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Abstract

We study the impact of combinatorial structure in congestion games on the complexity of computing
pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate
which properties of the strategy spaces of individual players ensure a polynomial convergence time. We
show, if the strategy space of each player consists of the bases of a matroid over the set of resources, then
the lengths of all best response sequences are polynomiallybounded in the number of players and resources.
We can also prove that this result is tight, that is, the matroid property is a necessary and sufficient condition
on the players’ strategy spaces for guaranteeing polynomial time convergence to a Nash equilibrium. In
addition, we present an approach that enables us to devise hardness proofs for various kinds of combinatorial
games, including first results about the hardness of market sharing games and congestion games for overlay
network design. Our approach also yields a short proof for the PLS-completeness of network congestion
games.

1 Introduction

Congestion games are a natural and generally accepted approach to model resource allocation among selfish
and myopic players. In a congestion game we have a set of resources, and a strategy of a player corresponds to
the selection of a subset of these resources. The strategy space is thus a set of sets of resources. The delay (cost,
payoff) for each player from selecting a particular resource depends only on the number of players choosing that
resource, and her total delay is the sum of the delays associated with her selected resources. Almost needless
to say, congestion games are fundamental to routing, network design and other kinds of resource sharing in
distributed systems.

Rosenthal [9] shows with a potential function argument thatevery congestion game possesses at least one
pure Nash equilibrium. This argument does not only prove theexistence of pure Nash equilibria but it also
shows that such an equilibrium is reached in a natural way when players iteratively play best responses. A
recent result of Fabrikant et al. [2] shows, however, that these best response sequences may require an expo-
nential number of iterations. Their analysis relates congestion games to local search problems. They show that
it is PLS-complete to compute a Nash equilibrium for general congestion games. Their completeness proof
is based on atight PLS-reduction preserving lower bounds on the length of best response sequences. Hence,
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it follows from previous results about local search problems that there exist congestion games with initial
configurations such that any best response sequence starting from these configurations needs an exponential
number of iterations to reach a Nash equilibrium. Fabrikantet al. [2] are able to extend their negative results
from general congestion games towardsnetwork congestion gamesin which each player aims at allocating
a path in a network connecting a given source with a given destination node, provided that different players
can have different source/destination pairs. The complexity changes if one assumes that all players have the
same source/destination pair: For symmetric network congestion games, they present a polynomial time algo-
rithm that computes a Nash equilibrium by solving a min-costflow problem. This positive result leaves open,
however, the question about the convergence time for best responses in symmetric network congestion games.
As one of our results, we will see that, in contrast to thePLS-hardness results, the negative results for the
convergence time of asymmetric network congestion games directly transfer to the symmetric case.

In this paper, we are interested in the question of which properties the combinatorial structure of a conges-
tion game has to satisfy in order to guarantee that computinga Nash equilibrium has polynomial complexity
and which properties ensure polynomial convergence time for best responses. In network congestion games,
the strategy spaces of individual players have a very rich combinatorial structure: A best response requires
to solve a shortest path problem. On the other extreme, we findsingleton gamesin which all of the players’
strategies consist only of single resources. Recently Ieong et al. [5] have shown that best response sequences
for singleton games reach a Nash equilibrium after only a polynomial number of iterations. This result can
be seen as a criterion on the strategy space of the players that guarantees fast convergence. In this paper, we
systematically study how far such a sufficient criterion forfast convergence that is solely based on properties of
the strategy spaces of individual players can go. More generally, taking into account also the global structure
of the game, we investigate the question of what are the combinatorial properties that influence the complexity
and the convergence time for structured congestion games.

1.1 Definitions and Notations

A congestion gameΓ is a tuple(N ,R, (Σi)i∈N , (dr)r∈R) whereN = {1, . . . , n} denotes the set of players,
R = {1, . . . ,m} the set of resources,Σi ⊆ 2R the strategy space of playeri, anddr : N → Z a delay function
associated with resourcer. We call a congestion gamesymmetricif all players share the same set of strategies,
otherwise we call itasymmetric. We denote byS = (S1, . . . , Sn) thestate of the gamewhere playeri plays
strategySi ∈ Σi. Furthermore, we denote byS ⊕ S′

i the stateS′ = (S1, . . . , Si−1, S
′
i, Si+1, . . . , Sn), i. e., the

stateS except that playeri plays strategyS′
i instead ofSi. For a stateS, we define thecongestionnr(S) on

resourcer by nr(S) = |{i | r ∈ Si}|, that is,nr(S) is the number of players sharing resourcer in stateS.
We assume that players act selfishly and like to play a strategy Si ∈ Σi that minimizes their individual delay.
The delaydi(S) of playeri is given bydi(S) =

∑

r∈Si
dr(nr(S)). Given a stateS, we call a strategyS∗

i a
best responseof player i to S if, for all S′

i ∈ Σi, di(S ⊕ S∗
i ) ≤ di(S ⊕ S′

i). In the following, we use the
termbest response sequenceto denote a sequence of consecutive strategy changes in which each step is a best
response which strictly decreases the delay of the corresponding player. Furthermore, we call a stateS a Nash
equilibrium if no player can decrease her delay by changing her strategy,i. e., for all i ∈ N and for allS′

i ∈ Σi,
di(S) ≤ di(S ⊕S′

i). Rosenthal [9] shows that every congestion games possessesat least one Nash equilibrium

by considering the potential functionφ : Σ1 × · · · × Σn → Z with φ(S) =
∑

r∈R

∑nr(S)
i=1 dr(i).

The classPLS contains alllocal search problemswith certain properties. A local search problemΠ is
given by its set of instancesIΠ. For every instanceI ∈ IΠ, we are given a set of resourcesR, a set of feasible
solutionsF(I) ⊆ 2R, an objective functionf : F(I) → Z, and for every feasible solutionS ∈ F(I), a
neighborhoodN (S, I) ⊆ F(I). Given an instanceI of a local search problem we seek for alocally optimal
solutionS∗, i. e., a solution which does not have a strictly better neighbor. A neighborS′ of a solutionS is
strictly better if the objectivef(S′) is larger/smaller in the case of a maximization/minimization problem. A
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local search problemΠ belongs toPLS if the following polynomial time algorithms exist: (1) an algorithmA
which computes for every instanceI ∈ IΠ an initial feasible solutionS ∈ F(I), (2) an algorithmB which
computes for every instanceI ∈ I and every feasible solutionS ∈ F(I) the objective valuef(S), and (3) an
algorithmC, which determines for every instanceI ∈ IΠ and every feasible solutionS ∈ F(I) whetherS is
locally optimal or not and finds a better solution in the neighborhood ofS in the latter case. Johnson et al. [6]
introduce the notion of aPLS-reduction. A problemΠ1 in PLS is PLS-reducible to a problemΠ2 in PLS, if
there are polynomial-time computable functionsf andg such that (1)f maps instancesI ∈ IΠ1

to instances
f(I) ∈ IΠ2

, (2) g maps solutionsS2 of f(I) to solutionsS1 of I, and (3) for all instancesI ∈ IΠ1
if S2 is a

local optimum of instancef(I), theng mapsS2 to a local optimum ofI. Additionally, a local search problem
Π in PLS is PLS-complete if every problem inPLS is PLS-reducible toΠ.

