uniform examples and decoding
high-rate random linear codes from a low number of errors. In Section 4, we show a simple
algorithm for ae.naMQ learning of parities. Section 5 gives a way to convert a non-adaptive
parity learning algorithm into an algorithm for finding significant Fourier coefficients of a
function while preserving attribute-efficiency and non-adaptiveness, yielding an ae.naMQ
algorithm for weakly learning DNF expressions. Then in Section 6 we describe our ae.naMQ
algorithm for learning DNF expressions and in Section 7 we show how this algorithm can
be modified to handle random persistent classification noise.

2. Preliminaries

For vectors x, y ∈ {0, 1}n we denote by x ⊕ y the vector obtained by bitwise XOR of
x and y; by [k] the set {1, 2, . . . , k}; by ei a vector with 1 in i-th position and zeros in
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the rest; by xi the i-th element of vector x. Dot product x · y of vectors x, y ∈ {0, 1}n

denotes
∑

i xiyi (mod 2) or simply vector product xyT over GF(2) (with vectors being
row vectors by default). By wt(x) we denote the Hamming weight of x and we define
dist(x, y) = wt(x⊕ y).

To analyze the accuracy and confidence of estimates produced by random sampling we
will use the following standard inequalities.

Lemma 1 (Chernoff) Let X1, . . . ,Xm be a sequence of m independent Bernoulli trials,
each with probability of success E[Xi] = p and let S =

∑m
i=1Xi. Then for 0 ≤ γ ≤ 1,

Pr[S > (1 + γ)pm] ≤ e−mpγ2/3

and

Pr[S < (1− γ)pm] ≤ e−mpγ2/2 .

Lemma 2 (Bienaymé-Chebyshev) Let X1, . . . ,Xm be pairwise independent random vari-
ables all with mean µ and variance σ2. Then for any λ ≥ 0,

Pr

[∣∣∣∣∣
1

m

m∑

i=1

Xi − µ

∣∣∣∣∣ ≥ λ
]
≤

σ2

mλ2
.

For a function t(· · · ) we say a function q(· · · ) (of the same parameters as t) is Õ(t(· · · ))
when there exist constants α and β such that q(· · · ) ≤ αt(· · · ) logβ (t(· · · )).

2.1 PAC Learning

We study learning of Boolean functions on the Boolean hypercube {0, 1}n. Our Boolean
functions take values +1 (true) and −1 (false). Our main interest are the classes of parity
functions and DNF expressions. A parity function χa(x) for a vector a ∈ {0, 1}n is defined
as χa(x) = (−1)a·x. We refer to the vector associated with a parity function as its index
and the Hamming weight of the vector as the length of the parity function. We denote the
concept class of parity functions {χa | a ∈ {0, 1}

n} by PAR and the class of all the parities
of length at most k by PAR(k). We represent a parity function by listing all the variables
on which it depends. This representation for a parity of length k requires θ(k log n) bits.

For the standard DNF representation and any Boolean function f we denote by DNF-
size(f) the number of terms in a DNF representation of f with the minimal number of terms.
In context of learning DNF this parameter is always denoted s. The uniform distribution
over {0, 1}n is denoted U .

Our learning model is Valiant’s well-known PAC model (Valiant, 1984) for learning
Boolean functions over {0, 1}n. In this model, for a concept c and distribution D over
X, an example oracle EXD(c) is an oracle that upon request returns an example 〈x, c(x)〉
where x is chosen randomly with respect to D, independently of any previous examples.
For ε ≥ 0 we say that function g ε-approximates a function f with respect to distribution D
if PrD[f(x) = g(x)] ≥ 1 − ε. For a concept class C, we say that an algorithm A efficiently
learns C, if for every ε > 0, n, c ∈ C, and distribution D over {0, 1}n, A(n, ε, s) (where s
is the size of c in the representation associated with C) outputs, with probability at least
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1/2, and in time polynomial in n, 1/ε, and s a hypothesis h that ε-approximates c. When
a learning algorithm is guaranteed to learn only with respect to a specific distribution we
specify the distribution explicitly. We say that an algorithm weakly learns C if it produces a
hypothesis h that (1

2 −
1

p(n,s))-approximates (or weakly approximates) c for some polynomial
p.

Note that in this definition of learning we do not use the confidence parameter δ that
requires a learning algorithm to succeed with probability at least 1− δ. Instead we assume
that it equals 1/2. In order to obtain an algorithm with success probability 1 − δ one
can always use a standard confidence boosting procedure (cf. the textbook by Kearns
and Vazirani, 1994). The boosting procedure consists of repeating the original algorithm
k = log (1/δ) + 1 times with slightly increased accuracy (e.g., ε/2), each time on new
examples and independent coin flips. The hypotheses obtained from these runs are then
tested on an independent sample of size O(ε−1 log (1/δ)) and the best one is chosen.

A membership query oracle MEM(c) is the oracle that, given any point x ∈ {0, 1}n,
returns the value c(x). When learning with respect to U , EXU (c) can be trivially simulated
using MEM(c) and therefore EXU (c) is not used at all.

An algorithm A is said to be attribute-efficient if the number of examples (both random
and received from the MQ oracle) it uses is polynomial in the size of the representation
of the concept and 1/ε. We say that a variable xi is relevant for a function f if there
exists y ∈ {0, 1}n such that f(y) 6= f(y ⊕ ei). The number of relevant variables of the
target concept is denoted by parameter r. Attribute-efficiency does not allow the number
of examples to depend polynomially on n. Instead the number of examples used can depend
polynomially on r and log n since for most representations (including the ones considered
in this work) the size of the representation of f is lower bounded by both logn and r.

2.1.1 Noise Models

We consider two standard models of noise in learning. The first one is the well-studied
random classification noise model introduced by Angluin and Laird (1988). In this model
for any η ≤ 1/2 called the noise rate the regular example oracle EXD(c) is replaced with the
faulty oracle EXη

D(c). On each call, EXη
D(c), draws x according to D, and returns 〈x, c(x)〉

with probability η and 〈x,¬c(x)〉 with probability 1− η. When η approaches 1/2 the result
of the corrupted query approaches the result of the random coin flip, and therefore the
running time of algorithms in this model is allowed to polynomially depend on 1

1−2η .

This model of noise is not suitable for corrupting labels returned by MEM(c) since a
learning algorithm can, with high probability, find the correct label at point x by asking
the label of x polynomial (in 1

1−2η ) number of times and then returning the label that
appeared in the majority of answers. An appropriate modification of the noise model is the
introduction of random persistent classification noise by Goldman, Kearns, and Schapire
(1993). In this model, as before, the answer to a query at each point x is flipped with
probability 1 − η. However, if the membership oracle was already queried about the value
of f at some specific point x or x was already generated as a random example, the returned
label has the same value as in the first occurrence (i.e., in such a case the noise persists and
is not purely random). If the learner does not ask for the label of a point more than once
then this noise can be treated as the usual independent random classification noise.
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2.1.2 Fourier Transform

The Fourier transform is a technique for learning with respect to the uniform distribution
(primarily) based on the fact that the set of all parity functions {χa(x)}a∈{0,1}n forms
an orthonormal basis of the linear space of real-valued function over {0, 1}n. This fact
implies that any real-valued function f over {0, 1}n can be uniquely represented as a linear
combination of parities, that is f(x) =

∑
a∈{0,1}n f̂(a)χa(x). The coefficient f̂(a) is called

Fourier coefficient of f on a and equals EU [f(x)χa(x)]; a is called the index and wt(a)
the degree of f̂(a). Given the values of f on all the points of the hypercube {0, 1}n one
can compute the values of all the Fourier coefficients {f̂(a)}a∈{0,1}n using the Fast Fourier
Transform (FFT) algorithm in time O(n2n) (Cooley and Tukey, 1965). The same algorithm
FFT also converts the set of all Fourier coefficients {f̂(a)}a∈{0,1}n into the values of the
function f on all the points of the hypercube. This transformation is called inverse Fourier
transform. For further details on the technique we refer the reader to the survey by Mansour
(1994).

2.1.3 Randomized Functions

Besides deterministic functions on {0, 1}n we will also deal with functions whose value on
a point x is a real-valued random variable Ψ(x) independent of Ψ(y) for any y 6= x and of
any previous evaluations of Ψ(x). To extend learning and Fourier definitions to this case we
include the probability over the random variable Ψ in estimations of probability, expectation
and variance. For example, we say that a randomized function Ψ ε-approximates f with
respect to D if PrD,Ψ[f(x) = Ψ(x)] ≥ 1− ε. Similarly, Ψ̂(a) = EU ,Ψ[Ψ(x)χa(x)].

2.2 Learning by Non-adaptive Membership Queries

We say that an algorithm A uses MQs non-adaptively if it can be split into two stages. The
first stage, given all the parameters of learning, (n, ε and a bound on the size of the target
concept) and access to points randomly sampled with respect to the target distribution,
generates a set of points S ⊆ {0, 1}n. The second stage, given the labels of the random
points and the answers from MEM(c) on points in S, that is, the set {(x, c(x)) | x ∈ S},
computes a hypothesis (or, in general, performs some computation). Neither of the stages
has any other access to MEM(c).

We note that in the general definition of PAC learning we did not assume that size of
the target concept (or a bound on it) is given to the learning algorithm. When learning with
adaptive queries a good bound can be found via the “guess-and-double” technique, but for
non-adaptive algorithms we will assume that this bound is always given. To emphasize this
we specify the parameters that have to be given to a non-adaptive algorithm in the name
of the algorithm. Clearly the same “guess-and-double” technique can be used to produce a
sequence of independent and non-adaptive executions of the learning algorithm.

