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Abstract

We study the impact of combinatorial structure in congesgames on the complexity of computing
pure Nash equilibria and the convergence time of best respsaquences. In particular, we investigate
which properties of the strategy spaces of individual play@sure a polynomial convergence time. We
show, if the strategy space of each player consists of theshafsa matroid over the set of resources, then
the lengths of all best response sequences are polynoindllyded in the number of players and resources.
We can also prove that this result is tight, that is, the midfpooperty is a necessary and sufficient condition
on the players’ strategy spaces for guaranteeing polyridimia convergence to a Nash equilibrium. In
addition, we present an approach that enables us to devidedss proofs for various kinds of combinatorial
games, including first results about the hardness of makhlaeirsy games and congestion games for overlay
network design. Our approach also yields a short proof felPthS-completeness of network congestion
games.

1 Introduction

Congestion games are a natural and generally acceptedaappiaeo model resource allocation among selfish
and myopic players. In a congestion game we have a set ofrrespand a strategy of a player corresponds to
the selection of a subset of these resources. The stratagg spthus a set of sets of resources. The delay (cost,
payoff) for each player from selecting a particular reseutepends only on the number of players choosing that
resource, and her total delay is the sum of the delays assdaidth her selected resources. Almost needless
to say, congestion games are fundamental to routing, nktdesign and other kinds of resource sharing in
distributed systems.

Rosenthal [9] shows with a potential function argument tvatry congestion game possesses at least one
pure Nash equilibrium. This argument does not only proveettistence of pure Nash equilibria but it also
shows that such an equilibrium is reached in a natural waynvytayers iteratively play best responses. A
recent result of Fabrikant et al. [2] shows, however, thas¢éhbest response sequences may require an expo-
nential number of iterations. Their analysis relates cetige games to local search problems. They show that
it is PLS-complete to compute a Nash equilibrium for general comgegjames. Their completeness proof
is based on tight PLS-reduction preserving lower bounds on the length of begtamse sequences. Hence,
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it follows from previous results about local search proldetimat there exist congestion games with initial
configurations such that any best response sequence gtidin these configurations needs an exponential
number of iterations to reach a Nash equilibrium. Fabrilaral. [2] are able to extend their negative results
from general congestion games towardgwork congestion gamas which each player aims at allocating
a path in a network connecting a given source with a givenradgin node, provided that different players
can have different source/destination pairs. The comfgietianges if one assumes that all players have the
same source/destination pair: For symmetric network cetiggegames, they present a polynomial time algo-
rithm that computes a Nash equilibrium by solving a min-dlwst problem. This positive result leaves open,
however, the question about the convergence time for bgigbnses in symmetric network congestion games.
As one of our results, we will see that, in contrast to FHeS-hardness results, the negative results for the
convergence time of asymmetric network congestion gamesttyi transfer to the symmetric case.

In this paper, we are interested in the question of which gntigs the combinatorial structure of a conges-
tion game has to satisfy in order to guarantee that compatiNgsh equilibrium has polynomial complexity
and which properties ensure polynomial convergence timédet responses. In network congestion games,
the strategy spaces of individual players have a very richbioatorial structure: A best response requires
to solve a shortest path problem. On the other extreme, wesiingleton games which all of the players’
strategies consist only of single resources. Recentlygebral. [5] have shown that best response sequences
for singleton games reach a Nash equilibrium after only gmpohial number of iterations. This result can
be seen as a criterion on the strategy space of the playd¢rguheantees fast convergence. In this paper, we
systematically study how far such a sufficient criterionfémt convergence that is solely based on properties of
the strategy spaces of individual players can go. More gdigetaking into account also the global structure
of the game, we investigate the question of what are the auatdoial properties that influence the complexity
and the convergence time for structured congestion games.

1.1 Definitions and Notations

A congestion game is a tuple(N, R, (X;)ien, (dr)rer) Where N = {1,...,n} denotes the set of players,
R = {1,...,m} the set of resources;; C 2% the strategy space of playgrandd, : N — Z a delay function
associated with resouree We call a congestion gansymmetridf all players share the same set of strategies,
otherwise we call insymmetric We denote bysS = (51,...,.5,) the state of the gamehere player plays
strategyS; € X;. Furthermore, we denote & ® S the stateS’ = (S1,...,Si-1,5}, Sit1,...,5), i.e., the
stateS except that playef plays strategys; instead ofS;. For a stateS, we define thecongestion,.(S) on
resourcer by n,.(S) = |{i | r € S;}|, that is,n,.(S) is the number of players sharing resourcm statesS.
We assume that players act selfishly and like to play a syrateg X:; that minimizes their individual delay.
The delayd;(S) of playeri is given byd;(S) = »_,cg, dr(n,(5)). Given a states, we call a strategy; a
best responsef playeri to S if, for all S, € ¥;, d;(S & S;) < d;(S @ S)). In the following, we use the
termbest response sequentedenote a sequence of consecutive strategy changes ih edwit step is a best
response which strictly decreases the delay of the comelapp player. Furthermore, we call a stéte Nash
equilibriumif no player can decrease her delay by changing her strategyfor alli € NV and for allS; € ¥;,
d;(S) < d;(S @ S%). Rosenthal [9] shows that every congestion games possassest one Nash equilibrium
by considering the potential functigh: X1 x --- x ¥, — Zwith ¢(S) = > » Z?;(ls) dy ().

The classPLS contains alllocal search problemsvith certain properties. A local search probldinis
given by its set of instancef;. For every instancé € 7y, we are given a set of resourc®s a set of feasible
solutions F(I) C 2%, an objective functionf : F(I) — Z, and for every feasible solutiof € F(I), a
neighborhoodV (S, I) C F(I). Given an instancé of a local search problem we seek foloaally optimal
solution S*, i. e., a solution which does not have a strictly better neigh A neighborS’ of a solutionsS is
strictly better if the objectivef (S’) is larger/smaller in the case of a maximization/minimizatproblem. A



local search problerfi belongs tdPLS if the following polynomial time algorithms exist: (1) angalrithm A
which computes for every instandec 7y an initial feasible solutiort' € F(I), (2) an algorithmB which
computes for every instandec 7 and every feasible solutiofi € F(I) the objective valug (S), and (3) an
algorithm C', which determines for every instanéec Z1; and every feasible solutiofi € F(I) whethersS is
locally optimal or not and finds a better solution in the néigthood ofS' in the latter case. Johnson et al. [6]
introduce the notion of LS-reduction A problemII; in PLS is PLS-reducible to a probleril; in PLS, if
there are polynomial-time computable functiohg&ndg such that (1)f maps instance$ € Iy, to instances
f(I) € I11,, (2) g maps solutionsS, of f(I) to solutionsS; of I, and (3) for all instances € Zyy, if Sy is a
local optimum of instanc¢ (1), theng mapssS, to a local optimum off. Additionally, a local search problem
IIin PLS is PLS-complete if every problem iRLS is PLS-reducible tall.