1.2 New Results

Upper and lower bounds on the convergence time. We show that the analysis of Ieong et al. [5] can be
generalized towards matroids, that is, if the set of strategies of each player consists of the bases of a matroid over
the set of resources, then the lengths of all best response sequences are polynomially bounded in the number
of players and resources. This result holds regardless of the global structure of the game and for any kind of
delay functions. We can show that the result is tight on the basis of instances with non-decreasing, non-negative
delays: Any condition on the players’ strategy spaces that yields a subexponential bound on the lengths of all
best response paths implies that the strategy spaces after removing dominated strategies (w. r. t. non-negative
delays) are the bases of matroids. In other words, the matroid property is a necessary and sufficient condition
on the players’ strategy spaces for guaranteeing polynomial time convergence to a Nash equilibrium.

The obvious application of matroid congestion games are network design problems in which players com-
pete for the edges of a graph in order to build a spanning tree [13]. There are quite a few more interesting
applications as even simple matroid structures like uniform matroids that are rather uninteresting from an op-
timization point of view lead to rich combinatorial structures when various players with possibly different
strategy spaces are involved. Illustrative examples basedon uniform matroids are market sharing games with
uniform market costs or scheduling games in which each player has to injectively allocate a given set of tasks
(services) to a given set of machines (servers).

Our negative result for the non-matroid games does not have immediate implications for particular classes
of structured congestion games as it is solely based on localproperties of the players’ strategy spaces and
neglects the global structure. However, our proof technique can be transfered to various classes of games as
it reveals a minimal substructure, so-called (1,2)-exchanges, that can be found in the strategy spaces of non-
matroid congestion games. If a class of non-matroid games allows to interweave the individual strategy spaces
in the right way, then one can construct exponentially long best response sequences in form of a counter with
the (1,2)-exchanges or more general with (1,k)-exchanges as basic building blocks. This approach can be
applied to various classes of congestion games even if the delay (payoff) functions are restricted like in the case
of market sharing games. We obtain that market sharing gamesadmit exponentially long best response paths,
which answers an open question from [3, 7].

Symmetric network congestion games are the only known classof non-matroid congestion games for
which a Nash equilibrium can be computed in polynomial time.We can show, however, by an embedding
of asymmetric network games into particular starting configurations of symmetric network congestion games
that symmetric network games do not only admit exponentially long best response paths but that there are
initial configurations such that all best response sequences starting from these configurations have exponential
length.
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Hardness results for structured congestion games. The only known hardness result for a class of struc-
tured congestion games is thePLS-completeness result for network congestion games with directed edges by
Fabrikant et al. [2]. Unfortunately, the analysis in [2] is not very instructive, as it completely reworks the very
involved master reduction to POSNAE3FFLIP (not-all-equal-3SAT with weights on clauses with only positive
literals) from [10] and adds some further complications. (According to [2] already the master reduction from
[10] is possibly the most complex reduction in the literature, if one excludes PCP.) We present an alternative
approach for proving hardness of structured congestion games that more directly reveals which kind of sub-
structures cause the trouble, and that also shows the hardness of asymmetric network congestion games with
undirected edges. There is a simple, elegant reduction fromPOSNAE3FFLIP to MAX CUT (which is equivalent
to POSNAE2FFLIP) [10]. We show that MAX CUT can be reduced to so-calledthreshold games. The strat-
egy space of each player in a threshold game corresponds to an(1,k)-exchange. Despite this simple structure,
threshold games are a natural and interesting class of games. Our main interest, however, stems from the fact,
that because of this simple structure, threshold games are agood starting point for furtherPLS-reductions. We
demonstrate the applicability of our approach by showing reductions from threshold games to three classes of
games with different kinds of combinatorial structure:

– market sharing games with generalized payoff functions and polynomially bounded market costs,
– overlay network design, where players have to build a spanning tree on a given subset of nodes that

are (virtually) completely connected on the basis of fixed routing paths in an underlying communication
network, and

– network congestion games with (un)directed edges.

Taking thePLS-completeness of POSNAE3FFLIP for granted, the latter of these results yields a significantly
simpler proof for thePLS-completeness of network congestion games than the one in [2]. The second result
might seem as a contradiction to the positive result about matroid congestion games. However, despite the fact
that players only have to solve a spanning tree problem, their strategy spaces do not form a matroid over the set
of resources but over subsets (paths) of resources. This rather small deviation from the matroid property results
in thePLS-completeness of this seemingly harmless class of congestion games.

Finally, let us remark that all consideredPLS reductions are tight, so that they do not only prove the PLS-
hardness of the considered classes of games but, in addition, they show that these classes contain instances of
games with initial configurations for which all best response sequences have exponential length. Furthermore,
this kind of reduction implies that it isPSPACE-hard to compute a reachable Nash equilibrium for a given
initial configuration of these games.

2 Matroid Congestion Games

In this section, we consider matroid congestion games. Before we give a formal definition of such games we
shortly introduce matroids. For a detailed discussion of matroids we refer the reader to [11].

Definition 1. A tupleM = (R,I) is a matroid ifR = {1, . . . ,m} is a finite set of resources andI is a
nonempty family of subsets ofR such that ifI ∈ I andJ ⊆ I, thenJ ∈ I, and ifI, J ∈ I and |J | < |I|, then
there exists ani ∈ I\J with J ∪ {i} ∈ I.

Let I ⊆ R. If I ∈ I, then we callI an independent setof R, otherwise we call itdependent. It is well
known that all maximal independent sets ofI have the same size which is usually denoted by therank rk(M)
of the matroid. A maximal independent setB is called abasisof M . In case of a weight functionw : R → N,
we call a matroidweighted, and seek to find a basis of minimum weight where the weight of an independent
setI is given byw(I) =

∑

r∈I w(r). It is well known that such a basis can be found by a greedy algorithm.
We are now ready to define matroid congestion games.
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Definition 2. We call a congestion gameΓ = (N ,R, (Σi)i∈N , (dr)r∈R) a matroid congestion game if for
every playeri ∈ N , Mi = (R,Ii) with Ii = {I ⊆ S | S ∈ Σi} is a matroid. In this case,Σi is the set of bases
of Mi. Additionally, we denote byrk(Γ) = maxi∈N rk(Mi) therank of a matroid congestion gameΓ.

2.1 Fast Convergence for Matroid Congestion Games

Ieong at al. [5] show that in singleton games players reach a Nash equilibrium after at mostn2·m best responses.
Note that singleton games are matroid congestion games withrk(Mi) = 1 for every playeri. We extend their
analysis to general matroid congestion games.

Theorem 3. LetΓ be a matroid congestion game. Then players reach a Nash equilibrium after at mostn2 ·m ·
rk(Γ) best responses. In the case of identical delay functions, players reach a Nash equilibrium after at most
n2 · rk(Γ) best responses.