The immediate consequence of non-adaptiveness is that in order to parallelize a non-
adaptive learning algorithm only the usual computation has to be parallelized since all the
MQs can be made in parallel. Non-adaptiveness is also useful when learning ` concepts
from the same concept class in parallel. The fact that queries are independent of the target
concept implies that same set of points can be used for learning different concepts. To
achieve probability of success 1/2 in learning of all ` concepts we will have to learn with
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each concept with probability of success 1− 1/(2`). This implies that the number of points
needed for learning might grow by a factor of log ` whereas in the general case ` times more
examples might be required.

Results of Goldreich et al. (1986) imply that if one-way functions exist then the concept
class of all polynomial circuits is not learnable even with respect to U and with access
to a MQ oracle (Kearns and Valiant, 1994). By modifying the values of each circuit to
encode the circuit itself in a polynomial number of fixed points one can make this class
learnable by non-adaptive MQs but not learnable from random and uniform examples only
(the modification is very unlikely to be detected by random examples yet MQs to the
fixed points will reveal the circuit). Similarly, by placing the encoding of the circuit in
some location that is encoded in a fixed location, one can create a function class learnable
by adaptive membership queries but not learnable by the non-adaptive ones (if one-way
functions exist). Further details of these simple separations are left to the reader.

3. Learning of Parities and Binary Linear Codes

In this section we show that attribute-efficient learning of parities with respect to the
uniform distribution from random examples only is likely to be hard by proving that it
is equivalent to an open problem in coding theory. Unlike in the rest of the paper in this
section and the following section parity functions will be functions to {0, 1}. To emphasize
this we use χ̇ instead of χ.

3.1 Background on Linear Codes

We say that a code C is an [m,n] code if C is a binary linear code of block length m
and message length n. Any such code can be described by its n ×m generator matrix G
as follows: C = {xG | x ∈ {0, 1}n}. Equivalently, a code can be described by its parity-
check matrix H of size m × (m − n) by C = {y | yH = 0m−n}. It is well-known that
G ·H = 0n×(m−n) and decoding given a corrupted message y is equivalent to decoding given
the syndrome of the corrupted message. The syndrome equals to yH and the decoding
consists of finding a vector e of Hamming weight at most w such that y ⊕ e = xG, where
w = b(d − 1)/2c and d is the distance of the code (cf. the book by van Lint, 1998). For
a linear code C the distance equals to the Hamming weight of a non-zero vector with the
smallest Hamming weight.

By saying that C is a random [m,n] code we mean that C is defined by choosing ran-
domly, uniformly, and independently n vectors in {0, 1}m that form the basis of C. Al-
ternatively, we can say that the generator matrix G of C was chosen randomly with each
entry equal to 1 with probability 1/2 independently of others. We denote this distribution
by Un×m. Some authors restrict the random choice of G’s to matrices of full rank n. As we
will see, this definitions would only make our proofs simpler.

Binary linear codes generated randomly meet the Gilbert-Varshamov bound with high
probability, that is, they achieve the best known rate (or n/m) versus distance trade-off
(cf. the lecture notes by Sudan, 2002). However decoding a random linear code or even
determining its distance is a notorious open problem in coding theory. For example the
McEliece cryptosystem is based, among other assumptions, on the hardness of this problem
(McEliece, 1978). Besides that, while the average-case hardness of this problem is unknown,
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a number of worst-case problems related to decoding linear codes are NP-hard (Barg, 1997;
Vardy, 1997; Sudan, 2002).

A potentially simpler version of this problem in which the errors are assumed to be
random and independent with some rate η (and not adversarial as in the usual definition) is
equivalent to learning of parities with random classification noise of rate η, a long-standing
open problem in learning theory. In fact, Feldman et al. (2006) have proved that when
learning parities from random and uniform examples, random classification noise of rate
η is as hard as adversarial noise of rate η (up to a polynomial blowup in the running
time). The only known non-trivial algorithm for learning parities with noise is a slightly
subexponential algorithm by Blum et al. (2000). In our discussion η is very low (e.g., log n

n ),
yet even for this case no efficient noise-tolerant algorithms are known.

Correcting a random linear [m,n] from up to w errors is defined as follows.

Definition 3 Input: An n×m binary generator matrix G randomly chosen according to
Un×m and y ∈ {0, 1}m.
Output: x ∈ {0, 1}n such that dist(xG, y) ≤ w if there exists one.

A successful algorithm for this problem is an algorithm that would allow to correct up to w
errors in a “good” fraction of randomly created linear codes. That is, with non-negligible
probability over the choice of G, and for every y, the algorithm should produce the desired
output. Note that the algorithm can only be successful when the code generated by G has
distance at least 2w + 1.

For simplicity, we will usually assume a constant probability of success but all the
results can be translated to algorithms having the success probability lower-bounded by a
polynomial (in m) fraction.

3.2 The Reduction

The equivalence of attribute-efficient learning of parities with respect to the uniform dis-
tribution and decoding of random linear codes relies on two simple lemmas. The first one,
due to Hofmeister (1999), is that the syndrome decoding of a linear code implies attribute-
efficient learning of parities. We include it with a proof for completeness.

Lemma 4 (Hofmeister) Let H be a parity-check matrix of some [m,n] w-error correcting
code C. Let A be an algorithm that for any y ∈ {0, 1}m such that y = c ⊕ e where c ∈ C
and wt(e) ≤ w, given the syndrome yH, finds e. Then A learns PAR(w) over {0, 1}m given
the values of an unknown parity on the columns of H.

Proof The condition y = c⊕ e for c ∈ C implies that yH = eH. Therefore the syndrome
yH is equal to the vector eH = χ̇e(H1), χ̇e(H2), . . . , χ̇e(Hm−n) where Hi is the i-th column
of H. Therefore finding an error vector e of weight at most w using the syndrome yH is
the same as finding a parity of length at most w given the values of the unknown parity on
the columns of H.

This observation has lead Hofmeister to a simple ae.naMQ algorithm for learning parities
that uses the columns of the parity check matrix of BCH code as MQs. We note that the
converse of this lemma is only true if the learning algorithm is proper, that is, produces a
parity function in PAR(w) as a hypothesis.
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To obtain the claimed equivalence for the uniform distribution we first need to prove
that generating a linear code by choosing a random and uniform parity check matrix (that
is, from Un×m−n) is equivalent to (or indistinguishable from) generating a linear code by
choosing a random and uniform generator matrix (that is, from Un×m).

Let p(i, j) denote the probability that i vectors chosen randomly and uniformly from
{0, 1}j are linearly independent. Each i ≥ 1 linearly independent vectors span subspace
of size 2i and therefore there are 2j − 2i vectors that are linearly independent of them.
This implies that, p(i + 1, j) = p(i, j)(1 − 2−j+i). All vectors except for 0j form a linearly
independent set of size 1. Therefore p(1, j) = (1− 2−j). Hence

p(i, j) = (1− 2−j) · (1− 2−j+1) · · · (1− 2−j+i−1) .

Note that

p(i, j) ≥ 1− 2−j − 2−j+1 − · · · − 2−j+i−1 > 1− 2−j+i (1)

and for i = j, p(j, j) = 1
2p(j, j − 1) > 1

2 (1 − 1
2) = 1

4 . This means that for any i ≤ j,
p(i, j) > 1/4.

Let Vn×m denote the distribution on matrices of size n×m resulting from the following
process. Choose randomly and uniformly a m× (m− n) matrix H of rank m− n and then
choose randomly and uniformly a matrix G of size n×m of rank n such that GH = 0n×(m−n).
To generate G’s like this we find a basis b1, . . . , bn for the subspace of {0, 1}m that is
“orthogonal” to H in the standard (and efficient) way. Let G0 denote the matrix whose
rows are the vectors b1, . . . , bn. It is easy to see that any matrix G of rank n such that
GH = 0n×(m−n), can be represented uniquely as F · G0 where F is a matrix of size n × n
and full rank (∗). Therefore we can generate G’s as above by choosing randomly and
uniformly a matrix F of rank n. If we choose a random matrix F according Un×n, with
probability at least p(n, n) > 1/4, it will have the full rank. We can repeatedly sample from
Un×n to get a full-rank F with any desired probability. This implies that we can generate
a matrix according to Vn×m with probability 1 − δ in time O(m3 log (1/δ)) (or less if a
non-trivial matrix multiplication algorithm is used).

All we need to prove now is that Vn×m is “close” to Un×m. More specifically, the
statistical distance between two distributionsD1 and D2 over X is defined to be ∆(D1,D2) =
1
2

∑
x∈X |D1(x) − D2(x)|. It is well known and easy to see that for any event E ⊆ X,

|PrD1
[x ∈ E]−PrD2

[x ∈ E]| ≤ ∆(D1,D2).

Lemma 5 The distribution Vn×m is uniform over matrices of size n ×m and rank n. In
particular, ∆(Vn×m,Un×m) ≤ 2−m+n.