1.2 New Results

Upper and lower bounds on the convergence time. We show that the analysis of leong et al. [5] can be
generalized towards matroids, that is, if the set of stiaegf each player consists of the bases of a matroid over
the set of resources, then the lengths of all best responsesees are polynomially bounded in the number
of players and resources. This result holds regardlessedfltibal structure of the game and for any kind of
delay functions. We can show that the result is tight on tiséshaf instances with non-decreasing, non-negative
delays: Any condition on the players’ strategy spaces tledy a subexponential bound on the lengths of all
best response paths implies that the strategy spacesefterving dominated strategies (w.r.t. non-negative
delays) are the bases of matroids. In other words, the ndgtroperty is a necessary and sufficient condition
on the players’ strategy spaces for guaranteeing polyrdima convergence to a Nash equilibrium.

The obvious application of matroid congestion games angar&tdesign problems in which players com-
pete for the edges of a graph in order to build a spanning 8k [There are quite a few more interesting
applications as even simple matroid structures like unifanatroids that are rather uninteresting from an op-
timization point of view lead to rich combinatorial struptgs when various players with possibly different
strategy spaces are involved. lllustrative examples basathiform matroids are market sharing games with
uniform market costs or scheduling games in which each plags to injectively allocate a given set of tasks
(services) to a given set of machines (servers).

Our negative result for the non-matroid games does not makeediate implications for particular classes
of structured congestion games as it is solely based on fooglerties of the players’ strategy spaces and
neglects the global structure. However, our proof techmican be transfered to various classes of games as
it reveals a minimal substructure, so-called (1,2)-exgeanthat can be found in the strategy spaces of non-
matroid congestion games. If a class of non-matroid gani@ssto interweave the individual strategy spaces
in the right way, then one can construct exponentially loagtlesponse sequences in form of a counter with
the (1,2)-exchanges or more general withkfdexchanges as basic building blocks. This approach can be
applied to various classes of congestion games even if thg (Eayoff) functions are restricted like in the case
of market sharing games. We obtain that market sharing ganra#t exponentially long best response paths,
which answers an open question from [3, 7].

Symmetric network congestion games are the only known @és®n-matroid congestion games for
which a Nash equilibrium can be computed in polynomial tinvée can show, however, by an embedding
of asymmetric network games into particular starting caméigjons of symmetric network congestion games
that symmetric network games do not only admit exponemtialhg best response paths but that there are
initial configurations such that all best response sequeestagting from these configurations have exponential
length.



Hardness results for structured congestion games. The only known hardness result for a class of struc-
tured congestion games is tRéS-completeness result for network congestion games witittiid edges by
Fabrikant et al. [2]. Unfortunately, the analysis in [2] @tivery instructive, as it completely reworks the very
involved master reduction tod3NAE3FFLIP (not-all-equal-3SAT with weights on clauses with only pivsi
literals) from [10] and adds some further complicationscdérding to [2] already the master reduction from
[10] is possibly the most complex reduction in the literatuf one excludes PCP.) We present an alternative
approach for proving hardness of structured congestionegahat more directly reveals which kind of sub-
structures cause the trouble, and that also shows the lsrdh@symmetric network congestion games with
undirected edges. There is a simple, elegant reduction FroaNAE3FFLIP to MAX CUT (which is equivalent

to POSNAE2FFLIP) [10]. We show that Mx CuT can be reduced to so-call¢dreshold gamesThe strat-
egy space of each player in a threshold game corresponds(1gkgsexchange. Despite this simple structure,
threshold games are a natural and interesting class of gabugsnain interest, however, stems from the fact,
that because of this simple structure, threshold gamesgoedastarting point for furthdPLS-reductions. We
demonstrate the applicability of our approach by showimyicdons from threshold games to three classes of
games with different kinds of combinatorial structure:

— market sharing games with generalized payoff functiomsptynomially bounded market costs,

— overlay network design, where players have to build a Spgninee on a given subset of nodes that
are (virtually) completely connected on the basis of fixadtirg paths in an underlying communication
network, and

— network congestion games with (un)directed edges.

Taking thePLS-completeness of ®SNAE3FFLIP for granted, the latter of these results yields a signifigant
simpler proof for thePLS-completeness of network congestion games than the onég. iz second result
might seem as a contradiction to the positive result abotitaisecongestion games. However, despite the fact
that players only have to solve a spanning tree problenr, shraitegy spaces do not form a matroid over the set
of resources but over subsets (paths) of resources. Thermsihall deviation from the matroid property results
in the PLS-completeness of this seemingly harmless class of congegidmes.

Finally, let us remark that all consider&L.S reductions are tight, so that they do not only prove the PLS-
hardness of the considered classes of games but, in addiimnshow that these classes contain instances of
games with initial configurations for which all best respmsequences have exponential length. Furthermore,
this kind of reduction implies that it iPSPACE-hard to compute a reachable Nash equilibrium for a given
initial configuration of these games.

2 Matroid Congestion Games

In this section, we consider matroid congestion games. rBef@ give a formal definition of such games we
shortly introduce matroids. For a detailed discussion afoids we refer the reader to [11].

Definition 1. A tuple M = (R,Z) is a matroid ifR = {1,...,m} is a finite set of resources arilis a
nonempty family of subsetsBfsuch that iff € Z andJ C I, thenJ € Z,and ifI,J € Z and|J| < |I], then
there exists an € I\J with J U {i} € 7.

Let/ C R. If I € Z, then we calll anindependent setf R, otherwise we call idlependentlt is well
known that all maximal independent setsZoliave the same size which is usually denoted by aimé r% (M)
of the matroid. A maximal independent d9&tis called abasisof M. In case of a weight functiom : R — N,
we call a matroidveighted and seek to find a basis of minimum weight where the weighthahdependent
setl is given byw(I) = >, .; w(r). It is well known that such a basis can be found by a greedyrittgo.
We are now ready to define matroid congestion games.



Definition 2. We call a congestion ganmle = (N, R, (3;)ien, (dr)rer) @ matroid congestion game if for
every playeri e N, M; = (R, Z;) withZ, = {I C S| S € 3;} is amatroid. In this case; is the set of bases
of M;. Additionally, we denote byk(I") = max;car 7k (M;) therank of a matroid congestion garfie

2.1 Fast Convergence for Matroid Congestion Games

leong at al. [5] show that in singleton games players reacashiquilibrium after at mosf -m best responses.
Note that singleton games are matroid congestion games-(iftf;) = 1 for every player.. We extend their
analysis to general matroid congestion games.

