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Abstract

We investigate non-parametric unit-demand pricing pnoislein which the goal is to find revenue
maximizing prices for product® based on a set of consumer profitobtained, e.g., from an e-
Commerce website. A consumer profile consists of a numbesmfaero budgets and a ranking of all the
products the consumer is interested in. Once prices are, foah consumer chooses to buy one of the
products she can afford based on some predefined seledéoe distinguish between the min-buying,
max-buying, and rank-buying models.

For the min-buying and general rank-buying models the besivik approximation ratio i€ (log |C|)
and, previously, the problem was only known to be APX-harde &itain the first (near) tight lower
bound showing that the problem is not approximable withifiog® |C|) for somee > 0, unless NP
C DTIME(n'°8'°8™), Going to slightly stronger (still reasonable) complgstheoretic assumptions we
prove inapproximability withinO(¢¢) (¢ being an upper bound on the number of non-zero budgets per
consumer) and(|P|¢) and provide matching upper bounds. Surprisingly, thesdress results hold
even if a price ladder constraint, i.e., a predefined totdpon the prices of all products, is given.

This changes if we require that in the rank-buying model oareys’ budgets are consistent with their
rankings, i.e., that higher ranked products must be asdigneon-smaller budget. Assuming a price
ladder a PTAS is known for both the rank-buying (with coraistoudgets) and max-buying models. We
prove that this is best possible, as both problems are dyrdNig-hard, thereby resolving a previously
open problem.

Previous results indicate that in the max-buying model ituaon becomes more involved when we
assume limited product supply. We show that this is in fattimcase if no price ladder constraint exists.
More precisely, we prove that the problem is polynomiallivable for unit-supply, becomes APX-hard
if maximum supply is increased fand allows @-approximation in general. It turns out that techniques
used here extend also to proving a bound of the price of anarchy of a closely related pricing game.
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1 Introduction

In recent years many technical improvements have madeaisiagly convenient access to all kinds of In-

ternet services available to a broad public, making theretethe world’s largest market place. But to both

consumers and companies the Internet offers possibifagieseyond the capabilities of traditional markets.

Many websites that compare the prices offered by differentfanies for a certain product help customers
make optimal buying decisions. For companies, running suelbsites might be just as profitable, because
they help gathering data about the preferences of a huge etuofipotential customers and boosting sales
by optimizing product profiles and applying intelligentgnig schemes tailored for the specific market.

Aiming at the latter objective Glynn, Rusmevichientong &fad Roy [21] defined theon-parametric multi-
product pricing problemConsumers are characterized by their budgets for diffgnerlucts and a selection
rule describing how a consumer selects a product among Hiesean afford once prices are fixed. Since
consumers will buy exactly one product if they can affordhigy are usually referred to amit-demand
Glynn et al. propose three different selection rules. Irréimk-buyingmodel each consumer has a ranking of
all the products she is interested in. When prices are fixedals the highest ranked product with a price
below her respective budget. In th@n-buyingand max-buyingmodels a consumer buys the product with
lowest or highest price not exceeding her budget, respgtiihe objective of the problem is to compute
prices of the products and (possibly) a corresponding atiloe of the products to consumers that maximize
total revenue.

Rusmevichientong et al. [33, 21] show that the min-buyinglelpwhere each consumer has the same budget
for all products she desires, allows a polynomial time atgor, assuming arice ladder constrainti.e., a
predefined total order on the prices of all products. Suchnateaint is often implied by the set of products
in question. Aggarwal, Feder, Motwani and Zhu [1] give apgor@tion algorithms for all three models: a
PTAS for both rank-buying and max-buying with price ladaet,59-approximation for max-buying without
price ladder, and a logarithmic approximation for any ofabeve models, assuming unlimited supply of the
products. In the limited supply caseleapproximation is derived for max-buying with price ladd&here

are many practical situations in which it is desirable to ble do handle limited supply, as well. Besides
the obvious point that it might not be possible to increasmlpction capacity beyond a certain limit, even
artificially limiting product supply can sometimes be rediag.

Further results about the limited supply case were given byu&vami, Hartline, Karlin, Kempe, Kenyon
and McSherry [23], who introduced another selection rugpired by the notion of truthfulness in auction
design. In thesnvy-free pricing problena consumer buys the product that maximizes her personay,util
i.e., the difference between the product’s price and hereets/e budget. A set of prices together with a cor-
responding allocation of the products is envy-free, if ga@msumer indeed receives the product maximizing
her utility. Guruswami et al. present an algorithm with lotfamic approximation ratio for this problem.

So far, there are huge gaps between the lower and upper bouritie approximation ratio for almost all
of these pricing problems, the only exceptions being the-mgpsing model without price ladder, for which
a constant approximation and APX-hardness are known [H,thasingle-mindedenvy-free model with
unlimited supply [15, 23], discussed in Section 1.1. To cunledge there are no non-constant inapprox-
imability results known for any of the above unit-demanctioig problems.

As our main contribution we resolve the question of appra@bitity of most of the above unit-demand pric-
ing models, putting emphasis on thardness of approximatiorin particular we prove near-tight hardness
results for the min-buying and max-buying models, and sogrsions of the rank-buying model (includ-
ing the most general). Many of our hardness results show teenfon-constant, logarithmic, and even
polynomial inapproximability for those problems. We aldweegalgorithmic results, which close the gap in



approximability of some of those models. Finally, the pevblis studied from a game theoretic standpoint.
Namely, we study the multi-player game obtained by assumfiagthe price of every product is determined
by a distinct agent trying to maximize her personal revemumg, present a bound on tipeice of anarchy
(cf. [25, 31]) in this game.

1.1 Related Work

Following the introduction o&lgorithmic mechanism desidB0] as a major field of interest for computer
science, a lot of research has been done on problems mdtivgtconomical questions. While @ombina-
torial auction desigrthe main goal is to motivate agents to participate trutifinithe protocol, the optimized
objective is twofold. On one side social welfare is to be mazed. Various such results have been obtained
for the case oingle-mindedagents [4, 13, 29, 26]. On the other side an auctioneer islglegerested in
auctions that generate high revenue. Goldberg et al. [22]Fgat et al. [19] first investigated whether and
how these two objectives can be combined. While originatily ctandomized revenue maximizing protocols
were known, meanwhile a first deterministic protocol wasgied by Aggarwal et al. [2].

While truthfulness of auctions can be assured when ageatsiagle-minded and, thus, of a severely re-
stricted kind, the situation is much more complicated forengeneral types of agents [8, 27]. Only recently
it has been shown by Lavi and Swamy [28] and by Dobzinski, WNigzad Schapira [17] that in fact ran-
domization can help to overcome this difficulty in many pieadty relevant cases. Another focus in general
auction design is on algorithms for winner determinatioeréHthe incentives of single players are left aside
and the goal is to find an allocation of the products that guees high overall social welfare. For recent
results on so-calledubmodular biddersee [16], and references therein.

Besides the unit-demand pricing problem, a closely reléited of research is multi-product pricing with
single-minded consumers. Such consumers are interestaaying a single set of products rather than a
single product out of a set of alternatives. Guruswami ef2d] derive a logarithmic approximation for this
problem with unlimited supply. Recently, Demaine, Feigajidbhayi and Salavatipour [15] have shown
logarithmic hardness of approximation for this model assgniNP ¢ BPTIME(2°("")) for somed > 0. To
our knowledge this is the only non-constant inapproximtbiesult known for any of the discussed pricing
problems. Further results on this so-caltéagle-minded unlimited supply pricing probleare also found in
[71, [12], [24] and [11], where interest is paid mainly to i@rs types of restricted problem instances.

1.2 Preliminaries

Throughout the rest of the paper the setting will be as fadlowsiven a set of product® and consumer
samplesC with budgetsb(c, e) for all ¢ € C, e € P we want to assign prices(e) to the products that
maximize the revenue from the resulting sale. This sale mpen how consumers decide whether and
which product to buy once prices have been fixed. We diffeatmbetween the min-buying, max-buying,
and rank-buying models. The definition below is the same asrofi, 21].