Proof Let G be any matrix of size n×m with linearly independent rows. Its probability
under Un×m is Un×m(G) = 2−mn. When sampling with respect to Vn×m, G can be obtained
only if all the columns of H are “orthogonal” to rows of G, that is belong to a linear
subspace of {0, 1}m of dimension m− n. The total number of H’s like these of rank m− n
is 2(m−n)2p(m − n,m − n) (as follows from (∗)) and the total number of matrices size
m× (m−n) of rank m−n is 2m(m−n)p(m−n,m). Therefore the probability of getting each

H like this is 2−n(m−n) p(m−n,m−n)
p(m−n,m) . Given H the total number of matrices of size n×m and

rank n that are “orthogonal” to H is p(n, n)2n2

(as follows from (∗)) and therefore G will

10



be generated with probability 2−n2

/p(n, n). Hence the total probability of G under Vn×m

is Vn×m(G) = 2−mn p(m−n,m−n)
p(m−n,m)p(n,n) . For every i < j, p(j − i, j)p(i, i) = p(j, j). Therefore

Vn×m(G) = 2−mn/p(n,m). This implies that Vn×m is uniform over matrices of size n ×m
and rank n. The statistical distance between Vn×m and Un×m equals to

1

2

∑

G∈{0,1}n×m

|Vn×m(G)− Un×m(G)| =

1

2


 ∑

rank(G)<n

2−mn +
∑

rank(G)=n

2−mn

(
1

p(n,m)
− 1

)
 = 1− p(n,m).

According to Equation (1), 1− p(n,m) < 1− (1− 2−m+n) = 2−m+n.

We can now prove that decoding of random linear codes implies attribute-efficient learning
of parities from random examples only.

Theorem 6 Assume that there exists an algorithm RandDec that corrects a random linear
[m,n] code from up to w errors with probability at least 1/2 + γ for any constant γ. Then
PAR(w) over {0, 1}m is efficiently learnable from m− n random examples.

Proof Let χ̇e ∈ PAR(w) be the unknown parity function and z1, z2, . . . , zm−n be random
and uniform examples given by the example oracle. Let H be the m × (m − n) matrix
whose column i is equal to zi for each i ≤ m−n. If H does not have rank m−n we return
χ0m . Otherwise let G be a random matrix such that GH = 0n×(m−n) generated as in the
description of Vn×m for δ = γ/2. The values of χ̇e on zi’s give us the vector eH. Let y be
any solution to the linear equation yH = eH. Clearly (y⊕ e)H = 0m−n and therefore y⊕ e
equals to xG for some x ∈ {0, 1}n. This means that RandDec (if successful) will output x
on input G and y. By the definition of x, e = xG⊕ y, giving us the desired parity function.

To analyze the success probability of the algorithm we observe that the procedure above
generates G according to Vn×m with probability at least p(m−n,m)(1−γ/2) ≥ 1−2−n−γ/2.
According to Lemma 5, the statistical distance between the G generated as above and Un×m

is at most 2−m+n. RandDec is successful with probability 1/2 + γ and therefore our algo-
rithm will succeed with probability at least 1/2 + γ − (γ/2 + 2−n + 2−m+n) ≥ 1/2.

The transformation above produces an attribute-efficient algorithm only if m − n is poly-
nomial in w and logm. According to the Gilbert-Varshamov bound, a random linear code
will, with high probability, have distance d = Ω(m−n

log m). Therefore if the number of errors
that RandDec can correct is at least w = dα errors for some constant α > 0 then the
sample complexity of learning a parity of length at most w over m variables would equal
O(w1/α logm). Therefore such an algorithm could be used to obtain an attribute-efficient
algorithm for learning parities.

We have noted previously that using a parity learning algorithm to obtain a syndrome
decoding algorithm requires the parity learning algorithm to be proper. When a distribution
over examples is not restricted it is unknown whether proper learning of parities is harder
than non-proper. Fortunately, when learning with respect to the uniform distribution any
learning algorithm for parities can be converted to a proper and exact one (that is, with
a hypothesis equal to the target function). We include a proof of this folklore fact for
completeness.

11



Fact 7 Let A be an algorithm that learns PAR(k) in time t(n, k, ε) and with sample com-
plexity s(n, k, ε). Then there exists a probabilistic algorithm A′ that learns PAR(k) properly
and exactly in time t(n, k, 1/5) + Õ(nk) and using s(n, k, 1/5) samples.

Proof We assume for simplicity that if A is probabilistic then it succeeds with probability
at least 3/4. Let h be the output of A when running on an unknown parity χ̇e ∈ PAR(k)
with ε = 1/5. Given h that is correct on 4/5 of all the points we can use it simulate
membership queries to χ̇e(x) as follows. Let y ∈ {0, 1}n be any point and let x be a ran-
domly and uniformly chosen point. Then h(x) = χ̇e(x) with probability at least 4/5 and
h(x ⊕ y) = χ̇e(x ⊕ y) with probability at least 4/5. Therefore with probability at least
3/5, h(x) ⊕ h(x ⊕ y) = χ̇e(x) ⊕ χ̇e(x ⊕ y) = χ̇e(y). We can increase the confidence in the
label to 1 − δ by repeating this procedure for O(log (1/δ)) independent x’s. Given these
membership queries we can use a proper and exact MQ algorithm for learning PAR(k). A
number of such algorithms are known running in time Õ(nk) and using O(k log n) MQs
(including AEParityStat(k) given in Theorem 9). In order to get correct answers to all the
membership queries with probability at least 3/4 we need each of the MQs to be correct
with probability 1− δ for δ = Ω( 1

k log n). This means that making O(k log n) MQs will take

O(nk log n log (k log n)) = Õ(nk) steps. Altogether we get algorithm A′ that succeeds with
probability at least 1/2 and has the claimed complexity bounds.

We can now assume that algorithms for learning parity with respect to the uniform distri-
bution are proper and exact (and in particular do not require parameter ε) and use this to
obtain the other direction of the equivalence.

Theorem 8 Assume that there exists an algorithm AELearnParU (k) that efficiently learns
PAR(k) over {0, 1}m using at most q(m,k) random examples. Then there exists an algo-
rithm RandDec that corrects a random linear [m,m− q(m,k)] code from up to k errors with
probability at least 1/2− γ for any constant γ > 0.

Proof Let G and y be the input of RandDec, n = m− q(m,k), x be the vector for which
y = xG⊕ e where wt(e) ≤ k. If G is not of rank n we just return the vector 0n. Otherwise
let H be a random matrix such that GH = 0n×(m−n) generated as rank m − n we return
χ0m . Otherwise let G be a random matrix such that GH = 0n×(m−n) generated as in the
description of Vn×m for δ = γ/2 (with the roles of G and H reversed).

The syndrome yH is equal to eH and gives the values of χ̇e on q(m,k) columns of H.
We feed these columns as random examples to AELearnParU (k) and obtain χ̇e from it (if
AELearnParU (k) is successful). Given e we obtain x by solving the system of linear equations
xG = y⊕ e. To analyze the success probability of the algorithm we observe that the proce-
dure above generates H according to Vm×(m−n) with probability at least p(n,m)(1−γ/2) ≥

1−2−q(m,k)−γ/2. According to Lemma 5, the statistical distance between H’s generated as
above and Um×(m−n) is at most 2−m+(m−n) = 2−n. Therefore AELearnParU (k) will succeed
with probability at least 1/2 − 2−n. This implies that RandDec will return the correct x
with probability at least 1/2− (2−m+q(m,k) + 2−q(m,k) + γ/2) ≥ 1/2 − γ.

12



4. A Fast Randomized Algorithm for ae.naMQ Learning of Parities

We next present a simple randomized algorithm for ae.naMQ learning of parities. The only
previously known ae.naMQ algorithm for learning parities is due to Hofmeister (1999) and
is a deterministic algorithm based on constructing and decoding of BCH binary linear codes
(see also Section 3.2). The algorithm we present is substantially simpler and has essentially
the same asymptotic complexity as Hofmeister’s.

The basic idea of our algorithm is to use a distribution over {0, 1}n for which each
attribute is correlated with the parity function if and only if it is present in the parity.

Theorem 9 For each k ≤ n there exists an algorithm AEParityStat(k) that ae.naMQ
learns the class PAR(k) in time O(nk log n) and asks O(k log n) MQs.

Proof Let χ̇c be the target concept (such that wt(c) ≤ k). We define D 1

t
to be the product

distribution such that for each i, Pr[xi = 1] = 1
t . Let us draw a point x randomly according

to distribution D 1

4k
. Then for each i ≤ n

PrD 1

4k

[xi = 1 and χ̇c(x) = 1] = PrD 1

4k

[χ̇c(x) = 1 | xi = 1] PrD 1

4k

[xi = 1]

=
1

4k
PrD 1

4k

[χ̇c(x) = 1 | xi = 1] .

Our second observation is that for any set of indices B ⊆ [n] and the corresponding parity
function χ̇b,

PrD 1

4k

[χ̇b(x) = 1] ≤ 1−PrD 1

4k

[∀i ∈ B, xi = 0] = 1− (1−
1

4k
)|B| ≤

|B|

4k
.

First examine the case that ci 6= 1 and therefore does not influence χ̇c. Then by the second
observation,

PrD 1

4k

[χ̇c(x) = 1 | xi = 1] = PrD 1

4k

[χ̇c(x) = 1] ≤
k

4k
≤ 1/4 .

Now assume that ci = 1 and let c′ = c⊕ ei. Then χ̇c′(x) is independent of xi and χ̇c(x) = 1
if and only if χ̇c′(x) = 0. Therefore

PrD 1

4k

[χ̇c(x) = 1 | xi = 1] = PrD 1

4k

[χ̇c′(x) = 0 | xi = 1]

= 1−PrD 1

4k

[χ̇c′(x) = 1] ≥ 1−
k − 1

4k
> 3/4 .

