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Abstract

This paper is motivated by the open question whether the union of two disjoint NP-

complete sets always is NP-complete. We discover that such unions retain much of

the complexity of their single components. More precisely, they are complete with

respect to more general reducibilities.

Moreover, we approach the main question in a more general way: We analyze

the scope of the complexity of unions of m-equivalent disjoint sets. Under the

hypothesis that NE 6= coNE, we construct degrees in NP where our main question

has a positive answer, i.e., these degrees are closed under unions of disjoint sets.

1 Introduction

We report progress on the open question [Sel88] of whether the union of two disjoint NP-
complete sets is NP-complete. We prove that the union of two disjoint NP-complete sets
belongs to the class High1, the first level of Schöning’s high hierarchy [Sch83]. Specifically,
for every k ≥ 1, if A ∈ Highk and B ∈ NP such that A ∩ B = ∅, then A ∪ B ∈ Highk.
As a consequence [KS97], if A and B are disjoint NP-complete sets, then A ∪ B is a
strongly-nondeterministic complete set for NP [Lon78].

In order to give further evidence that unions of disjoint NP-complete sets are not far from
being NP-complete, we show that the union of an NP-complete set with a disjoint set
in NP is nonuniformly NP-complete, under the following assumption: There exists a set
A ∈ NP such that A is not infinitely-often in coNP. Non-uniform reductions are of interest
in cryptography, where they model an adversary who is capable of long preprocessing
[BV97]. They also have applications in structural complexity theory. Agrawal [Agr02]
and Hitchcock and Pavan [HP06] investigate non-uniform reductions and show under
reasonable hypotheses that every many-one complete set for NP is also hard for length-
increasing, non-uniform reductions.
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Then we raise the more general question, given two many-one-equivalent, disjoint, sets A
and B in NP, what can we say about the complexity of the union A ∪B. Define a set A
to be m-idempotent if for all sets B and C,

(A ≡p
m B ≡p

m C) ∧ (B ∩ C = ∅) =⇒ A ≡p
m B ∪ C.

The set SAT is m-idempotent if and only if the union of two disjoint NP-complete sets
always is NP-complete. We prove that every p-selective set is m-idempotent. It follows
readily that if NE 6= coNE, then there exists A ∈ NP−coNP such that A is m-idempotent,
and it follows that the class EXP contains m-idempotent sets.

Finally, we show that it is possible for the union of two disjoint sets to be harder than
either of its components. We prove that if the polynomial hierarchy is infinite, then there
exist sets A and B in NP(2) such that A ≡p

m B, A≤p
mA ∪ B, and A ∪ B does not m-

reduce to A. More precisely, we show this under the weaker assumption that the Boolean
hierarchy over NP does not collapse to the second level.

To explore this possibility within NP, we show under an hypothesis that asserts strong
immunity conditions that there exist disjoint sets E, F ∈ NP − coNP such that E≡p

mF ,
but E ∪ F 6≤p

mE.

Glasser et al. [GPSZ05] recently showed that all NP-complete sets are m-mitotic. This
means that any NP-complete set A can be partitioned into disjoint NP-complete sets
A1, A2. In a sense, the issue we are raising here, given two m-equivalent disjoint set B1

and B2, how complex is the union B1∪B2, is to investigate the converse of that question.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters, Σ∗ denotes
the set of all words, and |w| denotes the length of a word w. A tally set is a subset of 0∗.
The language accepted by a machine M is denoted by L(M). The characteristic function
of a set A is denoted by cA. L denotes the complement of a language L and coC denotes
the class of complements of languages in C. 1NP [GW86] (also called US [BG82]) is the
class of languages L for which there exists a nondeterministic polynomial-time-bounded
machine M such that an input x belongs to L if and only if M on input x has exactly
one accepting path. In contrast, UP is the class of languages L for which there exists
a nondeterministic polynomial-time-bounded machine M such that L = L(M) and on
every input x, the machine M on input x has at most one accepting path [Val76]. FP
denotes the class of functions computable in deterministic polynomial time. FP/poly is
the superclass of FP that consists of all functions f for which there exists a total function
a : 0∗ → Σ∗ such that

• there exists a polynomial p such that for all n, |a(0n)| ≤ p(n), and

• there exists a g ∈ FP such that for all x, f(x) = g(x, a(0|x|)).
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The function a is called the advice function.

The symmetric difference of sets A and B is defined as A4B = (A − B)∪ (B − A). The
complex version is defined as C ⊕ D = {A4B : A ∈ C, B ∈ D}. For a class of languages
C which is closed under union and intersection, the Boolean hierarchy over C [WW85] is
the family of classes C(k) and co+C(k) where k ≥ 1,

C(k) =def

k times
︷ ︸︸ ︷

C ⊕ C ⊕ · · · ⊕ C, and

coC(k) =def

{
L : L ∈ C(k)

}
.

The properties of Boolean hierarchies were studied by Köbler, Schöning, and Wagner
[KSW87] and Cai et al. [CGH+88].

We recall standard polynomial-time reducibilities [LLS75]. A set B many-one-reduces to
a set C (m-reduces for short; in notation B≤p

mC) if there exists a total, polynomial-time-
computable function f such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if there

exists a deterministic polynomial-time-bounded oracle Turing machine M such that for
all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

A set B 2-disjunctively truth-table-reduces to a set C (2-dtt-reduces for short; in notation
B≤p

2−dttC) if there exists a total, polynomial-time-computable function f : Σ∗ → Σ∗×Σ∗

such that for all strings x,

x ∈ B ⇔ at least one word from the pair f(x) belongs to C.

A set B non-uniformly many-one-reduces to a set C (non-uniformly m-reduces for short;

in notation B≤p/poly
m C) if there exists a total function f ∈ FP/poly such that for all

strings x,
x ∈ B ⇔ f(x) ∈ C.

A set B strongly nondeterministic Turing-reduces to a set C [Lon78] (snT-reduces for
short; in notation B≤p

snTC) if there exists a nondeterministic polynomial-time-bounded
oracle Turing machine M that on each computation path outputs exactly one symbol
from {+,−, ?} such that for all strings x,

x ∈ B ⇒ M on x produces at least one + and no − and

x /∈ B ⇒ M on x produces at least one − and no +.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent (m-equivalent
for short, in notation B≡p

mC). Similarly, we define equivalence for other reducibilities.
A set B is many-one-hard (m-hard for short) for a complexity class C if every B ∈
C m-reduces to B. If additionally B ∈ C, then we say that B is many-one-complete
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(m-complete for short) for C. Similarly, we define hardness and completeness for other
reducibilities. We use the term C-complete as an abbreviation for m-complete for C.