Definition 1 (Unit-Demand Pricing — UDP) We are given product® and consumer samplésconsisting

of budgets(c,e) € R} forall c € C, e € P and rankingsr. : P — {1,...,|P|}. For a price assignment
p:P—RfweletA(p) = {ceC|Je € P : ple) <b(ce)} refer to the set of consumers that can afford
to buy any product under. In the no price ladder scenario (NPL) we want to find pripghat maximize

® > e min{p(e) [ple) < blc,e)} (UDP-MIN-NPL).



® > ceap max{p(e) |p(e) < b(c,e)} (UDP-MAX-NPL).
® > cap p(argmin{re(e) [e : p(e) < blc,e)}) (UDP-RANK-NPL).

Given a price ladder constraint (PLy(e1) < --- < p(eyp|), UDP-{MIN,MAX,RANK }-PL asks for a price
assignmenp satisfying this constraint.

The above definition assumes that all products are availahlalimited supply and, thus, any number of
consumers requesting to buy some product can be satisfiedddrMAax-{NpL,PL} be as defined above
and assume that of any produdhere are only, many copies available. In thisnited supply casae want

to find not only a price assignmeptbut also a feasible allocatian: C — P of the products, where(c) is

the product given to consumer Allocation a is feasible if the following conditions are satisfied. Fiesich
product is sold to at most as many consumers as there aresaufpieavailable. Secondly, each consumer
can afford the product she receives according to her budgets but not least, each consumer is assigned
the most expensive product she can afford that is still alabgl i.e., if a consumer receives a product that is
not the most expensive she can afford, then it must be thetleatsall affordable products with a higher price
are sold out. We note that, given pricesfinding the optimal allocation reduces to solving an ins&anof
b-matching in a bipartite graph, whese= (s.).cp for vertices corresponding to products dne (1,...,1)

for consumer vertices, and, thus, can be done in polynoimia tL4].

We also define OP-RANK-{PL,NPL} problemwith consistent budgetsvhich requires that for every con-
sumerc € C, we have thab(c, e) > b(c, f) whenever.(e) < r.(f) for all productse, f € P.

1.3 Contributions

Min-Buying: Let us first focus on the bP-MIN-{PL,NPL} problem with unlimited supply. (All the results
discussed in the context of min-buying hold also for the ranking model, if we allow non-consistent
budgets.) The best previously known algorithm has an appation factor ofO(log [C|) (see Aggarwal,
Feder, Motwani, and Zhu [1]). This algorithm is very simps, it just uses a single price for all products,
trying maximum budgets of each consumer for that price aridutsi the best such sale. Surprisingly, we
prove that this simple algorithm is close to best possiblamily, there is n@ (log® |C|)-approximation
algorithm for this problem for some absolute> 0, assuming NRZ DTIME(n©(oglogn)y  We emphasize
that this non-approximability result holds even in the pres of a price ladder constraint. This stands in a
sharp contrast with the uniform-budget version adrIMIN-PL, in which we assume that each consumer
has the same budget for all the goods she desires'[33{irprisingly, after very few natural maximization
problems with logarithmic approximation threshold haverb&nown for quite some time (see [18] for one
of the first examples), bp is already the second problem from the field of product pgdisee [15]) for
which such a threshold can be shown.

TechniquesWe use the classical method of graph products to amplify gdmeapproximability threshold of
the maximum independent set problem in bounded degree gjrd&ggrman and Schnitger [9] introduced a
randomized version of this technique. We first slightly extéhe derandomized version of that construction
based on random walks by Alon et al. [3]. This enables us tampaterize the maximum degree of the
constructed graph product in the number of vertices. The ebour reduction is to encode the independence
in such graphs by defining appropriate geometrically irgirepclasses of budgets in our pricing problem,

A polynomial time algorithm follows basically by observitigat in the presence of a price ladder each consumer whoés abl
to buy any product buys the product with smallest price atiogrto the price ladder. This reduces the number of prodcke
considered for each consumer to one. Then one uses dynaogi@prming.



where vertices correspond to products. The difficulty herthat independence needs to be enforced in a
somewhat asymmetric way, i.e., based on a vertex coloritigeofiven graph, we can define collections of
consumers that encode independence of a vertex from atjgertices with colors of smaller index, but we
cannot do this in the opposite direction. It turns out thatnwed roughly:'°°e™ consumers.

The outlined technique applied to the maximum independenpblem on graphs of constant degrke
needs onlyO(n®) consumers, and thus is a polynomial-time reduction. Thigliga that it is NP-hard to
approximate unlimited-supply tP-MIN-{PL,NpPL} problem within any constant and, thus, the problem is
not in APX. We further demonstrate the flexibility of our teaiue by showing almost tight hardness results
for this problem when the approximation ratio is expresseteims of/, i.e., the maximum number of
positive budgets of any consumer, aml, the number of products. We prove that the problem is hard to
approximate withirO(¢¢), and withinO(|P|¢) for somes > 0, unless NFC DTIME(2°(")) for all § > 0.
(The underlying complexity theoretic assumption is staddaven with DTIME replaced by BPTIME, see,
e.g., [15].) Our hardness results again are almost tightesihere is a triviaD (|P|)-approximation, and an
approach of Balcan and Blum [7] implies ér{¢)-approximation for p-MIN-NPL.

Max-Buying: Let us now switch our interest to the max-buying model. Frbm économical viewpoint
this version finds less motivations, but as we will see ourivation to study this problem comes from its
connection to the economically well motivated rank-buymgdel, and from the fact that the max-buying
problem turns out to be tractable as compared to the mimgyyioblems.

The best previous algorithms for the max-buying problemevggven by Aggarwal, Feder, Motwani and Zhu
[1]. For the unlimited-supply OP-MAX-NPL they present &.59-approximation based on a linear program-
ming relaxation and randomized rounding, and they alsoeptbat the problem is NP-hard to approximate
within 16/15. For the limited-supply BpP-MAX-PL, the best known algorithm, which is based on a rather
involved dynamic programming approach, giveg-approximation. To our knowledge, no algorithms for
the combination of limited supply and no price ladder arevkmgo far.

We first have a closer look at the relation between the maxirsupply and the problem’s complexity.
Interestingly, we show that kP-MAX-NPL can be solved in polynomial time for unit-supply but becomes
APX-hard already with maximum supply of ony APX-hardness has already been shown in [1], but the
previous reduction relies on a problem instance with marisupply that is linear in the number of products
and, thus, does not imply hardness for sparse problem oestan

On the algorithmic side, we analyze the performance of amgetwal search algorithm for the cases of
limited or unlimited supply and prove that it yield2aapproximation algorithm for Op-MAX-NPL. This
complements our APX-hardness result for this problem, arfdgt it is the first algorithm for the limited-
supply case without price ladder with provable guarantem. uRlimited supply WpP-MAX-NPL our ratio
does not match the best known result, which givels58-approximation [1]. However, the previous al-
gorithm is based on a rather problem specific LP-formulatind rounding techniques. Local search, on
the other hand, appears to be a quite natural approach toearamgje of pricing problems. Seen in this
light, we provide first evidence that this approach migheed be promising also for more practical problem
variations.

Techniques:We have introduced a very basic approach for (un)limitecbsup/DP-MAX-NPL based on
local search. We just start with any vector of product priGexl optimize a single price having fixed the
other prices so long as this increases the total profit. Weepttea way of analyzing this algorithm which
leads to the (tight) approximation ratio ®f This technique extends also to proving the same tight bound
the price of anarchy over mixed Nash equilibria of the relgigcing game (see below).

We finally turn our attention to even more tractable cases af-buying and rank-buying models, namely
the unlimited-supply versions of bb-MAX-PL and of UbP-RANK -PL with consistent budgets. Aggarwal
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et al. [1] gave a PTAS for both problems, but left open the tioe®f whether they are in fact NP-hard. We
resolve this question by proving that both problems aregddsdrongly NP-hard.

Pricing games: We finally consider the multi-player pricing game relatedJmP-MAX-NPL, in which we
assume that the price of each product is determined by awidodi player, while the set of consumers
remains fixed as before. By extending our analysis of thel lsgarch method we prove that the price of
anarchy in this game with agents playing mixed strategibsiumded by2 and show that this bound is tight.
We would also like to note that the analogous games relatéébw { MIN,RANK }-NPL have unbounded
price of anarchy.