Hence estimation of PrD 1

4k

[xi = 1 and χ̇c(x) = 1] within the half of the expectation can be

used to find out whether ci = 1. Lemma 1 for γ = 1/2 implies that by taking O(k log n)
independent samples with respect to D 1

4k
we will get that each estimate is correct with

probability at least 1 − 1/(2n) and therefore we will discover c with probability at least
1− n/(2n) = 1/2. The running time of AEParityStat(k) is clearly O(nk log n).
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5. Finding Fourier Coefficients and Weak DNF Learning

The original Jackson’s algorithm for learning DNF expressions with respect to the uniform
distribution is based on a procedure that weakly learns DNF with respect to the uniform
distribution (Jackson, 1997). The procedure for weak learning is essentially an algorithm
that, given a Boolean function f finds a significant Fourier coefficient of f , if one exist.
Jackson’s algorithm is based on a technique by Goldreich and Levin (1989) for finding
a significant Fourier coefficient (also called the KM algorithm (Kushilevitz and Mansour,
1991)). Bshouty, Jackson, and Tamon (1999) used a later algorithm by Levin (1993) to
give a significantly faster weak learning algorithm. In this section we will briefly describe
Levin’s algorithm with improvements by Bshouty et al.. Building on their ideas we then
present an attribute-efficient and non-adaptive version of the improved Levin’s algorithm.
This algorithm will give us an ae.naMQ algorithm for weak learning of DNF expressions
that will serve as the basis of our ae.naMQ algorithm for DNF learning.

A Fourier coefficient φ̂(a) of a real-valued function φ over {0, 1}n is said to be θ-heavy
if |φ̂(a)| ≥ θ. For a Boolean f , E[fχa] ≥ θ if and only if Pr[f = χa] ≥ 1/2 + θ/2. This
means that |f̂(a)| ≥ θ is equivalent to either χa or −χa being a (1/2 − θ/2)-approximator
of f . Therefore finding a significant Fourier coefficient of f is sometimes called weak parity
learning (Jackson, 1997). It can also be interpreted as a learning algorithm for parities in
the agnostic learning framework of Haussler (1992) and Kearns et al. (1994) Feldman et al.
(see the work of 2006, for details).

Definition 10 (Weak Parity Learning) Let f be a Boolean function with at least one
θ-heavy Fourier coefficient. Given θ > 0 and access to MEM(f), the weak parity learning
problem consists of finding a vector z such that f̂(z) is θ/2-heavy.

We will only consider algorithms for weak parity learning that are efficient, that is,
produce the result in time polynomial in n, and θ−1. In addition we are interested in weak
parity learning algorithms that are attribute-efficient.

Definition 11 (Attribute-Efficient Weak Parity Algorithm) Attribute-efficient weak
parity algorithm is an algorithm that given k, θ, and MEM(f) for f that has a θ-heavy
Fourier coefficient of degree at most k efficiently solves weak parity learning problem and
asks polynomial in k, log n, and θ−1 number of MQs.

We follow the presentation of Levin’s weak parity algorithm given by Bshouty et al. and
refer the reader to their paper for detailed proofs of all the statements and smaller remarks
(we use the same definitions and notation to simplify the reference). Levin’s algorithm is
based on estimating a Fourier coefficient f̂(a) by sampling f on randomly-chosen pairwise
independent points. More specifically, the following pairwise independent distribution is
generated. For a fixed m, a random m-by-n 0-1 matrix R is chosen and the set Y =
{pR | p ∈ {0, 1}m \ {0m}} is formed. For different vectors p1 and p2 in {0, 1}m \ {0m}, p1R
and p2R are pairwise independent. The variance σ2 of a Boolean function is upper-bounded
by 1 and thus Bienaymé-Chebyshev’s inequality (Lemma 2) implies that

PrR

[
|

∑
x∈Y f(x)χa(x)

2m − 1
− f̂(a)| ≥ γ

]
≤

1

(2m − 1)γ2
(2)
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Therefore using a sample form = log (16ρ−1θ−2 + 1),
∑

x∈Y f(x)χa(x) will, with probability

at least 1− ρ, approximate f̂(a) within θ/4.
On the other hand,

∑
x∈Y f(x)χa(x) is a summation over all (but one2) elements of a

linear subspace of {0, 1}n and therefore can be seen as a Fourier coefficient of f restricted
to subspace Y . That is, if we define fR(p) = f(pR) then, by definition of Fourier transform,
for every z ∈ {0, 1}m

f̂R(z) = 2−m
∑

p∈{0,1}m

fR(p)χz(p) .

This together with equality χa(pR) = χaRT (p) implies that f̂(a) is approximated by

f̂R(aRT ) (with probability at least 1− ρ).

All the coefficients f̂R(z) can be computed exactly in time O(m2m) via the FFT algo-
rithm giving estimations to all the Fourier coefficients of f .

Another key element of the weak parity algorithm is the following equation (Bshouty
et al., 1999).

Lemma 12 For c ∈ {0, 1}n let fc(x) = f(x⊕ c). Then f̂c(a) = f̂(a)χa(c).

Proof

f̂c(a) = 2−n
∑

x∈{0,1}n

f(x⊕ c)χa(x) = 2−n
∑

x∈{0,1}n

f(x)χa(x⊕ c) = f̂(a)χa(c) .

Assuming that f̂(a) ≥ θ estimation of f̂(a) within θ/4 (when successful) has the same
sign as f̂(a). Similarly we can obtain the sign of f̂c(a). By Lemma 12, the sign of the
product f̂(a)f̂c(a) is equal to χa(c). This gives a way to make MQs for χa using the values

f̂c,R(aRT ) for a random R. Levin and Bshouty et al. implicitly used this technique with a
basic membership query algorithm for learning parities. The speed-up in Levin’s algorithm
is achieved by making each MQ to many χa’s in parallel. Therefore only a non-adaptive
membership query algorithm for learning parities can be used. In our next theorem we
give an interpretation of improved Levin’s algorithm that makes the use of a non-adaptive
membership query algorithm explicit.

Theorem 13 Let B(k) be an ae.naMQ algorithm for learning parities that runs in time
t(n, k) and uses q(n, k) MQs. There exists an attribute-efficient and non-adaptive algorithm
AEBoundedSieve-B(θ, k) that, with probability at least 1− δ, solves the weak parity learning
problem.
AEBoundedSieve-B(θ, k) runs in time Õ

(
θ−2t(n, k) · q(n, k) log (1/δ)

)
and asks

Õ
(
θ−2q2(n, k) log (1/δ)

)
MQs.

Proof We assume for simplicity that B(k) succeeds with probability at least 3/4. Besides
that according to Fact 7, we can assume that B(k) is a proper algorithm.

2. The value at 0m does not influence the estimation substantially and therefore can be offset by slightly
increasing the size of sample space Y (Bshouty et al., 1999).
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Let S be the set of MQs for an execution of B(k). Choose randomly an m-by-n matrix R
for m = log (16θ−2 · 4 · (q(n, k) + 1) + 1) and compute the Fourier transforms of fR = f0n,R

and fy,R for each y ∈ S via the FFT algorithm. Then, for each z ∈ {0, 1}m, we run B(k)

with the answer to MQ y ∈ S equal to sign(f̂R(z)f̂y,R(z)). If the output of B(k) is a parity

function χa of length at most k then we test that (i) : |f̂R(z)| ≥ 3θ/4 and (ii) : aRT = z.
If both conditions are satisfied we add a to the set of hypotheses H.

By Equation (2), for a such that |f̂(a)| ≥ θ and wt(a) ≤ k, with probability at least

1 − 1
4(q(n,k)+1) , each of the estimations f̂y,R(aRT ) for y ∈ S ∪ {0n} will be within θ/4

of f̂y(a). In particular, with probability at least 3/4, for all y ∈ S ∪ {0n}, sign(f̂y(a)) =

sign(f̂y,R(aRT )) . If all the signs are correct then by Lemma 12, sign(f̂R(z)f̂y,R(z)) = χa(y)
and as a result B(k) will succeed with probability at least 3/4. Therefore a will satisfy both
conditions (i) and (ii) and will be added as a possible hypothesis with probability at least
1/2. Note that B(k) is executed on up to 2m possible hypotheses while using the same set
of queries S. This is only possible for a non-adaptive algorithm B(k).

On the other hand, for any fixed b such that |f̂(b)| < θ/2, if bRT = z (condition (ii))

then with probability at least 1 − 1
4(q(n,k)+1) ≥ 7/8, f̂R(z) approximates f̂(b) within θ/4.

This implies that |f̂R(z)| < 3θ/4 and therefore condition (i) will be failed with probability
at least 7/8. This implies that b can be added to the set of hypotheses with probability at
most 1/8.

