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Abstract

We investigate non-parametric unit-demand pricing problems, in which the goal is to find revenue
maximizing prices for productsP based on a set of consumer profilesC obtained, e.g., from an e-
Commerce website. A consumer profile consists of a number of non-zero budgets and a ranking of all the
products the consumer is interested in. Once prices are fixed, each consumer chooses to buy one of the
products she can afford based on some predefined selection rule. We distinguish between the min-buying,
max-buying, and rank-buying models.

For the min-buying and general rank-buying models the best known approximation ratio isO(log |C|)
and, previously, the problem was only known to be APX-hard. We obtain the first (near) tight lower
bound showing that the problem is not approximable withinO(logε |C|) for someε > 0, unless NP
⊆ DTIME(nlog log n). Going to slightly stronger (still reasonable) complexity theoretic assumptions we
prove inapproximability withinO(`ε) (` being an upper bound on the number of non-zero budgets per
consumer) andO(|P|ε) and provide matching upper bounds. Surprisingly, these hardness results hold
even if a price ladder constraint, i.e., a predefined total order on the prices of all products, is given.

This changes if we require that in the rank-buying model consumers’ budgets are consistent with their
rankings, i.e., that higher ranked products must be assigned a non-smaller budget. Assuming a price
ladder a PTAS is known for both the rank-buying (with consistent budgets) and max-buying models. We
prove that this is best possible, as both problems are strongly NP-hard, thereby resolving a previously
open problem.

Previous results indicate that in the max-buying model the situation becomes more involved when we
assume limited product supply. We show that this is in fact not the case if no price ladder constraint exists.
More precisely, we prove that the problem is polynomially solvable for unit-supply, becomes APX-hard
if maximum supply is increased to2 and allows a2-approximation in general. It turns out that techniques
used here extend also to proving a bound of2 on the price of anarchy of a closely related pricing game.
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1 Introduction

In recent years many technical improvements have made increasingly convenient access to all kinds of In-
ternet services available to a broad public, making the Internet the world’s largest market place. But to both
consumers and companies the Internet offers possibilitiesfar beyond the capabilities of traditional markets.
Many websites that compare the prices offered by different companies for a certain product help customers
make optimal buying decisions. For companies, running suchwebsites might be just as profitable, because
they help gathering data about the preferences of a huge number of potential customers and boosting sales
by optimizing product profiles and applying intelligent pricing schemes tailored for the specific market.

Aiming at the latter objective Glynn, Rusmevichientong andVan Roy [21] defined thenon-parametric multi-
product pricing problem. Consumers are characterized by their budgets for different products and a selection
rule describing how a consumer selects a product among thoseshe can afford once prices are fixed. Since
consumers will buy exactly one product if they can afford it,they are usually referred to asunit-demand.
Glynn et al. propose three different selection rules. In therank-buyingmodel each consumer has a ranking of
all the products she is interested in. When prices are fixed she buys the highest ranked product with a price
below her respective budget. In themin-buyingandmax-buyingmodels a consumer buys the product with
lowest or highest price not exceeding her budget, respectively. The objective of the problem is to compute
prices of the products and (possibly) a corresponding allocation of the products to consumers that maximize
total revenue.

Rusmevichientong et al. [33, 21] show that the min-buying model, where each consumer has the same budget
for all products she desires, allows a polynomial time algorithm, assuming aprice ladder constraint, i.e., a
predefined total order on the prices of all products. Such a constraint is often implied by the set of products
in question. Aggarwal, Feder, Motwani and Zhu [1] give approximation algorithms for all three models: a
PTAS for both rank-buying and max-buying with price ladder,a1.59-approximation for max-buying without
price ladder, and a logarithmic approximation for any of theabove models, assuming unlimited supply of the
products. In the limited supply case a4-approximation is derived for max-buying with price ladder. There
are many practical situations in which it is desirable to be able to handle limited supply, as well. Besides
the obvious point that it might not be possible to increase production capacity beyond a certain limit, even
artificially limiting product supply can sometimes be rewarding.

Further results about the limited supply case were given by Guruswami, Hartline, Karlin, Kempe, Kenyon
and McSherry [23], who introduced another selection rule inspired by the notion of truthfulness in auction
design. In theenvy-free pricing problema consumer buys the product that maximizes her personal utility,
i.e., the difference between the product’s price and her respective budget. A set of prices together with a cor-
responding allocation of the products is envy-free, if every consumer indeed receives the product maximizing
her utility. Guruswami et al. present an algorithm with logarithmic approximation ratio for this problem.

So far, there are huge gaps between the lower and upper boundson the approximation ratio for almost all
of these pricing problems, the only exceptions being the max-buying model without price ladder, for which
a constant approximation and APX-hardness are known [1], and thesingle-mindedenvy-free model with
unlimited supply [15, 23], discussed in Section 1.1. To our knowledge there are no non-constant inapprox-
imability results known for any of the above unit-demand pricing problems.

As our main contribution we resolve the question of approximability of most of the above unit-demand pric-
ing models, putting emphasis on thehardness of approximation. In particular we prove near-tight hardness
results for the min-buying and max-buying models, and some versions of the rank-buying model (includ-
ing the most general). Many of our hardness results show the first non-constant, logarithmic, and even
polynomial inapproximability for those problems. We also give algorithmic results, which close the gap in
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approximability of some of those models. Finally, the problem is studied from a game theoretic standpoint.
Namely, we study the multi-player game obtained by assumingthat the price of every product is determined
by a distinct agent trying to maximize her personal revenue,and present a bound on theprice of anarchy
(cf. [25, 31]) in this game.

1.1 Related Work

Following the introduction ofalgorithmic mechanism design[30] as a major field of interest for computer
science, a lot of research has been done on problems motivated by economical questions. While incombina-
torial auction designthe main goal is to motivate agents to participate truthfully in the protocol, the optimized
objective is twofold. On one side social welfare is to be maximized. Various such results have been obtained
for the case ofsingle-mindedagents [4, 13, 29, 26]. On the other side an auctioneer is clearly interested in
auctions that generate high revenue. Goldberg et al. [22] and Fiat et al. [19] first investigated whether and
how these two objectives can be combined. While originally only randomized revenue maximizing protocols
were known, meanwhile a first deterministic protocol was designed by Aggarwal et al. [2].

While truthfulness of auctions can be assured when agents are single-minded and, thus, of a severely re-
stricted kind, the situation is much more complicated for more general types of agents [8, 27]. Only recently
it has been shown by Lavi and Swamy [28] and by Dobzinski, Nisan and Schapira [17] that in fact ran-
domization can help to overcome this difficulty in many practically relevant cases. Another focus in general
auction design is on algorithms for winner determination. Here the incentives of single players are left aside
and the goal is to find an allocation of the products that guarantees high overall social welfare. For recent
results on so-calledsubmodular bidderssee [16], and references therein.

Besides the unit-demand pricing problem, a closely relatedline of research is multi-product pricing with
single-minded consumers. Such consumers are interested inbuying a single set of products rather than a
single product out of a set of alternatives. Guruswami et al.[23] derive a logarithmic approximation for this
problem with unlimited supply. Recently, Demaine, Feige, Hajiaghayi and Salavatipour [15] have shown
logarithmic hardness of approximation for this model assuming NP* BPTIME(2O(nδ)) for someδ > 0. To
our knowledge this is the only non-constant inapproximability result known for any of the discussed pricing
problems. Further results on this so-calledsingle-minded unlimited supply pricing problemare also found in
[7], [12], [24] and [11], where interest is paid mainly to various types of restricted problem instances.

1.2 Preliminaries

Throughout the rest of the paper the setting will be as follows. Given a set of productsP and consumer
samplesC with budgetsb(c, e) for all c ∈ C, e ∈ P we want to assign pricesp(e) to the products that
maximize the revenue from the resulting sale. This sale depends on how consumers decide whether and
which product to buy once prices have been fixed. We differentiate between the min-buying, max-buying,
and rank-buying models. The definition below is the same as one in [1, 21].

Definition 1 (Unit-Demand Pricing – UDP) We are given productsP and consumer samplesC consisting
of budgetsb(c, e) ∈ R+

0 for all c ∈ C, e ∈ P and rankingsrc : P → {1, . . . , |P|}. For a price assignment
p : P → R+

0 we letA(p) = {c ∈ C | ∃e ∈ P : p(e) ≤ b(c, e)} refer to the set of consumers that can afford
to buy any product underp. In the no price ladder scenario (NPL) we want to find pricesp that maximize

•
∑

c∈A(p) min{p(e) | p(e) ≤ b(c, e)} (UDP-M IN-NPL).
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• ∑
c∈A(p) max{p(e) | p(e) ≤ b(c, e)} (UDP-MAX -NPL).

• ∑
c∈A(p) p

(
argmin{rc(e) | e : p(e) ≤ b(c, e)}

)
(UDP-RANK -NPL).