The following table in Figure 1 summarizes our and previcesults on the lower and upper bounds for
various versions of unit-demand pricing.

Variation Previous [Lo.], Up. New Lo. {Assumption} New Up.
Q(5)
{NP Z DTIME(20(»*))} o(r)
UbP-MIN-{PL,NPL} Q(|PJF) {NpLonly}
[APX-hard], {NP & DTIME(20(**))}
my 008 1C) .
UbP-RANK-{PL,NPL} {UDP-MIN-NPL) Q(log (LCI\)I |
{Non-consistent budgets {NPZ DTIME(n© (08 08 ™))} O(|P)
Q(c) Ye-constant {PL, NPL}
{NPZ P}

1.59 2

UDP-MAX-NPL 16/15 -
[16/15], (LP-based) (combinatorial)
UDP-MAX-NPL ], - APX-hard, {supply > 2} 9
{Limited supply} ' in P, {supply < 1}
U.DI.D_MAX_PL -], 4 strongly NP-hard -
{Limited supply}
UDP-MAX-PL [-], PTAS strongly NP-hard -
UDP__RANK_PL [-], PTAS strongly NP-hard -
{Consistent budge}s
UDP-MIN-PL nP - -
{Uniform budget$

Figure 1: All the problems above are unlimited-supply, gsletherwise stated. Up.=Upper, Lo.=Lower.
Hardness results with hold for some:= > 0. Complexity assumptions withare assumed to hold for some
0 > 0. All previous upper and lower bounds in the rows except teeraw are from [1]. The result in the
last row is due to [33] and it assumes that each consumer éasithe budget for all goods she desires (in all
other rows the budgets may vary from good to good for any qoesu

Outline: The rest of the paper is organized as follows. In Section 2nesgmt inapproximability results for
UbpP-MIN-{PL,NpPL} and derive arD (¢ )-approximation. Section 3 starts with proving strong NiPdhass

of UDP-MAX-PL. The remainder of the section shows APX-hardness of restrianited-supply versions
of this problem and analyzes a generic local search appréacally, we show how this analysis extends to
a related unit-demand pricing game. Section 4 states wlhiitteaesults apply to the rank-buying model, as
well. Section 5 concludes.



2 Min-Buying

We start by considering the min-buying model. Aggarwal et[&] give an algorithm with approximation
guarante&) (log |C|) and prove that no algorithm that assigns only a constant ruwiftdifferent prices can
beat this bound by more than a constant factor. We show ttdgrurery reasonable complexity theoretic
assumptions no polynomial time algorithm can obtain appnekion guarante®(log® |C|), for somes > 0
and, thus, the very simple algorithm of [1] turns out to begel to) best possible. Interestingly, these results
hold even in the price ladder scenario. We also show how thlglatly stronger assumption leads to another
strong inapproximability result in terms of the numlsef non-zero budgets per consumer or the total number
of products|P|. Finally, we supply the matching upper bound for one of thelhess results by deriving an
O(¢)-approximation (and a (triviakp (|P|)-approximation) for the no price ladder case.

2.1 Hardness of Approximation

The hardness results of this section are based on a reduttibe independent set problem (IS). In order to
obtain, e.g., logarithmic hardness as in Theorem 1 or indeiparametef as in Theorem 2, it is important
to have classes of restricted IS with different asymptatapproximability. Proposition 1, which is due to
[3], states that we can obtain these restricted classesnsidaring graphs with maximum degree bounded
in terms of their number of vertices. A proof of the correshef our parameterization is found in Appendix
A. For a given graplt: let o(G) denote the size of its maximum independent set.

Proposition 1 For any non-decreasing functiofi: N — R with f(n) < nand f(n¢) < f(n) for all
c>1,n €N, letG; be the family of graph&’ = (V, E), |V| = n, with maximum degre& = O(f(n)).
There exists a constaat> 0, such that it is NP-hard to approximatgG) within O(f(n)) for G € Gy.

We proceed by stating this section’s main result.

Theorem 1 Upp-MIN-{PL,NPL} with unlimited supply is not approximable within(log® |C|) for some
e > 0, unless NRC DTIME(nOUosloen)y,

Note, that inapproximability is expressed in terms of thmbar of consumerg’|. In fact, Theorem 1 yields
also a polylogarithmic inapproximability in terms of thember of product$P|. However, it turns out that
much stronger bounds in terms|@f| are possible when we allow a stronger, but still reasonablaplexity
theoretic assumption. Details can be found in Theorem 2.

Proof of Theorem 1:Consider the familyG of graphsG = (V, E), |V| = n, with degree bounded by
O(log n). By Proposition 1 it is NP-hard to approximai¢G) for G € G within O(log® n). Towards a con-
tradiction, we assume that there is a polynomial time allgoriwith approximation guarant(:{é}(loge/2 IC|)

for UbP-MIN-PL. For a given grapttz = (V, E) from G let A denote its maximum degree. Clearly, we
can compute @A + 1)-coloring of the vertices of7, which we denote by = 1, U ... U Va. For ease of
notation letV; = {v; ;| =0,...,|V;| — 1}. Furthermore, by

V(’UZ'J) = {vu ’ {’l)@j,'l}k’g} € Fandk < Z}

we refer to the vertices that are adjacentg and belong to a color class with index smaller thiaiWe
proceed by defining an bb-MIN-PL instance.



Products / Price Ladder Constraint: For everyy; ; € V' we have a produat; ;. The price ladder is defined
as

p(eoo) < pleo1) < -+ < plegvy|-1) < plero) < plerr) < < pleaval-1)-

Letu = 4(A + 1) andy = p~2~1/n. For every product; ; we define a corresponding threshold
pij = p 8+ gy

Observe that thresholds are arranged according to thelpdder constraint and differ from each other by at
leastry.

Consumers: Foreveryu” € V define a collectio®; ; = {c |t=0,... —1} of identical consumers
with budgetsb( Cij» em) Dij andb( Cij» ek,g) P for all k‘ ¢ with vy, ¢ E V(Um)

In analogy to the coloring of7 we denote the set of all consumerss= Cy U ... U Ca, WhereC; =
Uj Ci ;. Note, that all budgets are consistent with the threshokelguat defined. The complete construction
is illustrated in Figure 2.

Soundnessi et optrpp denote the revenue made by an optimal price assignment @fbdve instance. We
first argue that this defines an upper bound on the size of anmaxiindependent set ifi, i.e.,optypp >
a(G). Given an independent st of G, we can define a price assignmenés follows. Ifv; ; € V' set
p(eij) = pij, else sep(e; ;) = p;ij + . Since thep; ;'s differ by at leasty this assignment is clearly in
accordance with the price ladder constraint.

Now consider; ; € V' and the corresponding consumés. Sincevy , ¢ V' for all v, o € V(v; 5), €ach
consumer:t can afford to buy produat; ; at its threshold price; ;, while the prices of all products, , are
above thelr thresholds and, thus, exceed the consumepgatase budgets. Hence;, ; is indeed the product
with smallest price that anz;i can afford. It follows that the overall revenue from consusiig ; is at least

A—i ( i—A

Ci il - pij = 1 e+ gy) > 1

Thus, price assignmenptresults in revenue of at leadt’| and we conclude thaptypp > o(G).

Completeness:Assume now that our approximation algorithm returns a paisgignmenp. By r(C) we
refer to the overall revenue of this price assignme(d; ;) andr(c} c; ;) denote the revenue made by sales to
consumers ir€; ; and toc! ; alone, respectively. First observe that w.l.o.g. the poiteach product; ; is
eitherp; ; orp; ; +~. To see this, note, that as long as this is not the case thal@ags a price that we can
increase up t@; ; or decrease down @ ; + v without decreasing the overall revenue. Define

ct = {Cg,j ‘T(Clz?,j) = piJ}

as the set of consumers buying at maximum possible pric€and C\C*. ClearlyC; ; C CT orC;; CC~

for all i and j, since allc! ;'S budgets are identical. We want to show that a large poxtfote solution’s
revenue is due to consumersdr*i Note, thataconsumef € C™ buys at price at most;_; jy;|—;- Thus,

we have:

rC7) = Y @< D> 1G] pimv -1

CZ‘J'C67 cijC67
Ci,; CC— Ci,; CC—

oo 2B+ T AAT)



On the other hand, it clearly holds thatG) > n/(A+1) and, in fact, it is straightforward to construct a price
assignment resulting in revenug (A + 1). It follows that we may assume w.l.0.g. thg€) > n/(A + 1)

and, thus, .
r(CH) =7r(C)—r(C7) > ir(C).