Now we use a simple method of Bshouty et al. (1999) to remove all “bad” (not θ/2-
heavy) hypotheses from the set of hypotheses without removing the “good” ones (θ-heavy).
We repeat the described algorithm ` times for independent choices of R and S generating
` sets of hypotheses (each of size at most 2m). This procedure generates at most `2m

hypotheses. According to Chernoff’s bound (Lemma 1) each “good” hypothesis appears in
at least 1/3 of all the sets with probability at least 1−2−α` and each fixed “bad” hypothesis
appears in at least 1/3 of all the sets with probability at most 2−α`, for a fixed constant
α (since 1/8 < 1/3 < 1/2). Note that we need to fix a “bad” hypothesis to apply this
argument. A hypothesis can be fixed as soon as it has appeared in a set of hypotheses. We
then exclude the first set in which a hypothesis has appeared when counting the fraction
of sets in which the hypothesis has appeared (Chernoff bound is now on ` − 1 trials but
this is insubstantial). By setting ` = (m + logm + 2 log (1/δ) + 3)/α we will get that
`2m2−α`−1 ≤ δ/2. Therefore the probability that a “bad” hypothesis will appear in 1/3 of
the sets is at most δ/2. Similarly all “good” hypotheses will appear in 1/3 of the sets with
probability at least 1 − δ/2. Thus by picking any a that appears in at least 1/3 of all the
sets we will find a θ/2-heavy coefficient with probability at least 1− δ.

Computing each of the Fourier transforms takes O(m2m) = Õ(θ−2 · q(n, k)) time. They
are performed for each of q(n, k) MQs of B and this is repeated ` = O(m + log (1/δ))
times giving the total bound of Õ(θ−2q2(n, k) log (1/δ)). For each of the 2m values of z we
run B(k) and tests (i) and (ii). This takes O(2m(t(n, k) + mn)) = Õ(θ−2t(n, k) · q(n, k))
time and is repeated ` = O(m + log (1/δ)) times. Therefore the total running time is
Õ(θ−2 · t(n, k) · q(n, k) log (1/δ)). Similarly we observe that each of the estimations via FFT
uses 2m examples and ` · (q(n, k) + 1) such estimations are done. This implies that the
sample complexity of the algorithm is Õ

(
θ−2q2(n, k) log (1/δ)

)
. It can also be easily seen

that all MQs are non-adaptive.
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Another way to see Theorem 13 is as a way to convert an ae.naMQ algorithm for learning
of parities to an ae.naMQ algorithm for agnostic learning of parities.

By plugging AEParityStat(k) algorithm (Theorem 9) into Theorem 13 we obtain our
weak parity learning algorithm.

Corollary 14 There exists an attribute-efficient and non-adaptive weak parity learning al-
gorithm AEBoundedSieve(θ, k) that succeeds with probability at least 1 − δ, runs in time
Õ

(
nk2θ−2 log (1/δ)

)
, and asks Õ

(
k2 log2 n · θ−2 log (1/δ)

)
MQs.

Jackson (1997) has proved that for every distribution D, every DNF formula f has
a parity function that weakly approximates f with respect to D. A refined version of
this claim by Bshouty and Feldman (2002) shows that f has a short parity that weakly
approximates f if the distribution is not too far from the uniform. More formally, for a
real-valued function φ we define L∞(φ) = maxx{|φ(x)|} and we view a distribution D as a
function over {0, 1}n that for a point x gives its probability weight under D.

Lemma 15 For any Boolean function f of DNF-size s and a distribution D over {0, 1}n

there exists a parity function χa such that

|ED[fχa]| ≥
1

2s + 1
and wt(a) ≤ log ((2s + 1)L∞(2nD)) .

By combining this fact with Corollary 14 we get an algorithm for weakly learning DNF.

Theorem 16 There exist an algorithm WeakDNFU (s) that for a Boolean function f of DNF-
size s given n, s, and access to MEM(f), with probability at least 1/2, finds a (1

2 − Ω(1
s ))-

approximator to f with respect to U . Furthermore, WeakDNFU (s) runs in time Õ
(
ns2

)
and

asks Õ
(
s2 log2 n

)
non-adaptive MQs.

Proof Lemma 15 implies that there exists a parity χa on at most log (2s+ 1) variables
such that |EU [fχa]| = |f̂(a)| ≥ 1

2s+1 . This means that f has a 1
2s+1 -heavy Fourier coefficient

of degree at most log (2s + 1). Using Corollary 14 for δ = 1/2, we can find a 1
2(2s+1) -heavy

Fourier coefficient f̂(a′) in time Õ
(
ns2

)
and using Õ

(
s2 log2 n

)
non-adaptive MQs. The

parity χa′ or its negation (1
2 −

1
4(2s+1) )-approximates f .

The algorithm for weakly learning DNFs by Bshouty et al. (1999) requires Õ
(
ns2

)
MQs

and runs in time3 Õ
(
ns2

)
.

6. Learning DNF Expressions

In this section we show an ae.naMQ algorithm for learning DNF expressions. Following
Jackson’s approach we first show how to generalize our weak DNF learning algorithm to
other distributions (Jackson, 1997). We then use Freund’s boosting algorithm to obtain a
strong DNF learning algorithm (Freund, 1992). Besides achieving attribute-efficiency and
non-adaptiveness we show a way to speed up the boosting process by exploiting several
properties of our WeakDNF algorithm.

3. The running time bound is based on use of a membership query oracle, that given any two vectors
x, y ∈ {0, 1}n, passed to it “by reference”, returns f(x ⊕ y) in O(1) time.
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6.1 Weak DNF Learning with Respect to Any Distribution

The first step in Jackson’s approach is to generalize a weak parity algorithm to work
for any real-valued function. We follow this approach and give a generalization of our
AEBoundedSieve(θ, k) algorithm (Corollary 14) to any real-valued and also randomized
functions.

Lemma 17 There exists an algorithm AEBoundedSieveRV(θ, k, V) that for any real-valued
randomized function Ψ with a θ-heavy Fourier coefficient of degree at most k, given k, θ, V ≥
VarU ,Ψ(Ψ(x)), and an oracle access to Ψ, finds, with probability at least 1− δ, a θ/2-heavy
Fourier coefficient of Ψ of degree at most k. The algorithm runs in time Õ

(
nk2θ−2V log (1/δ)

)

and asks
Õ

(
k2 log2 n · θ−2V log (1/δ)

)
non-adaptive MQs.

Proof By revisiting the proof of Theorem 13, we can see that the only place where we used
the fact that f is Boolean and deterministic is when relying on Equation (2) in which the
variance of the random variable f(x) ∈ {−1,+1} was upper-bounded by 1. In this bound
f(x) is already treated as a random variable on pairwise independent x’s. For any point x,
Ψ(x) is independent of any other evaluations of Ψ and therefore evaluations of Ψ on pairwise
independent points are pairwise independent. This implies that in order to estimate Ψ̂(a)
within θ/4 we only need to account for the fact that the variance of Ψ(x) is not necessarily
bounded by 1. This can be done by using Var(Ψ) ≤ V times more samples, that is, we set
m = log (16V θ−2 · 4 · (q(n, k) + 1) + 1). It is now straightforward to verify that the rest of
the proof of Theorem 13 is unchanged. The increase in the required sample size increases
the running time and the sample complexity of the algorithm by a factor Õ(V ) giving us
the claimed bounds.

As in Jackson’s work we use the generalized weak parity algorithm to obtain an algorithm
that weakly learns DNF expressions with respect to any distribution. The algorithm is
efficient only when the distribution function is “close” to the uniform and requires access
to the value of the distribution function at any point x.

Theorem 18 There exist an algorithm WeakDNF(s, B) that for a Boolean function f of
DNF-size s and any distribution D, given n, s,B ≥ L∞(2nD(x)), access to MEM(f), and
an oracle access to D, with probability at least 1− δ, finds a (1

2 − Ω(1
s ))-approximator to f

with respect to D. Furthermore, WeakDNF(s, B)

• runs in time Õ(ns2B log (1/δ));

• asks Õ(s2 log2 n ·B log (1/δ)) non-adaptive MQs;

• returns a parity function of length at most O(log (sB)) or its negation.

Proof Lemma 15 states that there exists a vector a of Hamming weight bounded by
O (log (sL∞(2nD))) such that |ED[f(x)χa(x)]| = Ω(1/s). But

ED[f(x)χa(x)] =
∑

x

[f(x)D(x)χa(x)] = E[f(x)2nD(x)χa(x)] = ψ̂(a) , (3)
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where ψ(x) = f(x)2nD(x). This means that ψ(x) has a Ω(1/s)-heavy Fourier coefficient of
degree bounded by O (log (sL∞(2nD))) = O(log (sB)). We can apply AEBoundedSieveRV

on ψ(x) to find its Ω(1/s)-heavy Fourier coefficient of degree O(log (sB)). All we need to
do this is to provide a bound V on the variance of f(x)2nD(x).

Var(f(x)2nD(x)) = E[(f(x)2nD(x))2]−E2[f(x)2nD(x)]

≤ L∞(2nD(x))E[2nD(x)]−E2[f(x)2nD(x)] ≤ L∞(2nD(x))E[2nD(x)]

= L∞(2nD(x)) ≤ B (4)

This bound on variance relies essentially on the fact thatD(x) is a distribution function 4 and
therefore E[2nD(x)] = ED[1] = 1. This improves on L2

∞(2nD(x)) bound for an unrestricted
function D(x) that was used in analysis of previous weak DNF learning algorithms (Jackson,
1997; Bshouty et al., 1999).

We can now run AEBoundedSieveRV(θ, k, V) for θ = Ω(1/s), k = O(log (sB)), V = B,
and a simulated oracle access to ψ = f2nD to obtain a′ such that |ψ̂(a′)| = Ω(1/s) and
wt(a′) = O(log (sB)). By equation (3), we get that |ED[f(x)χa′(x)]| = Ω(1/s) and therefore
χa′(x) or its negation (1

2−Ω(1
s ))-approximates f with respect to D. The claimed complexity

bounds can be obtained by using Lemma 17 for θ, k and V as above.