Proof. Consider a list of all delaysdr(nr) with r ∈ R and1 ≤ nr ≤ n and assume that this list is sorted in a
non-decreasing way. For each resourcer, we define an alternative delay functioñdr : N → N where, for each
possible congestionnr, d̃r(nr) equals the rank of the delaydr(nr) in the aforementioned list of all delays. We
assume that equal delays receive the same rank.

Lemma 4. LetS be a state of a matroid congestion game andS∗
i ∈ Σi a best response of playeri to S w. r. t.

delaysdr which strictly decreases the delay ofi. ThenS∗
i strictly decreases the delay of playeri w. r. t. the

delaysd̃r.

Proof. Schrijver [11] introduces the bipartite graphG(S∗
i ∆Si) = (V,E) with V = (S∗

i \Si) ∪ (Si\S
∗
i ) and

E = {{r∗, r} | r∗ ∈ S∗
i \Si, r ∈ Si\S

∗
i : S∗

i ∪ {r}\{r∗} ∈ Σi} and shows that there exists a perfect
matchingPM in G(S∗

i ∆Si). Now observe that for every edge{r, r∗} ∈ PM , dr∗(nr∗(S
∗)) ≤ dr(nr(S

∗) + 1)
since, otherwise,S∗

i is no best response w. r. t. the delaysdr. Additionally, there exists at least one edge with
dr∗(nr∗(S

∗)) < dr(nr(S
∗)+ 1) sinceS∗

i strictly decreases the delay of playeri. Finally, the same inequalities
also hold for the delays̃dr, as they correspond to the ranks of the original delays. Thusthe claim follows.

Now due to Lemma 4, whenever a player plays a best response w. r. t. the delaysdr, Rosenthal’s potential
decreases w. r. t. the delays̃dr. Now, since there are at mostn · m differentdr(nr)-values,d̃r(nr) ≤ n · m for
all resourcesr ∈ R and for all possible congestion valuesnr. Hence,

φ̃(S) =
∑

r∈R

nr(S)
∑

i=1

d̃r(i) ≤
∑

r∈R

nr(S)
∑

i=1

n · m = n2 · m · rk(Γ)

since we sum overn · rk(Γ) values. Sincẽφ(S) is lower bounded by0 and decreases by at least one if a player
plays a best response w. r. t. the delaysdr, the first part of the theorem follows. In the special case of identical
delay functions, there are at mostn different delays instead ofn · m, and thus the second part of the theorem
follows.

Note that Theorem 3 is independent of the delay functions. Inparticular, we do not assume monotonicity
or that all delays have the same sign.
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2.2 About the Complexity of Computing Socially Optimal NashEquilibria in Spanning Tree
Congestion Games

Theorem 3 states that a Nash equilibrium of a matroid congestion game can be found in polynomial time. A
natural problem related to this is to consider the complexity of computing a socially optimal Nash equilibrium,
i. e., a Nash equilibriumS with minimum social delay

∑n
i=1 di(S). In general, computing such an equilibrium

is NP-hard which can be shown by a reduction from the Hamiltonian Cycle problem to spanning tree congestion
games.

Before we prove that, in general, computing a socially optimal Nash equilibrium of a spanning tree conges-
tion game isNP-hard, we discuss several aspects of computing an arbitrarystateS, i. e., not necessarily a Nash
equilibrium, with minimum social delayγ(S) =

∑

i∈N di(S). Werneck et al. [13] consider classes of instances
of the spanning tree congestion game with weakly convex delay functionsdr and show how to compute a so-
cially optimal state efficiently. A delay function is weaklyconvex ifdr(nr +1)−dr(nr) ≥ dr(nr)−dr(nr−1)
for all 1 < nr < n. Note that in this case any socially optimal state is also a Nash equilibrium. Weak convexity
implies monotonicity which is not satisfied in many applications. A more realistic scenario is to consider delay
functionsdr(nr) = ar · (nr − tr)

2d + br for a thresholdtr ∈ N, constantsar, br ∈ N and an exponentd ∈ N.
Assume that, for each edge, players have to pay some money in order to activate the edge. These costs are
shared among the players using an edge hence players prefer to share edges with other players. Additionally,
assume that each edge has a limited bandwidth. If too many players use an edge, the edge is overloaded and
thus less worth for the players. Unfortunately, for the aforementioned delay functions, computing a socially
optimal solution isNP-hard.

Lemma 5. For spanning tree congestion gamesΓ with n players and delay functionsdr(nr) = (nr −n+1)2d

for every resourcer ∈ R andd ∈ N computing a socially optimal sate isNP-hard.

Proof. We prove the theorem by a reduction from the Hamiltonian Cycle problem HC. Given an instance
G = (V,E) of HC we like to decide whetherG contains a Hamiltonian cycle. Without loss of generality
assume thatG is connected. From this instance, we construct an instance of the spanning tree congestion game
by settingn = |V |, R = E, Σi = {T | T is a spanning tree ofG} anddr(nr) = (nr−n+1)2d for an arbitrary
d ∈ N.

First observe that ifG contains a Hamiltonian cycle then there is a stateS of the game withγ(S) = 0; each
player removes an individual edge from the cycle in order to receive a tree. Thus, the congestion on each edge
is eithern − 1 or 0.

Second letS be a state of the spanning tree congestion game withγ(S) = 0. Obviouslynr is eithern − 1
or 0. Now consider the subgraphG′ = (V ′, E′) of G which only contains edges withnr = n−1. Observe that
V ′ = V , |E′| = n, andG′ is connected. Furthermore, observe thatG′ is the union of a single spanning treeT
and one extra edger not contained inT . Note thatT + r contains a unique cycle. Now two cases can occur.
Either all edges ofG′ form a single cycle or not. In the first case we have found a Hamiltonian cycle ofG′ and
thus also ofG. In the second case, observe thatG′ contains at least one node with degree1. Thus, alln player
have allocated the edge incident to this node, which is a contradiction to our construction ofG′.

Theorem 6. For spanning tree congestion games, computing a Nash equilibrium with minimum social delay
is NP-hard.

Proof. Consider an instance of the spanning tree congestion game with delay functionsdr(nr) = (nr−n+1)2d

for every resourcer ∈ R andd ∈ N. Then observe that due to Lemma 5 there exists a stateS with social delay
γ(S) = 0 if and only if there exists a Hamiltonian cycle in the given graph. Obviously such a state in a Nash
equilibrium, too, and thus the theorem follows.
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2.3 A Characterization of Games that Admit Fast Convergence

One can view congestion games as games in which every player solves an optimization problem over the setR
of resources with the goal to find a feasible subset ofR that minimizes her delay. Since resources are shared
by different players, the delays observed by a player can change over time. In this section, we take a bottom-up
view on congestion games, meaning that we first define the optimization problems of the players and after that,
describe how the global structure of the game looks like, i. e., how the resources of the players are combined to
a global set of resources and how the delays are chosen. To make this more formal, we assume that every player
i ∈ N has a set of resourcesRi and a set of strategiesΣi ⊆ 2Ri . The pair(Ri,Σi) constitutes an instance
of an optimization problem in the sense that for given delayson the resourcesr ∈ Ri, the goal of playeri is
to find a strategy fromΣi with minimum delay. Additionally, a global setR of resources and delay functions
dr : N → Z for r ∈ R are given. The local optimization problems of the players are combined into a global
congestion game by specifying an injective mappingfi : Ri → R for every playeri ∈ N . Now the delay
playeri ∈ N incurs in stateS = (S1, . . . , Sn) ∈ Σ1×· · ·×Σn is defined to be