DefineV’ = {v;;|C;; € C™}. Letwv; ; € V' and consider the corresponding consuntgrsC C*. The
revenue made by sales to consumers;inis

Cigl - pig=pn"" (W2 +jy) S1+p <2

We conclude thatV’| = |{C;; |Ci; € CT}| > (1/2)r(C"). Finally, observe that” is indeed a feasible
independent set i6'. To see this, consider; ; € V' and letvy, » be an adjacent vertex. Af < i, the fact that
consumerg’; ; buy e; ; at pricep; ; implies that the price o, , is strictly larger than its thresholg, ,. It
follows thatCy, ¢ C* and, thuspy, ¢ V'. If k > i, consumerg’;, , can afford to buy produat; ; at price
pi,j and agairCy, ¢ C*.

Remember thalC| denotes the number of consumers in our instance and notéothd@ < log nu® =
o(log®n). Applying our initial assumption that(C) is anO(log®/? |C|)-approximation tapty pp we finally
obtain

1 1 1
V| > =r(C")>-r(C) > ———opt
VI 2 5r€) 2 30 2 foaptupe
1
> )
- O(logsn)a(G)

By Proposition 1 finding such an independent set is NP-hatlie Size of our WpP-MIN-PL instance is
roughlyn-(log n)°s™ = nOloglogn) and the running time of our approximation algorithm will l@ymomial
in this expression. Finally, observe that the proof will gmough, as well, if we do not impose a price ladder

constraint. .
' - =
@ w 3 B
e o, o
. Sl (2)
| vl
—A+1 - Vi
L eqgtll [l 11138
‘ €y ‘ e, e,
c, C, C, c,

Figure 2: Products are arranged in blocks according tgAhe- 1)-coloring of G, thresholds in block are
roughly =217, The additional offset allows setting prices according to the price ladder. Corseif,
belonging to vertex: (u stands for some; ; here) have non-zero budgets fgrand products in blocks with
lower numbers corresponding to adjacent vertices. Caseiseoright illustrate how price(e; ;) is set to
indicate that; ; € V' (1), orv; ; € V' (2).



By slightly changing the reduction in the proof above, we olitain a similar inapproximability result in
terms of the numbef of non-zero budgets of a single consumer or the total numt@noducts, respectively.
Starting from a graplex € G with f(n) = O(n?) for somed > 0, we again define groups of products
according toO( f(n))-coloring of G. Thresholds will be roughly powers ef. The resulting WpP-MIN-
{PL,NPL} instance has size/(®) = O(2"") for somey > 0 and is not approximable withirfi(n)¢ by
assumption. This yields the following result under a sligbtronger complexity theoretic assumption.

Theorem 2 Upp-MIN-{PL,NpPL} with unlimited supply and with at moénon-zero budgets per consumer
is not approximable withirD (¢¢) for somes > 0, unless NPC DTIME29®") for all § > 0. Especially,
UDpP-MIN-{PL,NPL} with unlimited supply is not approximable within(|P|¢) under the same assumption.

Finally, we want to point out that going to a weaker assunmptitan the one in Theorem 1 our reduction
still shows that no constant factor approximation is pdssitApplying the reduction to graphs of constant
degreeA the reduction yields a bp-MiN-{PL,NPL} instance of polynomial siz€&(n*), which is not
approximable withinA® for somes > 0 by [3].

Theorem 3 UDP-MIN-{PL,NPL} with unlimited supply does not allow any constant approxiamaratio,
unless NFC P.

The last part of this section is devoted to some algorithnoiestjon. In fact, we will point out that there
exists an almost matching upper bound for Theorem 2.

2.2 AnO(¢)-Approximation

We first observe that there is a trivi@l(|P|)-approximation algorithm for both blP-MIN-{PL,NPL} and
Ubpp-RANK-{PL,NpPL} with unlimited supply. We just sell a single product for tresbprice to all potential
consumers.

Let us then consider unlimited supply versions af{MIN,RANK }-NPL with @ maximum numbef of
non-zero budgets per consumer. In [7], Balcan and Blum ptemeO(¢)-approximation for the single-
minded unlimited supply pricing problem. We briefly sketble tnain idea of this algorithm and its applica-
tion to UDP-MIN-NPL.

The algorithm is based on a random partitir= Q U R of the products, where each product is place@in
with probability 1/¢ and inR with probability 1 — 1/¢. Now letC* be the set of those consumers that have a
non-zero budget for exactly one of the product€nA simple calculation yields that every consumer ends
up inC* with probability at least /(e¢). We set the prices of all products i to +oc and compute optimal
prices for products irQ. This is possible, because after the partitioning we havwake into account only

a single non-zero budget per consumer. It can then be shatihil expected contribution of every single
consumere under the condition that € C* is at leastc’s contribution in the optimal solution. Finally, [7]
also shows how to derandomize the above algorithm. Thusptaéothe following result.

Theorem 4 UbP-{MIN,RANK }-NPL with unlimited supply and at mogtnon-zero budgets per consumer
can be approximated in polynomial time withi(¢).

We mention that the techniques used above cannot be apgtied svprice ladder constraint is given, since
it is essential that prices of products it are set to values strictly above the budgets of consumefs.in
However, doing this in the presence of a price ladder comstnaight make it impossible to assign optimal
prices to the products i@.



3 Max-Buying

We now turn to the max-buying model. We first consider the tiralty relevant case of OP-MAX-PL.
Aggarwal et al. [1] point out that given a price ladder coaistt, rank-buying with consistent budgets reduces
to UDP-MAX-PL and give a PTAS for this problem. We present a matching hasdresult and settle the
guestion of this model’s computational complexity. We therestigate the effect of having to deal with
limited product supply. This question has been address¢t] mssuming that a price ladder is given. We
show that apparently the problem does not get more compteisibissumption is removed.

3.1 Unlimited Supply and Price Ladder

We show that WpP-MAX -PL is strongly NP-hard, thereby resolving a previously opexbfam from [1]. The
proof relies on a reduction of Mk -2SaT, where the main technical difficulty lies in encoding thelgemn in
a way, such that prices can be set according to a predefirmaladder. We point out that without significant
modifications the proof goes through for the (more practicaik-buying model, as well (see Section 4).

Theorem 5 UDP-MAX-PL with unlimited supply is strongly NP-hard, even if each econer has at most
non-zero budgets.

Proof: We show that M\x-2SAT <p UDP-MAX-PL. MAX-23AT is known to be NP-hard [20]. As a Mk-
2SAT instance we are given a collection of disjunctive clauses. ., ¢,, of length at mos® over variables
x1,..., T, and some positive integerc N. We ask whether there is a truth assignmen{z,...,z,} —

{0, 1} that simultaneously satisfiasof the clauses. Note, that w.l.o.g. we may assumethdt m, since
variables that appear in only a single clause can be asstpedubolean value that satisfies this clause and
then be removed from the instance. We next describe a polightime reduction to Wp-MAX-PL.

Variable gadgets: For every variabler; we construct a gadgéf; consisting of2 productse;, f; and the
following collection of consumers:

o o, j=1,... 4m, with budgetsh(al, ;) = 1 + 2=2 andb(c?, f;) = 1 + 2=}

i
2m? 2m?2 "

o 3,5 =1,...,4m3, with budgetsh(3/, e;) = 1 + 2=}

2m?2 *

o v/,j=1,...,4m> + 4m, with budgetsh(v/, ;) = 1 + 52.
Budgets that are not explicitly stated are assumed t@ By ();) we refer to the revenue made from sales
to the above consumers. We proceed by calculating the v&lu@p) depending on prices(e;) andp(f;).
Letry = (4m3 + 4m)(2 + (4i — 2)/(2m?)).

@) ple;) = 1+ Z=2,p(f;) = 1 + 525. Consumersy and3/ buye;, v/ buy f;.