Given a price ladder constraint (PL),p(e1) ≤ · · · ≤ p(e|P|), UDP-{M IN ,MAX ,RANK}-PL asks for a price
assignmentp satisfying this constraint.

The above definition assumes that all products are availablein unlimited supply and, thus, any number of
consumers requesting to buy some product can be satisfied. Let UDP-MAX -{NPL,PL} be as defined above
and assume that of any producte there are onlyse many copies available. In thislimited supply casewe want
to find not only a price assignmentp, but also a feasible allocationa : C → P of the products, wherea(c) is
the product given to consumerc. Allocationa is feasible if the following conditions are satisfied. First, each
product is sold to at most as many consumers as there are copies of it available. Secondly, each consumer
can afford the product she receives according to her budgets. Last but not least, each consumer is assigned
the most expensive product she can afford that is still available, i.e., if a consumer receives a product that is
not the most expensive she can afford, then it must be the casethat all affordable products with a higher price
are sold out. We note that, given pricesp, finding the optimal allocation reduces to solving an instance of
b-matching in a bipartite graph, whereb = (se)e∈P for vertices corresponding to products andb = (1, . . . , 1)
for consumer vertices, and, thus, can be done in polynomial time [14].

We also define UDP-RANK -{PL,NPL} problemwith consistent budgets, which requires that for every con-
sumerc ∈ C, we have thatb(c, e) ≥ b(c, f) wheneverrc(e) < rc(f) for all productse, f ∈ P.

1.3 Contributions

Min-Buying: Let us first focus on the UDP-M IN-{PL,NPL} problem with unlimited supply. (All the results
discussed in the context of min-buying hold also for the rank-buying model, if we allow non-consistent
budgets.) The best previously known algorithm has an approximation factor ofO(log |C|) (see Aggarwal,
Feder, Motwani, and Zhu [1]). This algorithm is very simple,as it just uses a single price for all products,
trying maximum budgets of each consumer for that price and outputs the best such sale. Surprisingly, we
prove that this simple algorithm is close to best possible. Namely, there is noO(logε |C|)-approximation
algorithm for this problem for some absoluteε > 0, assuming NP6⊆ DTIME(nO(log log n)). We emphasize
that this non-approximability result holds even in the presence of a price ladder constraint. This stands in a
sharp contrast with the uniform-budget version of UDP-M IN-PL, in which we assume that each consumer
has the same budget for all the goods she desires [33]1. Surprisingly, after very few natural maximization
problems with logarithmic approximation threshold have been known for quite some time (see [18] for one
of the first examples), UDP is already the second problem from the field of product pricing (see [15]) for
which such a threshold can be shown.

Techniques:We use the classical method of graph products to amplify the non-approximability threshold of
the maximum independent set problem in bounded degree graphs. Berman and Schnitger [9] introduced a
randomized version of this technique. We first slightly extend the derandomized version of that construction
based on random walks by Alon et al. [3]. This enables us to parameterize the maximum degree of the
constructed graph product in the number of vertices. The core of our reduction is to encode the independence
in such graphs by defining appropriate geometrically increasing classes of budgets in our pricing problem,

1A polynomial time algorithm follows basically by observingthat in the presence of a price ladder each consumer who is able
to buy any product buys the product with smallest price according to the price ladder. This reduces the number of productsto be
considered for each consumer to one. Then one uses dynamic programming.
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where vertices correspond to products. The difficulty here is that independence needs to be enforced in a
somewhat asymmetric way, i.e., based on a vertex coloring ofthe given graph, we can define collections of
consumers that encode independence of a vertex from adjacent vertices with colors of smaller index, but we
cannot do this in the opposite direction. It turns out that weneed roughlynlog log n consumers.

The outlined technique applied to the maximum independent set problem on graphs of constant degree∆
needs onlyO(n∆) consumers, and thus is a polynomial-time reduction. This implies that it is NP-hard to
approximate unlimited-supply UDP-M IN-{PL,NPL} problem within any constant and, thus, the problem is
not in APX. We further demonstrate the flexibility of our technique by showing almost tight hardness results
for this problem when the approximation ratio is expressed in terms of`, i.e., the maximum number of
positive budgets of any consumer, and|P|, the number of products. We prove that the problem is hard to
approximate withinO(`ε), and withinO(|P|ε) for someε > 0, unless NP⊆ DTIME(2O(nδ)) for all δ > 0.
(The underlying complexity theoretic assumption is standard, even with DTIME replaced by BPTIME, see,
e.g., [15].) Our hardness results again are almost tight, since there is a trivialO(|P|)-approximation, and an
approach of Balcan and Blum [7] implies anO(`)-approximation for UDP-M IN-NPL.

Max-Buying: Let us now switch our interest to the max-buying model. From the economical viewpoint
this version finds less motivations, but as we will see our motivation to study this problem comes from its
connection to the economically well motivated rank-buyingmodel, and from the fact that the max-buying
problem turns out to be tractable as compared to the min-buying problems.

The best previous algorithms for the max-buying problem were given by Aggarwal, Feder, Motwani and Zhu
[1]. For the unlimited-supply UDP-MAX -NPL they present a1.59-approximation based on a linear program-
ming relaxation and randomized rounding, and they also prove that the problem is NP-hard to approximate
within 16/15. For the limited-supply UDP-MAX -PL, the best known algorithm, which is based on a rather
involved dynamic programming approach, gives a4-approximation. To our knowledge, no algorithms for
the combination of limited supply and no price ladder are known so far.

We first have a closer look at the relation between the maximumsupply and the problem’s complexity.
Interestingly, we show that UDP-MAX -NPL can be solved in polynomial time for unit-supply but becomes
APX-hard already with maximum supply of only2. APX-hardness has already been shown in [1], but the
previous reduction relies on a problem instance with maximum supply that is linear in the number of products
and, thus, does not imply hardness for sparse problem instances.

On the algorithmic side, we analyze the performance of a generic local search algorithm for the cases of
limited or unlimited supply and prove that it yields a2-approximation algorithm for UDP-MAX -NPL. This
complements our APX-hardness result for this problem, and in fact it is the first algorithm for the limited-
supply case without price ladder with provable guarantee. For unlimited supply UDP-MAX -NPL our ratio
does not match the best known result, which gives a1.59-approximation [1]. However, the previous al-
gorithm is based on a rather problem specific LP-formulationand rounding techniques. Local search, on
the other hand, appears to be a quite natural approach to a wide range of pricing problems. Seen in this
light, we provide first evidence that this approach might indeed be promising also for more practical problem
variations.

Techniques:We have introduced a very basic approach for (un)limited supply UDP-MAX -NPL based on
local search. We just start with any vector of product prices, and optimize a single price having fixed the
other prices so long as this increases the total profit. We present a way of analyzing this algorithm which
leads to the (tight) approximation ratio of2. This technique extends also to proving the same tight boundon
the price of anarchy over mixed Nash equilibria of the related pricing game (see below).

We finally turn our attention to even more tractable cases of max-buying and rank-buying models, namely
the unlimited-supply versions of UDP-MAX -PL and of UDP-RANK -PL with consistent budgets. Aggarwal
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et al. [1] gave a PTAS for both problems, but left open the question of whether they are in fact NP-hard. We
resolve this question by proving that both problems are indeed strongly NP-hard.

Pricing games: We finally consider the multi-player pricing game related toUDP-MAX -NPL, in which we
assume that the price of each product is determined by an individual player, while the set of consumers
remains fixed as before. By extending our analysis of the local search method we prove that the price of
anarchy in this game with agents playing mixed strategies isbounded by2 and show that this bound is tight.
We would also like to note that the analogous games related toUDP-{M IN ,RANK}-NPL have unbounded
price of anarchy.

The following table in Figure 1 summarizes our and previous results on the lower and upper bounds for
various versions of unit-demand pricing.

Variation Previous [Lo.], Up. New Lo. {Assumption} New Up.
Ω(`ε)

{NP 6⊆ DTIME(2O(nδ))} O(` )
Ω(|P|ε) {NPL only}

{NP 6⊆ DTIME(2O(nδ))}

UDP-M IN-{PL,NPL}
[APX-hard],

Ω(logε |C|)
UDP-RANK -{PL,NPL} {UDP-M IN-NPL}

O(log |C|)
{NP 6⊆ DTIME(nO(log log n))} O(|P|){Non-consistent budgets}

Ω(c) ∀c-constant {PL , NPL}

{NP 6⊆ P}

1.59 2
UDP-MAX -NPL [16/15],

(LP-based)
–

(combinatorial)

UDP-MAX -NPL APX-hard, {supply ≥ 2}

{Limited supply}
[–], –

in P, {supply ≤ 1}
2

UDP-MAX -PL

{Limited supply}
[–], 4 strongly NP-hard –

UDP-MAX -PL [–], PTAS strongly NP-hard –

UDP-RANK -PL

{Consistent budgets}
[–], PTAS strongly NP-hard –

in P
UDP-M IN-PL

{Uniform budgets}
– –

Figure 1: All the problems above are unlimited-supply, unless otherwise stated. Up.=Upper, Lo.=Lower.
Hardness results withε hold for someε > 0. Complexity assumptions withδ are assumed to hold for some
δ > 0. All previous upper and lower bounds in the rows except the last row are from [1]. The result in the
last row is due to [33] and it assumes that each consumer has the same budget for all goods she desires (in all
other rows the budgets may vary from good to good for any consumer).