Theorem 3. LetI" be a matroid congestion game. Then players reach a Nashlatuih after at most? - m -
rk(T") best responses. In the case of identical delay functiomyeps reach a Nash equilibrium after at most
n? - rk(T") best responses.

Proof. Consider a list of all delays,.(n,) withr € R and1 < n, < n and assume that this list is sorted in a
non-decreasing way. For each resourceve define an alternative delay functidn: N — N where, for each

possible congestion,., d,(n,) equals the rank of the delay.(n,) in the aforementioned list of all delays. We
assume that equal delays receive the same rank.

Lemma 4. Let S be a state of a matroid congestion game &jde X; a best response of playéto S w.r.t.
delaysd, which strictly decreases the delay ©f ThenS; strictly decreases the delay of playew.r.t. the
delaysd,..

Proof. Schrijver [11] introduces the bipartite gragh(S;AS;) = (V, E) with V' = (S\S;) U (S;\S;) and

E = {{r*,r} | r* € S\Si,r € S;\SF : Sr U {r}\{r*} € %;} and shows that there exists a perfect
matchingPy in G(S;AS;). Now observe that for every edde, r*} € Py, dp«(ny«(S*)) < d,(n,(S*) + 1)
since, otherwisey is no best response w.r.t. the delays Additionally, there exists at least one edge with
dy=(np=(S*)) < dr(n.(S*) + 1) sincesS; strictly decreases the delay of playeFinally, the same inequalities
also hold for the delays,, as they correspond to the ranks of the original delays. Tislaim follows. [

Now due to Lemma 4, whenever a player plays a best response ther delays,, Rosenthal’'s potential
decreases w.r.t. the delays. Now, since there are at mast m differentd,.(n,)-values,d, (n,) < n - m for
all resources € R and for all possible congestion values Hence,

nr(S) nr(S)
59)=>" > d@) <Y Y n-m=n*m- k)
reR i=1 reR =1

since we sum over - 7k(T") values. Since(S) is lower bounded by and decreases by at least one if a player
plays a best response w.r.t. the deldysthe first part of the theorem follows. In the special caseleftical
delay functions, there are at mostifferent delays instead of - m, and thus the second part of the theorem
follows. O

Note that Theorem 3 is independent of the delay functiongalticular, we do not assume monotonicity
or that all delays have the same sign.



2.2 About the Complexity of Computing Socially Optimal NashEquilibria in Spanning Tree
Congestion Games

Theorem 3 states that a Nash equilibrium of a matroid commegiame can be found in polynomial time. A

natural problem related to this is to consider the complexfittomputing a socially optimal Nash equilibrium,

i. e., a Nash equilibriun$’ with minimum social delay ;" , d;(.S). In general, computing such an equilibrium
is NP-hard which can be shown by a reduction from the Hamiltonigcl€problem to spanning tree congestion
games.

Before we prove that, in general, computing a socially optiNash equilibrium of a spanning tree conges-
tion game iNP-hard, we discuss several aspects of computing an arbgtatgs, i. e., not necessarily a Nash
equilibrium, with minimum social delay(S) = >, di(S). Werneck et al. [13] consider classes of instances
of the spanning tree congestion game with weakly convexydelactionsd,. and show how to compute a so-
cially optimal state efficiently. A delay function is wealdgnvex ifd, (n,+1)—d.(n,) > d.(n,)—d,(n,—1)
forall 1 < n, < n. Note that in this case any socially optimal state is also shNguilibrium. Weak convexity
implies monotonicity which is not satisfied in many applicas. A more realistic scenario is to consider delay
functionsd, (n,) = a, - (n, — t.)?? + b, for a threshold, € N, constants:,, b, € N and an exponent € N.
Assume that, for each edge, players have to pay some monegén to activate the edge. These costs are
shared among the players using an edge hence players mratesre edges with other players. Additionally,
assume that each edge has a limited bandwidth. If too maggnslaise an edge, the edge is overloaded and
thus less worth for the players. Unfortunately, for the afoentioned delay functions, computing a socially
optimal solution iNP-hard.

Lemma 5. For spanning tree congestion gamiésvith n players and delay functiong.(n,) = (n, —n+1)%¢
for every resource € R andd € N computing a socially optimal sate P-hard.

Proof. We prove the theorem by a reduction from the Hamiltonian €yaroblem HC. Given an instance
G = (V,E) of HC we like to decide whethef contains a Hamiltonian cycle. Without loss of generality
assume that7 is connected. From this instance, we construct an instafrtbe gpanning tree congestion game
by settingn = |V|,R = E,%; = {T'| T is a spanning tree af'} andd,.(n,.) = (n, —n-+1)2? for an arbitrary

d e N.

First observe that if7 contains a Hamiltonian cycle then there is a statd the game withy(S) = 0; each
player removes an individual edge from the cycle in ordeet®ive a tree. Thus, the congestion on each edge
is eithern — 1 or O.

Second letS be a state of the spanning tree congestion game-ith = 0. Obviouslyn, is eithern — 1
or 0. Now consider the subgragh = (V’, E’) of G which only contains edges with. = n — 1. Observe that
V' =V,|E'| = n,andG’ is connected. Furthermore, observe tfiats the union of a single spanning trée
and one extra edgenot contained ifl". Note thatT’ + r contains a unique cycle. Now two cases can occur.
Either all edges ofs’ form a single cycle or not. In the first case we have found a Hanian cycle ofG’ and
thus also of7. In the second case, observe thatcontains at least one node with degited hus, alln player
have allocated the edge incident to this node, which is aadiation to our construction af’. O

Theorem 6. For spanning tree congestion games, computing a Nash bguiih with minimum social delay
is NP-hard.