2m?2"

21 — 2
_ 3
r(Vi) = (Am° +4m)(1+ Dy

49 —
= (4m> + 4m)(2
(m—i—m)(—i—2m2

) + (4m3 + 4m)(1 + %)

10



(@) ple;) =1+ Z=L, p(fi) = 1 + Z=}. Consumers¥/ buy e;, o andy! buy f;.

21— 1 3 21 —1
o2 )+(4’I’)’L —|—8m)(1+W

4i — 2
= (4m> + 4m)(2
(4m?® + dm)(2 + - —

r(V;) = 4m’(

)

)=

J buy ¢;, o) andy] buy f;.

() plei) =1+ 222, p(f;) =1

2% — 2 , 2 — 1
r(Vi) = 4m3(1+ 572 )+ (4m” +8m)(1 + 5772 )
4 — 3 49 — 2
— 3 _
= 4dm°(2+ 52 ) +4m(2 + 5o )=r—2m
) ple) =1+ 552U = 1+ 5. Forallj £y buyes, o buysf'
2 — 1 , 2i
r(V;) = 4m3(1+ 2m2 )+ (4m” 4+ 4m)(1 + W)
43 — 27
— 3 «
= 4m°(2+ 2 )+4m(1+w)§ri —2m.

We observe that optimal revenue is obtained with pricesssiet @ases (1) and (2). If prices are set as in cases
(1) and (2) we say that; is in statel or in state0, respectively. In our interpretation variable gadgetddtes

0 correspond to variables that are assigned the boolean ¥alziable gadgets in stateto variables that
are assigned. We next describe how to encode clauses.

Clause gadgetsfor every clause; we define a single consumey with the following budgets:

o b(d;,e;) =1+ 2Z=2, if clausec; contains literalz;.

o b(5;, fi) = 1+ Z=4, if clausec; contains literafz;.

Again, budgets that are not explicitly stated are sdi.tdMe finally impose a price ladder constraint that
requires that

pler) < p(f1) <ple2) < p(fe) <--- < plen) < p(fn)

and letr* = . r’. For the constructed bP-MAX-PL instance we now ask whether there exists a price
assignmenp that result in overall revenue of at lea$t+- s for s € N as in the Max-2SAT instance. The idea
of the construction is depicted in Figure 3. We proceed byipmpthe correctness of the above reduction.

SoundnessiLet ¢ be a truth assignment satisfyirgf the clauses. If(z;) = 0 we set variable gadgé; to
state(, if ¢(x;) = 1 to statel. Clearly, our price assignment is in accordance with thesgadder constraint.
Consider a satisfied clausg. If c; contains literale; andt(x;) = 1, then the corresponding consunder
can afford to buy produet; at its pricep(e;) = 1+ (2i —2)/(2m?). On the other hand, if; containsz; and
t(z;) = 0, thend; can affordf; at pricep(f;) = 1+ (2i —1)/(2m?). In both cases; will buy some product
at a price of at least. Thus, overall revenue is at ledt + s.

Completeness: Let p be a price assignment resulting in revenue at leadst s. We construct a truth
assignment that satisfies of the clauses. We first argue that w.l.0.g. each variablgefad is in either
state0 or statel.

11



Observe first that prices(e;) andp(f;) can w.l.0.g. be assumed to be from the set of distinct budzjaes

of consumers interested in these products, since, as Iahigsas not the case, there always exists some price
that can be set to the nearest budget value without decgeaserall revenue or violating the price ladder
constraint. Assume then tha} is neither in stat® nor in statel and letk be the number of consumers of
typed; buyinge; or f;. By cases (3) and (4) above the total revenue made by selioduptse; and f; is
bounded by

2i—1
2m?
On the other hand, setting prices as in state statel will give revenue at least’ from selling products;
and f; to consumers of type?, 5/ and~/.

ri —2m+ k(1 +

* 1 *

We can then define the obvious truth assignmdayt(z;) = 0 if V; is in state0, t(x;) = 1if V; is in statel.
For every consumef; that can afford to buy a product under price assignmehe corresponding clause

is satisfied by. Since revenue made by sales to consumers ofd&}pé{ andfy{ is preciselyr*, the number
of consumers of typé; buying some product must be at least

{s-(1+2m_1)‘1w >

2m?2 m

[s (1 + i)‘lw > s,

where we use the fact that< m and consumers; buy at a price of at most + (2m — 1)/(2m?). This

finishes the proof. d
$ ci=(x;VXx,) —
LT i
. -
— 1+ 2i2 f}4m3+4m
P 2m -
— — ) xi=1 — y/
1+ L 1+25 - Thamd T dm 4 ’
N o— —
e Ji e b w22 L o —
. 2m2 _ i ¢ f;

\

Figure 3: Consumers?, (7, 7/ ensure that prices @f and f; are always in staté (z; = 0) or in statel
(z; = 1), both of which are consistent with the price ladder comstrdor each clause; we have a single
consumew; with non-zero budgets for the products corresponding tditdwals ofc;.

3.2 Limited Supply

We want to investigate the effect of assuming limited pradupply and focus here on the no price ladder
case. We first point out at what minimum supply the problenobes hard to approximate and then present
an approximation algorithm based on a local search appraathe case ofinit-supplywe assume that there
is exactly one copy of each product available, thys= 1 for all e € P. As we have argued before prices can
w.l.0.g. be chosen from the set of distinct budget valuesicdgin the unit-supply case the price of a product
is determined solely by the budget of the consumer who buyBLt then every fixed allocation implies a
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corresponding price assignment and the problem reducesdiondi the optimal allocation. This, however,
is equivalent to solving a weighted matching problem in abife graph, with vertices on opposite sides of
the bipartition representing consumers and productseotisply. Non-zero budgetsc, e) are represented
as edges with weiglit c, ¢) connecting the vertices of consumeaind produce. We have thus obtained the
following result.

Theorem 6 UbpP-MAX-{PL,NpL} with unit-supply can be solved in polynomial time.

Aggarwal et al. [1] have shown APX-hardness of the unit-dednaax-buying pricing problem. However,
their reduction creates a problem instance with maximurplsgupat is linear in the number of products. Itis
then a natural question to ask how the problem complexitabehin between these extremes, i.e., for max-
imum supply that is larger thahbut still small compared to the size of the problem instar@wrprisingly,

it turns out that even increasing maximum supply to @iy sufficient to make the problem APX-hard.

Theorem 7 UbpP-MAX-NPL with limited supply2 or larger is APX-hard.

Proof: We show an approximation preserving reduction fromX\CuUT. It is known that Max CuT is
APX-hard even for graphs with maximum degreésee, e.g., [6]). LeG = (V, E) have such bounded
degree. We transforré? into an UbP-MAX-NPL instance as follows. For each vertexe V' we define
6 products and consumers, both indexed by0),...,v(5), SUPPIY s,y = Sy2) = Spa) = 2, Sy(1) =
Sy(3) = Su(5) = 1 and budget valuels(cv(,-),ev(i)) = b(CU(i), eU(Hl)) = 1fori e {0, 2,4}, b(CU(i), ev(i)) =
b(Cu(i)» €u(i+1 mod 6)) = 2 fori € {1,3,5}. Budgets that are not specified are assumed ta ligach edge
e = {v,w} € E can now be associated with unique produgts ande,,;), wherei, j € {0,2,4} and every
product is associated with at most one edge. For edge define2 consumers:, ) andc,(;) with budgets
b(Ce(0)s €v(i)) = blCe(0)s Cw(j)) = 1b blce(r)s €ui)) = blcer), €w(j)) = 2. This construction is depicted in
Figure 4.

We start by stating some facts about the solution that anoappation algorithm for our pricing problem
might return on this instance. First, we observe that we chn.g. assume that all prices in this solution are
from {1, 2}, since prices abov&cannot result in any revenue and prices befovan always be increased up
to the next budget value. The second important observaditimat for all vertices from G we can w.l.o.g.
assume that products,g), €,(2), €,(4) are assigned the same price, izg,)) = pley2)) = pleya)) for

all v € V. We show how any solution in which this is not the case caryehsiturned into a solution of no
smaller value, such that our assumption holds. For readosy@mmetry it is sufficient to consider the case
that product,,;y has been assigned the wrong price.