Outline: The rest of the paper is organized as follows. In Section 2 we present inapproximability results for
UDP-M IN-{PL,NPL} and derive anO(` )-approximation. Section 3 starts with proving strong NP-hardness
of UDP-MAX -PL. The remainder of the section shows APX-hardness of restricted limited-supply versions
of this problem and analyzes a generic local search approach. Finally, we show how this analysis extends to
a related unit-demand pricing game. Section 4 states which of the results apply to the rank-buying model, as
well. Section 5 concludes.
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2 Min-Buying

We start by considering the min-buying model. Aggarwal et al. [1] give an algorithm with approximation
guaranteeO(log |C|) and prove that no algorithm that assigns only a constant number of different prices can
beat this bound by more than a constant factor. We show that under very reasonable complexity theoretic
assumptions no polynomial time algorithm can obtain approximation guaranteeO(logε |C|), for someε > 0
and, thus, the very simple algorithm of [1] turns out to be (close to) best possible. Interestingly, these results
hold even in the price ladder scenario. We also show how that aslightly stronger assumption leads to another
strong inapproximability result in terms of the number` of non-zero budgets per consumer or the total number
of products|P|. Finally, we supply the matching upper bound for one of the hardness results by deriving an
O(`)-approximation (and a (trivial)O(|P|)-approximation) for the no price ladder case.

2.1 Hardness of Approximation

The hardness results of this section are based on a reductionof the independent set problem (IS). In order to
obtain, e.g., logarithmic hardness as in Theorem 1 or in terms of parameter̀ as in Theorem 2, it is important
to have classes of restricted IS with different asymptotic inapproximability. Proposition 1, which is due to
[3], states that we can obtain these restricted classes by considering graphs with maximum degree bounded
in terms of their number of vertices. A proof of the correctness of our parameterization is found in Appendix
A. For a given graphG let α(G) denote the size of its maximum independent set.

Proposition 1 For any non-decreasing functionf : N −→ R+ with f(n) ≤ n andf(nc) ≤ f(n)c for all
c ≥ 1, n ∈ N, let Gf be the family of graphsG = (V,E), |V | = n, with maximum degree∆ = O(f(n)).
There exists a constantε > 0, such that it is NP-hard to approximateα(G) within O(f(n)ε) for G ∈ Gf .

We proceed by stating this section’s main result.

Theorem 1 UDP-M IN-{PL,NPL} with unlimited supply is not approximable withinO(logε |C|) for some
ε > 0, unless NP⊆ DTIME(nO(log log n)).

Note, that inapproximability is expressed in terms of the number of consumers|C|. In fact, Theorem 1 yields
also a polylogarithmic inapproximability in terms of the number of products|P|. However, it turns out that
much stronger bounds in terms of|P| are possible when we allow a stronger, but still reasonable,complexity
theoretic assumption. Details can be found in Theorem 2.

Proof of Theorem 1:Consider the familyG of graphsG = (V,E), |V | = n, with degree bounded by
O(log n). By Proposition 1 it is NP-hard to approximateα(G) for G ∈ G within O(logε n). Towards a con-
tradiction, we assume that there is a polynomial time algorithm with approximation guaranteeO(logε/2 |C|)
for UDP-M IN-PL. For a given graphG = (V,E) from G let ∆ denote its maximum degree. Clearly, we
can compute a(∆ + 1)-coloring of the vertices ofG, which we denote byV = V0 ∪ . . . ∪ V∆. For ease of
notation letVi = {vi,j | j = 0, . . . , |Vi| − 1}. Furthermore, by

V(vi,j) = {vk,` | {vi,j , vk,`} ∈ E andk < i}

we refer to the vertices that are adjacent tovi,j and belong to a color class with index smaller thani. We
proceed by defining an UDP-M IN-PL instance.
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Products / Price Ladder Constraint: For everyvi,j ∈ V we have a productei,j . The price ladder is defined
as

p(e0,0) ≤ p(e0,1) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e1,0) ≤ p(e1,1) ≤ · · · ≤ p(e∆,|V∆|−1).

Let µ = 4(∆ + 1) andγ = µ−∆−1/n. For every productei,j we define a corresponding threshold

pi,j = µi−∆ + jγ.

Observe that thresholds are arranged according to the priceladder constraint and differ from each other by at
leastγ.

Consumers:For everyvi,j ∈ V define a collectionCi,j = {ct
i,j | t = 0, . . . , µ∆−i−1} of identical consumers

with budgetsb(ct
i,j , ei,j) = pi,j andb(ct

i,j , ek,`) = pk,` for all k, ` with vk,` ∈ V(vi,j).

In analogy to the coloring ofG we denote the set of all consumers asC = C0 ∪ . . . ∪ C∆, whereCi =⋃
j Ci,j. Note, that all budgets are consistent with the thresholds we just defined. The complete construction

is illustrated in Figure 2.

Soundness:Let optUDP denote the revenue made by an optimal price assignment on theabove instance. We
first argue that this defines an upper bound on the size of a maximum independent set inG, i.e.,optUDP ≥
α(G). Given an independent setV ′ of G, we can define a price assignmentp as follows. Ifvi,j ∈ V ′ set
p(ei,j) = pi,j, else setp(ei,j) = pi,j + γ. Since thepi,j ’s differ by at leastγ this assignment is clearly in
accordance with the price ladder constraint.

Now considervi,j ∈ V ′ and the corresponding consumersCi,j. Sincevk,` /∈ V ′ for all vk,` ∈ V(vi,j), each
consumerct

i,j can afford to buy productei,j at its threshold pricepi,j, while the prices of all productsek,` are
above their thresholds and, thus, exceed the consumers’ respective budgets. Hence,ei,j is indeed the product
with smallest price that anyct

i,j can afford. It follows that the overall revenue from consumers Ci,j is at least

|Ci,j| · pi,j = µ∆−i
(
µi−∆ + jγ

)
≥ 1.

Thus, price assignmentp results in revenue of at least|V ′| and we conclude thatoptUDP ≥ α(G).

Completeness:Assume now that our approximation algorithm returns a priceassignmentp. By r(C) we
refer to the overall revenue of this price assignment,r(Ci,j) andr(ct

i,j) denote the revenue made by sales to
consumers inCi,j and toct

i,j alone, respectively. First observe that w.l.o.g. the priceof each productei,j is
eitherpi,j or pi,j + γ. To see this, note, that as long as this is not the case there isalways a price that we can
increase up topi,j or decrease down topi,j + γ without decreasing the overall revenue. Define

C+ =
{
ct
i,j | r(ct

i,j) = pi,j

}

as the set of consumers buying at maximum possible price andC− = C\C+. ClearlyCi,j ⊆ C+ or Ci,j ⊆ C−

for all i andj, since allct
i,j ’s budgets are identical. We want to show that a large portionof the solution’s

revenue is due to consumers inC+. Note, that a consumerct
i,j ∈ C− buys at price at mostpi−1,|Vi|−1. Thus,

we have:

r(C−) =
∑

Ci,j⊆C−

r(Ci,j) ≤
∑

Ci,j⊆C−

|Ci,j| · pi−1,|Vi|−1

≤
∑

Ci,j⊆C−

µ∆−i(µi−1−∆ + nγ) ≤
∑

Ci,j⊆C−

µ−1 + µ−1

=
∑

Ci,j⊆C−

1

2(∆ + 1)
≤ n

2(∆ + 1)
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On the other hand, it clearly holds thatα(G) ≥ n/(∆+1) and, in fact, it is straightforward to construct a price
assignment resulting in revenuen/(∆ + 1). It follows that we may assume w.l.o.g. thatr(C) ≥ n/(∆ + 1)
and, thus,

r(C+) = r(C) − r(C−) ≥ 1

2
r(C).

DefineV ′ = {vi,j | Ci,j ⊆ C+}. Let vi,j ∈ V ′ and consider the corresponding consumersCi,j ⊆ C+. The
revenue made by sales to consumers inCi,j is

|Ci,j| · pi,j = µ∆−i
(
µi−∆ + jγ

)
≤ 1 + µ−i−1 ≤ 2.