Schöning [Sch83] defined a set A ∈ NP to be high for ΣP
k (the k-th level of the polynomial-

time hierarchy) if ΣP
k

A
= ΣP

k+1. Highk is the class of languages that are high for ΣP
k .

Disjoint sets A and B are called p-separable if there exists a set S ∈ P (the separator)
such that A ⊆ S and B ⊆ S. A set B is m-mitotic [AS84] if there exists an S ∈ P such
that B∩S and B∩S are m-equivalent to B. B is p-selective [Sel79] if there exists a total
function f ∈ FP (the selector function) such that for all x and y, f(x, y) ∈ {x, y} and if
either of x and y belongs to B, then f(x, y) ∈ B.

A is paddable [BH77] if there exists p(·, ·), a polynomial-time computable, polynomial-
time invertible (i.e., there is a g ∈ FP such that for all x and y, g(p(x, y)) = 〈x, y〉)
function, such that for all a and x,

a ∈ A ⇔ p(a, x) ∈ A.

Definition 2.1 Let A be a set and C be a complexity class. The reduction closure and
the degree of A (resp., C) are defined as follows.

Rp
m(A) =def {B

∣
∣B≤p

mA},

Rp
m(C) =def

⋃

A∈C

Rp
m(A),

degp
m(A) =def {B

∣
∣A ≡p

m B},

degp
m(C) =def

⋃

A∈C

degp
m(A).

It is easy to see that whenever a class C is closed under ≤p
m, it then follows that degp

m(C) =
Rp

m(C).

Definition 2.2 Let C and M be complexity classes. We define

C ∨M =def {A ∪ B
∣
∣A ∈ C, B ∈ M},

C ∨·M =def {A ∪ B
∣
∣A ∈ C, B ∈ M, A ∩ B = ∅}.

Notice that the disjoint union used here is not the same concept as the marked union
which is sometimes denoted by ∪· . The reason is that the latter leads to unions of disjoint
p-separable sets, which does not have to be the case with ∨· . For instance, for all sets
A, B ∈ 1NP, it holds that A∪· B = 0A ∪ 1B ∈ 1NP, implying that 1NP is closed under
∪· . Contrary to that, there exists an oracle relative to which 1NP∨· 1NP 6= 1NP [GT05].
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3 Unions of Disjoint NP-complete Sets are not Easy

In this section we show that unions of disjoint NP-complete sets cannot be too easy. More
precisely, we prove the following for disjoint NP-complete sets B and C.

1. B ∪ C is high for NP. Equivalently, B ∪ C is strongly nondeterministic-Turing-
complete for NP [KS97].

2. Under a reasonable hypothesis, B∪C is non-uniformly many-one-complete for NP.

Our results show that unions of disjoint NP-complete sets remain complete with respect
to more general reducibilities. This is evidence that unions of disjoint NP-complete sets
retain much of the complexity of their single components.

As a byproduct, we obtain that the levels 1, 2, . . . of the high-hierarchy are closed under
disjoint unions with arbitrary NP-sets. Recently, Hitchcock and Pavan [HP06] showed
that if NP does not have p-measure 0, then the levels 0 and 1 of the high-hierarchy are
different.

3.1 Unions of Disjoint Sets from the High-Hierarchy

Lemma 3.1 Let A, B ∈ NP such that A ∩ B = ∅. Then NPA ⊆ NPA∪B.

Proof Let MA and MB be nondeterministic polynomial-time Turing machines such that
L(MA) = A and L(MB) = B, and let C ∈ NPA via a nondeterministic polynomial-time
oracle Turing-machine (NPOTM) M ; i.e., L(MA) = C.

We construct a NPTOM N such that L(NA∪B) = C:

N simulates M on input x until M wants to query the oracle A. Say M wants to query
A for the string q. Recall that N on its simulation of M cannot query oracle A but only
the oracle A ∪ B. So N queries A ∪ B for q.

Case 1: q 6∈ A ∪ B: It then follows that q 6∈ A, so N can continue the simulation of M
with a negative answer to the query q.

Case 2: q ∈ A ∪ B: N branches nondeterministically into two paths. On the first path,
it simulates MA(q), on the second, it simulates MB(q). Since A and B are disjoint, only
one of these two machines produces an accepting path. Then N continues as follows:

• On all accepting paths of MA(q) (if any), N continues the simulation of M with a
positive answer to the query q.

• On all rejecting paths of MA(q), N rejects.
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• On all accepting paths of MB(q) (if any), N continues the simulation of M with a
negative answer to the query q.

• On all rejecting paths of MB(q), N also rejects.

During its simulation of M , N proceeds in the same way for all of M ’s queries to A.
Observe that since MA(q) (or MB(q), respectively) can very well produce more than
one accepting path, N will in general perform several parallel simulations of M after a
simulation of MA(q) or MB(q). As L(MA)∩L(MB) = ∅, all these parallel simulations are
identical. Consequently, it is immediately clear that NA∪B(x) produces an accepting path
if and only if MA(x) produces an accepting path and hence L(NA∪B) = L(MA) = C.
This proves C ∈ NPA∪B and we obtain NPA ⊆ NPA∪B. 2

Theorem 3.2 Let k ≥ 1, A ∈ Highk and B ∈ NP such that A ∩ B = ∅. Then A ∪ B ∈
Highk.

Proof Let k ≥ 1, A ∈ Highk and B ∈ NP such that A ∩ B = ∅. We will show that

ΣP
k+1 = ΣP

k

A
⊆ (ΣP

k )A∪B.

Since A is a set from Highk, the first equality follows from the definition. We will argue

for ΣP
k

A
⊆ (ΣP

k )A∪B by induction over k.

(IB) Let k=1. Then ΣP
1

A
= NPA ⊆ (ΣP

1 )A∪B = NPA∪B holds due to Lemma 3.1.

(IH) Let us assume that ΣP
k

A
⊆ (ΣP

k )A∪B holds for a k ≥ 1.

(IS) By definition, (ΣP
k+1)

A = (NPΣP
k )A.

Observe that (NPΣP
k )

A
⊆ NP0A∪1O for a suitable set O ∈ ΣP

k
A
. By the the induction

hypothesis, O ∈ (ΣP
k )A∪B. Arguing similarly as in Lemma 3.1, we obtain

NP0A∪1O ⊆ (NPΣP
k )A∪B = (ΣP

k+1)
A∪B.

This shows that for all k ≥ 1, it holds that ΣP
k+1 = ΣP

k
A
⊆ (ΣP

k )A∪B. 2

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3 For all k ≥ 1, Highk is closed under unions of disjoint sets.