Proof. Consider an instance of the spanning tree congestion gatnéelay functionsl,(n,) = (n, —n-+1)%

for every resource € R andd € N. Then observe that due to Lemma 5 there exists a Statith social delay
~(S) = 0 if and only if there exists a Hamiltonian cycle in the givergin. Obviously such a state in a Nash
equilibrium, too, and thus the theorem follows. O



2.3 A Characterization of Games that Admit Fast Convergence

One can view congestion games as games in which every plalyessan optimization problem over the get

of resources with the goal to find a feasible subseRdhat minimizes her delay. Since resources are shared
by different players, the delays observed by a player cangghaver time. In this section, we take a bottom-up
view on congestion games, meaning that we first define then@atiion problems of the players and after that,
describe how the global structure of the game looks like, h@w the resources of the players are combined to
a global set of resources and how the delays are chosen. Tthiaknore formal, we assume that every player
i € N has a set of resourcé®; and a set of strategi€s; C 2™:. The pair(R;,%;) constitutes an instance
of an optimization problem in the sense that for given delayshe resources € R;, the goal of playei is

to find a strategy front; with minimum delay. Additionally, a global s&® of resources and delay functions
d, : N — Zfor r € R are given. The local optimization problems of the playeess@mbined into a global
congestion game by specifying an injective mappjiag R; — R for every playeri € N. Now the delay
playeri € NV incurs in states = (S1,...,S,) € X1 x--- x 5, isdefinedto b . dy, () (n, ) (S)) With
n(S)={i e N|3' €S;: r= fi(r")}| for everyr € R. We call a congestion ganfeeely configurablef
there are no restrictions on the functiofys

An optimization problenil is specified by its set of instances, and each instance isddfinthe number of
resourcesn it contains and the sét C 2! of feasible solutions over the set of resourpe$ = {1,...,m}.

For a given instancgm], ¥) and a delay functiod : [m] — Z, the goal is to find a solution fror with mini-
mum total delay. We say that an optimization problErhas amatroid structurdf every instancé[m], ) € 1T

is a matroid. An optimization problem which possesses aaiiee which is no matroid is calletbn-matroid
problem. An optimization probler is calledinclusion-freeif it does not contain an instandém/|, ¥2) with
X, Y € Y andX C Y. Due to our bottom-up perspective on congestion gamesy elassC of optimization
problems defines a class of congestion games simply byatisgrithe players to instances of optimization
problems fronC.

We have shown that in freely configurable congestion gamesioh the optimization problem of every
player has a matroid structure, every best response seghesqolynomial length. In this section, we show
that for congestion games induced by inclusion-free optition problems this result cannot be generalized to
more general classes of optimization problems.

Theorem 7. LetC be a class of inclusion-free optimization problems thattams a non-matroid problem.
Then the corresponding class of freely configurable comgegfames with non-decreasing, non-negative de-
lays contains games with exponentially long best respoegeences.

If we assume that every delay is non-negative, we can renmavagsumption that is inclusion-free from
Theorem 7. In this case, if there are two strategieandY for a player withX C Y, then she never has
an incentive to playy”. Hence, we can prune the strategy space by removing anyrpsaperset from the
set of strategies without changing the best response dgsafinis way, we obtain a clags of inclusion-free
optimization problems. €’ contains only matroid optimization problems, we can apgigdrem 3, otherwise,
we can apply Theorem 7.

The key insight for proving Theorem 3 is that best responseasatroids can be decomposed into sequences
of pairwise exchanges of resources such that each of thebareyes does not increase the delay of the cor-
responding player. In the following, we show that thig-exchange propertis not only sufficient but also
necessary for fast convergence. Therefore, we first deneeijation formally, prove that it is satisfied by
every non-matroid, and show that it is sufficient to condtrangestion games with exponentially long best
response sequences.

Definition 8 (1-2-exchange property)Let (R,3) be an instance of an optimization problem. We say that
(R, Y) satisfies thd-2-exchange propertyf we can identify three distinct elements, ¢ € R with the prop-



erty that for any givert € N, we can choose a delayr) for everyr € R\{a, b, ¢} such that for every choice of
the delays ofi, b, andc with 1 < d(a),d(b),d(c) < k, the following property is satisfied: df(a) < d(b)+d(c),
then for every sef from £ with minimum delayg € 7 andb, c ¢ 1. If d(a) > d(b) + d(c), then for every sek
from X with minimum delayg ¢ I andb, c € I.

Lemma 9. Let (R, X) be an inclusion-free instance of an optimization problemtZ= {X C S|S € ¥},
and assume thatR,Z) is not a matroid, i. e., thak is not the set of bases of some matroid. THEnY)
possesses the2-exchange property.

Proof. If (R,Z) is no matroid, then there must be two s&tsY” € 3 and an element € X \ Y such that for
everyy € Y\ X, the setX'\ {z}U{y} is not contained ift.. Let such sets andY” and such an elemente X

be given, letk be as in Definition 8, and assume w. . 0. g. that |R|. Furthermore, we can assume w. 1. 0.g.
that there does not exista &t C (X UY)\ {z} with Y’ # Y andY”’ € X. Otherwise, we could repladé by

Y’ without changing the aforementioned properties,ak, andY". Due to the choice of the sef§ andY and
the element: € X, Y cannot be of the forny = X \ {z}U{y}. HenceY = X \{z1,...,x;} U{y1,...,ur}
withzy =z,2, € X \Y,y; e Y\ X, >1,I'>1,andl + 1" > 2.

We first consider the case thiat= 1 andl > 2. In this case, we identify elemenis b, andc and define
a delay functiond with the properties needed to satisfy Definition 8. Wewset vy, b = 21, andc = x4
and we definel(r) = M = 4k for everyr ¢ X U {a} and to bed(r) = 0 for everyr € X \ {b,c}. Let
1 < d(a),d(b),d(c) < k be chosen arbitrarily and let* denote the optimal solution w.r.t. the delayslf
X* containsa, then it does not contailor ¢ as, otherwiseY would have less delay thaXi*. If X* does not
containa, then it must contaih andec, as otherwiseX* C X. Hence, ifd(a) < d(b) + d(c), then the unique
solution with minimum delay i&", and ifd(a) > d(b) + d(c), then the unique solution with minimum delay is
X.

Finally, we have to consider the cale> 1. In this case, we set = z1, b = y1, andc = y». Furthermore,
we setd(r) = M forr ¢ X UY andd(r) =0forr € (X UY)\ {a,b,c}. Letl < d(a),d(b),d(c) < k be
chosen arbitrarily and leX* denote the optimal solution w.r. t. the delakdf X* containsa, then it does not
containb or ¢ as, otherwiseX would have less delay tha¥i*. If X* does not contain, then it must contait
andc as, otherwiseX™* C (X UY)\ {z} with X* # Y which contradicts the assumption made above. Hence,
if d(a) < d(b) + d(c), then the unique solution with minimum delayXs and ifd(a) > d(b) + d(c), then the
unique solution with minimum i§’". O

Now we show that in congestion games in which the local ogtitidn problem of every player satisfies
the 1-2-exchange property, myopic players do not reach a Nashileguih in polynomial time in general if
there are no restrictions on the global structure of the estign game. Observe that the following lemma
together with Lemma 9 directly implies Theorem 7.

Lemma 10. Assume that a set of playefs and for each playei € N, a set of resource®; and a set of
strategiesy; C 2% are given such thatR;, 3;) possesses the2-exchange property. Then we can define a
global set of resource®, a delay functiond, : N — N for every resource: € R, and an injective mapping
fi : R; — R for every playeri € N such that the resulting congestion game contains an expiatigriong
best response sequence.