We conclude that|V ′| = |{Ci,j | Ci,j ⊆ C+}| ≥ (1/2)r(C+). Finally, observe thatV ′ is indeed a feasible
independent set inG. To see this, considervi,j ∈ V ′ and letvk,` be an adjacent vertex. Ifk < i, the fact that
consumersCi,j buy ei,j at pricepi,j implies that the price ofek,` is strictly larger than its thresholdpk,`. It
follows thatCk,` * C+ and, thus,vk,` /∈ V ′. If k > i, consumersCk,` can afford to buy productei,j at price
pi,j and againCk,` * C+.

Remember that|C| denotes the number of consumers in our instance and note thatlog |C| ≤ log nµ∆ =
o(log2 n). Applying our initial assumption thatr(C) is anO(logε/2 |C|)-approximation tooptUDP we finally
obtain

|V ′| ≥ 1

2
r(C+) ≥ 1

4
r(C) ≥ 1

O(logε/2 |C|)
optUDP

≥ 1

O(logε n)
α(G).

By Proposition 1 finding such an independent set is NP-hard. The size of our UDP-M IN-PL instance is
roughlyn·(log n)log n = nO(log log n) and the running time of our approximation algorithm will be polynomial
in this expression. Finally, observe that the proof will go through, as well, if we do not impose a price ladder
constraint. �
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Figure 2: Products are arranged in blocks according to the(∆ + 1)-coloring ofG, thresholds in blocki are
roughly µ−∆+i. The additional offsetγ allows setting prices according to the price ladder. ConsumersCu

belonging to vertexu (u stands for somevi,j here) have non-zero budgets foreu and products in blocks with
lower numbers corresponding to adjacent vertices. Cases onthe right illustrate how pricep(ei,j) is set to
indicate thatvi,j ∈ V ′ (1), or vi,j 6∈ V ′ (2).
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By slightly changing the reduction in the proof above, we canobtain a similar inapproximability result in
terms of the number̀of non-zero budgets of a single consumer or the total number of products, respectively.
Starting from a graphG ∈ Gf with f(n) = O(nδ) for someδ ≥ 0, we again define groups of products
according toO(f(n))-coloring of G. Thresholds will be roughly powers ofn. The resulting UDP-M IN-
{PL,NPL} instance has sizenf(n) = O(2nγ

) for someγ > 0 and is not approximable withinf(n)ε by
assumption. This yields the following result under a slightly stronger complexity theoretic assumption.

Theorem 2 UDP-M IN-{PL,NPL} with unlimited supply and with at most` non-zero budgets per consumer
is not approximable withinO(`ε) for someε > 0, unless NP⊆ DTIME(2O(nδ)) for all δ > 0. Especially,
UDP-M IN-{PL,NPL} with unlimited supply is not approximable withinO(|P|ε) under the same assumption.

Finally, we want to point out that going to a weaker assumption than the one in Theorem 1 our reduction
still shows that no constant factor approximation is possible. Applying the reduction to graphs of constant
degree∆ the reduction yields a UDP-M IN-{PL,NPL} instance of polynomial sizeO(n∆), which is not
approximable within∆ε for someε > 0 by [3].

Theorem 3 UDP-M IN-{PL,NPL} with unlimited supply does not allow any constant approximation ratio,
unless NP⊆ P.

The last part of this section is devoted to some algorithmic question. In fact, we will point out that there
exists an almost matching upper bound for Theorem 2.

2.2 An O(`)-Approximation

We first observe that there is a trivialO(|P|)-approximation algorithm for both UDP-M IN-{PL,NPL} and
UDP-RANK -{PL,NPL} with unlimited supply. We just sell a single product for the best price to all potential
consumers.

Let us then consider unlimited supply versions of UDP-{M IN ,RANK}-NPL with a maximum number̀ of
non-zero budgets per consumer. In [7], Balcan and Blum present anO(`)-approximation for the single-
minded unlimited supply pricing problem. We briefly sketch the main idea of this algorithm and its applica-
tion to UDP-M IN-NPL.

The algorithm is based on a random partitionP = Q∪R of the products, where each product is placed inQ
with probability1/` and inR with probability1− 1/`. Now letC∗ be the set of those consumers that have a
non-zero budget for exactly one of the products inQ. A simple calculation yields that every consumer ends
up inC∗ with probability at least1/(e`). We set the prices of all products inR to +∞ and compute optimal
prices for products inQ. This is possible, because after the partitioning we have totake into account only
a single non-zero budget per consumer. It can then be shown that the expected contribution of every single
consumerc under the condition thatc ∈ C∗ is at leastc’s contribution in the optimal solution. Finally, [7]
also shows how to derandomize the above algorithm. Thus, we obtain the following result.

Theorem 4 UDP-{M IN ,RANK}-NPL with unlimited supply and at most` non-zero budgets per consumer
can be approximated in polynomial time withinO(`).

We mention that the techniques used above cannot be applied when a price ladder constraint is given, since
it is essential that prices of products inR are set to values strictly above the budgets of consumers inC∗.
However, doing this in the presence of a price ladder constraint might make it impossible to assign optimal
prices to the products inQ.
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3 Max-Buying

We now turn to the max-buying model. We first consider the practically relevant case of UDP-MAX -PL.
Aggarwal et al. [1] point out that given a price ladder constraint, rank-buying with consistent budgets reduces
to UDP-MAX -PL and give a PTAS for this problem. We present a matching hardness result and settle the
question of this model’s computational complexity. We theninvestigate the effect of having to deal with
limited product supply. This question has been addressed in[1] assuming that a price ladder is given. We
show that apparently the problem does not get more complex ifthis assumption is removed.

3.1 Unlimited Supply and Price Ladder

We show that UDP-MAX -PL is strongly NP-hard, thereby resolving a previously open problem from [1]. The
proof relies on a reduction of MAX -2SAT, where the main technical difficulty lies in encoding the problem in
a way, such that prices can be set according to a predefined price ladder. We point out that without significant
modifications the proof goes through for the (more practical) rank-buying model, as well (see Section 4).

Theorem 5 UDP-MAX -PL with unlimited supply is strongly NP-hard, even if each consumer has at most2
non-zero budgets.

Proof: We show that MAX -2SAT ≤p UDP-MAX -PL. MAX -2SAT is known to be NP-hard [20]. As a MAX -
2SAT instance we are given a collection of disjunctive clausesc1, . . . , cm of length at most2 over variables
x1, . . . , xn and some positive integers ∈ N. We ask whether there is a truth assignmentt : {x1, . . . , xn} →
{0, 1} that simultaneously satisfiess of the clauses. Note, that w.l.o.g. we may assume thatn ≤ m, since
variables that appear in only a single clause can be assignedthe boolean value that satisfies this clause and
then be removed from the instance. We next describe a polynomial time reduction to UDP-MAX -PL.

Variable gadgets: For every variablexi we construct a gadgetVi consisting of2 productsei, fi and the
following collection of consumers:

• αj
i , j = 1, . . . , 4m, with budgetsb(αj

i , ei) = 1 + 2i−2
2m2 andb(αj

i , fi) = 1 + 2i−1
2m2 .

• βj
i , j = 1, . . . , 4m3, with budgetsb(βj

i , ei) = 1 + 2i−1
2m2 .

• γj
i , j = 1, . . . , 4m3 + 4m, with budgetsb(γj

i , fi) = 1 + 2i
2m2 .

Budgets that are not explicitly stated are assumed to be0. By r(Vi) we refer to the revenue made from sales
to the above consumers. We proceed by calculating the value of r(Vi) depending on pricesp(ei) andp(fi).
Let r∗i = (4m3 + 4m)(2 + (4i − 2)/(2m2)).

(1) p(ei) = 1 + 2i−2
2m2 , p(fi) = 1 + 2i

2m2 . Consumersαj
i andβj

i buy ei, γj
i buyfi.

r(Vi) = (4m3 + 4m)(1 +
2i − 2

2m2
) + (4m3 + 4m)(1 +

2i

2m2
)

= (4m3 + 4m)(2 +
4i − 2

2m2
) = r∗i .
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(2) p(ei) = 1 + 2i−1
2m2 , p(fi) = 1 + 2i−1

2m2 . Consumersβj
i buy ei, αj

i andγj
i buyfi.

r(Vi) = 4m3(1 +
2i − 1

2m2
) + (4m3 + 8m)(1 +

2i − 1

2m2
)

= (4m3 + 4m)(2 +
4i − 2

2m2
) = r∗i .

(3) p(ei) = 1 + 2i−2
2m2 , p(fi) = 1 + 2i−1

2m2 . Consumersβj
i buy ei, αj

i andγj
i buyfi.

r(Vi) = 4m3(1 +
2i − 2

2m2
) + (4m3 + 8m)(1 +

2i − 1

2m2
)

= 4m3(2 +
4i − 3

2m2
) + 4m(2 +

4i − 2

2m2
) = r∗i − 2m.