Corollary 3.4 Let A, B ∈ NPC such that A ∩ B = ∅. Then the set A ∪ B is ≤p
snT-

complete for NP.

Proof Since A, B are NP-complete, they obviously are in High1. Theorem 3.2 yields
that A∪B also is in High1. However, a set is in in High1 if and only if it is ≤p

snT-complete
for NP [KS97]. 2
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3.2 Uniformly Hard Languages in NP

In Section 3.1 we showed that the union of a disjoint NP-complete set and an arbitrary
NP-set is high for NP. In this section we give further evidence that unions of disjoint
NP-complete are not far from being NP-complete. To do so, we assume that NP contains
uniformly hard languages, i.e., languages that are uniformly not contained in coNP. After
discussing this assumption we show that it implies the following.

• For every NP-complete A and every B ∈ NP that is disjoint from A it holds that
A ∪ B is nonuniformly NP-complete.

Definition 3.5 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

1. A
i.o.

= B
df

⇐⇒ for infinitely many n it holds that A ∩ Σn = B ∩ Σn.

2. A
i.o.

∈ C
df

⇐⇒ there exists C ∈ C such that A
i.o.

= C.

3. C
i.o.

⊆D
df

⇐⇒ C
i.o.

∈ D for all C ∈ C.

The following proposition is easy to observe.

Proposition 3.6 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

1. A
i.o.

= B if and only if A
i.o.

= B.

2. A
i.o.

∈ C if and only if A
i.o.

∈ coC.

3. C
i.o.

⊆D if and only if coC
i.o.

⊆ coD.

Proposition 3.7 The following are equivalent:

(i) coNP
i.o.

⊆/ NP

(ii) NP
i.o.

⊆/ coNP

(iii) There exists an A ∈ NP such that A
i.o.

∈/ coNP.

(iv) There exists a paddable NP-complete A such that A
i.o.

∈/ coNP.

Proof The equivalence of (i) and (ii) is by Proposition 3.6. Moreover, from the
definition it immediately follows that ¬(ii)⇒¬(iii) and ¬(iii)⇒¬(iv). It remains to
show ¬(iv)⇒¬(ii). So we assume that for all paddable NP-complete A it holds that
A

i.o.

∈ coNP. Choose any C ∈ NP and let B = 0C ∪ 1SAT. Hence B is paddable and
NP-complete. By our assumption B

i.o.

∈ coNP. So there exists a D ∈ coNP such that
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B
i.o.

= D. Let D′ = {w
∣
∣ 0w ∈ D} and note that D′ ∈ coNP. Observe that for every n, if

B ∩Σn+1 = D ∩Σn+1, then C ∩Σn = D′ ∩Σn. Hence C
i.o.

= D′ which shows C
i.o.

∈ coNP. 2

The following results assume the hypothesis that NP
i.o.

∈/ coNP. This is a believable assump-
tion that says that (for sufficiently long formulas) not all tautologies of a given size have
short proofs. First we show that unions of disjoint NP-complete sets are nonuniformly
many-one complete for NP.

Theorem 3.8 If NP
i.o.

⊆/ coNP, then for every NP-complete A and every B ∈ NP that is
disjoint to A it holds that A ∪ B is ≤

p/poly
m -complete for NP.

Proof By assumption, there exists an NP-complete K such that K
i.o.

∈/ coNP. Choose
f ∈ FP such that K≤p

mA via f , and choose g ∈ FP such that {(u, v)
∣
∣u ∈ K∨v ∈ K}≤p

mK
via g.

EASY =def {u
∣
∣∃v, |v| = |u|, f(g(u, v)) ∈ B}

EASY belongs to NP. We see EASY ⊆ K as follows: f(g(u, v)) ∈ B implies g(u, v) /∈ K
which shows u /∈ K. Intuitively, EASY is a set of words u that are outside K and
that have short proofs for this. (The proof is v together with an accepting path proving
f(g(u, v)) ∈ B.) From our assumption K

i.o.

∈/ NP it follows that there exists an n0 ≥ 0 such
that

∀n ≥ n0, K
=n

6⊆ EASY=n.

So for every n ≥ n0 we can choose a word wn ∈ K
=n

− EASY. For n < n0, let wn = ε.
Choose fixed z1 ∈ A∪B and z0 /∈ A∪B (z0 exists, since NP

i.o.

⊆/ coNP implies NP 6= coNP).

We define the reduction that witnesses K≤
p/poly
m A ∪ B.

h(v) =def







f(g(w|v|, v)) : if |v| ≥ n0

z1 : if |v| < n0 and v ∈ K

z0 : if |v| < n0 and v /∈ K

Observe that h ∈ FP/poly with the advice n 7→ wn.

We claim that for all v,
v ∈ K ⇔ h(v) ∈ A ∪ B. (1)

This equivalence clearly holds for all v such that |v| < n0. So assume |v| ≥ n0 and let
n = |v|.

If v ∈ K, then g(wn, v) ∈ K and hence f(g(wn, v)) ∈ A ⊆ A ∪ B.

If v /∈ K, then g(wn, v) /∈ K (since wn /∈ K). Hence f(g(wn, v)) /∈ A. If f(g(wn, v)) ∈ B,
then wn ∈ EASY contradicting the choice of wn. Therefore, f(g(wn, v)) /∈ B. This proves

(1) and therefore, A ∪ B is ≤
p/poly
m -complete for NP. 2
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4 The Complexity of Disjoint Unions

In this section, we abstract from the main question. We investigate how complex the
union of two disjoint1 equivalent NP sets can be, and we state interesting upper and
lower bounds.

For any set A, we define the set U(A) which is the class of all sets which are m-equivalent
to the union of two disjoint sets from the m-degree of A.

Definition 4.1 For a set A, we define the class

U(A) =def degp
m

(
{C ∪ D

∣
∣C ∩ D = ∅ ∧ C ≡p

m D ≡p
m A}

)
.

The next theorem characterizes the scope of U(A). We state a technical lemma first.

Lemma 4.2 Let K and M be complexity classes that are closed under ≤p
m. Then the

class K∨·M is closed under ≤p
m as well.

Proof We have to show that A ∈ Rp
m(K∨·M) implies A ∈ K∨·M.