6.2 Background on Boosting a Weak DNF Learner

Jackson (1997) obtained his DNF learning algorithm by converting a weak DNF learning
algorithm to a strong one via a boosting algorithm. Boosting is a general technique for
improving the accuracy of a learning algorithm. It was introduced by Schapire (1990) who
gave the first efficient boosting algorithm. Let C be a concept class and let WLγ be a weak
learning algorithm for C that for any distribution D, produces a (1/2 − γ)-approximating
hypothesis. Known boosting algorithms have the following structure.

• At stage zero WLγ is run on D0 = D to obtain h0.

• At stage i a distribution Di is constructed using D and previous weak hypotheses
h0, . . . , hi−1. The distribution Di usually favors the points on which the previous
weak hypotheses do poorly. Then random examples from Di are simulated to run WLγ

with respect to Di and obtain hi.

• After repeating this for a number of times an ε-approximating hypothesis h is created
using all the generated weak hypotheses.

Jackson’s use of Freund’s boosting algorithm slightly deviates from this scheme as it
provides the weak learner with the oracle that returns the density of the distribution function
Di at any desired point instead of simulating random examples with respect to Di. The
WeakDNF algorithm also requires oracle access to Di(x) and therefore we will use a boosting
algorithm in the same way. The running time of Jackson’s (and our) algorithm for weak

4. Actual D(x) given to a weak learner will be equal to cD′(x) where D′(x) is a distribution and c is a
constant in [2/3, 4/3] (Bshouty et al., 1999). This modifies the bound above by a small constant factor.
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learning of DNF expression depends polynomially on L∞(2nD) and therefore it can only
be boosted by a boosting algorithm that produces distributions that are polynomially-close
to the uniform distribution; that is, the distribution function is bounded by p2−n where p
is a polynomial in learning parameters (such boosting algorithms are called p-smooth). In
Jackson’s result Freund’s (1990) boost-by-majority algorithm is used to produce distribution
functions bounded by O(ε−2). More recently, Klivans and Servedio (2003) have observed
that a later boosting algorithm of Freund (1992) produces distribution functions bounded
by Õ(1/ε), thereby improving the dependence of running time and sample complexity on
ε. This improvement together with improved weak DNF learning algorithm of Bshouty
et al. (1999) gives DNF learning algorithm that runs in Õ(ns6/ε2) time and has sample
complexity of Õ(ns4/ε2).

Remark 19 Bshouty et al. claimed sample complexity of Õ(ns2/ε2) based on erroneous
assumption that sample points for weak DNF learning can be reused across boosting stages.
A distribution function Di in i-th stage depends on hypotheses produced in previous stages.
The hypotheses depend on random sample points and therefore in i-th stage the same set of
sample points cannot be considered as chosen randomly and independently of Di (Jackson,
2004). This implies that new and independent points have to be sampled for each boosting
stage and increases the sample complexity of the algorithm by Bshouty et al. by a factor of
O(s2).

As in the work of Klivans and Servedio (2003), we use Freund’s (1992) B-Comb boosting
algorithm to boost the accuracy of our weak DNF learning algorithm. We will now briefly
describe the B-Comb boosting algorithm (see also the work of Klivans and Servedio (2003)
for a detailed discussion on application of B-Comb to learning DNF expressions).

6.2.1 Freund’s B-Comb Boosting Algorithm

B-Comb boosting algorithm is based on a combination of two other boosting algorithms.
The first one in an earlier F1 algorithm due to Freund (1990) and is used to boost from
accuracy 1

2 − γ to accuracy 1/4. Its output is the function equal to the majority vote of
the weak hypotheses that it received. This algorithm is used as a weak learner by the
second boosting algorithm B-Filt. At stage k B-Filt sets h` to be either the output of
a weak learner or a random coin flip (that is a randomized function equal to either 1 or
−1, each with probability 1/2). Accordingly the distribution function generated at stage i
depends on random coin flips and the final hypothesis is a majority vote over hypotheses
from the weak learner and random coin flips. As it is done by Freund (1992), we analyze
the algorithm for a fixed setting of these coin flip hypotheses. Freund’s analysis shows that
with overwhelming probability over the coin flips the randomized hypothesis produced by
the boosting algorithm ε-approximates the target function.

Each of the executions of F1 has O(γ−2) stages and B-Filt has O(log (1/ε)) stages.
We denote the distribution function generated at stage i of F1 during stage ` of B-Filt as
DComb

`,i . In both boosting algorithms Di(x) = β(i,N(x))D/α, where N(x) is the number of
previous hypotheses that are correct on x, β is a fixed function from a pair of integers to
the interval [0, 1] computable in polynomial (in the length of its input) time, and α is the
normalization factor equal to ED[β(i,N(x))]. We can therefore say that

DComb

`,i (x) = β(`,NFilt(x)) · β(i,NF1(x))D(x)/(α`α`,i) , (5)
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where NFilt(x) and NF1(x) count the correct hypotheses so far for B-Filt and F1 respec-
tively. The normalization factor α` equals ED[β(`,NFilt(x))] and

α`,i = ED[β(`,NFilt(x)) · β(i,NF1(x))D(x)/α`] .

The analysis by Freund implies that for every ` and i,

L∞(2nDComb

`,i ) ≤ 1/(α`α`,i) = Õ(1/ε) .

Below we include the pseudocode of B-Comb simplified and adapted to our setting. It boosts
a weak learning algorithm WLγ that has accuracy 1

2−γ and takes an oracle for a distribution
D and confidence δ as parameters. It uses procedure EstExpRel(R,D, λ, δ) to estimate
the expectation of a random variable R with respect to a distribution D within relative
accuracy λ and confidence δ (that is the estimate v′ ∈ [(1 − λ)v, (1 + λ)v], where v is the
true expectation). We denote various unspecified constants by c0, c1, . . . The membership
query oracle for the target function f is available to all procedures.

B-Comb(ε, δ,D, WLγ) % Essentially B-Filt with F1 used as a weak learner

1. k ← c0 log (1/ε)

2. Θ← c1ε/ log (1/ε)

3. h0 ← F1(1/4, δ/(2k + 1),D, WLγ)

4. for `← 1 to k

5. N(x) ≡ |{hj | 0 ≤ j ≤ `− 1 and hj(x) = f(x)}|

6. α′
` ← EstExpRel(β(`,N(x)),D, 1/3, δ/(2k + 1))

7. if α′
` ≥ Θ then

8. D′
` ≡ β(`,N(x))/α′

`

9. h` ← F1(1/4, δ/(2k + 1),D′
`, WLγ)

10. else

11. h` ← Random(1/2)

12. end for

13. return Majority(h0, h1, . . . , hk)

F1(ε, δ,D, WLγ) % used with ε = 1/4

1. k ← c2/γ
2

2. Θ← c3ε
2

3. h0 ← WLγ(D, δ/(2k + 1))

4. for i← 1 to k

5. N(x) ≡ |{hj | 0 ≤ j ≤ i− 1 and hj(x) = f(x)}|

6. α′
i ← EstExpRel(β(i,N(x)),D, 1/3, δ/(2k + 1))

7. if α′
i ≥ Θ then

8. D′
i ≡ β(i,N(x))/α′

i

9. hi ← WLγ(D′
i, δ/(2k + 1))

10. else

11. k ← i− 1

12. break for

13. end for

14. return Majority(h0, h1, . . . , hk)
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6.3 Optimized Boosting

We now use Freund’s (1992) B-Comb boosting algorithm to boost the accuracy of our weak
DNF learning algorithm. Unlike in the previous work, we will exploit several properties
of WeakDNF to achieve faster execution of each boosting stage. Specifically, we note that
evaluation of the distribution function Di(x) at boosting stage i involves evaluation of i− 1
previous hypotheses on x and therefore, in a general case, for a sample of size q will require
Ω(i ·q) steps, making the last stages of boosting noticeably slower. Our goal is to show that
for our WeakDNF algorithm and the B-Comb boosting algorithm the evaluation of Di(x) for
the whole sample needed by WeakDNF can be made more efficiently.

The idea of the speed-up is to use Equation (5) together with the facts that weak
hypotheses are parities and MQs of WeakDNF come from a “small” number of low-dimension
linear subspaces. Let g be a function that is equal to a linear combination of short parity
functions. We start by showing a very efficient way to compute the values of g on a
linear subspace of {0, 1}n. We will assume that vectors of Hamming weight at most w are
represented by the list of indices where the vector is equal to 1 (as we did for parities). One
can easily see that adding such vectors or multiplying them by any vector takes O(w log n)
time.

Lemma 20 Let {c1, c2, . . . , ci} be a set of vectors in {0, 1}n of Hamming weight at most
w; ᾱ ∈ Ri be a real-valued vector, and R be a m-by-n 0-1 matrix. Then the set of pairs

S = {〈p,
∑

j≤i

αjχcj
(pR)〉 | p ∈ {0, 1}m}

can be computed in time Õ(i · w log n+ 2m).

Proof We define g(x) =
∑

j≤i αjχcj
(x) and for p ∈ {0, 1}m we define gR(p) = g(pR) (as

in Sect. 5). Our goal is to find the values of function gR on all the points of {0, 1}m. The
function g is given as a linear combination of parities, or in other words, we are given its
Fourier transform. Given the Fourier transform of g we can derive the Fourier transform of
gR from the following equation:

gR(p) =
∑

j≤i

αjχcj
(pR) =

∑

j≤i

αjχcjRT (p) =
∑

z∈{0,1}m


(

∑

j≤i; cjRT =z

αj)χz(p)


 .