First, assume thai(e,)) = 2, p(ey2)) = p(ey)) = 1. In this situation, ifp(e,;)) = 2, consumer,
currently cannot afford to buy any product, resulting inenrewe0 from this consumer. Ip(e,)) = 1,

then consumee, ;) currently buys at price at most In both cases, the revenue generated by consumers
Co(0)s - - - » Cu(5) IS At MOSB. By settingp(e,(0)) = pley(2)) = p(evay) = 1, p(ev(1)) = Pleya)) = plews)) =

2 anda(cy(i)) = ey for all i this revenue increases %o On the other hand, if produet, ) is associated
with some edge, only 1 consumer from{c, ), c¢1)} can afford product, at price2 and, thus, might

be buying it. Revenue from this consumer decreases by no thard. Hence, we have transformed our
solution without decreasing the overall revenue.

For the second case, lete, o)) = 1, p(ey(2)) = pley)) = 2. If p(eys)) = 2, consumer,,4) cannot afford
any product. Ifp(e,5)) = 1, consumer,s) buys at price at most. Again settingp(e,)) = pley(2)) =
plesy) = 2, pleyn)) = pleys)) = pleys)) = 1 anda(cy(i)) = eyit1 mod 6) Makes overall revenue
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from consumers, gy, . . ., cy(5) increase byl. On consumergc, o), ce(1)} revenue decreases by at most
because consumey(; can still buy a product at pricgafterp(e, ) is changed. This gives the above claim.

We now argue how any small constant factor approximationhenconstructed problem instance yields a
corresponding approximation for theAW CuT problem. As we have seen we obtain solutions with prices in
{1,2}, plew)) = Plevz) = Plesy) pleur)) = plews) = plews)) and a corresponding allocatiarfor
allv € V. Thus, overall revenue from consumers), - - . , ¢,(s) is exactly9 for all v € V. For consumers
{ce(0)s ce(1) } belonging to some edge = {v,w} it is simple to find the optimal allocation given prices
p(eviy)s Plew(s)) of the corresponding products. ffe,;)) = p(ew(j)) = 1 then we can set(c.)) = ey,
alceny) = ew(j)- If pleysy) = plew()) = 2 then we leta(c.)) = 9, alcen)) = ey If plevsy) = 1,
plewj)) = 2 we definea(ce)) = ey), alcen)) = ew(j)- Thus, total revenue from consumers, and
ce(ry I8 2 if pey)) = plew)) and3 if peyi)) # plew;)). We can then write the value of any such
solution to WbP-MAX-NPL as9n + 2m + ¢, wheren = |V|, m = |E| andc is the number of edges
{v,w} such thatp(e, o)) # plew())- Given this solution we can immediately define a €8t7) of size
cin G by settingS = {v|p(ey)) = 1}, T' = V\S. Hence, the optimal solution on our pricing instance
has value&dn + 2m + c¢*, wherec* is the size of a maximum cut i@. Assume now that we can obtain a
(1 — e)-approximation to the pricing problem. By < m (assumingZ is not a tree) and* > m/2 we have

(1—¢) < In+2m-+c <22c*+c
T On+2m4c* T 23c¢*

and, thus¢/c* > (1 — 23¢). Choosinge appropriately small yields any arbitrarily small constapproxi-
mation ratio for Max CUT. 0

Figure 4: Construction from the proof of Theorem 7. Consumaee depicted as circles, products as points.
Edges between consumers and products are labelled witbgpeative non-zero budgets.

We will now analyse the approximation guarantee of a gerecal search approach todg-MAXx-NPL with
limited supply. We let:(p, a) refer to the overall revenue generated by price assignmand corresponding
allocationa. Unless stated otherwise we assume thet chosen optimally. We start by briefly describing
algorithm LOCALSEARCH. For a given price assignmeptlet [p |p(e) = p'] refer to the price assignment
obtained by changing the price efo p'.

1. Initialize p arbitrarily and compute the optimal allocation

2. While there exists produetand pricep’ # p(e) such that

r(p,a) < r([p|p(e) =p'],a’),

whered' is the optimal allocation given pricés| p(e) = p'], setp(e) = p'.
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Algorithm LOCALSEARCH terminates with a solution that cannot be improved by changi single price.
We next show that the total revenue generated by such ayamatilmal solution lies within a factor df off
the globally optimal solution’s value.

Theorem 8 Let p be the price assignment returned by algorithndCALSEARCH, p* an optimal price
assignment and, a* the respective allocations. Therip*,a*)/r(p,a) < 2 and, thus, algorithmLo-
CALSEARCH achieves approximation rati? for UbP-MAX-NPL with limited or unlimited supply. Further-
more, this bound is tight.

Proof: Consider price assignmeptand allocatior:. We defineC, = (a*)~!(e), L. = {c € C. |p(a(c)) <
p*(e)} andr. = p(e)la=1(e)], i.e., C. refers to the set of consumers buyiagn an optimal solution/. is
the subset of these consumers that buy at a price bglow in the solution returned by &CALSEARCH.
Furthermore, we let

Ac= " (p*(e) — plale)))
cELe

refer to the loss of revenue compared to the optimal solutioarred by consumers i@f.. Changing price
p(e) to p*(e) (or leaving it as it is in case it should happen to be jige)) defines price assignmept =
[p|p(e) = p*(e)] and corresponding allocatiari. Since we do not know what should look like we define
an alternative allocation” as follows. First, we set”(c) = @ for all consumers: with a(c) = e. We then
seta’(c) = eforall ¢ € L.. For all other consumers we do not change allocati@nd leta”(c) = a(c).
First observe that allocation” does not allocate more copies of any item than there areall@ilsince
|Le| <|Ce| < s and no product besidescan be sold to more consumers tham irit immediately follows
thatr(p',a’) > r(p’,a”). We observe that

r(p,d) —r(p,a) = r(p,d") —r(pa)

= Z p(a(c)) + Z p*(e) — ZP(G(C))

c¢LcUa=1(e) c€Le ceC

> Y pla(e) + Y0 (e) —plale)) = Y pla(e) =Y pla(e)
ceC c€Le c€a~1(e) ceC

= A, —7,.

By the fact that(p, a) cannot be improved by changing a single ppi¢e) we have that(p’, a’)—r(p,a) < 0
and, thusr. > A.. (If price p(e) did not have to be changed because it was alrga@) the same inequality

follows from the optimality of allocatiom.) Let nowr} = p*(e)|C.| denote the revenue made by prodelct
in the optimal solution. We can then write that

2-r(p,a) = Y re+ Y pla(e) =D (re+ Y plale))

e€P ceC e€P ceCe
> Z(Te +ri—A) > ZTZ =r(p*,a”).
ecP e€P

This completes the first part of the proof. It remains to beashthat our analysis is tight. To this end,
consider a problem instance withproducts indexed by? = {1,2} andk + 1 consumers indexed by
C ={1,...,k+ 1}. Customers’ budgets at¢1,1) = k, b(1,2) = k — ¢, b(2,1) = 0, b(2,2) = ¢ and
b(i,1) =1,b(i,2) = 0fori =3,...,k+ 1. We assume that products are available in unlimited suigly.
straightforward to verify that priceg(1) = k, p(2) = ¢ are locally optimal and result in revenke-<. Prices
p(1) = 1, p(2) = k — ¢, however, result in overall revenue 2t — 1 — . Choosingk ande appropriately
shows that a pure local search approach cannot give anyxapation ratio better thag. d
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So far, we have argued that algorithnoCALSEARCH terminates with a solution that is2aapproximation
with respect to the optimal revenue. We have not, howevgueat about the algorithm'’s running time. In or-
der to obtain polynomial running time, only a small changedseto be applied to algorithmdCALSEARCH.
Instead of choosing any improving step, we need to find in @acétion the new price that will give maxi-
mum increase in revenue. This yields the following theorem.

Theorem 9 UbpP-MAX-NPL with limited or unlimited supply and integral budgets candmproximated in
polynomial time within a factor di.