(4) p(ei) = 1 + 2i−1
2m2 , p(fi) = 1 + 2i

2m2 . For allj βj
i buy ei, γj

i buysfi.

r(Vi) = 4m3(1 +
2i − 1

2m2
) + (4m3 + 4m)(1 +

2i

2m2
)

= 4m3(2 +
4i − 1

2m2
) + 4m(1 +

2i

2m2
) ≤ r∗i − 2m.

We observe that optimal revenue is obtained with prices set as in cases (1) and (2). If prices are set as in cases
(1) and (2) we say thatVi is in state1 or in state0, respectively. In our interpretation variable gadgets in state
0 correspond to variables that are assigned the boolean value0, variable gadgets in state1 to variables that
are assigned1. We next describe how to encode clauses.

Clause gadgets:For every clausecj we define a single consumerδj with the following budgets:

• b(δj , ei) = 1 + 2i−2
2m2 , if clausecj contains literalxi.

• b(δj , fi) = 1 + 2i−1
2m2 , if clausecj contains literalxi.

Again, budgets that are not explicitly stated are set to0. We finally impose a price ladder constraint that
requires that

p(e1) ≤ p(f1) ≤ p(e2) ≤ p(f2) ≤ · · · ≤ p(en) ≤ p(fn)

and letr∗ =
∑

i r
∗
i . For the constructed UDP-MAX -PL instance we now ask whether there exists a price

assignmentp that result in overall revenue of at leastr∗+s for s ∈ N as in the MAX -2SAT instance. The idea
of the construction is depicted in Figure 3. We proceed by proving the correctness of the above reduction.

Soundness:Let t be a truth assignment satisfyings of the clauses. Ift(xi) = 0 we set variable gadgetVi to
state0, if t(xi) = 1 to state1. Clearly, our price assignment is in accordance with the price ladder constraint.
Consider a satisfied clausecj. If cj contains literalxi andt(xi) = 1, then the corresponding consumerδj

can afford to buy productei at its pricep(ei) = 1+ (2i− 2)/(2m2). On the other hand, ifcj containsxi and
t(xi) = 0, thenδj can affordfi at pricep(fi) = 1 + (2i− 1)/(2m2). In both casesδj will buy some product
at a price of at least1. Thus, overall revenue is at leatr∗ + s.

Completeness: Let p be a price assignment resulting in revenue at leastr∗ + s. We construct a truth
assignmentt that satisfiess of the clauses. We first argue that w.l.o.g. each variable gadgetVi is in either
state0 or state1.
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Observe first that pricesp(ei) andp(fi) can w.l.o.g. be assumed to be from the set of distinct budget values
of consumers interested in these products, since, as long asthis is not the case, there always exists some price
that can be set to the nearest budget value without decreasing overall revenue or violating the price ladder
constraint. Assume then thatVi is neither in state0 nor in state1 and letk be the number of consumers of
type δj buying ei or fi. By cases (3) and (4) above the total revenue made by selling productsei andfi is
bounded by

r∗i − 2m + k(1 +
2i − 1

2m2
) ≤ r∗i − 2m + k(1 +

1

m
) < r∗i .

On the other hand, setting prices as in state0 or state1 will give revenue at leastr∗i from selling productsei

andfi to consumers of typeαj
i , βj

i andγj
i .

We can then define the obvious truth assignmentt by t(xi) = 0 if Vi is in state0, t(xi) = 1 if Vi is in state1.
For every consumerδj that can afford to buy a product under price assignmentp the corresponding clausecj

is satisfied byt. Since revenue made by sales to consumers of typeαj
i , βj

i andγj
i is preciselyr∗, the number

of consumers of typeδj buying some product must be at least
⌈
s · (1 +

2m − 1

2m2
)−1

⌉
≥

⌈
s · (1 +

1

m
)−1

⌉
≥ s,

where we use the fact thats ≤ m and consumersδj buy at a price of at most1 + (2m − 1)/(2m2). This
finishes the proof. �
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Figure 3: Consumersαj
i , βj

i , γj
i ensure that prices ofei andfi are always in state0 (xi = 0) or in state1

(xi = 1), both of which are consistent with the price ladder constraint. For each clausecj we have a single
consumerδj with non-zero budgets for the products corresponding to theliterals ofcj .

3.2 Limited Supply

We want to investigate the effect of assuming limited product supply and focus here on the no price ladder
case. We first point out at what minimum supply the problem becomes hard to approximate and then present
an approximation algorithm based on a local search approach. In the case ofunit-supplywe assume that there
is exactly one copy of each product available, thus,se = 1 for all e ∈ P. As we have argued before prices can
w.l.o.g. be chosen from the set of distinct budget values. Hence, in the unit-supply case the price of a product
is determined solely by the budget of the consumer who buys it. But then every fixed allocation implies a

12



corresponding price assignment and the problem reduces to finding the optimal allocation. This, however,
is equivalent to solving a weighted matching problem in a bipartite graph, with vertices on opposite sides of
the bipartition representing consumers and products, respectively. Non-zero budgetsb(c, e) are represented
as edges with weightb(c, e) connecting the vertices of consumerc and producte. We have thus obtained the
following result.

Theorem 6 UDP-MAX -{PL,NPL} with unit-supply can be solved in polynomial time.

Aggarwal et al. [1] have shown APX-hardness of the unit-demand max-buying pricing problem. However,
their reduction creates a problem instance with maximum supply that is linear in the number of products. It is
then a natural question to ask how the problem complexity behaves in between these extremes, i.e., for max-
imum supply that is larger than1 but still small compared to the size of the problem instance.Surprisingly,
it turns out that even increasing maximum supply to only2 is sufficient to make the problem APX-hard.

Theorem 7 UDP-MAX -NPL with limited supply2 or larger is APX-hard.

Proof: We show an approximation preserving reduction from MAX CUT. It is known that MAX CUT is
APX-hard even for graphs with maximum degree3 (see, e.g., [6]). LetG = (V,E) have such bounded
degree. We transformG into an UDP-MAX -NPL instance as follows. For each vertexv ∈ V we define
6 products and6 consumers, both indexed byv(0), . . . , v(5), supplysv(0) = sv(2) = sv(4) = 2, sv(1) =
sv(3) = sv(5) = 1 and budget valuesb(cv(i), ev(i)) = b(cv(i), ev(i+1)) = 1 for i ∈ {0, 2, 4}, b(cv(i), ev(i)) =
b(cv(i), ev(i+1 mod 6)) = 2 for i ∈ {1, 3, 5}. Budgets that are not specified are assumed to be0. Each edge
e = {v,w} ∈ E can now be associated with unique productsev(i) andew(j), wherei, j ∈ {0, 2, 4} and every
product is associated with at most one edge. For edgee we define2 consumersce(0) andce(1) with budgets
b(ce(0), ev(i)) = b(ce(0), ew(j)) = 1, b(ce(1), ev(i)) = b(ce(1), ew(j)) = 2. This construction is depicted in
Figure 4.

We start by stating some facts about the solution that an approximation algorithm for our pricing problem
might return on this instance. First, we observe that we can w.l.o.g. assume that all prices in this solution are
from {1, 2}, since prices above2 cannot result in any revenue and prices below2 can always be increased up
to the next budget value. The second important observation is that for all verticesv from G we can w.l.o.g.
assume that productsev(0), ev(2), ev(4) are assigned the same price, i.e.,p(ev(0)) = p(ev(2)) = p(ev(4)) for
all v ∈ V . We show how any solution in which this is not the case can easily be turned into a solution of no
smaller value, such that our assumption holds. For reasons of symmetry it is sufficient to consider the case
that productev(0) has been assigned the wrong price.

First, assume thatp(ev(0)) = 2, p(ev(2)) = p(ev(4)) = 1. In this situation, ifp(ev(1)) = 2, consumercv(0)

currently cannot afford to buy any product, resulting in revenue0 from this consumer. Ifp(ev(1)) = 1,
then consumercv(1) currently buys at price at most1. In both cases, the revenue generated by consumers
cv(0), . . . , cv(5) is at most8. By settingp(ev(0)) = p(ev(2)) = p(ev(4)) = 1, p(ev(1)) = p(ev(3)) = p(ev(5)) =
2 anda(cv(i)) = ev(i) for all i this revenue increases to9. On the other hand, if productev(0) is associated
with some edgee, only 1 consumer from{ce(0), ce(1)} can afford productev(0) at price2 and, thus, might
be buying it. Revenue from this consumer decreases by no morethan1. Hence, we have transformed our
solution without decreasing the overall revenue.

For the second case, letp(ev(0)) = 1, p(ev(2)) = p(ev(4)) = 2. If p(ev(5)) = 2, consumercv(4) cannot afford
any product. Ifp(ev(5)) = 1, consumercv(5) buys at price at most1. Again settingp(ev(0)) = p(ev(2)) =
p(ev(4)) = 2, p(ev(1)) = p(ev(3)) = p(ev(5)) = 1 anda(cv(i)) = ev(i+1 mod 6) makes overall revenue
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from consumerscv(0), . . . , cv(5) increase by1. On consumers{ce(0), ce(1)} revenue decreases by at most1,
because consumerce(1) can still buy a product at price2 afterp(ev(0)) is changed. This gives the above claim.