Let A ∈ Rp
m(K∨·M), hence there exist f ∈ FP, A1 ∈ K, A2 ∈ M such that A1 ∩ A2 = ∅,

and x ∈ A ⇔ f(x) ∈ A1 ∪ A2. For i ∈ {1, 2}, let f−1[Ai] =def {x : f(x) ∈ Ai}. Observe
that for i ∈ {1, 2}, f reduces f−1[Ai] to Ai. As K and M are closed under ≤p

m, it follows
that f−1[A1] ∈ K and f−1[A2] ∈ M. Moreover f−1[A1] ∩ f−1[A2] = ∅. We obtain

x ∈ A ⇔ f(x) ∈ A1 ∪ A2

⇔
(
f(x) ∈ A1

)
∨

(
f(x) ∈ A2

)

⇔
(
x ∈ f−1[A1]

)
∨

(
x ∈ f−1[A2]

)

⇔ x ∈ f−1[A1] ∪ f−1[A2].

Consequently, x is in A if and only if x is in the union of a K-set and a disjoint M-set,
hence A ∈ K∨·M. 2

Theorem 4.3 For all nonempty sets A, it holds that

degp
m(A) ⊆ U(A) ⊆ Rp

m(A)∨· Rp
m(A).

Proof Let A be a set and B ∈ degp
m(A). Hence, we have A ≡p

m B ≡p
m 0A ∪ 1A. To

see that 0A ∪ 1A is in U(A), notice that 0A ∩ 1A = ∅ and 0A ≡p
m 1A ≡p

m A. As B is
m-equivalent to A and 0A ∪ 1A, B also is in U(A).

1Note that the main question can easily be solved for non-disjoint unions of NP-complete sets: 0SAT∪
1Σ∗ and 0Σ∗ ∪ 1SAT are NP-complete sets whose union is in P.
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For the second inclusion, let E ∈ U(A). So there exist C, D ∈ degp
m(A) such that

C∩D = ∅ and E ≡p
m C∪D. It follows that E ∈ Rp

m(C∪D) ⊆ Rp
m(degp

m(A)∨· degp
m(A)) ⊆

Rp
m(Rp

m(A)∨· Rp
m(A)). By Lemma 4.2, this is equal to Rp

m(A)∨· Rp
m(A). 2

Let A be a set and B and C be disjoint sets that are m-equivalent to A. In the next
sections we will study the following phenomena:

• For some A, the union B ∪C is always m-equivalent to A, no matter how B and C
are chosen.

• For some A, the union B ∪ C can be less complex than A.

• For some A, the union B ∪ C can be more complex than A.

4.1 Disjoint Sets Whose Union is At Most as Hard as the Single

Components

In the following section, we consider m-equivalent, disjoint sets whose union is at most
as complex as the single components. We prove that two extremes can occur:

• Unions of disjoint, m-equivalent NP sets can be equivalent to their single compo-
nents (Theorem 4.8).

• Unions of disjoint, m-equivalent NP sets can be very easy, e.g. in P (Theorem 4.15).

Definition 4.4 We say that a set A is m-idempotent if the following holds for all sets
B and C:

(A ≡p
m B ≡p

m C) ∧ (B ∩ C = ∅) =⇒ A ≡p
m B ∪ C.

Observe that a set A is m-idempotent if and only if degp
m(A) = U(A); that is, the first

inclusion in Theorem 4.3 is an equality. Furthermore, it is clear that whenever a set A is
m-idempotent, the same holds for all sets B ∈ degp

m(A).

It turns out that our main question can be formulated equivalently with the notion of
m-idempotence.

Proposition 4.5 SAT is m-idempotent if and only if the union of two disjoint NP-
complete sets always is NP-complete.

So it is open whether the sets in the highest degree of NP are m-idempotent. A more
general question is to ask whether there exists a set A ∈ NP such that the sets in the
m-degree of A are m-idempotent. In other words, this is the question whether there is a
set A in NP that has the least possible scope for U(A). Observe that such a set A must
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be in NP− P. Otherwise 0Σ∗ ≡p
m 1∗Σ∗ ≡p

m A, which would imply that Σ∗ ≡p
m A. This is

a contradiction because A is nontrivial.

The next theorem states that the notion of p-selectivity can help us to find m-idempotent
sets. More precisely, p-selectivity implies m-idempotence for any set outside P.

Theorem 4.6 Let A /∈ P. If A is p-selective, then A is m-idempotent.

Proof Let A be a p-selective set outside P.

Claim 4.7 For all disjoint B, C ∈ degp
m(A) it holds that the pair (B, C) is p-separable.

Proof of the claim. Let B, C ∈ degp
m(A) such that B ∩ C = ∅. Let g, h ∈ FP such that

B≤p
mA via g and C≤p

mA via h. Furthermore, let f ∈ FP be the selector of A. We now
define a set S ∈ P which separates the pair (B, C). Let

S =def {x
∣
∣ f(g(x), h(x)) = g(x)}.

Since f, g, h ∈ FP, S clearly is in P. It remains to show that S separates (B, C), this
means that for all x, it must hold that

x ∈ B ⇒ x ∈ S

x ∈ C ⇒ x ∈ S.

Let x ∈ B. Then g(x) ∈ A. Moreover, h(x) 6∈ A since B and C are disjoint. Consequently,
f(g(x), h(x)) = g(x) and x ∈ S. If x ∈ C, h(x) ∈ A and g(x) 6∈ A. We obtain
f(g(x), h(x)) = h(x) and x 6∈ S. This proves our claim.

Hence, we have shown that all disjoint B, C ∈ degp
m(A) are p-separable. We argue that

this implies that A is m-idempotent. Let B, C ∈ degp
m(A) such that B ∩ C = ∅ and

C≤p
mB via f ∈ FP. We have to show that B ∪ C ≡p

m B. Clearly,

g(x) =def

{
x, if x ∈ S
f(x), if x 6∈ S

yields B ∪ C≤p
mB.

Let us assume that C = B. This implies A ≡p
m A, because A ≡p

m B ≡p
m B ≡p

m A. From
[Sel79] it then follows that A ∈ P. This is a contradiction, so C 6= B. Hence, there exists
c ∈ B ∪ C. Defining

h(x) =def

{
x, if x ∈ S
c, if x 6∈ S

we obtain x ∈ B ⇔ h(x) ∈ B ∪ C, thus B≤p
mB ∪ C and B ∪ C ≡p

m B. From this, it
follows that B ∪ C ≡p

m A. This finishes our proof. 2

The proof of Theorem 4.6 does also show that every degree having the property that all
pairs of disjoint sets are p-separable is m-idempotent.
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Claim 4.7 then states that this holds in particular for degrees of p-selective sets. Moreover,
if all pairs of disjoint sets in NP were p-separable, it would follow that P = UP [GS88]
and that all sets in NP are m-idempotent. We refer to Fortnow and Rogers [FR02] for
an analysis of this hypothesis.

The next theorem gives a positive answer to the more general question whether NP
contains m-idempotent sets under the assumption that NE 6= coNE.