Proof: Assume that we choose in each iteration the new price thhgivé maximum increase in revenue.
Letr be the revenue of the current solutietithe revenue of an optimal solution and assumenthar > ¢.
Using the same notation as in the proof of Theorem 8 there existta product, such that. < A, — ¢/n,
wheren denotes the number of products in the instance. It followas venue increases by at leagt in
each iteration and, thus, afteiiterations it must be true that

k
¢§T*<1_g> )
n

since in the first iteration it holds that < r*. We assume that all budgets are integral. It follows that the
overall revenue increases by at leash each iteration. Now let = n - [Inr*] 4+ 1. After ¢ iterations we
have that

n-lnr*
¢§r*<1——> —1<rteT M —1=0,
n

and, thus, we can terminate the algorithm aftéerations with an approximation guarantee2ofNote, that
we do not need to know the value©f. For (weakly) polynomial running time it is sufficient to ugbound
r* by the sum of consumers’ maximum budgets. O

3.3 The Price of Anarchy

Finally, we are going to show that the analysis of algorithmclaLSEARCH can be extended to bound the
price of anarchy (the worst case ratio between the revenaa optimal solution and any Nash equilibrium,
see, e.g., [25]) in the pricing game we obtain if we let anvittlial player fix the price of each product. Since
it can be shown that putdash equilibriado not generally exist, we will work here with the concept okxed
equilibria. Interestingly, the price of anarchy turns cutbie 2, so in order to obtain good revenue in the
max-buying scenario not even a global objective seems tebessary. First let us introduce some notation
to describamixed strategiesLet P = {1,...,n} be a set of players. Each playgneeds to assign a price
p; to her product;, such as to maximize her revenue from sales to consuthekBowing mixed strategies,
every player defines a probability distributid?) over a set of possible prices for her produagt For ease of
notation we letP = (Py,...,P,), P—; = (P1,...,Pj—1,Pj+1,...,P,) and(P_;, P;) = P. Observe that
we can w.l.0.g. allow only the budget values as possibleeprand, thusP; is a discrete distribution. Since
every set of fixed prices defines an optimal allocation, tis&ridutions P; define a probability distribution
also over the set of allocations. We defiRgto be the random variable that describes the revenue ofplaye
4. We can write that

E[R;] =) Prp(p; =p) - Prp(alp; =p) - pjla (e;)]-

p?a
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A set of strategie$>*? = (P4, ..., P;?) are atNash equilibriumif for every player; we have that
Epeq [Rj] > E(Pi‘;,P]f) [Rj] VP; # Pjeq,

i.e., if no player can increase her expected revenue by afghgr current strateglj’fq. Letpricespy, ..., p;,
and allocationa™ be an optimal (i.e., revenue maximizing) solution toRIMAX-NPL. Again, we let
C; = (a*)7!(e;) refer to the set of consumers that buy prodegcin this solution and definé; = {¢; €
Cj|Pa(e;y < pj}, Hj = Cj\L;. For the remainder of this section it will be convenient tfereo players,
their products and consumers only by their indices.

Lemma 1 Consider a set of pricegy, ..., p, with (optimal) allocationa and let|L;| = ¢. If price p; is
changed tg} and we recompute the optimal allocatibnve have thatb=1(5)| > .

A proof of Lemma 1 is found in Appendix B. In analogy to Theor8mwe obtain the following bound on the
price of anarchy.

Theorem 10 The price of anarchy in the unit-demand max-buying pricingg is2.

Proof: Let strategied”*? = (P, ..., P;?) define a Nash equilibrium. We want to lower bound the expected
revenue of agenj. We define a (deterministic) stratedy” for agent; by Pr(p; = pj) = 1 and let
P* = (P%%, P¥) denote the modified set of strategies. By the definition ofiNauilibria we have that
E(pea pr) [Rj] <Epea[ Rj].
By Lemma 1 we can lower bound the expected revenue of ggelaying strategy’; by

|C5
Epea poy[ Bj ] 2 Zt’p; Prpe(|Lj] = 1).

-3
t=0

We can then write that

Epea[ Rj] +Epea[ Y paiy] = Egpes poy[Rj] +Epea[ D pagi)]

=37

iGCj iGCj
|Cy] IC51
> > tplPrpe(|Lj| =) + Yt} Prpe(|H;| = t)
t=0 t=0
IG5
= Y Prpe(|L;| =t) - p} - |Cj] = - |Gy,
t=0

where we use the fact that
PI‘peq(’Hj‘ = t) = PI‘peq(‘Lj’ = ‘Cj’ — t).

Let R denote the expected revenue of the equilibrium st&g, the revenue generated by the optimal
solution. By using linearity of expectation we have that

2-Epa[R] = Y Epe[R;] +Epea|d pagy]

jEP ieC
= Y (Bra[ B ] +Epa[ Y pay]) = 205 105 = Rope
jEP iECj JjeEP
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This gives the desired upper bound on the price of anarchy.ndMegive a simple corresponding lower
bound. Consider a problem instance wittproductsP = {1,2} each of which is available only once,
i.e., s1 = s2 = 1, and2 consumerg = {1,2} with budgetsb(1,1) = ¢, b(1,2) = 1, b(2,1) = 1 and
b(2,2) = 1+ . Itis easy to see that the optimal solution generates rev2nwhile the pure strategies
p1 = € andpy = 1 + ¢ define a Nash equilibrium which results in overall revetue 2:. Thus, the above
bound is tight. O

Finally, we point out that the situation is quite different the min-buying or rank-buying models. For
both models it is straightforward to show that the price adrahy in the pricing game defined as above is
unbounded.

4 Rank-Buying

We finally turn to the rank-buying model and briefly describi@ich of the results presented in the previous
sections apply here, as well. In [1] a restricted version oPYRANK-{PL,NPL}, in which a consumer’s
budget values need to be consistent with her ranking, has ¢d@ssidered. More formally, P-RANK -
{PL,NPL} with consistent budget®quires that for every consumerc C, we have thab(c,e) > b(c, f)
whenever.(e) < r.(f) for all productse, f € P. Given a price ladder constraint,D8-RANK -PL with con-
sistent budgets reduces tmB-MAX-PL and, thus, the PTAS from [1] can be applied. It is straighttnd

to modify the proof of Theorem 5 in order to fit the rank-buyimgdel. It follows that the same hardness
result holds for this version of bP-RANK-PL.

Theorem 11 UpP-RANK-PL with unlimited supply and consistent budgets is stronglyHdRi, even if each
consumer has at mo8tnon-zero budgets.

If we do not require consistent budgets, the problem imntelyidoecomes a lot more intractable. Given a
price ladder constraint, it is now straightforward to regl@ny WbP-MIN-PL instance to a corresponding
instance of WP-RANK-PL. In fact, we just need to define every consumer’s ranking raieg to the price
ladder, i.e.,r.(e) < 7.(f) wheneverp(e) < p(f) is required by the price ladder. Using these rankings,
clearly every consumer is going to buy the cheapest prodhgctan afford under any given price assignment.
Hence, all hardness results fobB-MIN-PL carry over to rank-buying, if we are willing to allow incossent
budgets. It is also straightforward to argue that the prédfteorem 1 works for rank-buying without price
ladder, as well, which implies similar hardness fapRJRANK-NPL.

Theorem 12 UbpP-RANK-{PL,NPL} with unlimited supply (allowing non-consistent budgess)ot approx-
imable withinO (log® |C|) for somes > 0, unless NRC DTIME(n©(loglogn)),

Allowing at most/ non-zero budgets per consumer it is not approximable withif) for somes > 0,
unless NRC DTIME(20(™") for all § > 0. Especially, it is not approximable withid(|P|°) under the same
assumption.

Assuming only N& P, UDP-RANK-{PL,NPL} is not approximable within any constant factor.
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5 Conclusions and Open Problems

We have shown (near)-tight inapproximability and hardrressilts for a number of variations of the unit-
demand pricing problem. Nevertheless, some interestisgsdaave still not been settled. Botb®MIN-PL
and UbP-RANK-PL in the general case have turned out to allow no approximgli@mantees essentially be-
yond the known logarithmic ratio. On the other hand, bottbfgms become solvable exactly in polynomial
time, if we require that each consumeis budgets are eithdr or v; > 0 (the uniform budget case). It is
an interesting open question if this problem variationvei@ny constant approximation ratio in the no price
ladder scenario. (APX-hardness follows from [23].)

Also the complexity ofenvy-free(or max-gair) pricing as considered in [23] remains unresolved. It would
be very interesting to obtain non-constant lower boundshigrproblem, as well.