∑

r′∈Si
dfi(r′)(nfi(r′)(S)) with

nr(S) = |{i ∈ N | ∃r′ ∈ Si : r = fi(r
′)}| for everyr ∈ R. We call a congestion gamefreely configurableif

there are no restrictions on the functionsfi.
An optimization problemΠ is specified by its set of instances, and each instance is defined by the number of

resourcesm it contains and the setΣ ⊆ 2[m] of feasible solutions over the set of resources[m] = {1, . . . ,m}.
For a given instance([m],Σ) and a delay functiond : [m] → Z, the goal is to find a solution fromΣ with mini-
mum total delay. We say that an optimization problemΠ has amatroid structureif every instance([m],Σ) ∈ Π
is a matroid. An optimization problem which possesses an instance which is no matroid is callednon-matroid
problem. An optimization problemΠ is calledinclusion-freeif it does not contain an instance([m],Σ) with
X,Y ∈ Σ andX ( Y . Due to our bottom-up perspective on congestion games, every classC of optimization
problems defines a class of congestion games simply by restricting the players to instances of optimization
problems fromC.

We have shown that in freely configurable congestion games inwhich the optimization problem of every
player has a matroid structure, every best response sequence has polynomial length. In this section, we show
that for congestion games induced by inclusion-free optimization problems this result cannot be generalized to
more general classes of optimization problems.

Theorem 7. Let C be a class of inclusion-free optimization problems that contains a non-matroid problem.
Then the corresponding class of freely configurable congestion games with non-decreasing, non-negative de-
lays contains games with exponentially long best response sequences.

If we assume that every delay is non-negative, we can remove the assumption thatC is inclusion-free from
Theorem 7. In this case, if there are two strategiesX andY for a player withX ( Y , then she never has
an incentive to playY . Hence, we can prune the strategy space by removing any proper superset from the
set of strategies without changing the best response dynamics. This way, we obtain a classC′ of inclusion-free
optimization problems. IfC′ contains only matroid optimization problems, we can apply Theorem 3, otherwise,
we can apply Theorem 7.

The key insight for proving Theorem 3 is that best responses in matroids can be decomposed into sequences
of pairwise exchanges of resources such that each of these exchanges does not increase the delay of the cor-
responding player. In the following, we show that this1-1-exchange propertyis not only sufficient but also
necessary for fast convergence. Therefore, we first define its negation formally, prove that it is satisfied by
every non-matroid, and show that it is sufficient to construct congestion games with exponentially long best
response sequences.

Definition 8 (1-2-exchange property). Let (R,Σ) be an instance of an optimization problem. We say that
(R,Σ) satisfies the1-2-exchange propertyif we can identify three distinct elementsa, b, c ∈ R with the prop-
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erty that for any givenk ∈ N, we can choose a delayd(r) for everyr ∈ R\{a, b, c} such that for every choice of
the delays ofa, b, andc with1 ≤ d(a), d(b), d(c) ≤ k, the following property is satisfied: Ifd(a) < d(b)+d(c),
then for every setI fromΣ with minimum delay,a ∈ I andb, c /∈ I. If d(a) > d(b) + d(c), then for every setI
from Σ with minimum delay,a /∈ I andb, c ∈ I.

Lemma 9. Let (R,Σ) be an inclusion-free instance of an optimization problem. Let I = {X ⊆ S |S ∈ Σ},
and assume that(R,I) is not a matroid, i. e., thatΣ is not the set of bases of some matroid. Then(R,Σ)
possesses the1-2-exchange property.

Proof. If (R,I) is no matroid, then there must be two setsX,Y ∈ Σ and an elementx ∈ X \ Y such that for
everyy ∈ Y \X, the setX \{x}∪{y} is not contained inΣ. Let such setsX andY and such an elementx ∈ X
be given, letk be as in Definition 8, and assume w. l. o. g. thatk > |R|. Furthermore, we can assume w. l. o. g.
that there does not exist a setY ′ ⊆ (X ∪Y )\{x} with Y ′ 6= Y andY ′ ∈ Σ. Otherwise, we could replaceY by
Y ′ without changing the aforementioned properties ofx, X, andY . Due to the choice of the setsX andY and
the elementx ∈ X, Y cannot be of the formY = X \{x}∪{y}. Hence,Y = X \{x1, . . . , xl}∪{y1, . . . , yl′}
with x1 = x, xi ∈ X \ Y , yi ∈ Y \ X, l ≥ 1, l′ ≥ 1, andl + l′ > 2.

We first consider the case thatl′ = 1 andl ≥ 2. In this case, we identify elementsa, b, andc and define
a delay functiond with the properties needed to satisfy Definition 8. We seta = y1, b = x1, andc = x2

and we defined(r) = M = 4k for everyr /∈ X ∪ {a} and to bed(r) = 0 for everyr ∈ X \ {b, c}. Let
1 ≤ d(a), d(b), d(c) ≤ k be chosen arbitrarily and letX∗ denote the optimal solution w. r. t. the delaysd. If
X∗ containsa, then it does not containb or c as, otherwise,Y would have less delay thanX∗. If X∗ does not
containa, then it must containb andc, as otherwiseX∗ ( X. Hence, ifd(a) < d(b) + d(c), then the unique
solution with minimum delay isY , and ifd(a) > d(b) + d(c), then the unique solution with minimum delay is
X.

Finally, we have to consider the casel′ > 1. In this case, we seta = x1, b = y1, andc = y2. Furthermore,
we setd(r) = M for r /∈ X ∪ Y andd(r) = 0 for r ∈ (X ∪ Y ) \ {a, b, c}. Let 1 ≤ d(a), d(b), d(c) ≤ k be
chosen arbitrarily and letX∗ denote the optimal solution w. r. t. the delaysd. If X∗ containsa, then it does not
containb or c as, otherwise,X would have less delay thanX∗. If X∗ does not containa, then it must containb
andc as, otherwise,X∗ ⊆ (X ∪Y )\{x} with X∗ 6= Y which contradicts the assumption made above. Hence,
if d(a) < d(b) + d(c), then the unique solution with minimum delay isX, and ifd(a) > d(b) + d(c), then the
unique solution with minimum isY .

Now we show that in congestion games in which the local optimization problem of every player satisfies
the1-2-exchange property, myopic players do not reach a Nash equilibrium in polynomial time in general if
there are no restrictions on the global structure of the congestion game. Observe that the following lemma
together with Lemma 9 directly implies Theorem 7.

Lemma 10. Assume that a set of playersN and for each playeri ∈ N , a set of resourcesRi and a set of
strategiesΣi ⊆ 2Ri are given such that(Ri,Σi) possesses the1-2-exchange property. Then we can define a
global set of resourcesR, a delay functiondr : N → N for every resourcer ∈ R, and an injective mapping
fi : Ri → R for every playeri ∈ N such that the resulting congestion game contains an exponentially long
best response sequence.