Theorem 4.8 If NE 6= coNE, there exists A ∈ NP− coNP such that A is m-idempotent.

Proof We assume that NE 6= coNE. This implies the existence of a tally set T ∈
NP − coNP [BWSD77]. It then follows [Sel79] that there exists A ≡p

T T such that
A ∈ NP and A is p-selective. Suppose that A ∈ NP ∩ coNP. Since NP ∩ coNP is closed
under ≤p

T-reducibility, this implies that T ∈ NP ∩ coNP. As T ∈ NP − coNP, this is a
contradiction. It follows that A ∈ NP − coNP. So we have identified a p-selective set in
NP − coNP. In particular, A 6∈ P. By Theorem 4.6, A is m-idempotent. 2

The complexity class EXP contains m-idempotent sets unconditionally.

Theorem 4.9 There exists an m-idempotent set A ∈ EXP.

Proof We first prove that there exists a tally set in EXP−P. We use a standard diagonal-
ization argument. Let M1, M2, . . . be an enumeration of all deterministic polynomial-time
Turing machines. For all i ≥ 1, let the running time of machine Mi be bounded by poly-
nomial pi. For technical reasons, we choose an enumeration of machines and polynomials
such that for all i ≥ 1, pi(i) ≤ 2i − 1.

Define
H =def {0

i
∣
∣ Mi accepts 0i after at most 2i steps}.

Obviously, H is a tally set in EXP. We now prove that H 6∈ P. We suppose, for the
sake of contradiction, that there exists an x ≥ 1 such that Mx accepts H . We construct
a Turing machine D as follows: On input 0i, D simulates Mx on input 0i. D accepts the
input 0i if and only if Mx rejects 0i.

Such a machine clearly exists, so there exists y ≥ 1 such that D = My. The running time
of My on an input 0n can be bounded by px(n) + 1 ≤ py(n).

We now run My on input 0y. My then starts a simulation of Mx on input 0y.

Let us assume that Mx accepts 0y. By the definition of H , it must hold that My accepts
0y after at most 2y steps. Nevertheless, we have designed My to reject whenever Mx

accepts, so this is a contradiction. Hence, Mx rejects 0y. Similarly, it follows that My

does not accept 0y after at most 2y steps. Since we know that My on input y halts within
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px(y) + 1 ≤ 2y steps, it follows that My rejects 0y within py(y) steps. Again, this is a
contradiction.

Consequently, no such machine Mx can exist, hence H 6∈ P.

Since H is a tally set, it follows [Sel79] that there exists A ≡p
T H such that A is p-selective.

It is easy to see that A ∈ EXP − P. Together with Theorem 4.6, this implies that A is
m-idempotent. 2

We have shown that there are sets in EXP for which the first inclusion in Theorem 4.3 is
an equality. Under a reasonable assumption, we have shown the same for NP. We now
take a look at the second inclusion. The next proposition states that for nontrivial sets,
at least one of the two inclusions has to be strict.

Proposition 4.10 If A 6= ∅ and A 6= ∅, it holds that degp
m(A) ( Rp

m(A).

Proof Let A 6= ∅ and A 6= ∅ be a set. By definition, degp
m(A) ⊆ Rp

m(A). Since A 6= ∅, it
is clear that ∅ ∈ Rp

m(A). If degp
m(A) contained the empty set, it would follow that A = ∅,

contradicting our assumption. 2

We will show that there exists a set A ∈ NP such that degp
m(A) ( U(A) =

(Rp
m(A)∨· Rp

m(A)) − {∅} under the assumption that P 6= NP ∩ coNP. We first prove
that a set A cannot be m-idempotent if Rp

m(A) is closed under boolean operations.

Theorem 4.11 If Rp
m(A) is closed under boolean operations then U(A) = Rp

m(A)−{∅}.

Proof As Rp
m(A) is closed under boolean operations, it is easy to see that Rp

m(A) =
Rp

m(A)∨· Rp
m(A) = Rp

m(A) ∨ Rp
m(A). Hence it follows from Theorem 4.3 that we only

have to show Rp
m(A) ⊆ U(A).

Let E ∈ Rp
m(A) and Σ be an alphabet such that A ∪ E ⊆ Σ∗, let a 6∈ Σ be a new letter,

and let ∆ =def Σ ∪ {a}. Say E≤p
mA via function h ∈ FP. Since Rp

m(A) is closed under
complementation it follows that A≤p

mA, say via function h′ ∈ FP, and hence A ≡p
m A.

Let a0, e0 ∈ Σ∗ such that a0 6∈ A and e0 6∈ E.

We will define sets A0, A1 ⊆ ∆∗ such that

• A0 ∩ A1 = ∅,

• A0 ∪ A1 ≡
p
m E,

• A0 ≡
p
m A1 ≡

p
m A.

Notice that this implies E ∈ U(A).

We define A1 =def aA ∪ E and A0 =def a(Σ∗ − A). Clearly, A0 ∩ A1 = ∅.
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Claim 4.12 A0 ∪ A1 ≡
p
m E

Proof of the claim. It holds that A0 ∪ A1 = aΣ∗ ∪ E. Let f1 : ∆∗ → Σ∗ be defined by

f1(x) =def

{
x, if x ∈ Σ∗

e0, otherwise.

Observe that x ∈ aΣ∗ ∪ E ⇔ f1(X) ∈ E. As f1 clearly is in FP, we have shown
A0 ∪ A1≤

p
mE. For the other direction, let f2 : Σ∗ → ∆∗ be defined by f2(x) = x. Again,

it is easy to see that x ∈ E ⇔ f2(x) ∈ aΣ∗ ∪ E and f2 ∈ FP. This proves the claim.

Claim 4.13 A0 ≡
p
m A1 ≡

p
m A

Proof of the claim. We will define functions f3, f4, f5 ∈ FP such that A0≤
p
mA1 via f3,

A1≤
p
mA via f4, and A≤p

mA0 via f5.

Define f3 : ∆∗ → ∆∗ by

f3(x) =def

{
ah′(z), if x = az where z ∈ Σ∗

e0, otherwise.

If x ∈ A0, there exists z ∈ Σ∗ − A such that x = az. As h′ reduces A to A, ah′(z) is in
A1. If x 6∈ A0, it either is of the form x = az′ where z′ ∈ A or x ∈ ∆∗ − aΣ∗. In the first
case, h′(z′) ∈ Σ∗ − A, so ah′(z) 6∈ A1. In the second case f3(x) = e0 6∈ A1. Obviously,
f3 ∈ FP, hence A0≤

p
mA1.