We have presented2aapproximation for pP-MAX-NpPL with limited supply. The best known approxima-
tion ratio for UbP-MAX-PL with limited supply, on the other hand, 4s[1] and no lower bounds besides
strong NP-hardness as shown in our paper are known. It wawety interesting to see whether a PTAS for
the limited supply case is possible.
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A Independent sets and graph products

ForagraptG = (V, E), |V| = n, leta(G) refer to the size of a maximum independent seFirLet G, and
Gy, be two families of graphs with maximum degree bounde® bynda(G) < an for G € G,, a(G) > bn
for G € Gy. As a direct consequence of the PCP theorem [6, 5, 32] onénebta

Proposition 2 There exist constant$ < a < b < 1, such that giverG € G, U G, it is NP-hard to decide
whetherG € G, or G € G,

The following is a standard concept that allows amplificatd the above hardness.

Definition 2 ([9, 3]) LetG = (V, E) be a graph and: € N. Thek-fold graph producG* = (V*, E}) of G
is defined by/* = V' x---xVand{(uy,...,ux), (vi,...,v)} € Eifand only if{uy, ..., ug, v1,..., 08}
is not an independent set .

Berman and Schnitger [9] and Blum [10] consider so-cat@lomized graph productsvhich are obtained
as the subgraph induced by a random sample of the verticgs.dklon et al. [3] show how this construction
can be derandomized by replacing the sampling procedurg].ofdiven graphG = (V, E), we construct
a non-bipartited-regular Ramanujan grapt, which has the same vertices @sand constant degrekthat
depends only on andb. Vertices of thederandomized graph produf2G* are obtained by choosing a vertex
of H uniformly at random and taking a random walk of length 1 starting at this vertex. Fdr = O(log n)
the numbemnd*~! of such random walks is polynomial and, thid* can be constructed deterministically
in polynomial time. The edges dPG* are defined as before. Now lé#d be the (symmetric) adjacency
matrix of H, where\y > \; > --- > \,,_; are eigenvalues of matri®, and letA = max{\;, |[\,—1|}. The
following is a slightly simplified version of Theorem 1 of [3¥hich gives an upper and lower bound on the
size of the maximum independent set/dG".

Theorem 13 ([3]) For any graphG and anyk it holds that

k—1 k—1
a(G)d" (%G) - A) < a(DGF) < a(G)d"! <@ + /\> .

We now state a slightly extended version of Theorem 3 of [3#.ik¢lude the proof just to show that we can

express the maximum degreet>* in terms of the number of its vertices.

Theorem 14 For any non-decreasing functiofi : N — R, with f(n) < n and f(n¢) < f(n)¢ for all
c>1,n €N, letG; be the family of graph&’ = (V, E), |V| = n, with maximum degre& = O(f(n)).
There exists a constaat> 0, such that it is NP-hard to approximate(G) within O(f(n)®) for G € Gy.

Proof: Let G, andG, be defined as above and B&te G, U G, G = (V, E), |V| = n. Choosing) < a <
b < 1 appropriately it is NP-hard to decide whetliére G, or G € G, by Proposition 2. We now consider
the k-fold derandomized graph produbtG* = (DV, DE).

By its construction we have thabV| = nd*~!. Let (vy,...,v;) € DV and assume that there are indices
i and j, such that{v;,v;} € E. In this case it follows tha{(vy,...,vs), (w1,...,wx)} € DE for all
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(wy, ..., wy). Thus,DG* contains a number of vertices of degre&’—! — 1. We define the modified graph
f)?}k = (1317,575) by removing all these vertices froRG*. We observe tha&(ﬁ(;k) = a(DG*). By
Theorem 13 an independent set of dizén G results in an independent set of size at léagt' ! (b — \)+~!

in DG*. If less than this number of vertices are containeﬁ)ivﬁk, it follows thatG € G,. Thus, w.l.o.g. we

may assume that -
bnd*=1(b — N1 < |DV| < nd* L.

In l?ék an edge{(v1, ..., vg), (wi,...,w)} exists only if there are indicesandj, such thafv;, w; } € F.

We fix (v1, ..., v;) and count the maximum number of adjacent vertices. Therg’gpessibilities to select

1 andj. Fixing indices fixesy; as well and, by the fact thal has maximum degre® there are at most

3 possible choices fow;. Finally, there remainl*~! possibilities to choose the random walk generating

(wi, ..., w). Thus,ﬁf?k has maximum degreA < 3k2d+~1.

Ford-regular Ramanujan graphs it is known that 2v/d — 1/d. By choosing the constant degrée> 2 of

H sufficiently large we have that

2 1
I — .
/\<\/E_3(b @)

By Theorem 13 the gap between the cases@hatG, andG < G, is then amplified to

bnd*1(b — \)k1 b—A\" .
and*=1(a + A)k-1 “\atr) ~ (L4 A%

Using the fact thatl ~ 4/\? and choosing a constant such that(4/)\2)” ~ (1 + \), we obtain that
(L+ M)k > k.

GivenG € G, UGy, G = (V, E) and|V| = n, we choose (for the rest of this prolog is to the base of)
k= clog f(n)’ with ¢= (log gb_l)_1

for somes € (0,1) such thated < 1 (note that3b=! < d ande > 1). Thus, the number of vertice¥ of

f)?}k is lower bounded by
k—1

k—1 k—1

= Q(n),

where we use the fact that< /3 and%b‘1 < d. The maximum degreA of ﬁ;k is upper bounded by
3(c-log f(n))2f(n)®. Using thatlog? f(n) = o(f(n)'~°°) and the fact thaf is non-decreasing we get that
A = O(f(N)). The gap between the cas@s= G, andG € G, is amplified to

D = f)70 > f(N),

where we use that > /N and f(v/N) > /f(N) by our assumption. Choosing= cvyd/2 yields the
claim. 0

B The Missing Proofs

Lemma 1 Consider a set of priceg, ..., p, with (optimal) allocationa and let|L;| = t. If price p; is
changed t@; and we recompute the optimal allocatibrve have thatv=1(5)| > t.
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Proof: Throughout this proof, sel; is defined with respect to prices, ..., p, and allocationa. Let us
assume now thgb—!(j)| < t. Clearly, there can be no consumies C; with Py < pj, since allocatiord

is chosen optimally and there are available copies of pioglieft unsold. It follows that there must exist a
consumet € L; with b(ip) # j andpy(,) > pj. Under this assumption we will show that allocatieis not
optimal. The following chain of conclusions follows solétpm the optimality ofa. Sincep,;,) < pei,) it
must be the case that prodiii, ) is sold out under allocatioa, i.e.,|a~"(b(i))| = sy(;,). Then there must
be some consumey with b(i1) # a(i1) = b(io). For this consumer it must be true that eithgy, )y < pq;)
(including the case thadt(i;) = @) or productb(i, ) is sold out under. Otherwise, modifying: by setting
a(ig) = b(ip) anda(iy) = b(i1) would result in a feasible allocation with strictly highesvenue. By
repeatedly applying this argument we obtain a chgin,, . .., i, of consumers wittb(i;) = a(ixs1) and
Po(is) < Paio) (OF b(is) = @). We can assume thati,) # j for all k. To see this, note, that otherwise
we could for every consumep € L; with b(ig) # j find a distinct consumet;, with b(i;) = j, which
would in turn imply that|b='(5)| > ¢. The above argument is also depicted in Figure 5. We can dafine
feasible allocatiore by going backwards along the constructed chain of consuarasallocating to each
consumer the product she received under allocatiercept for consumey,, who will now receive product
j. Formally, we letc(iy) = a(ix) fork = 1,...,s, c(ip) = j andc(i) = b(i) for all remaining consumers.
We observe that

s s s s—1 s
D b = DD Peli) =D D Patin) =25+ D Phin) > D Pblin)s
k=0 k=1 k=1 k=0 k=0

where the last inequality follows fromy;,) < pa(,) < pj, sinceig € L;. This contradicts the optimality of

allocationd and, thus, finishes the proof. O
Is.
o iy
| ' Il Qe
4 ' AR
. . wl Wy
pJ ,,,,,,,,,, [ENUNNE B B H B B B
'
bs) alio) j -

Figure 5: A chain of consumers switching to new products dkerproof of Lemma 1, wherg € L;.
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