Proof. A well known technique for constructing examples with exponentially long best response sequences
is to construct instances that resemble the behavior of a binary counter. Haken constructs such a counter for
threshold logic networks [4] (see also [8]). The global structure of our counter follows the structure of a counter
presented by Anshelevich et al. for a network design game [1]. However, the gadgets that represent the bits of
the counter are different as we do not need to embed them into anetwork but into a structure that only allows
1-2 exchanges. Due to Lemma 9, we can for every playeri ∈ N , identify three resourcesai, bi, andci in her set
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of resourcesRi with the properties as in Definition 8. These are the only resources of playeri that she shares
with other players. The other resources are exclusively used by her. We choose their delays in such a way that
the1-2-exchange property is satisfied forai, bi, andci. Hence, to simplify matters, we can assume w. l. o. g.
that every playeri is interested in only three resources, namelyai, bi, andci, and that she is only allowed to
play either the strategy{ai} or the strategy{bi, ci}. Additionally, the congestion game we construct contains
playersi ∈ N with only two resourcesai andbi who either play the strategy{ai} or the strategy{bi}. In order
to achieve this, resourceci is also not shared with other players.

Let G0, . . . , Gn−1 denote the gadgets, and assume thatG0 represents the least significant bit and thatGn−1

represents the most significant bit. Every gadget has three main configurations, namely a0-state, a1-state and
a reset state. If a gadgetGi is in state0 and no gadgetGj with j > i is in its reset state, then there exists a best
response sequence such that gadgetGi first changes to its reset state and after that to state1. If a gadgetGi is
in state1 and at least one gadgetGj with j > i is in its reset state, then there exists a best response sequence
in which gadgetGi changes its state to0. One can easily see that these properties imply the existence of an
exponentially long best response sequence starting in the state in which every gadget is in state0 and eventually
leading to the state in which every gadget is in state1.

Now, we decribe the counter in more detail. Letn = Θ
(√

|N |
)

and not equals the number of player

as before, andα ∈ N with α ≥ 2 be given. We construct a congestion game withn gadgetsG0, . . . , Gn−1

representing a binary counter counting from0 to 2n − 1. Each of these gadgets consists ofO(n) players and
resources and represents one bit of the binary counter;G0 represents the least andGn the most significant bit.
Each gadget contains two main players, the so-calledbit playerand thereset player. If these two players have
chosen their strategies, then the best responses of the other players are uniquely determined. The only purpose
of the additional players is to copy the decision of thereset player. We describe the state of a gadget by a pair
of bits (x, y), meaning that the bit player plays her strategyx and that the reset player plays her strategyy.
When describing the state of a gadget by such a pair, we assumethat the other players have played their best
responses according to strategyy. Let i ∈ {0, . . . , n − 1} be fixed. If all reset players of the gadgetsGj with
j > i are on their0-strategies, then there exists a sequence of best responsesfor gadgetGi starting in(0, 0)
and reaching(0, 1), (1, 1), and(1, 0) in that order. If the reset player of at least one gadgetGj with j > i is on
her1-strategy, then the0-strategy of the bit player of gadgetGi is her best response. We say that thei-th bit is
set if the bit player of gadgetGi plays her1-strategy.

One can easily see that these properties suffice to resemble the behavior of a binary counter. In the initial
state, every gadgetGi is in state(0, 0). In this state, there exists a best response sequence for gadgetG0 leading
to state(1, 0), i. e., the least significant bit is set. After that, the players in the second gadget play their best
responses, i. e.,G1 changes its state from(0, 0) via (0, 1) and(1, 1) to (1, 0). WhenG1 is in state(0, 1), gadget
G0 is reset again, i. e., its state is reset to(0, 0). WhenG1 is in state(1, 0), gadgetG0 changes its state again
from (0, 0) to (1, 0), i. e., the least significant bit is set again. After that,G2 changes its state from(0, 0) via
(0, 1) and(1, 1) to (1, 0). WhenG2 is in state(0, 1), the gadgetsG0 andG1 are reset again, and so on.

Now we describe the gadgets in detail. Leti ∈ {0, . . . , n − 1} be fixed and fori > 0, let k = dlog ie + 1.
GadgetGi contains the resourcesri

1, ri
2, ri

3 and fori > 0, the resourcesti1, . . . , t
i
2k−1

. The bit player has two

possible strategies, namely{ri
1} and{ri

2}. The reset player decides between playing either{ri
2} or {ri

3, t
i
1}.

For everyj ∈ {1, . . . , 2k−1 −1}, there is a player who decides between either playing{tij} or {ti2j , t
i
2j+1}. We

refer to those players astree playersas they implicitly define a complete binary tree with heightk (see Figure 1).
GadgetGi is connected to every gadgetGj with j < i by a player who either plays{rj

1} or {ti
2k−1+j−1

}. We
call these playersconnection players. Letki = 3(i+1) log n. We choose the delays of the resources as follows.
There aren − i players interested in resourceri

1, namelyn − i − 1 players from gadgetsGj with j > i and
the bit player of gadgetGi. If less thann − i players are on resourceri

1 its delay isαki−5. If exactly n − i
players are on resourceri

1 its delay isαki . The delay of resourceri
2 is αki−4 if one player is on that resource
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αk4−3

α/αk4−3

α2/αk4−5

α3/αk4−7

Figure 1: Illustration of gadgetG4. Resources are represented by circles, players who choose one of two
possible resources are represented by lines connecting these resources, and players deciding between either
taking one resource or two are represented by polygons.

alone andαki−1 if two players share that resource. The delay ofri
3 is αki−3. Now we consider the resources at

level j ≥ 0 of the tree defined by the tree players. All resources at levelj have delayαj+1 if they are allocated
by one player alone andαki−3−2j if they are shared by two players.

First of all, we show that the tree and the connection playersof a gadget are solely controlled by the reset
player of that gadget. Therefore, we consider the followingtwo cases.

• The reset player is on her0-strategy which is the strategy{ri
3, t

i
1}. In this case the strategy{ti2, t

i
3} is

the best response of the first tree player as its delay is at most 2αki−5 which is by at least a factor of
α smaller than the delay on{ti1} which isαki−3. Now assume that the first tree player has played her
best response. We can iteratively argue that the best responses of the second and the third tree player
are then the strategies{ti4, t

i
5} and{ti6, t

i
7}, respectively. These strategies guarantee a delay of at most

2αki−9 while the strategies{ti4} and{ti5} each have a delay ofαki−7. Hence, allowing the tree players
to play their best responses one after another results in a state in which every tree player is on her ,,down
strategy” consisting of two resources. Observe that in thissituation the best response of every connection
player is to choose the strategy{rj

1} as this has delay at mostαki−1 and the strategy{ti
2k−1+j−1

} has

delayαki−3−2k.