Define f4 : ∆∗ → Σ∗ by

f4(x) =def







z, if x = az where z ∈ Σ∗

h(x), if x ∈ Σ∗

a0, otherwise.

If x ∈ A1, either x = az where z ∈ A or x ∈ E. In the first case, f4(x) = z ∈ A. In the
second case, f4(x) = h(x) ∈ A since h reduces E to A. If x 6∈ A1, we distinguish three
cases:

1. Assume x ∈ a(Σ∗ − A), i.e. there exists z′ ∈ Σ∗ − A such that x = az′. Then
f4(x) = z′ 6∈ A.

2. Assume x ∈ Σ∗ − E. Then f4(x) = h(x) 6∈ A.

3. Assume x ∈ (∆∗a∆∗) − (aΣ∗). Then f4(x) = a0 6∈ A.

Together with f4 ∈ FP, we obtain A1≤
p
mA.

Define f5 : Σ∗ → ∆∗ by f5(x) = ah′(x). If x ∈ A then h′(x) ∈ Σ∗ − A hence f5(x) =
ah′(x) ∈ a(Σ∗ − A) ⊆ A0. If x 6∈ A then h′(x) ∈ A and hence f5(x) = ah′(x) ∈ A0.
Obviously, f5 ∈ FP. This proves our claim.

As argued above, we have now shown that E ∈ U(A). This proves Rp
m ⊆ U(A). Alto-

gether, we obtain U(A) = Rp
mA. 2
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Corollary 4.14 Let A be a set. If Rp
m(A) is closed under boolean operations, then A is

not m-idempotent.

Proof Follows immediately from Proposition 4.10 and Lemma 4.11. 2

Consequently, no complete problem for a deterministic Turing-machine time or space
complexity class can be m-idempotent. By Theorem 4.6, this also implies that no com-
plete problem for a deterministic Turing-machine time or space complexity class except
P can be p-selective.

The next theorem shows that unions of disjoints sets in NP can be much easier than the
single components. In particular, there exists a degree degp

m(A) in NP − P such that all
intermediate degrees can be reached by unions from disjoint sets from degp

m(A).

Theorem 4.15 If P 6= NP ∩ coNP, then there exists a set A ∈ (NP ∩ coNP) − P such
that U(A) = Rp

m(A) − {∅} = Rp
m(A)∨· Rp

m(A) − {∅}.

Proof By Lemma 4.11, it suffices to show under the assumption P 6= NP ∩ coNP,
that there exists a set A ∈ (NP ∩ coNP) − P such that Rp

m(A) is closed under boolean
operations.

Let us assume that P 6= NP ∩ coNP. Then there exists a set D ∈ (NP ∩ coNP) − P.
Let cD be the characteristic function of D. We now define a set A which has the desired
properties. We define

A =def {H(x1, . . . , xn), w1, . . . , wn

∣
∣ H is a boolean formula with variables

x1, . . . , xn and H(cD(w1), . . . , cD(wn)) = 1}.

It remains to show that

(1) A ∈ (NP ∩ coNP) − P,

(2) B ∈ Rp
m(A) implies B ∈ Rp

m(A),

(3) B, C ∈ Rp
m(A) implies B ∪ C ∈ Rp

m(A).

We first argue for (1). A cannot be in P since it obviously holds that D≤p
mA. We have

to show that A ∈ NP∩ coNP. Let M1andM2 be nondeterministic machines such that the
following holds for all x:

x ∈ D ⇔ M1 on input x has (at least) one accepting path

⇔ M2 on input x has no accepting paths.

Clearly, this implies that for all inputs x, precisely one of the machines M1, M2 produces
an accepting path when running on input x. We informally describe a nondeterministic
algorithm which decides A in polynomial time:

On input
(
H(x1, . . . , xn), w1, . . . , wn

)
do the following:
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1. i := 1

2. Nondeterministically simulate M1 and M2 on input wi.

3. On all nondeterministic paths of M1 and M2:

(a) If the current path is rejecting, terminate the computation on

this path.

(b) If the current path accepts, set ci := 1 if the path belongs to

M1, set ci := 0 if it belongs to M2.

(c) If i < n, set i := i + 1 and goto 2.

(d) If i = n, evaluate H(c1, . . . , cn)

(e) Accept if and only if H(c1, . . . , cn) = 1.

Observe that the algorithm runs in polynomial time and produces an accepting path if
and only if the input

(
H(x1, . . . , xn), w1, . . . , wn

)
is in A. So we obtain A ∈ NP. To

see that A ∈ coNP, note that A≤p
mA via the function f(H(x1, . . . , xn), w1, . . . , wn) =def

(¬H(x1, . . . , xn), w1, . . . , wn). Hence, A ∈ (NP ∩ coNP) − P.

We now prove (2) and (3). Let B≤p
mA and C≤p

mA via functions g1, g2, that means
x ∈ B ⇔ g1(x) ∈ A and x ∈ C ⇔ g2(x) ∈ A holds for all x. Clearly, the function f
defined above reduces B to B. It remains to show that B∪C≤p

mA. This is accomplished
by the function h, which is defined as follows.

h(x) =def

(
H1∨H2(x1, . . . , xm, x′

1, . . . , x
′
n), w1, . . . , wm, w′

1, . . . , w
′
n

)
,

where

(
H1(x1, . . . , xn), w1, . . . , wn

)
=def g1(x) and

(
H2(x

′
1, . . . , x

′
m), w′

1, . . . , w
′
m

)
=def g2(x).

It now holds that

x ∈ B ∪ C ⇔ (g1(x) ∈ A) ∨ (g2(x) ∈ A)

⇔ h(x) ∈ A.

Function h is computable in polynomial time. We obtain B ∪C≤p
mA via function h and

hence B ∪ C ∈ Rp
m(A). This finishes our proof. 2

By Proposition 4.10, the set A in Theorem 4.15 cannot be m-idempotent. Informally, the
reason is that unions of sets in the degree of A can be too easy to be in the degree of
A. As stated before, the question whether unions of NP-complete sets can be less than
NP-complete is still open.

In the next section, we will show that the opposite can occur also, i.e. unions of equivalent
sets can be harder than the original sets.
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4.2 Disjoint Sets whose Union is Harder than the Single Com-

ponents

Buhrman, Hoene, and Torenvliet [BHT98] showed unconditionally that there exists an
A ∈ EXP − P such that A is not EXP-complete and not m-idempotent. Recall that due
to Corollary 4.14, no EXP-complete problem can be m-idempotent.

Theorem 4.16 [BHT98] Let C be m-complete for EXP. Then C can be split into A and
B such that

• A, B ∈ EXP,

• A ≡p
m B,

• A≤p
mA ∪ B,

• A ∪ B does not m-reduce to A, that means A, B are not m-complete for EXP.