Hence ĝR(z) =
∑

j≤i; cjRT =z αj. Given the Fourier transform of gR we can use the FFT

algorithm to perform the inverse Fourier transform of gR giving us the desired values of gR(p)
on all the points of {0, 1}m. This task can be performed in O(m2m) steps. To compute
the Fourier transform of gR we need to compute cjR

T for each j ≤ i and sum the ones
that correspond to the same z. Given that each cj is of Hamming weight w, cjR

T can be
computed in O(wm log n) steps (note that we do not read the entire matrix R). Therefore
the computation of the Fourier transform and the inversion using the FFT algorithm will
take O(m(iw log n+ 2m)) = Õ(i · w log n+ 2m) steps.

Note that a straightforward computation would take Ω(iw2m log n) steps. We apply Lemma
20 to speed up the evaluation of DComb

`,i (x) on points at which WeakDNF asks non-adaptive
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MQs (here again we will rely on the non-adaptiveness of the weak learning algorithm). The
speed-up is based on the following observations.

1. WeakDNF is based on estimating Fourier coefficients on a “small” number of linear
subspaces of {0, 1}n (as in Equation 2).

2. WeakDNF produces a short parity function (or its negation) as the hypothesis.

3. In computation of DComb

`,i (x) the only information that is needed about the previous
hypotheses is NFilt(x) and NF1(x), that is the number of hypotheses so far that are
correct on the given point. The number of correct hypotheses is determined by f(x)
and the sum (in particular, a linear combination) of the values of the hypotheses on
x.

Now we prove these observations formally and show a more efficient way to compute
DComb

`,i (x) given oracle access to NFilt(x), in other words, we show a more efficient way
to compute NF1(x).

Lemma 21 Let {b1χc1, b2χc2, . . . , biχci
} be the set of hypotheses returned by WeakDNF(s,B)

in i first stages of F1 boosting algorithm during stage ` of B-Filt, where bj ∈ {−1,+1} is the
sign of χcj

(indicating whether or not it is negated). LetW be the set of queries for the (i+1)-
th execution of WeakDNF(s,B) with confidence parameter δ and B ≥ L∞(2nDComb

`,i ). Then,

given MEM(f) and an oracle access to NFilt(x), the set of pairs S = {〈x, λDComb

`,i (x)〉 | x ∈
W} for some constant λ ∈ [2/3, 4/3], can be computed, with probability at least 1 − δ, in
time Õ((i+ s2B) log2 n log (1/δ)).

Proof We start by proving our first observation. By revisiting the proof of Theorem 13
we can see that our weak parity algorithm asks queries on Y = {pR | p ∈ {0, 1}m} for a
randomly chosen R and then for each query z of a ae.naMQ parity algorithm it asks queries
on points of the set Yz = {z ⊕ y | y ∈ Y }. The set Yz is a subset of the linear subspace of
dimension m+ 1 spanned by the rows of R and vector y. These queries are then repeated
O(m+ log (1/δ)) times to single out “good” Fourier coefficients. Therefore by substituting
the parameters of WeakDNF(s,B) into the proofs of Lemma 17 and Theorem 13, we can see
that W can be decomposed into Õ(log2 (sB) log n log (1/δ)) linear subspaces of dimension
m = log T for T = Õ(s2B log n).

Our second observation is given by Theorem 18 and states that for each j ≤ i, χcj
is a

parity on at most log sB variables.
Our next observation is that the number of hypotheses from {b1χc1, b2χc2, . . . , biχci

}
that agree with f on x equals to

NF1(x) =
f(x)

(∑
j≤i bjχcj

(x)
)

2
+
i

2
,

that is, given
∑

j≤i bjχcj
(x) and f(x), NF1(x) can be computed in O(1) steps. According

to Lemma 20, we can compute
∑

j≤i bjχcj
(x) on a linear subspace of dimension m in time

Õ(iw log n + 2m). Together with the first observation this implies that computing NF1(x)
for all points in W can be done in time

Õ(log2 (sB) log n log (1/δ))Õ(i · log (sB) log n+ s2B log n) = Õ((i+ s2B) log2 n log (1/δ)) .

23



Equation (5) implies that for every point x, given NF1(x), oracle access to NFilt(x) and
α`α`,i we obtain DComb

`,i (x). The normalization factor α`,i is estimated with relative accuracy

1/3 and therefore instead of the true DComb

`,i (x) we will obtain λDComb

`,i (x) for some constant
λ ∈ [2/3, 4/3].

Lemma 21 assumes oracle access to NFilt(x). In the next lemma we show that this oracle
can be simulated efficiently.

Lemma 22 Let {h0, h1, . . . , h`−1} be the set of hypotheses obtained by B-Comb in ` first
stages of boosting. Let W be the set of queries for the (i+ 1)-th execution of WeakDNF(s,B)
with confidence parameter δ and B ≥ L∞(2nDComb

`,i ). Then, given MEM(f), the set of pairs
S = {〈x,NFilt(x)〉 | x ∈ W} can be computed, with probability at least 1 − δ, in time
Õ(`s2B · log2 n log (1/δ)).

Proof For each j ≤ ` − 1, hj is an output of F1 or a random coin flip hypothesis.
WeakDNF(s,B) returns (1

2 − Ω(1
s ))-approximate hypotheses and therefore each hypothesis

generated by F1 is a majority vote of O(γ−2) = O(s2) short parities (or their negations).
A majority vote of these parities and their negations is simply the sign of their sum, and in
particular is determined by a linear combination of parity functions. Hence, as in Lemma
21, hj(x) for all points in W can be computed Õ((s2 +s2B) log2 n log (1/δ)) time. Therefore
for any stage `, h0, h1, . . . , h`−1 can be computed on points in W in Õ(`s2B log2 n log (1/δ))
steps giving the required oracle NFilt(x).

Remark 23 In this simulation of B-Comb we ignored the complexity of procedure EstExpRel

that is used to evaluate the normalization factors. The factor α` = E[β(`,NFilt(x))] needs
to be estimated within relative accuracy 1/3 and its value is only used when the estimate
α′

` ≥ Θ = c1ε/ log (1/ε) for some constant c1 since otherwise B-Comb uses a random coin
flip hypothesis (see line 7 of the pseudocode). This implies that the estimate is only used
when α` ≥ 3Θ/4. The Chernoff bound (Lemma 1) implies that if α` ≥ 3Θ/4 then using

M = O( log(1/ε) log (1/δ)
ε ) random uniform samples will be sufficient to estimate α` within

relative accuracy 1/3 with confidence 1 − δ. If α` < 3Θ/4 then with probability 1 − δ the
obtained estimate α′

` will be less than Θ and therefore will not be used. Evaluating NFilt(x)
on each of these points will take O(`ns2) steps and therefore each of these estimation will
run in time Õ(`ns2 log (1/δ)/ε).

At each stage of the F1 boosting algorithm we need to estimate

α`,i = E[β(`,NFilt(x)) · β(i,NF1(x))/α
′
`]

to within relative accuracy 1/3 and its value is only used when the estimate α′
`,i ≥ c for some

constant c. Therefore it is sufficient to estimate α`,i to within constant additive accuracy.
With probability at least 1−δ this can be achieved by using a sample of O(log (1/δ)) random
uniform points. Estimating both NFilt(x) and NF1(x) on each point takes O(`ns2) steps
and therefore each of these estimations runs in time O(`ns2 log (1/δ)).

We are now ready to describe the resulting ae.naMQ algorithm for learning DNF ex-
pressions.
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Theorem 24 There exists an algorithm AENALearnDNF(s) that for any Boolean function f
of DNF-size s, given n, s, ε, and access to MEM(f), with probability at least 1/2, finds an ε-
approximator to f with respect to U . Furthermore, AENALearnDNF(s) runs in time Õ

(
ns4/ε

)

and asks
Õ

(
s4 log2 n/ε

)
non-adaptive MQs.

Proof As we know from the description of B-Filt, it has O(log (1/ε)) stages and for
each ` and i, L∞(2nDComb

`,i ) = Õ(1/ε). Therefore the running time of each execution of

WeakDNF(s,B) is Õ(ns2/ε). In particular, for every boosting stage of F1, it dominates the
running time of computing the distribution function DComb

`,i (Lemmas 21 and 22) and esti-

mations of α` and α`,i (Remark 23). There are total O(s2 log (1/ε)) executions of WeakDNF
and therefore the total running time of AENALearnDNF(s) is Õ

(
ns4/ε

)
and the total number

of non-adaptive MQs used is Õ
(
s4 log2 n/ε

)
.

The improvements to the algorithm by Bshouty et al. (1999) are summarized below.

• The use of attribute-efficient weak learning improves the total sample complexity from
Õ

(
ns4/ε2

)
to Õ

(
s4 log2 n/ε2

)
and the same running time is achieved without assump-

tions on the MQ oracle (see Theorem 16).

• Faster computation of distribution functions used in boosting improves the total run-
ning time from Õ

(
ns6/ε2

)
to Õ

(
ns4/ε2

)
(see Lemmas 20, 21 and 22).

• Tighter estimation of variance improves the dependence of running time and sample
complexity on ε from 1/ε2 to 1/ε (Equation 4).