• The reset player is on her1-strategy which is the strategy{ri
2}. In this case the strategy{ti1} is the best

response of the first tree player as its delay isα and the delay of{ti2, t
i
3} is at least2α2. Now assume that

the first tree player has played her best response. We can iteratively argue that the best responses of the
second and the third tree player are then the strategies{ti2} and{ti3}, respectively. These strategies have
a delay ofα2 while the strategies{ti4, t

i
5} and{ti6, t

i
7} have a delay of at least2α3. Hence, allowing the

tree players to play their best responses one after another results in a state in which every tree player is
on her ,,up strategy” consisting of a single resource. Observe that in this situation the best response of
every connection player is to choose the strategy{ti

2k−1+j−1
} as this has a delay ofαk+1 and the strategy

{rj
1} has delay at leastαk0−5.

In the following, we assume that immediately after each strategy change of the reset player, the tree and the
connection players of the corresponding gadget also changetheir strategies appropriately. Hence, when we say

10



that the reset player of gadgetGi is on her0-strategy, we implicitly assume that all tree players of that gadget
are on their down strategies and that all connection playersare on their{rj

1} strategy. We study best response
sequences of the bit and the reset players in more detail. Therefore, fix a gadgetGi.

• Assume that all reset players of the gadgetsGj with j > i are on their0-strategy and that gadgetGi is in
state(0, 0). In this case, the reset player can decrease her delay fromαki−3 + α to αki−4. After that the
gadget is in state(0, 1), and the bit player can decrease her delay fromαki to αki−1. After that the gadget
is in state(1, 1), and the reset player can again decrease her delay fromαki−1 to 2αki−3. After that the
gadget is in state(1, 0) and as long as no reset player of a gadgetGj with j > i plays her1-strategy it
stays in this state.

• Assume that gadgetGi is in state(1, 0) and that at least one reset player of a gadgetGj with j > i is on
her1-strategy. In this case, the number of players currently on resourceri

1 is at mostn − i − 2. Hence,
{ri

1} is the best response of the bit player as it has delayαki−5 whereas{ri
2} has a delay ofαki−4.

Altogether this shows that the aforementioned sequence of strategy changes which results in counting
from 0 to 2n − 1 is a best response sequence. Furthermore it is even a best response sequence forα-greedy
players.

Mirrokni [7] introduces the notion of(1+ε)-greedy players, i. e., players who only change their strategy
when this decreases their current delay by at least a factor of 1 + ε. In general, these players do not reach a
Nash equilibrium but a state in which no player can improve her delay by a factor of1 + ε, a so-called(1+ε)-
approximate Nash equilibrium. The counter constructed in Lemma 10 possesses the propertythat a player who
decreases her delay decreases it by a factor of at leastα, whereα ≥ 2 can be specified arbitrarily. Hence, the
example shows that not even(1 + ε)-greedy players reach an approximate equilibrium in polynomial time.

3 Threshold Congestion Games

Threshold congestion gamesas defined below are a special class of congestion games. Assume that the set of
resourcesR is divided into two disjoint subsetsRin andRout with |Rout| = n. Additionally assume that each
player has only two strategies, namely a strategySout

i = {ri} for a unique resourceri ∈ Rout, and a strategy
S in

i ⊆ Rin. Furthermore assume that no two players are interested in the same resourcer ∈ Rout. In a given
stateS, strategyS in

i is a best response for playeri if di(S ⊕ S in
i ) ≤ dri

(1). Thus, the delaydri
(1) on resource

ri is a threshold indicating whetheri plays strategyS in
i or not, and thus interferes with other players or not. We

denote byTi = dri
(1) the threshold of playeri.

We now introduce a further restriction on threshold games which is helpful for showingPLS-completeness
of other classes of congestion games. We call a threshold congestion game a2-threshold congestion gameif
for each resourcer ∈ Rin there are at most two playersi with r ∈ S in

i .

Theorem 11. The problem of finding a Nash equilibrium of a 2-threshold congestion gameΓ is PLS-complete.

Proof. We prove the theorem by aPLS-reduction from the MAX CUT problem for which finding a local opti-
mum is known to bePLS-complete [10]. LetG = (V,E, (we)e∈E) denote a weighted graph. The goal is to
find a partitionV = V1∪̇V2 of the vertices into two disjoint setsV1 andV2 such that the value of the cut, i. e.,
the sum of the weights of the edges having one endpoint inV1 and one inV2, cannot be improved by moving a
single vertex fromV1 to V2 or vice versa. Additionally, we denote bywv the sum of the weights of the edges
incident to vertexv.

From G we construct a 2-threshold congestion gameΓ as follows. For every edgee ∈ E, there is a
resourcere ∈ Rin with delaydre

(1) = 0 anddre
(2) = we. For every vertexv ∈ V there is a resourcerv ∈ Rout
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Figure 2: Illustration of the reduction in the proof of Theorem 12.

with delaydrv
(1) = wv/2. Additionally, for every vertexv ∈ V , there is a playeriv with Sout

iv
= {rv} and

S in
iv

= {re | e incident tov}. Observe that this construction ensures that for every resourcere ∈ Rin, there are
exactly 2 playersi with r ∈ S in

i . Thus, the constructed game is a 2-threshold congestion game.
Now let S be a Nash equilibrium ofΓ. FromS we construct a locally optimal partition of the vertices

of the MAX CUT instance as follows. If playeriv plays strategySout
iv

, we put vertexv into V1 otherwise into
V2. Observe that the total weightw(v, V2) of the edges incident to vertexv and to a vertexu ∈ V2 in the
constructed cut equals exactly the delayd(S in

iv
) of the strategyS in

iv
. SinceS is a Nash equilibrium, if player

iv plays strategySout
iv

, thend(S in
iv

) ≥ wv/2 and hence, in the constructed cut,w(v, V2) ≥ wv/2. If player iv
plays strategyS in

iv
, thend(S in

iv
) ≤ wv/2 and hence, in the constructed cut,w(v, V2) ≤ wv/2. Thus, the Nash

equilibria of the 2-threshold congestion game coincide with the local optima of the MAX CUT instance.

The presentedPLS-reduction is tight in the sense as defined by Schäffer and Yannakakis [10]. This means
that there exist instances of2-threshold games with states such that every best response sequence starting in
such a state has exponential length. Furthermore, it implies that for two given statesS andS∗ it is PSPACE-
complete to decide ifS∗ can be reached fromS by a sequence of best responses.

4 Network Congestion Games

In this section, we present a proof that finding Nash equilibria in asymmetric network congestion games is
PLS-complete. In the case of directed networks this has been proven before by Fabrikant, Papadimitriou, and
Talwar, but we present a simplified proof which already contains the idea of how to provePLS-completeness
in the case of undirected networks.

Theorem 12([2]). The problem of finding a Nash equilibrium of an asymmetric network congestion gameΓ
with directed edges isPLS-complete.

Proof. We give aPLS-reduction from2-threshold congestion games to asymmetric network congestion games.
Let Γ be a2-threshold congestion game and assume w. l. o. g. that for each pair of playersi, j ∈ N , there exists
a unique resourceri,j that is contained inS in

i andS in
j . We can transform an arbitrary2-threshold congestion

game into this form by adding dummy resources with delay0 and by combining a set of resources shared by
two players into one resource whose delay equals the sum of the delays of these resources.