Corollary 4.17 There exists A ∈ EXP such that

degp
m(A) ( U(A) ( Rp

m(A)∨· Rp
m(A) = EXP,

hence A is not m-idempotent.

Proof Let C be m-complete for EXP. By Theorem 4.16, C can be split into sets
A, B ∈ EXP such that A ≡p

m B, A≤p
mA∪B, and A∪B does not m-reduce to A. Hence,

A∪B ∈ Rp
m(A)∨· Rp

m(A)−U(A). As C = A∪B is NP-complete and A ≡p
m B, it follows

that Rp
m(A)∨· Rp

m(A) = EXP. 2

In this case, the union of sets in degp
m(A) can be harder than A. We will identify degrees

in ΘP
2 for which the same holds. After this, we will construct such sets within NP.

The chromatic number of a graph G (in notation cn(G)) is the smallest number k such
G is k-colorable.

Definition 4.18 Let cn(G) be the chromatic number of a graph G, and let k ≥ 1. Then

COLORk =def {(G, a1, . . . , ak)
∣
∣G is a graph, a1 < · · · < ak and cn(G) ∈ {a1, . . . , ak}}.

It is known that COLORk is ≤p
m-complete for NP(2k) [CGH+88].

Theorem 4.19 If the boolean hierarchy over NP does not collapse to the second level,
then there exist A, B ∈ NP(2) such that
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• A ≡p
m B,

• A≤p
mA ∪ B,

• A ∪ B does not m-reduce to A.

Proof

We prove a stronger statement: For every k ≥ 1, there exist disjoint sets A and B such
that A and B are NP(2k)-complete and A∪B is NP(4k) complete. We consider variants
of the well known graph coloring problem.

Let k ≥ 1. Then COLOR2k can be partitioned into L−COLOR2k ⊆ COLOR2k and
R−COLOR2k ⊆ COLOR2k, where

L−COLOR2k =def {(G, a1, . . . , a2k)
∣
∣ a1 < · · · < a2k and cn(G) ∈ {a1, . . . , ak}},

R−COLOR2k =def {(G, a1, . . . , a2k)
∣
∣ a1 < · · · < a2k and cn(G) ∈ {ak, . . . , a2k}}.

It is easy to see that the following holds for all k ≥ 1:

• COLORk ≡p
m L−COLOR2k ≡p

m R−COLOR2k.

• L−COLOR2k ∩ R−COLOR2k = ∅.

• L−COLOR2k ∪ R−COLOR2k = COLOR2k.

In particular, COLOR2 (which is m-complete for NP(4)) does neither m-reduce to
L−COLOR2 nor to COLOR1 (which are m-complete for NP(2)) unless the boolean hier-
archy collapses to NP(2). 2

Corollary 4.20 There exist A, B ∈ NP(2) such that

• A ≡p
m B,

• A≤p
mA ∪ B,

• A ∪ B does not m-reduce to A.

unless the polynomial-time hierarchy collapses.

Under the assumption that the boolean hierarchy over NP does not collapse, it follows that
degp

m(COLOR1) ( U(COLOR1). Hence, the NP(2)-complete sets are not m-idempotent.
This indicates that the converse of Corollary 4.14 does not hold.

The next theorem states that COLOR1 is an example for which U(COLOR1) lies strictly
between degp

m(COLOR1) and Rp
m(COLOR1)∨

· Rp
m(COLOR1) = NP(2)∨· NP(2).

We first prove a lemma.
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Lemma 4.21 For all sets A, the following are equivalent:

1. U(A) ∩ P 6= ∅

2. U(A) ⊇ P − {∅}

3. A ≡p
m A.

Proof Let A be a set.

For the implication from item 1 to item 2, assume that there exists a set B ∈ U(A) ∩ P.
By definition, U(A) contains all sets in degp

m(B) = P−{∅}, i.e. U(A) ⊇ P−{∅}. For the
implication from 2 to 3, assume that U(A) ⊇ P − {∅}. Hence, there exists E ∈ P − {∅}
such that E ∈ U(A). So there exist sets C and D such that C ≡p

m D ≡p
m A, C ∩ D = ∅,

and E ≡p
m C ∪ D. Observe that C ∪ D ∈ P and C ∪ D ∩ D = ∅. Therefore, it is easy

to see that C = C ∪ D ∪ D ≡p
m D. We now have A ≡p

m C ≡p
m D ≡p

m C. We conclude
A ≡p

m A. For the implication from 3 to 1, we assume A ≡p
m A. Hence, A 6= ∅. Let a ∈ A.

Trivially, A ≡p
m A − {a} ≡p

m A. Therefore, {a} = A − {a} ∪ A ∈ U(A). 2

Since COLOR1 is m-complete for NP(2), it follows that degp
m(COLOR1) =

{A
∣
∣A is m-complete for NP(2)} and Rp

m(COLOR1)∨
· Rp

m(COLOR1) = NP(2)∨· NP(2).

Theorem 4.22 If the boolean hierarchy over NP does not collapse to NP(2), it holds
that

degp
m(COLOR1) ( U(COLOR1) ( Rp

m(COLOR1)∨
· Rp

m(COLOR1).

Proof Due to Theorem 4.3 and Theorem 4.19 it suffices to show that there exists D ∈
Rp

m(COLOR1)∨
· Rp

m(COLOR1) = NP(2)∨· NP(2) such that D 6∈ U(COLOR1). Clearly,
NP(2)∨· NP(2) contains P, so let D ∈ P. As we assumed that the boolean hierarchy does
not collapse to NP(2), it follows that NP(2) 6= coNP(2) and hence COLOR1 6≡

p
m COLOR1.

From Lemma 4.21 we then obtain U(COLOR1)∩P = ∅. Consequently, D 6∈ U(COLOR1).
2

Corollary 4.23 It holds that

degp
m(COLOR1) ( U(COLOR1) ( Rp

m(COLOR1)∨
· Rp

m(COLOR1)

unless the polynomial-time hierarchy collapses.

We now start our search inside NP. We prove under a stronger assumption that there
exist m-equivalent disjoint sets E and F in NP such that E ∪ F is harder than E.

In other words, we show under this assumption that there exists E ∈ NP − coNP such
that U(E) 6⊆ Rp

m(E). We then explain that the existence of such a set E separates
2-dtt-reducibility from m-reducibility within NP. Consequently, it is not surprising that
we need a stronger assumption to prove our result.

In order to formulate our assumption, we need the notion of immunity.
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Definition 4.24 A set L is immune to a complexity class C, or C-immune, if L is infinite
and no infinite subset of L belongs to C. A set L is bi-immune to a complexity class C,
or C-bi-immune, if both L and L are C-immune.