We now argue how any small constant factor approximation on the constructed problem instance yields a
corresponding approximation for the MAX CUT problem. As we have seen we obtain solutions with prices in
{1, 2}, p(ev(0)) = p(ev(2)) = p(ev(4)), p(ev(1)) = p(ev(3)) = p(ev(5)) and a corresponding allocationa for
all v ∈ V . Thus, overall revenue from consumerscv(0), . . . , cv(5) is exactly9 for all v ∈ V . For consumers
{ce(0), ce(1)} belonging to some edgee = {v,w} it is simple to find the optimal allocation given prices
p(ev(i)), p(ew(j)) of the corresponding products. Ifp(ev(i)) = p(ew(j)) = 1 then we can seta(ce(0)) = ev(i),
a(ce(1)) = ew(j). If p(ev(i)) = p(ew(j)) = 2 then we leta(ce(0)) = ∅, a(ce(1)) = ev(i). If p(ev(i)) = 1,
p(ew(j)) = 2 we definea(ce(0)) = ev(i), a(ce(1)) = ew(j). Thus, total revenue from consumersce(0) and
ce(1) is 2 if p(ev(i)) = p(ew(j)) and3 if p(ev(i)) 6= p(ew(j)). We can then write the value of any such
solution to UDP-MAX -NPL as 9n + 2m + c, wheren = |V |, m = |E| and c is the number of edges
{v,w} such thatp(ev(0)) 6= p(ew(0)). Given this solution we can immediately define a cut(S, T ) of size
c in G by settingS = {v | p(ev(0)) = 1}, T = V \S. Hence, the optimal solution on our pricing instance
has value9n + 2m + c∗, wherec∗ is the size of a maximum cut inG. Assume now that we can obtain a
(1 − ε)-approximation to the pricing problem. Byn ≤ m (assumingG is not a tree) andc∗ ≥ m/2 we have

(1 − ε) ≤ 9n + 2m + c

9n + 2m + c∗
≤ 22c∗ + c

23c∗

and, thus,c/c∗ ≥ (1 − 23ε). Choosingε appropriately small yields any arbitrarily small constantapproxi-
mation ratio for MAX CUT. �
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Figure 4: Construction from the proof of Theorem 7. Consumers are depicted as circles, products as points.
Edges between consumers and products are labelled with the respective non-zero budgets.

We will now analyse the approximation guarantee of a genericlocal search approach to UDP-MAX -NPL with
limited supply. We letr(p, a) refer to the overall revenue generated by price assignmentp and corresponding
allocationa. Unless stated otherwise we assume thata is chosen optimally. We start by briefly describing
algorithm LOCALSEARCH. For a given price assignmentp let [p | p(e) = p′] refer to the price assignment
obtained by changing the price ofe to p′.

1. Initializep arbitrarily and compute the optimal allocationa.

2. While there exists producte and pricep′ 6= p(e) such that

r(p, a) < r([p | p(e) = p′], a′),

wherea′ is the optimal allocation given prices[p | p(e) = p′], setp(e) = p′.
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Algorithm LOCALSEARCH terminates with a solution that cannot be improved by changing a single price.
We next show that the total revenue generated by such a locally optimal solution lies within a factor of2 off
the globally optimal solution’s value.

Theorem 8 Let p be the price assignment returned by algorithmLOCALSEARCH, p∗ an optimal price
assignment anda, a∗ the respective allocations. Thenr(p∗, a∗)/r(p, a) ≤ 2 and, thus, algorithmLO-
CALSEARCH achieves approximation ratio2 for UDP-MAX -NPL with limited or unlimited supply. Further-
more, this bound is tight.

Proof: Consider price assignmentp and allocationa. We defineCe = (a∗)−1(e), Le = {c ∈ Ce | p(a(c)) <
p∗(e)} andre = p(e)|a−1(e)|, i.e.,Ce refers to the set of consumers buyinge in an optimal solution,Le is
the subset of these consumers that buy at a price belowp∗(e) in the solution returned by LOCALSEARCH.
Furthermore, we let

∆e =
∑

c∈Le

(p∗(e) − p(a(c)))

refer to the loss of revenue compared to the optimal solutionincurred by consumers inCe. Changing price
p(e) to p∗(e) (or leaving it as it is in case it should happen to be justp∗(e)) defines price assignmentp′ =
[p | p(e) = p∗(e)] and corresponding allocationa′. Since we do not know whata′ should look like we define
an alternative allocationa′′ as follows. First, we seta′′(c) = ∅ for all consumersc with a(c) = e. We then
seta′′(c) = e for all c ∈ Le. For all other consumers we do not change allocationa and leta′′(c) = a(c).
First observe that allocationa′′ does not allocate more copies of any item than there are available, since
|Le| ≤ |Ce| ≤ se and no product besidese can be sold to more consumers than ina. It immediately follows
thatr(p′, a′) ≥ r(p′, a′′). We observe that

r(p′, a′) − r(p, a) ≥ r(p′, a′′) − r(p, a)

=
∑

c/∈Le∪a−1(e)

p(a(c)) +
∑

c∈Le

p∗(e) −
∑

c∈C

p(a(c))

≥
∑

c∈C

p(a(c)) +
∑

c∈Le

(p∗(e) − p(a(c))) −
∑

c∈a−1(e)

p(a(c)) −
∑

c∈C

p(a(c))

= ∆e − re.

By the fact thatr(p, a) cannot be improved by changing a single pricep(e) we have thatr(p′, a′)−r(p, a) ≤ 0
and, thus,re ≥ ∆e. (If pricep(e) did not have to be changed because it was alreadyp∗(e) the same inequality
follows from the optimality of allocationa.) Let nowr∗e = p∗(e)|Ce| denote the revenue made by producte
in the optimal solution. We can then write that

2 · r(p, a) =
∑

e∈P

re +
∑

c∈C

p(a(c)) ≥
∑

e∈P

(
re +

∑

c∈Ce

p(a(c))
)

≥
∑

e∈P

(re + r∗e − ∆e) ≥
∑

e∈P

r∗e = r(p∗, a∗).

This completes the first part of the proof. It remains to be shown that our analysis is tight. To this end,
consider a problem instance with2 products indexed byP = {1, 2} and k + 1 consumers indexed by
C = {1, . . . , k + 1}. Customers’ budgets areb(1, 1) = k, b(1, 2) = k − ε, b(2, 1) = 0, b(2, 2) = ε and
b(i, 1) = 1, b(i, 2) = 0 for i = 3, . . . , k + 1. We assume that products are available in unlimited supply.It is
straightforward to verify that pricesp(1) = k, p(2) = ε are locally optimal and result in revenuek+ε. Prices
p(1) = 1, p(2) = k − ε, however, result in overall revenue of2k − 1 − ε. Choosingk andε appropriately
shows that a pure local search approach cannot give any approximation ratio better than2. �
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So far, we have argued that algorithm LOCALSEARCH terminates with a solution that is a2-approximation
with respect to the optimal revenue. We have not, however, argued about the algorithm’s running time. In or-
der to obtain polynomial running time, only a small change needs to be applied to algorithm LOCALSEARCH.
Instead of choosing any improving step, we need to find in eachiteration the new price that will give maxi-
mum increase in revenue. This yields the following theorem.

Theorem 9 UDP-MAX -NPL with limited or unlimited supply and integral budgets can beapproximated in
polynomial time within a factor of2.