The directed graphG = (V,E) that we construct is ann timesn grid in which edges are directed down-
wards and from left to right. The source nodes of the players are the nodes in the first column;s1 is the topmost
node,s2 the node in the second row, and so on. The target nodes are the nodes in the last row;t1 is the leftmost
node,t2 the node in the second column, and so on. This construction isdepicted in Figure 4 (a). For every
playeri ∈ N , we denote byTi her threshold, and we additionally add an edge fromsi to ti. Observe that due
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to the directions of the edges in the grid, this edge can only be used by playeri. Edges pointing downwards
have always delay0, and every edge from left to right in rowi has always delayi · D, whereD denotes the
sum of all delay values in the given2-threshold congestion game. Furthermore, we associate with every node
in the grid a delay function which can be accomplished by replacing each node by two nodes as depicted in
Figure 4 (b). The delay function of the nodevi,j in row i and columnj equals the delay function of the resource
ri,j . Hence, if playeri decides to route her traffic through the grid instead of usingthe direct edge fromsi to
ti, then she always uses the pathsi = vi,1, . . . , vi,i, vi+1,i, . . . , vn,i = ti as every other path has higher delay.
Let Di denote the delay on this path caused by the edges of the grid, i. e.,Di = (i − 1)i · D. We set the delay
of the edge(si, ti) to Di + Ti.

We transform a Nash equilibrium of the constructed network congestion game into a state of the2-threshold
game in the obvious way by setting exactly those playersi to their strategySout

i who use the edge(si, ti).
In order to see that the state of the2-threshold game obtained this way is a Nash equilibrium, observe that
the delays playeri incurs in the network congestion game when choosing the paththrough the grid or the
edge(si, ti) equal the delays of the corresponding player in the2-threshold game when playingS in

i or Sout
i ,

respectively, with an additional offset ofDi. Moreover, one can easily see that this reduction is tight.

Our reduction can be extended to asymmetric network congestion games with undirected edges. Therefore,
we modify the delays of the edges in order to achieve that there are only two best responses for each player.

Theorem 13. The problem of finding a Nash equilibrium of an asymmetric network congestion gameΓ with
undirected edges isPLS-complete.

Proof. We give aPLS-reduction from2-threshold congestion games to asymmetric network congestion games
with undirected edges. As before, letΓ be a2-threshold congestion game and assume w. l. o. g. that for each
pair of playersi, j ∈ N , there exists a unique resourceri,j that is contained inS in

i andS in
j . The undirected graph

that we construct has the same structure as in the case of asymmetric networks with directed edges, except that
we remove the directions of the edges, and split every edge{si, ti} into two edges by introducing a nodes′i,
i. e., we introduce the edges{s′i, si} and{s′i, ti}. The nodes′i, and not the nodesi, will be the source of player
i. In the previous reduction we could easily force a player to decide between two paths by considering directed
edges. However, in the case of undirected edges we have to carefully introduce delays in order to achieve the
same effect.

We now describe how we modify the delays of the vertical and horizontal edges in the grid given the delays
of the reduction to network games with directed edges. Note that the delays of the nodesvi,j do not change.
First we increase the delay of every vertical edge from 0 toD2, whereD is larger than the sum of all delays in
the given 2-threshold game. Additionally, we define constant delays for the edges{s′i, si} and{s′i, ti}. Let the
delay of the first edge beD3 and the delay of the second beD3 + (n − i) · D2 + (i − 1) · i · D + Ti, where
Ti denotes the threshold of playeri in the given 2-threshold congestion game. Then for every player there are
only 2 possible paths which can be best responses connectings′i andti. The delay of any other path is already
larger than the largest possible delay on these two paths. Weclaim that playeri either chooses the edge{s′i, ti}
with delayD3 + (n − i) · D2 + (i − 1) · i · D + Ti, or the pathsi = vi,1, . . . , vi,i, vi+1,i, . . . , vn,i = ti with
delayD3 + (n − i) · D2 + (i − 1) · i · D + x, wherex < D denotes the delay on the nodes of this path. Ifi
would choose any other path, she would either pass a nodes′j with j 6= i, or she would allocate some additional
vertical edges, or she would allocate some horizontal edgeson lower levels. In all three cases her total delay is
larger than the largest possible delay on the above mentioned paths.

Finally by the same arguments as before, a Nash equilibrium of the constructed network congestion game
corresponds to a Nash equilibrium of the given 2-threshold congestion game. Moreover, one can easily see that
this reduction is tight.
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In symmetric congestion games, a Nash equilibrium can be found in polynomial time [2]. Nonetheless,
myopic players cannot find an equilibrium in polynomial time. We show this by simulating the behavior of the
players in an asymmetric network congestion game in a symmetric network congestion game.

Theorem 14. For everyn ∈ N there exists a symmetric network congestion gameΓsym (with directed or
undirected edges) withn players, initial stateSsym and polynomially bounded network size such that every best
response sequence starting inSsym is exponentially long.

Proof. We prove the theorem by simulating an asymmetric network congestion game by a symmetric one.
In the case of asymmetric network congestion games, the existence of instances with the claimed properties
follows since the reductions presented in the proof of Theorem 12 and in [2], and Theorem 13 are tight. Let
Γasym be an asymmetric network congestion game andSasym = (P1, . . . , Pn) an initial state ofΓasym such that
every best response sequence starting inSasym is exponentially long. LetS(V ) be the set of source andT (V )
the set of target nodes of the networkGasym. In order to receive a symmetric network congestion game, we
introduce a common sources and a common targett such thats is connected to every sourcesi ∈ S(V ) and
such that every targetti ∈ T (V ) is connected tot. For every new edgee = (s, ·) ande = (·, t), we define the
delay functionde by de(1) = 0 andde(ne) = D for ne > 1 with D being a number larger than the maximum
total delay of every path inGasym.

Assume that playeri initially chooses pathPi with the additional edges(s, si) and(ti, t), and let players
iteratively play best responses. Obviously they behave in the same way as the do in the asymmetric case since
no two players will share an edge(s, ·) or (·, t). Thus, since inΓasym every best response path starting inSasym is
exponentially long, every best response path inΓsym starting inSsym is exponentially long as well.

5 Market Sharing Games

Market Sharing games have been introduced by Goemans et al. to model non-cooperative content distribution
in wireless networks [3]. An instance of a market sharing game consists of a setN = {1, . . . , n} of players, a
setM = {1, . . . ,m} of markets, and a bipartite graphG = (N∪M, E). An edge between playeri and market
r indicates that playeri is interested in marketr. Furthermore, for each marketr, costscr and a so-called query
rateqr ∈ N are given, and, for each playeri, a budgetBi is specified. The query rateqr determines the payoff
of marketr which is equally distributed among the players who have allocated that market, i. e., the payoff
function of marketr is given bypr(nr) = qr/nr. In terms of congestion games, the markets are the resources
and the costs and budgets implicitly define the sets of feasible strategies. To be more precise,Σi consists of all
setsM′ ⊆ M such that for allr ∈ M′, (i, r) ∈ E and

∑

r∈M′ cr ≤ Bi. Hence, market sharing games are
congestion games in which, for each player, the set of strategies has a knapsack-like structure. In contrast to our
definition of congestion games, the players are now interested in allocating a set of marketsM ′ with maximum
payoff instead of minimum delay. This can be achieved by considering payoffs to be negative delays.