Remark 25 While the analysis of the speedup was done for Freund’s B-Comb booster the
same idea works for any other booster in which estimation of new weight function is based
on a linear combination of previous hypotheses. In particular, for the other known boosting
algorithms that produce smooth distributions: SmoothBoost by Servedio (2003) and AdaFlat

by Gavinsky (2003).

7. Handling Noise

Now we would like to show that our DNF learning algorithm can be modified to tolerate
random persistent classification noise in MQs. To simplify the proof we first show that we
can assume that we are dealing with random and independent classification noise.

Lemma 26 The probability that AENALearnDNF(s) asks an MQ for the same point more
than once is upper bounded by P · 2−n/ log Q where P and Q are polynomial in n, s and 1/ε.

Proof We start by observing that in the algorithm AENALearnDNF(s) all the points that
are given to the MQ oracle are chosen uniformly and the points that are used in different
executions of WeakDNF are independent. As can be seen from the proof of Theorem 13,
the generated points are of the form pR⊕ y, where R is a randomly and uniformly chosen
matrix, y is chosen randomly according to D 1

4k
(defined in Theorem 9) or equal to 0n, and
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p ∈ {0, 1}m. Points generated for two randomly chosen R1 and R2 are independent of each
other and uniformly distributed. Let y0 = 0n, q be the number of samples taken from D 1

4k
,

and y1, y2, . . . , yq denote the samples.

For some randomly chosen R, let x1 = p1R ⊕ yi and x2 = p2R ⊕ yj be two different
sample points. For two different sample points either i 6= j or p1 6= p2. If i 6= j then either
i 6= 0 or j 6= 0. Without loss of generality we assume that i 6= 0. Then

Pryi∼D 1

4k

[p1R⊕ yi = p2R⊕ yj] = Pryi∼D 1

4k

[yi = p1R⊕ p2R⊕ yj] ≤ (1−
1

4k
)n ≤ e−n/(4k) .

If p1 6= p2 then PrR∼Um×n
[(p1 ⊕ p2)R = yi ⊕ yj] = 2−n. This implies that for any two MQs

made by AENALearnDNF(s), probability that they are equal is at most e−n/(4k). As it can be
seen from the analysis of AENALearnDNF(s), k = O(log (s/ε)) and the total number of MQs
used is polynomial in n, s and 1/ε.

If an algorithm does not ask a MQ for the same point again then persistent classification
noise can be treated as random and independent.

7.1 Boosting Weak Parity Learning Algorithm in the Presence of Noise

The main part of the modification is to show an algorithm that can locate heavy Fourier
coefficients of any randomized function can be used to learn DNFs in the presence of noise.
Our method can be applied in more general setting. In particular, it could be used to
prove that Jackson’s original algorithm is resistant to persistent noise in MQs and was
recently used to produce a noise tolerant DNF learning algorithm by Feldman et al. (2006).
Previous methods to produce noise-tolerant DNF learning algorithms gave statistical query
analogues of Jackson’s algorithm and then simulated statistical queries5 in the presence of
noise (Jackson et al., 1997; Bshouty and Feldman, 2002). Our approach is more direct and
the resulting algorithm is substantially more efficient than the previous ones.

The goal of a weak DNF learning algorithm at stage i of boosting is to find a parity
correlated with the function 2nDi(x)f(x) given an oracle access to values of Di(x) and the
oracle for f with noise of rate η < 1/2 instead of MEM(f). Handling the noisy case is further
complicated by the fact that the computation of Di(x) by the boosting algorithm uses the
value f(x) (in particular, B-Comb and B-Filt need the value of f(x) to compute N(x))
which is not available in the noisy case. To make this dependence explicit we define Di(x, b)
(for b ∈ {−1,+1}) to be the value of Di on x when the boosting algorithm is supplied with
the value b in place of f(x) to compute Di(x) (in particular, Di(x) = Di(x, f(x))). We will
now show a general method to compute a Fourier coefficient of a function that depends on
f(x) given a noisy oracle for f .

Lemma 27 Let g(x, b) be any real-valued function over {0, 1}n × {−1,+1} and let Φη

denote a randomized function such that for every x, Φη(x) = f(x) with probability 1 − η

and Φη(x) = −f(x) with probability η. Then for each a ∈ {0, 1}n, [ ̂g(x, f(x))](a) = Ψ̂g,η(a),

5. They used stronger versions of statistical queries than those introduced by Kearns (1998).
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where Ψg,η is a randomized function defined as

Ψg,η(x) =
1

2

(
1

1− 2η
(g(x, 1) − g(x,−1)) · Φη(x) + g(x, 1) + g(x,−1)

)
.

Proof We use the following observation due to Bshouty and Feldman (2002). For any
real-valued function ψ(x, b)

ψ(x, f(x)) = ψ(x,−1)
1 − f(x)

2
+ ψ(x, 1)

1 + f(x)

2
=

1

2
((ψ(x, 1) − ψ(x,−1))f(x) + ψ(x, 1) + ψ(x,−1)) .

Then

Ex,Φη(x)[
1

2
(ψ(x, 1) − ψ(x,−1)) · Φη(x)] = (1− 2η)Ex[

1

2
(ψ(x, 1) − ψ(x,−1))f(x)] ,

and therefore we can offset the effect of noise in g(x, f(x)) as follows.

̂[g(x, f(x))](a) = E[g(x, f(x))χa(x)]

=
1

2
(Ex[(g(x, 1) − g(x,−1))χa(x)f(x)] + Ex[(g(x, 1) + g(x,−1))χa(x)])

=
1

2

(
1

1− 2η
Ex,Φη(x)[(g(x, 1) − g(x,−1))χa(x) · Φη(x)] + Ex[(g(x, 1) + g(x,−1))χa(x)]

)

= Ex,Φη(x)

[
1

2

(
1

1− 2η
(g(x, 1) − g(x,−1)) · Φη(x) + g(x, 1) + g(x,−1)

)
χa(x)

]
= Ψ̂(a)

An oracle for Φη(x) is exactly the membership query oracle for f(x) with noise of rate η
that is given to us (by Lemma 26 we can ignore the persistency of noise). Therefore Lemma
27 gives a way to find heavy Fourier coefficients using an oracle for Φη(x) instead of the
membership query oracle for f(x). We apply it to WeakDNF and obtain our noise-tolerant
ae.naMQ DNF learning algorithm.

Theorem 28 There exists an algorithm AENALearnDNF(s, η) that for any Boolean function
f of DNF-size s, given n, s, η, ε, and access to MEM(f) corrupted by random persistent
classification noise of rate η, with probability at least 1/2, finds an ε-approximator to f with
respect to U . Furthermore, AENALearnDNF(s, η) runs in time Õ

(
ns4/(ε(1 − 2η)2)

)
and asks

Õ
(
s4 log2 n/(ε(1− 2η)2)

)
non-adaptive MQs.

Proof Section 6.3 gives a way to efficiently compute DComb

`,i (x) given the label f(x). This

computation defines the oracle for DComb

`,i (x, b) where b is the supposed label of f(x). Let

g(x, b) = b · 2nDComb

`,i (x, b) and let Ψg,η(x) be defined as in Lemma 27. Given the oracle

for DComb

`,i (x, b) and oracle access to Φη(x) we use AEBoundedSieveRV(θ, k, V) on Ψg,η(x) in
the same way it was used on ψ(x) by WeakDNF(s,B) (see the proof of Theorem 18). By
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Lemma 27, Ψg,η(x) has the same Fourier coefficients as f(x)2nDComb

`,i (x, f(x)). Therefore
this modified weak learning algorithm will produce an equivalent hypothesis. We can deal
with the noise while estimating the normalization factor α`,i in exactly the same way.

Furthermore, the definition of Ψg,η and Equation (4) imply that

L∞(Ψg,η) ≤
2

1− 2η
L∞(2nDComb

`,i ) and Var(Ψg,η) ≤
4

(1− 2η)2
L∞(2nDComb

`,i ) .

By substituting these bounds into Theorem 18 we obtain that the running time and the
sample complexity of each execution of the modified weak learner will grow by (1 − 2η)2.
They also imply that WeakDNF(s,B) will produce parities on log (s2/(ε(1 − 2η))) variables
(this change is absorbed by Õ notation).

8. Conclusions and Open Problems

In this work we have demonstrated equivalence of attribute-efficient learning of parities
from random and uniform examples and decoding of random linear binary codes. This
result appears to be the only known evidence of hardness of attribute-efficient learning for
a natural concept class. Many other problems remain open in this area. For example it is
unknown whether decision lists or linear thresholds are learnable attribute-efficiently.

Our results show that some of the most important concepts classes that are learnable
attribute efficiently with respect to the unform distribution using membership queries are
also learnable by significantly weaker non-adaptive MQs. We believe that it is interesting
to understand if similar results can be obtained in the distribution-independent setting. In
particular whether monotone DNF formulae and decision trees can be learned attribute-
efficiently using non-adaptive MQs in the distribution-independent PAC model.

We have also shown an improved algorithm for learning DNF expressions with respect
to the uniform distribution. In addition to being the most efficient known algorithm for
learning DNF, it is attribute-efficient, noise tolerant, and uses membership queries non-
adaptively. All known efficient algorithms for learning DNF are based on Jackson’s (1997)
approach to learning DNF expressions. It would be interesting to find other approaches to
learning DNF, possibly avoiding some of the overheads of the current approach (such as
boosting a weak DNF learning algorithm).
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