Proof: Assume that we choose in each iteration the new price that will give maximum increase in revenue.
Let r be the revenue of the current solution,r∗ the revenue of an optimal solution and assume thatr∗−2r ≥ φ.
Using the same notation as in the proof of Theorem 8 there mustexist a producte, such thatre ≤ ∆e −φ/n,
wheren denotes the number of products in the instance. It follows that revenue increases by at leastφ/n in
each iteration and, thus, afterk iterations it must be true that

φ ≤ r∗
(

1 − 2

n

)k

,

since in the first iteration it holds thatφ ≤ r∗. We assume that all budgets are integral. It follows that the
overall revenue increases by at least1 in each iteration. Now let̀ = n · dln r∗e + 1. After ` iterations we
have that

φ ≤ r∗
(

1 − 2

n

)n·ln r∗

− 1 ≤ r∗ · e− ln r∗ − 1 = 0,

and, thus, we can terminate the algorithm after` iterations with an approximation guarantee of2. Note, that
we do not need to know the value ofr∗. For (weakly) polynomial running time it is sufficient to upper bound
r∗ by the sum of consumers’ maximum budgets. �

3.3 The Price of Anarchy

Finally, we are going to show that the analysis of algorithm LOCALSEARCH can be extended to bound the
price of anarchy (the worst case ratio between the revenue ofan optimal solution and any Nash equilibrium,
see, e.g., [25]) in the pricing game we obtain if we let an individual player fix the price of each product. Since
it can be shown that pureNash equilibriado not generally exist, we will work here with the concept of mixed
equilibria. Interestingly, the price of anarchy turns out to be2, so in order to obtain good revenue in the
max-buying scenario not even a global objective seems to be necessary. First let us introduce some notation
to describemixed strategies. Let P = {1, . . . , n} be a set of players. Each playerj needs to assign a price
pj to her productej , such as to maximize her revenue from sales to consumersC. Allowing mixed strategies,
every player defines a probability distributionPj over a set of possible prices for her productej . For ease of
notation we letP = (P1, . . . , Pn), P−j = (P1, . . . , Pj−1, Pj+1, . . . , Pn) and(P−j , Pj) = P . Observe that
we can w.l.o.g. allow only the budget values as possible prices and, thus,Pj is a discrete distribution. Since
every set of fixed prices defines an optimal allocation, the distributionsPj define a probability distribution
also over the set of allocations. We defineRj to be the random variable that describes the revenue of player
j. We can write that

E
[
Rj

]
=

∑

p,a

PrP

(
pj = p

)
· PrP

(
a | pj = p

)
· pj|a−1(ej)|.
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A set of strategiesP eq = (P eq
1 , . . . , P eq

n ) are atNash equilibrium, if for every playerj we have that

EP eq

[
Rj

]
≥ E(P eq

−j ,P ′
j)

[
Rj

]
∀P ′

j 6= P eq
j ,

i.e., if no player can increase her expected revenue by changing her current strategyP eq
j . Let pricesp∗1, . . . , p

∗
n

and allocationa∗ be an optimal (i.e., revenue maximizing) solution to UDP-MAX -NPL. Again, we let
Cj = (a∗)−1(ej) refer to the set of consumers that buy productej in this solution and defineLj = {ci ∈
Cj | pa(ci) < p∗j}, Hj = Cj\Lj . For the remainder of this section it will be convenient to refer to players,
their products and consumers only by their indices.

Lemma 1 Consider a set of pricesp1, . . . , pn with (optimal) allocationa and let |Lj | = t. If price pj is
changed top∗j and we recompute the optimal allocationb we have that|b−1(j)| ≥ t.

A proof of Lemma 1 is found in Appendix B. In analogy to Theorem8 we obtain the following bound on the
price of anarchy.

Theorem 10 The price of anarchy in the unit-demand max-buying pricing game is2.

Proof: Let strategiesP eq = (P eq
1 , . . . , P eq

n ) define a Nash equilibrium. We want to lower bound the expected
revenue of agentj. We define a (deterministic) strategyP ∗

j for agentj by Pr(pj = p∗j) = 1 and let
P ∗ = (P eq

−j , P
∗
j ) denote the modified set of strategies. By the definition of Nash equilibria we have that

E(P eq
−j ,P ∗

j )

[
Rj

]
≤ EP eq

[
Rj

]
.

By Lemma 1 we can lower bound the expected revenue of agentj playing strategyP ∗
j by

E(P eq
−j ,P ∗

j )

[
Rj

]
≥

|Cj |∑

t=0

t · p∗j · PrP eq

(
|Lj | = t

)
.

We can then write that

EP eq

[
Rj

]
+ EP eq

[ ∑

i∈Cj

pa(i)

]
≥ E(P eq

−j ,P ∗
j )

[
Rj

]
+ EP eq

[ ∑

i∈Cj

pa(i)

]

≥
|Cj |∑

t=0

t · p∗j · PrP eq

(
|Lj| = t

)
+

|Cj |∑

t=0

t · p∗j · PrP eq

(
|Hj| = t

)

=

|Cj |∑

t=0

PrP eq

(
|Lj | = t

)
· p∗j · |Cj | = p∗j · |Cj|,

where we use the fact that
PrP eq

(
|Hj| = t

)
= PrP eq

(
|Lj| = |Cj | − t

)
.

Let R denote the expected revenue of the equilibrium state,Ropt the revenue generated by the optimal
solution. By using linearity of expectation we have that

2 · EP eq

[
R

]
=

∑

j∈P

EP eq

[
Rj

]
+ EP eq

[∑

i∈C

pa(i)

]

=
∑

j∈P

(
EP eq

[
Rj

]
+ EP eq

[ ∑

i∈Cj

pa(i)

])
≥

∑

j∈P

p∗j · |Cj | = Ropt.
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This gives the desired upper bound on the price of anarchy. Wenow give a simple corresponding lower
bound. Consider a problem instance with2 productsP = {1, 2} each of which is available only once,
i.e., s1 = s2 = 1, and2 consumersC = {1, 2} with budgetsb(1, 1) = ε, b(1, 2) = 1, b(2, 1) = 1 and
b(2, 2) = 1 + ε. It is easy to see that the optimal solution generates revenue 2, while the pure strategies
p1 = ε andp2 = 1 + ε define a Nash equilibrium which results in overall revenue1 + 2ε. Thus, the above
bound is tight. �

Finally, we point out that the situation is quite different in the min-buying or rank-buying models. For
both models it is straightforward to show that the price of anarchy in the pricing game defined as above is
unbounded.

4 Rank-Buying

We finally turn to the rank-buying model and briefly describe which of the results presented in the previous
sections apply here, as well. In [1] a restricted version of UDP-RANK -{PL,NPL}, in which a consumer’s
budget values need to be consistent with her ranking, has been considered. More formally, UDP-RANK -
{PL,NPL} with consistent budgetsrequires that for every consumerc ∈ C, we have thatb(c, e) ≥ b(c, f)
wheneverrc(e) < rc(f) for all productse, f ∈ P. Given a price ladder constraint, UDP-RANK -PL with con-
sistent budgets reduces to UDP-MAX -PL and, thus, the PTAS from [1] can be applied. It is straightforward
to modify the proof of Theorem 5 in order to fit the rank-buyingmodel. It follows that the same hardness
result holds for this version of UDP-RANK -PL.

Theorem 11 UDP-RANK -PL with unlimited supply and consistent budgets is strongly NP-hard, even if each
consumer has at most2 non-zero budgets.

If we do not require consistent budgets, the problem immediately becomes a lot more intractable. Given a
price ladder constraint, it is now straightforward to reduce any UDP-M IN-PL instance to a corresponding
instance of UDP-RANK -PL. In fact, we just need to define every consumer’s ranking according to the price
ladder, i.e.,rc(e) < rc(f) wheneverp(e) ≤ p(f) is required by the price ladder. Using these rankings,
clearly every consumer is going to buy the cheapest product she can afford under any given price assignment.
Hence, all hardness results for UDP-M IN-PL carry over to rank-buying, if we are willing to allow inconsistent
budgets. It is also straightforward to argue that the proof of Theorem 1 works for rank-buying without price
ladder, as well, which implies similar hardness for UDP-RANK -NPL.

Theorem 12 UDP-RANK -{PL,NPL} with unlimited supply (allowing non-consistent budgets) is not approx-
imable withinO(logε |C|) for someε > 0, unless NP⊆ DTIME(nO(log log n)).

Allowing at most̀ non-zero budgets per consumer it is not approximable withinO(`ε) for someε > 0,
unless NP⊆ DTIME(2O(nδ)) for all δ > 0. Especially, it is not approximable withinO(|P|ε) under the same
assumption.

Assuming only NP* P, UDP-RANK -{PL,NPL} is not approximable within any constant factor.
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5 Conclusions and Open Problems

We have shown (near)-tight inapproximability and hardnessresults for a number of variations of the unit-
demand pricing problem. Nevertheless, some interesting cases have still not been settled. Both UDP-M IN-PL

and UDP-RANK -PL in the general case have turned out to allow no approximationguarantees essentially be-
yond the known logarithmic ratio. On the other hand, both problems become solvable exactly in polynomial
time, if we require that each consumerci’s budgets are either0 or vi > 0 (the uniform budget case). It is
an interesting open question if this problem variation allows any constant approximation ratio in the no price
ladder scenario. (APX-hardness follows from [23].)

Also the complexity ofenvy-free(or max-gain) pricing as considered in [23] remains unresolved. It would
be very interesting to obtain non-constant lower bounds forthis problem, as well.