Proof. A well known technique for constructing examples with exgatially long best response sequences
is to construct instances that resemble the behavior ofarpicounter. Haken constructs such a counter for
threshold logic networks [4] (see also [8]). The global stuwe of our counter follows the structure of a counter
presented by Anshelevich et al. for a network design gameHajvever, the gadgets that represent the bits of
the counter are different as we do not need to embed them imédvaork but into a structure that only allows
1-2 exchanges. Due to Lemma 9, we can for every playerV, identify three resources, b;, andc; in her set



of resourcesk; with the properties as in Definition 8. These are the onlyusses of playei that she shares
with other players. The other resources are exclusively bgener. We choose their delays in such a way that
the 1-2-exchange property is satisfied fey, b;, andc;. Hence, to simplify matters, we can assume w. l. 0. g.
that every playei is interested in only three resources, namglyb;, andc;, and that she is only allowed to
play either the strategja;} or the strategy(b;, c;}. Additionally, the congestion game we construct contains
playersi € N/ with only two resources; andb; who either play the strategjy:; } or the strategy{b; }. In order

to achieve this, resoureg is also not shared with other players.

LetGy, ..., G,_1 denote the gadgets, and assume thatepresents the least significant bit and gt 4
represents the most significant bit. Every gadget has thege configurations, namely(astate, al-state and
areset state. If a gadgé; is in state0 and no gadget’; with j > i is in its reset state, then there exists a best
response sequence such that gadgdirst changes to its reset state and after that to staliea gadget’; is
in statel and at least one gadgét; with j > i is in its reset state, then there exists a best responserssgue
in which gadget; changes its state @ One can easily see that these properties imply the exesteihan
exponentially long best response sequence starting irdteia which every gadget is in stat@and eventually
leading to the state in which every gadget is in siate

Now, we decribe the counter in more detail. ket= © («/]/\/\) and not equals the number of player

as before, and. € N with o > 2 be given. We construct a congestion game withadgetsy, ..., Gn_1
representing a binary counter counting fronto 2" — 1. Each of these gadgets consistagfz) players and
resources and represents one bit of the binary cou@{erepresents the least an, the most significant bit.
Each gadget contains two main players, the so-cdliepglayerand thereset player If these two players have
chosen their strategies, then the best responses of thepldlgers are uniquely determined. The only purpose
of the additional players is to copy the decision of thget player We describe the state of a gadget by a pair
of bits (x, y), meaning that the bit player plays her strateggnd that the reset player plays her stratggy
When describing the state of a gadget by such a pair, we ashainthe other players have played their best
responses according to strategyleti € {0,...,n — 1} be fixed. If all reset players of the gadgéts with

j > i are on theil-strategies, then there exists a sequence of best resgongelgetG; starting in(0,0)
and reaching0, 1), (1, 1), and(1,0) in that order. If the reset player of at least one gadgetwith j > i is on
her 1-strategy, then the-strategy of the bit player of gadgét; is her best response. We say thatdtik bit is

set if the bit player of gadge¥; plays herl-strategy.

One can easily see that these properties suffice to resehgblehavior of a binary counter. In the initial
state, every gadgét; is in state(0, 0). In this state, there exists a best response sequence fyetgadleading
to state(1,0), i.e., the least significant bit is set. After that, the plsym the second gadget play their best
responses, i. G changes its state frof, 0) via (0, 1) and(1, 1) to (1,0). WhenG, is in state(0, 1), gadget
Gy is reset again, i. e., its state is reset@00). WhenG; is in state(1,0), gadgetG, changes its state again
from (0,0) to (1,0), i.e., the least significant bit is set again. After th@s, changes its state froift), 0) via
(0,1) and(1,1) to (1,0). WhenG: is in state(0, 1), the gadget&r, andG; are reset again, and so on.

Now we describe the gadgets in detail. Let {0,...,n — 1} be fixed and foi > 0, letk = [logi| + 1.
GadgetG; contains the resource$, i, ri and fori > 0, the resources, . .. ,t,_,- The bit player has two
possible strategies, namefy:} and{r}. The reset player decides between playing eithé} or {ri, ¢ }.
Foreveryj € {1,...,2""! —1}, there is a player who decides between either plagifigor {t};, t5;, }. We
refer to those players aee playersas they implicitly define a complete binary tree with heigligee Figure 1).
GadgetG; is connected to every gadgét with j < i by a player who either playg-] } or {tgk,lﬂ,_l}. We
call these playersonnection playersLetk; = 3(i+1) log n. We choose the delays of the resources as follows.
There aren — i players interested in resourcg, namelyn — i — 1 players from gadget§'; with j > 4 and
the bit player of gadgef;. If less thann — i players are on resoureé its delay isa* . If exactly n — i

T i g ki | .
layers are on resoureeé its delay isa*i. The delay of resource, is o~ if one player is on that resource
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Figure 1: lllustration of gadgefr,. Resources are represented by circles, players who chaesefdwo
possible resources are represented by lines connectisg teeources, and players deciding between either
taking one resource or two are represented by polygons.

alone anadv*:~! if two players share that resource. The delay‘ois o*=3. Now we consider the resources at
level j > 0 of the tree defined by the tree players. All resources at lgtiave delay:/*! if they are allocated
by one player alone and*:—3-2 if they are shared by two players.

First of all, we show that the tree and the connection plagéesgadget are solely controlled by the reset
player of that gadget. Therefore, we consider the following cases.

e The reset player is on hérstrategy which is the stratedy, i }. In this case the strategiy’, 4} is
the best response of the first tree player as its delay is at 2nds > which is by at least a factor of
o smaller than the delay oft?} which isa*—3. Now assume that the first tree player has played her
best response. We can iteratively argue that the best respmf the second and the third tree player
are then the strategigg’, t1} and {t§, t-}, respectively. These strategies guarantee a delay of & mos
2a%=9 while the strategie$t} } and {t{} each have a delay of*:~7. Hence, allowing the tree players
to play their best responses one after another results ataistwhich every tree player is on her ,,down
strategy” consisting of two resources. Observe that inditigtion the best response of every connection
player is to choose the stratedy! } as this has delay at mosti-1 and the strategyt’ _,} has

2k’—l+j
delaya®i—3-2k,

e The reset player is on hérstrategy which is the stratedy-}. In this case the stratedy’ } is the best
response of the first tree player as its delay &nd the delay oft}, ¢4} is at leasRa?. Now assume that
the first tree player has played her best response. We cativildy argue that the best responses of the
second and the third tree player are then the stratégiésand{t;}, respectively. These strategies have
a delay ofa? while the strategie$t!, t} and{t%, .} have a delay of at leagt3. Hence, allowing the
tree players to play their best responses one after anathelts in a state in which every tree player is
on her ,,up strategy” consisting of a single resource. Qfestirat in this situation the best response of
every connection player is to choose the stratﬁgy,lﬂ._l} as this has a delay of**! and the strategy

{r7} has delay at least*o .