If the costscr of every marketr are 1, a market sharing game is calleduniform. Goemans et al. give an
algorithm for computing a Nash equilibrium of a uniform market sharing game in polynomial time. Observe
that in uniform market sharing games, playeri allocates an arbitrary subset of the markets she is interested
in of size at mostBi. HenceΣi is a so-calledBi-uniform matroidon the set of markets in which playeri is
interested. If every payoff is non-negative, then only bases of this matroid can be best responses. Hence, we
can apply Theorem 3 to obtain the following theorem.

Theorem 15. In a uniform market sharing gameΓ, players reach a Nash equilibrium after at mostn2 · m ·
maxi∈N Bi best responses.

If we allow arbitrary costs, then it becomesNP-hard to determine a best response since this corresponds
to solving a knapsack problem, and hence the problem of finding a Nash equilibrium is not contained inPLS,
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unlessP=NP. However, if the costs are polynomially bounded, then the problem of finding a Nash equilibrium
is in PLS. In this case, we can easily enforce that a playeri ∈ N decides between either allocating one market
{ai} or a set of markets{b(1)

i , . . . , b
(k)
i } by setting the costs of marketai to k, the costs of each marketb

(j)
i to

one, and the budget of playeri to k. If then every payoff is non-negative, the only possible best responses of
playeri are the strategies{ai} and{b(1)

i , . . . , b
(k)
i }, regardless of the strategies of the other players. Hence, one

can easily implement the counter presented in the proof of Theorem 10 in a market sharing game with general
payoff functionspr : N → N and polynomially bounded costs. When giving up the restriction of (1+ε)-greedy
players, one can also implement the counter with standard payoff functions of the formpr(nr) = qr/nr which
answers an open question from Goemans et al. [3] and Mirrokni[7].

Theorem 16. In market sharing games with polynomially bounded costs, myopic players do not find a Nash
equilibrium in polynomial time in general.

Proof. We give more details about how the counter constructed in Lemma 10 can be modified to work for
payoff functions of the formpr(nr) = qr/nr. Therefore, first observe that in market sharing games, we donot
need the tree players and the connection players. These wereonly necessary since only1-2-exchanges were
allowed. In market sharing games, we can, however, modify the reset-player of gadgetGi in such a way that
she either plays the strategy{ri

2} or the strategy{ri
3, r

i−1
1 , . . . , r0

1} by appropriately choosing the costs of these
resources and the budgets of the players. Hence, gadgetGi consists only of the resourcesri

1, ri
2, andri

3 and
the bit and reset players. We define the costs of the markets asfollows. In gadgetGi, we setcri

1

= cri

3

= 1
andcri

2

= i + 1 and we set the budgets of the bit and reset players toi + 1. The bit player is only interested

in the resourcesri
1 andri

2, and the reset player is interested in the resourcesri
2, ri

3 andrj
1 for everyj < i.

This way, we achieve that the bit player either plays{ri
1} or {ri

2} and the reset player plays either{ri
2} or

{ri
3, r

i−1
1 , . . . , r0

1}.
We scale the payoffs from gadget to gadget in such a way that the payoff which the reset player of gadget

Gi gets from resources in gadgetsGj with j < i are so small that they do not influence her decision. Without
considering these payoffs, we obtain the following set of inequalities that have to be satisfied

qi
1

n − i
<

qi
2

2
< qi

3 < qi
2 <

qi
1

n − i − 1
.

These inequalities cannot be satisfied. Therefore, we change the gadgets by adding players who are only
interested in one particular resource. The inequalities can be satisfied if one addsn of these dummy players to
ri
2. This leads to the following satisfiable inequalities

qi
1

n − i
<

qi
2

n + 2
< qi

3 <
qi
2

n
<

qi
1

n − i − 1
.

As mentioned above, it is easy to embed(1, k)-exchanges into market sharing games. Hence, for gen-
eral payoff functionspr : N → N and polynomially bounded costs, one can canonically reduce2-threshold
congestion games to market sharing games via a tightPLS-reduction.

Theorem 17. In market sharing games with polynomially bounded costs andgeneral payoff functions, it is
PLS-complete to find a Nash equilibrium.
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6 Overlay Network Design

An overlay network is a network built on top of another network with fixed routing paths between all pairs
of nodes. For example, Stoica et al. [12] suggest to generalize the Internet point to point communication to
provide services like multicast, anycast, and mobility on the basis of overlay networks. In the case of multicast
and anycast the overlay network is an aborescence connecting the source with the receivers. We simplify the
scenario in many aspects and introduce the following overlay network congestion game: In anoverlay network
design gamewe are given an undirected graphG = (V,E) with a delay functionde : N → N for every edge
e ∈ E and a fixed routing path between any pair of nodes. For simplicity, we assume that the path fromu to v
corresponds to the path fromv to u. Every playeri wants to allocate a multicast treeTi = (Vi, Ei) on a subset
Vi ⊆ V of the nodes, where the edges inEi ⊆ Vi × Vi form a spanning tree. Each edgee ∈ Ei corresponds to
the routing path in the networkG, in particular, its delay equals the delay of the corresponding path. We show
that finding a Nash equilibrium in an overlay network design game isPLS-complete, although, from a local
point of view, every player solves a matroid optimization problem.

Theorem 18. The problem of finding a Nash equilibrium in an overlay network design game isPLS-complete.

Proof. We give aPLS-reduction from 2-threshold congestion games to overlay network design games. As
in the proof of Theorem 12, we assume w. l. o. g. that for every pair i, j ∈ N of players, there is exactly
one resourceri,j that is contained inS in

i andS in
j . We slightly modify the reduction presented in the proof of

Theorem 12. We also take ann × n-grid as basis of our construction, but now with undirected edges, and we
use the identifierss1, . . . , sn andt1, . . . , tn to denote the same nodes as before. The edges in the grid all have
delay0, the delay function of nodevi,j still equals the delay function of resourceri,j. Additionally, for each
playeri ∈ N , we add a nodet′i and an edge(ti, t′i) with delay0. Instead of having an edge(si, ti) with delay
Di + Ti, we add an edge(si, t

′
i) with delayTi. In the network, the routing path betweensi andti is defined

to besi = vi,1, . . . , vi,i, vi+1,i, . . . , vn,i = ti. The routing paths betweensi andt′i and betweenti andt′i in the
overlay network are defined to be the direct edges contained in the networkG. Now, for every playeri in the
2-threshold game, we define a player in the overlay network design game withVi = {si, ti, t

′
i}.

Every best response of playeri must contain the edge betweenti andt′i since it has delay0. Hence, every
player decides between either taking the virtual edge between si and ti in the overlay network or the edge
betweensi andt′i. In the former case, her message is routed along the path through the grid. Analogously to
the proof of Theorem 12, this shows that it isPLS-complete to find a Nash equilibrium in an overlay network
design game.
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