We have presented a2-approximation for UDP-MAX -NPL with limited supply. The best known approxima-
tion ratio for UDP-MAX -PL with limited supply, on the other hand, is4 [1] and no lower bounds besides
strong NP-hardness as shown in our paper are known. It would be very interesting to see whether a PTAS for
the limited supply case is possible.
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A Independent sets and graph products

For a graphG = (V,E), |V | = n, let α(G) refer to the size of a maximum independent set inG. LetGa and
Gb be two families of graphs with maximum degree bounded by3 andα(G) ≤ an for G ∈ Ga, α(G) ≥ bn
for G ∈ Gb. As a direct consequence of the PCP theorem [6, 5, 32] one obtains:

Proposition 2 There exist constants0 < a < b < 1, such that givenG ∈ Ga ∪ Gb it is NP-hard to decide
whetherG ∈ Ga or G ∈ Gb.

The following is a standard concept that allows amplification of the above hardness.

Definition 2 ([9, 3]) LetG = (V,E) be a graph andk ∈ N. Thek-fold graph productGk = (V k, Ek) of G
is defined byV k = V ×· · ·×V and{(u1, . . . , uk), (v1, . . . , vk)} ∈ Ek if and only if{u1, . . . , uk, v1, . . . , vk}
is not an independent set inG.

Berman and Schnitger [9] and Blum [10] consider so-calledrandomized graph products, which are obtained
as the subgraph induced by a random sample of the vertices ofGk. Alon et al. [3] show how this construction
can be derandomized by replacing the sampling procedure of [9]. Given graphG = (V,E), we construct
a non-bipartited-regular Ramanujan graphH, which has the same vertices asG and constant degreed that
depends only ona andb. Vertices of thederandomized graph productDGk are obtained by choosing a vertex
of H uniformly at random and taking a random walk of lengthk−1 starting at this vertex. Fork = O(log n)
the numberndk−1 of such random walks is polynomial and, thus,DGk can be constructed deterministically
in polynomial time. The edges ofDGk are defined as before. Now letdA be the (symmetric) adjacency
matrix ofH, whereλ0 ≥ λ1 ≥ · · · ≥ λn−1 are eigenvalues of matrixA, and letλ = max{λ1, |λn−1|}. The
following is a slightly simplified version of Theorem 1 of [3], which gives an upper and lower bound on the
size of the maximum independent set inDGk.

Theorem 13 ([3]) For any graphG and anyk it holds that

α(G)dk−1

(
α(G)

n
− λ

)k−1

≤ α(DGk) ≤ α(G)dk−1

(
α(G)

n
+ λ

)k−1

.

We now state a slightly extended version of Theorem 3 of [3]. We include the proof just to show that we can
express the maximum degree ofDGk in terms of the number of its vertices.

Theorem 14 For any non-decreasing functionf : N −→ R+ with f(n) ≤ n and f(nc) ≤ f(n)c for all
c ≥ 1, n ∈ N, let Gf be the family of graphsG = (V,E), |V | = n, with maximum degree∆ = O(f(n)).
There exists a constantε > 0, such that it is NP-hard to approximateα(G) within O(f(n)ε) for G ∈ Gf .

Proof: Let Ga andGb be defined as above and letG ∈ Ga ∪ Gb, G = (V,E), |V | = n. Choosing0 < a <
b < 1 appropriately it is NP-hard to decide whetherG ∈ Ga or G ∈ Gb by Proposition 2. We now consider
thek-fold derandomized graph productDGk = (DV,DE).

By its construction we have that|DV | = ndk−1. Let (v1, . . . , vk) ∈ DV and assume that there are indices
i and j, such that{vi, vj} ∈ E. In this case it follows that{(v1, . . . , vk), (w1, . . . , wk)} ∈ DE for all
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(w1, . . . , wk). Thus,DGk contains a number of vertices of degreendk−1 − 1. We define the modified graph

D̃G
k

= (D̃V , D̃E) by removing all these vertices fromDGk. We observe thatα(D̃G
k
) = α(DGk). By

Theorem 13 an independent set of sizebn in G results in an independent set of size at leastbndk−1(b−λ)k−1

in DGk. If less than this number of vertices are contained iñDE
k
, it follows thatG ∈ Ga. Thus, w.l.o.g. we

may assume that
bndk−1(b − λ)k−1 ≤ |D̃V | ≤ ndk−1.

In D̃G
k

an edge{(v1, . . . , vk), (w1, . . . , wk)} exists only if there are indicesi andj, such that{vi, wj} ∈ E.
We fix (v1, . . . , vk) and count the maximum number of adjacent vertices. There arek2 possibilities to select
i andj. Fixing indices fixesvi as well and, by the fact thatG has maximum degree3, there are at most
3 possible choices forwj . Finally, there remaindk−1 possibilities to choose the random walk generating

(w1, . . . , wk). Thus,D̃G
k

has maximum degree∆ ≤ 3k2dk−1.

Ford-regular Ramanujan graphs it is known thatλ ≈ 2
√

d − 1/d. By choosing the constant degreed ≥ 2 of
H sufficiently large we have that

λ <
2√
d
≤ 1

3
(b − a).

By Theorem 13 the gap between the cases thatG ∈ Ga andG ∈ Gb is then amplified to

bndk−1(b − λ)k−1

andk−1(a + λ)k−1
≥

(
b − λ

a + λ

)k

> (1 + λ)k.

Using the fact thatd ≈ 4/λ2 and choosing a constantγ, such that(4/λ2)γ ≈ (1 + λ), we obtain that
(1 + λ)k ≥ dγk.

GivenG ∈ Ga ∪ Gb, G = (V,E) and|V | = n, we choose (for the rest of this prooflog is to the base ofd)

k = c log f(n)δ with c = (log
3

2
b−1)−1

for someδ ∈ (0, 1) such thatcδ < 1 (note that32b−1 < d andc > 1). Thus, the number of verticesN of

D̃G
k

is lower bounded by

bndk−1(b − λ)k−1 ≥ bn
dk−1

(3
2b−1)k−1

= Ω(n),

where we use the fact thatλ ≤ b/3 and 3
2b−1 < d. The maximum degree∆ of D̃G

k
is upper bounded by

3(c · log f(n))2f(n)cδ. Using thatlog2 f(n) = o(f(n)1−cδ) and the fact thatf is non-decreasing we get that
∆ = O(f(N)). The gap between the casesG ∈ Ga andG ∈ Gb is amplified to

dγk = f(n)cγδ ≥ f(N)cγδ/2,

where we use thatn ≥
√

N andf(
√

N) ≥
√

f(N) by our assumption. Choosingε = cγδ/2 yields the
claim. �

B The Missing Proofs

Lemma 1 Consider a set of pricesp1, . . . , pn with (optimal) allocationa and let |Lj | = t. If price pj is
changed top∗j and we recompute the optimal allocationb we have that|b−1(j)| ≥ t.
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Proof: Throughout this proof, setLj is defined with respect to pricesp1, . . . , pn and allocationa. Let us
assume now that|b−1(j)| < t. Clearly, there can be no consumeri ∈ Cj with pb(i) < p∗j , since allocationb
is chosen optimally and there are available copies of product j left unsold. It follows that there must exist a
consumeri0 ∈ Lj with b(i0) 6= j andpb(i0) ≥ p∗j . Under this assumption we will show that allocationb is not
optimal. The following chain of conclusions follows solelyfrom the optimality ofa. Sincepa(i0) < pb(i0) it
must be the case that productb(i0) is sold out under allocationa, i.e.,|a−1(b(i0))| = sb(i0). Then there must
be some consumeri1 with b(i1) 6= a(i1) = b(i0). For this consumer it must be true that eitherpb(i1) ≤ pa(i0)

(including the case thatb(i1) = ∅) or productb(i1) is sold out undera. Otherwise, modifyinga by setting
a(i0) = b(i0) and a(i1) = b(i1) would result in a feasible allocation with strictly higher revenue. By
repeatedly applying this argument we obtain a chaini0, i1, . . . , is of consumers withb(ik) = a(ik+1) and
pb(is) ≤ pa(i0) (or b(is) = ∅). We can assume thatb(ik) 6= j for all k. To see this, note, that otherwise
we could for every consumeri0 ∈ Lj with b(i0) 6= j find a distinct consumerik with b(ik) = j, which
would in turn imply that|b−1(j)| ≥ t. The above argument is also depicted in Figure 5. We can definea
feasible allocationc by going backwards along the constructed chain of consumersand allocating to each
consumer the product she received under allocationa except for consumeri0, who will now receive product
j. Formally, we letc(ik) = a(ik) for k = 1, . . . , s, c(i0) = j andc(i) = b(i) for all remaining consumers.
We observe that

s∑

k=0

pc(ik) = p∗j +

s∑

k=1

pc(ik) = p∗j +

s∑

k=1

pa(ik) = p∗j +

s−1∑

k=0

pb(ik) >

s∑

k=0

pb(ik),

where the last inequality follows frompb(is) ≤ pa(i0) < p∗j , sincei0 ∈ Lj . This contradicts the optimality of
allocationb and, thus, finishes the proof. �
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Figure 5: A chain of consumers switching to new products as inthe proof of Lemma 1, wherei0 ∈ Lj.
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