In the following, we assume that immediately after eachefjachange of the reset player, the tree and the
connection players of the corresponding gadget also chihegestrategies appropriately. Hence, when we say
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that the reset player of gadgét is on her0-strategy, we implicitly assume that all tree players ot tjedget
are on their down strategies and that all connection plager®n their{r{ } strategy. We study best response
sequences of the bit and the reset players in more detaitefidre, fix a gadgets;.

e Assume that all reset players of the gadgefswith j > i are on theiO-strategy and that gadgét; is in
state(0, 0). In this case, the reset player can decrease her delaydfom 4 « to o« —4. After that the
gadget is in staté0, 1), and the bit player can decrease her delay fedimto o —!. After that the gadget
is in state(1, 1), and the reset player can again decrease her delaydfon to 2o 3. After that the
gadget is in stat¢l, 0) and as long as no reset player of a gadggtvith j > i plays herl-strategy it
stays in this state.

e Assume that gadget; is in state(1,0) and that at least one reset player of a gadgeivith j > i is on
her1-strategy. In this case, the number of players currentlyesourcer! is at mostn — i — 2. Hence,
{ri} is the best response of the bit player as it has defay® whereas(r}} has a delay of*i 4.

Altogether this shows that the aforementioned sequencérategy changes which results in counting
from 0 to 2™ — 1 is a best response sequence. Furthermore it is even a bgshsessequence far-greedy
players. O

Mirrokni [7] introduces the notion ofl+¢)-greedy playersi. e., players who only change their strategy
when this decreases their current delay by at least a fattbrtoc. In general, these players do not reach a
Nash equilibrium but a state in which no player can improvedetay by a factor ol + ¢, a so-called1+¢)-
approximate Nash equilibriunirhe counter constructed in Lemma 10 possesses the prdpatty player who
decreases her delay decreases it by a factor of atdeastherea > 2 can be specified arbitrarily. Hence, the
example shows that not evéh+ ¢)-greedy players reach an approximate equilibrium in paiyiabtime.

3 Threshold Congestion Games

Threshold congestion gamas defined below are a special class of congestion gamesmadbat the set of
resourcesR is divided into two disjoint subset®,, and R, with |R.«{ = n. Additionally assume that each
player has only two strategies, namely a strat8gy = {r;} for a unique resource; € R,,, and a strategy
S C Ri,. Furthermore assume that no two players are interestectinaime resource € R, In a given
stateS, strategyS!" is a best response for playgif d;(S @ SI") < d,,(1). Thus, the delayl,, (1) on resource
r; is a threshold indicating whethéplays strategys?" or not, and thus interferes with other players or not. We
denote byl; = d,, (1) the threshold of player.

We now introduce a further restriction on threshold gameistms helpful for showindPLS-completeness
of other classes of congestion games. We call a thresholgestion game 2-threshold congestion ganife
for each resource € R,, there are at most two playefrsvith € S}

Theorem 11. The problem of finding a Nash equilibrium of a 2-thresholdgestion gamé’ is PLS-complete.

Proof. We prove the theorem byRLS-reduction from the Mx CuT problem for which finding a local opti-
mum is known to bé’LS-complete [10]. LetG = (V, E, (we)ccr) denote a weighted graph. The goal is to
find a partitionV = V;UV; of the vertices into two disjoint setg and V5 such that the value of the cut, i. e.,
the sum of the weights of the edges having one endpoilt Bnd one inl;, cannot be improved by moving a
single vertex froml/; to V; or vice versa. Additionally, we denote hy, the sum of the weights of the edges
incident to vertex.

From G we construct a 2-threshold congestion gaihas follows. For every edge € F, there is a
resourcer, € R;, with delayd, (1) = 0 andd,., (2) = w.. For every vertex € V there is aresource, € R,
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Figure 2: lllustration of the reduction in the proof of Theor 12.

with delayd,, (1) = w,/2. Additionally, for every vertex € V, there is a playef, with S* = {r,} and
S = {re | eincident tov}. Observe that this construction ensures that for everyureso. € R, there are
exactly 2 players with » € SI". Thus, the constructed game is a 2-threshold congestioe.gam
Now let S be a Nash equilibrium of. From S we construct a locally optimal partition of the vertices

of the MAX CuT instance as follows. If player, plays strategyS;", we put vertexv into V; otherwise into
V5. Observe that the total weighit(v, V5) of the edges incident to vertexand to a vertex. € V5 in the
constructed cut equals exactly the dettys}’ ) of the strategyS;” . SinceS is a Nash equilibrium, if player
i,y plays strategys?”, thend(S}) > w,/2 and hence, in the constructed cutw, V2) > w,/2. If playeri,
plays strategys; , thend(S;)) < w,/2 and hence, in the constructed cutv, V2) < w,/2. Thus, the Nash
equilibria of the 2-threshold congestion game coinciddwie local optima of the Mx CuT instance. [

The presente®LS-reduction is tight in the sense as defined by Schaffer amthadeakis [10]. This means
that there exist instances dfthreshold games with states such that every best respegserie starting in
such a state has exponential length. Furthermore, it isigthat for two given stateS and .S* it is PSPACE-
complete to decide if* can be reached frorfi by a sequence of best responses.

4 Network Congestion Games

In this section, we present a proof that finding Nash equalibnr asymmetric network congestion games is
PLS-complete. In the case of directed networks this has beereproefore by Fabrikant, Papadimitriou, and
Talwar, but we present a simplified proof which already cimstéhe idea of how to provBeLS-completeness
in the case of undirected networks.

Theorem 12([2]). The problem of finding a Nash equilibrium of an asymmetrigvogt congestion gamg
with directed edges iBLS-complete.

Proof. We give aPLS-reduction fromg-threshold congestion games to asymmetric network coiogeghmes.
LetI" be a2-threshold congestion game and assume w. |. 0. g. that forgaic of players, ; € N, there exists

a unique resource; ; that is contained irb" and.ST. We can transform an arbitragythreshold congestion
game into this form by adding dummy resources with déland by combining a set of resources shared by
two players into one resource whose delay equals the sune afelays of these resources.

The directed grapli = (V, E) that we construct is an timesn grid in which edges are directed down-
wards and from left to right. The source nodes of the playerstee nodes in the first colums; is the topmost
node,s, the node in the second row, and so on. The target nodes aredks im the last rowt; is the leftmost
node,ts the node in the second column, and so on. This constructidepgted in Figure 4 (a). For every
player: € N, we denote byl; her threshold, and we additionally add an edge frgno ¢;. Observe that due
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to the directions of the edges in the grid, this edge can oalyded by playei. Edges pointing downwards
have always delay, and every edge from left to right in rowhas always delay - D, whereD denotes the
sum of all delay values in the giventhreshold congestion game. Furthermore, we associateewitry node
in the grid a delay function which can be accomplished byagiply each node by two nodes as depicted in
Figure 4 (b). The delay function of the nodg; in row ¢ and columry equals the delay function of the resource
r; ;. Hence, if player decides to route her traffic through the grid instead of usiegdirect edge from; to
t;, then she always uses the path= v; 1,...,v; i, vit1,i,---,n: = t; as every other path has higher delay.
Let D; denote the delay on this path caused by the edges of the .gridDi = (i — 1) - D. We set the delay
of the edgds;, t;) to D; + T;.

We transform a Nash equilibrium of the constructed networgestion game into a state of xhreshold
game in the obvious way by setting exactly those playeis their strategyS?" who use the edgés;, t;).
In order to see that the state of thd@hreshold game obtained this way is a Nash equilibriumgentesthat
the delays playet incurs in the network congestion game when choosing the thattugh the grid or the
edge(s;,t;) equal the delays of the corresponding player in2kareshold game when playing§" or S9*,
respectively, with an additional offset &f;. Moreover, one can easily see that this reduction is tight. O

Our reduction can be extended to asymmetric network coiogegames with undirected edges. Therefore,
we modify the delays of the edges in order to achieve thaether only two best responses for each player.

Theorem 13. The problem of finding a Nash equilibrium of an asymmetrievogt congestion gamg with
undirected edges BLS-complete.

Proof. We give aPLS-reduction fromR-threshold congestion games to asymmetric network coiogegames
with undirected edges. As before, Ietbe a2-threshold congestion game and assume w. l. 0. g. that fér eac
pair of players, j € NV, there exists a unique resoungg that is contained ii$" andS}. The undirected graph
that we construct has the same structure as in the case ofresyimnetworks with directed edges, except that
we remove the directions of the edges, and split every €dge;} into two edges by introducing a nodég

i. e., we introduce the edgé€s;, s;} and{s/,¢;}. The nodes;, and not the node;, will be the source of player

1. In the previous reduction we could easily force a playeretcide between two paths by considering directed
edges. However, in the case of undirected edges we havedfulbaintroduce delays in order to achieve the
same effect.

We now describe how we modify the delays of the vertical antzbatal edges in the grid given the delays
of the reduction to network games with directed edges. Nwethe delays of the nodes; do not change.
First we increase the delay of every vertical edge from DtpwhereD is larger than the sum of all delays in
the given 2-threshold game. Additionally, we define cortstifays for the edge§s’, s;} and{s,,¢;}. Let the
delay of the first edge b®? and the delay of the second ¥ + (n — i) - D? + (i — 1) - i - D + T}, where
T; denotes the threshold of playein the given 2-threshold congestion game. Then for everyeplthere are
only 2 possible paths which can be best responses connettimglt;. The delay of any other path is already
larger than the largest possible delay on these two pathslaie that playet either chooses the edge,, ¢, }
with delay D3 + (n — i) - D?> 4+ (i — 1) - i - D + T, or the paths; = v; 1, ..., Vii, Vit 1,s- - -, Uni = t; With
delayD3 + (n —i)- D?>+ (i — 1) - i - D + x, wherex < D denotes the delay on the nodes of this pathi. If
would choose any other path, she would either pass a&jodéh j # 1, or she would allocate some additional
vertical edges, or she would allocate some horizontal edgdswer levels. In all three cases her total delay is
larger than the largest possible delay on the above meuwtipaths.

Finally by the same arguments as before, a Nash equilibriutmeoconstructed network congestion game
corresponds to a Nash equilibrium of the given 2-threshofdyestion game. Moreover, one can easily see that
this reduction is tight. O
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In symmetric congestion games, a Nash equilibrium can bedan polynomial time [2]. Nonetheless,
myopic players cannot find an equilibrium in polynomial tinvée show this by simulating the behavior of the
players in an asymmetric network congestion game in a synomattwork congestion game.

Theorem 14. For everyn € N there exists a symmetric network congestion gadiyg (with directed or
undirected edges) with players, initial stateS,,,and polynomially bounded network size such that every best
response sequence startingdg,, is exponentially long.

Proof. We prove the theorem by simulating an asymmetric networlgestion game by a symmetric one.
In the case of asymmetric network congestion games, théeegis of instances with the claimed properties
follows since the reductions presented in the proof of Teeol2 and in [2], and Theorem 13 are tight. Let
I'.sym be an asymmetric network congestion game 8pg, = (P, ..., P,) an initial state ofl ", such that
every best response sequence starting.ip, is exponentially long. Leb (V) be the set of source arf(1)
the set of target nodes of the netwakk,,, In order to receive a symmetric network congestion game, we
introduce a common soureeand a common targetsuch thats is connected to every soureg € S(V') and
such that every target € 7'(V) is connected to. For every new edge = (s, -) ande = (-, t), we define the
delay functiond, by d.(1) = 0 andd.(n.) = D for n. > 1 with D being a number larger than the maximum
total delay of every path it

Assume that player initially chooses pathP; with the additional edgeés, s;) and(¢;,t), and let players
iteratively play best responses. Obviously they behaversame way as the do in the asymmetric case since
no two players will share an edde, -) or (-, ¢). Thus, since i, every best response path startingdig, is
exponentially long, every best response pathJp starting inS,,, is exponentially long as well. O

5 Market Sharing Games

Market Sharing games have been introduced by Goemans etrabdel non-cooperative content distribution
in wireless networks [3]. An instance of a market sharing g@ansists of a set’ = {1,...,n} of players, a
setM = {1,...,m} of markets, and a bipartite gragh= (N UM, E). An edge between playéand market

r indicates that playeris interested in market Furthermore, for each marketcostsc, and a so-called query
rateq,. € N are given, and, for each playgra budgetB; is specified. The query ratg determines the payoff

of marketr which is equally distributed among the players who havecatied that market, i. e., the payoff
function of market- is given byp, (n,) = ¢, /n,. In terms of congestion games, the markets are the resources
and the costs and budgets implicitly define the sets of flasttategies. To be more precisg,consists of all
setsM’ C M such that for alr € M, (i,r) € E and) v ¢ < B;. Hence, market sharing games are
congestion games in which, for each player, the set of giegtdnas a knapsack-like structure. In contrast to our
definition of congestion games, the players are now inteddstallocating a set of markeidd” with maximum
payoff instead of minimum delay. This can be achieved by idengg payoffs to be negative delays.

If the costsc, of every market- are 1, a market sharing game is calledform Goemans et al. give an
algorithm for computing a Nash equilibrium of a uniform meirkharing game in polynomial time. Observe
that in uniform market sharing games, playallocates an arbitrary subset of the markets she is intztest
in of size at mosiB;. HenceY; is a so-calledB;-uniform matroidon the set of markets in which playérs
interested. If every payoff is non-negative, then only basfethis matroid can be best responses. Hence, we
can apply Theorem 3 to obtain the following theorem.

Theorem 15. In a uniform market sharing gami, players reach a Nash equilibrium after at mest- m -
max;cn B; best responses.

If we allow arbitrary costs, then it becomB&>-hard to determine a best response since this corresponds
to solving a knapsack problem, and hence the problem of fingiNash equilibrium is not contained RLS,
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unlessP=NP. However, if the costs are polynomially bounded, then tloblem of finding a Nash equilibrium

is in PLS. In this case, we can easily enforce that a player\" decides between either allocating one market
{a;} or a set of market$b§1), e ,bgk)} by setting the costs of market to &, the costs of each markégtj) to
one, and the budget of playéto k. If then every payoff is non-negative, the only possiblet lbesponses of
player: are the strategie§u; } and{bgl), . ,bgk)}, regardless of the strategies of the other players. Hemee, o
can easily implement the counter presented in the proof ebidm 10 in a market sharing game with general
payoff functionsp, : N — N and polynomially bounded costs. When giving up the resbriodf (1+¢)-greedy
players, one can also implement the counter with standaraffplanctions of the fornp,.(n,) = ¢, /n, which
answers an open question from Goemans et al. [3] and Mir{@kni

Theorem 16. In market sharing games with polynomially bounded costgpigyplayers do not find a Nash
equilibrium in polynomial time in general.

Proof. We give more details about how the counter constructed inrhariO can be modified to work for
payoff functions of the fornp,.(n,.) = ¢./n,. Therefore, first observe that in market sharing games, wetlo
need the tree players and the connection players. Theseonbr@ecessary since only2-exchanges were
allowed. In market sharing games, we can, however, modéyélset-player of gadgét; in such a way that
she either plays the stratedy } or the strategy{r:, rlfl, ...,77} by appropriately choosing the costs of these
resources and the budgets of the players. Hence, gafgeinsists only of the resources, ri, andré and
the bit and reset players. We define the costs of the markdtdlass. In gadget’;, we setc, P = Cpp = =1
andc, ;=i+1 and we set the budgets of the bit and reset playeisttd. The bit player is onIy mterested

in the resources’ andri, and the reset player is interested in the resouréess, andr’ for everyj < i.
This way, we achieve that the bit player either pldy$} or {ri} and the reset player plays eithgti} or
{ri, r’i_l, i
We scale the payoffs from gadget to gadget in such a way teagtdkoff which the reset player of gadget
G gets from resources in gadgéts with j < 7 are so small that they do not influence her decision. Without
considering these payoffs, we obtain the following set efjumlities that have to be satisfied
{2
nqiz<%<q3<q2<n—qzl—l '
These inequalities cannot be satisfied. Therefore, we eh#img gadgets by adding players who are only
interested in one particular resource. The inequalitiesbeasatisfied if one addsof these dummy players to
ri. This leads to the following satisfiable inequalities

q I g qi
— < < < =< — .
n—1 n—+ 2 q3 n n—1—1

0

As mentioned above, it is easy to emb@dk)-exchanges into market sharing games. Hence, for gen-
eral payoff functiong, : N — N and polynomially bounded costs, one can canonically re@etteeshold
congestion games to market sharing games via a BgSt-reduction.

Theorem 17. In market sharing games with polynomially bounded costs gamkeral payoff functions, it is
PLS-complete to find a Nash equilibrium.
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6 Overlay Network Design

An overlay network is a network built on top of another netwaiith fixed routing paths between all pairs
of nodes. For example, Stoica et al. [12] suggest to gerzerdiie Internet point to point communication to
provide services like multicast, anycast, and mobility lea basis of overlay networks. In the case of multicast
and anycast the overlay network is an aborescence congeb#rsource with the receivers. We simplify the
scenario in many aspects and introduce the following oyertdwork congestion game: In awerlay network
design gamave are given an undirected graph= (V, E') with a delay functiond, : N — N for every edge

e € F and a fixed routing path between any pair of nodes. For siibplige assume that the path fromto v
corresponds to the path fromto u. Every playeri wants to allocate a multicast tréde = (V;, E;) on a subset
V; C V of the nodes, where the edgesfin C V; x V; form a spanning tree. Each edge E; corresponds to
the routing path in the networt, in particular, its delay equals the delay of the correspunpgath. We show
that finding a Nash equilibrium in an overlay network desigmng isPLS-complete, although, from a local
point of view, every player solves a matroid optimizationlgem.

Theorem 18. The problem of finding a Nash equilibrium in an overlay netwdesign game iBLS-complete.

Proof. We give aPLS-reduction from 2-threshold congestion games to overlawoik design games. As
in the proof of Theorem 12, we assume w.l.0.g. that for evety pj € N of players, there is exactly
one resource; ; that is contained irb)" and S}”. We slightly modify the reduction presented in the proof of
Theorem 12. We also take anx n-grid as basis of our construction, but now with undirectddes, and we
use the identifiersy, ..., s, andty, ... ,t, to denote the same nodes as before. The edges in the gridvall ha
delay0, the delay function of node; ; still equals the delay function of resoureg;. Additionally, for each
playeri € N/, we add a nodé, and an edgét;, t;) with delay0. Instead of having an edde;, ;) with delay

D; + T;, we add an edgés;, t;) with delayT;. In the network, the routing path betweenandt; is defined

to bes; = vi1,..., Vi, Vit14,---,Un,i = t;. The routing paths between andt, and between; and¢, in the
overlay network are defined to be the direct edges contaméukinetworkG. Now, for every playet in the
2-threshold game, we define a player in the overlay networlgdegame withV; = {s;, t;,t.}.

Every best response of playemust contain the edge betwegrandt, since it has delay. Hence, every
player decides between either taking the virtual edge wgeandt; in the overlay network or the edge
betweens; and¢,. In the former case, her message is routed along the pathginthe grid. Analogously to
the proof of Theorem 12, this shows that iHES-complete to find a Nash equilibrium in an overlay network
design game. O
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