Theorem 4.25 If NP has NP∩ coNP-bi-immune sets and NP∩ coNP has P-bi-immune
sets, then there exist disjoint sets E, F ∈ NP − coNP such that E≡p

mF , but E ∪ F 6≤p
mE.

Proof Let A be a P-immune set in NP ∩ coNP and let B be an NP ∩ coNP-bi-immune
set in NP. We use the tower function

t(n) =def







2 : if n = 0

22t(n−1)
: otherwise.

Let C =def {0
t(n)

∣
∣ n ∈ N} and B′ =def B∩C. So B′ is in NP. We argue that both sets, B′

and C − B′ are NP ∩ coNP-immune: B′ is infinite, since otherwise a finite modification
of C yields an infinite, polynomial-time-decidable subset of B. Also, B′ cannot contain
an infinite subset from NP ∩ coNP, since this would be an infinite subset of B. C − B′

is infinite, since otherwise a finite modification of C yields an infinite, polynomial-time-
decidable subset of B. Finally, C−B′ cannot contain an infinite subset from NP∩ coNP,
since this would be an infinite subset of B.

B′
1 =def B′ ∩ A

B′
2 =def B′ ∩ A

B′
1 and B′

2 are disjoint sets in NP. We argue that both sets are infinite: If B′
1 is finite,

then X =def (A ∩ C) − B′
1 is in NP ∩ coNP and is a subset of C − B′. From the

NP ∩ coNP-immunity of C − B′ it follows that X is finite and hence A ∩ C is finite. So
a finite modification of C yields an infinite, polynomial-time-decidable subset of A which
contradicts the P-immunity of A. Therefore, B′

1 is infinite. If we replace A by A in the
argumentation above, then this shows the infinity of B′

2.

We define the sets asserted in the theorem:

E =def B′
1 ∪ 0B′

2

F =def 0B′
1 ∪ B′

2

Note that both sets are subsets of C ∪ 0C, and observe that E and F are disjoint sets in
NP. Moreover, the following equivalences hold.

0t(n) ∈ E ⇔ 0t(n)+1 ∈ F

0t(n) ∈ F ⇔ 0t(n)+1 ∈ E

Therefore, the following reduction function witnesses both reductions, E≤p
mF and F≤p

mE.

f(x) =def







x : if x /∈ C ∪ 0C

0t(n)+1 : if x = 0t(n) for some n

0t(n) : if x = 0t(n)+1 for some n

20



This shows E≡p
mF . Hence, if one of the sets E and F belongs to coNP, then both do so.

So assume E ∈ coNP. Then B′
1 = E ∩ C ∈ NP ∩ coNP and hence we found an infinite

set in NP ∩ coNP that is a subset of B′. This contradicts the NP ∩ coNP-immunity of
B′. Therefore, E, F ∈ NP − coNP. It remains to show E ∪ F 6≤p

mE.

Assume E ∪ F≤p
mE via reduction function f ∈ FP.

Case 1: For infinitely many n, {f(0t(n)), f(0t(n)+1)} 6⊆ {0t(n), 0t(n)+1}.

Consider the following algorithm which works on input x. The algorithm can end in three
different states: Either the input is accepted, or it is rejected, or the algorithm tells that
the decision procedure failed.

1. if x /∈ {0t(n)
∣
∣ n ∈ N} then reject

2. determine n such that x = 0t(n)

3. if {f(0t(n)), f(0t(n)+1)} ⊆ {0t(n), 0t(n)+1} then output "failed"

4. if f(0t(n)) /∈ {0t(n), 0t(n)+1} then y := 0t(n) else y := 0t(n)+1

5. if |f(y)| ≥ t(n− 1) + 2 then reject

6. if f(y) ∈ E then accept else reject

Observe that this is a polynomial-time algorithm: For this end it is enough to argue for
line 6. Here |y| ≤ t(n − 1) + 2 = (log log |x|) + 2 and therefore, the nondeterministic
computation for “y ∈ E” can be simulated in deterministic, polynomial time in |x|.

Claim 4.26 For almost all x,

• if the algorithm accepts x, then x ∈ B′, and

• if the algorithm rejects x, then x /∈ B′.

Clearly, if the algorithm rejects in line 1, then x /∈ B′. If the algorithm rejects in line 5,
then f(y) /∈ {0t(n), 0t(n)+1}. Since f is computable in polynomial time, |f(y)| < t(n + 1).
Moreover, note that 0t(n) and 0t(n)+1 are the only possible strings that have a length
in [t(n − 1) + 2, t(n + 1) − 1] and that belong to E. Hence f(y) /∈ E and therefore,
y /∈ E ∪ F = B′ ∪ 0B′. It follows that x /∈ B′. Finally, assume the algorithm stops in
step 6. Here the algorithm accepts if and only if y ∈ E ∪ F = B′ ∪ 0B′ which in turn is
equivalent to x ∈ B′. This proves Claim 4.26.

By our assumption in Case 1, for infinitely many n, {f(0t(n)), f(0t(n)+1)} 6⊆ {0t(n), 0t(n)+1}.
Therefore, for infinitely many n, the algorithm does not return “failed” on input 0t(n).
So at least one of the following is true:
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(i) For infinitely many n, the algorithm accepts 0t(n).

(ii) For infinitely many n, the algorithm rejects 0t(n).

In case of (i), let
X =def {0

t(n)
∣
∣ the algorithm accepts 0t(n)},

otherwise let
X =def {0

t(n)
∣
∣ the algorithm rejects 0t(n)}.

Note that X ∈ P and X ⊆ C. By Claim 4.26, either C ⊆ B′ or C ⊆ C − B′. This
contradicts the P-immunity of B′ and C − B′. Therefore, Case 1 cannot happen.

Case 2: For almost all n, {f(0t(n)), f(0t(n)+1)} ⊆ {0t(n), 0t(n)+1}.

Claim 4.27 For almost all n, f(0t(n)) = f(0t(n)+1) = 0t(n) or f(0t(n)) = f(0t(n)+1) =
0t(n)+1.

If not, then for infinitely many n, either f(0t(n)) = 0t(n) and f(0t(n)+1) = 0t(n)+1, or
f(0t(n)) = 0t(n)+1 and f(0t(n)+1) = 0t(n). Hence at least one of the following sets is
infinite.

X =def {0t(n)
∣
∣ f(0t(n)) = 0t(n) and f(0t(n)+1) = 0t(n)+1}

Y =def {0t(n)
∣
∣ f(0t(n)) = 0t(n)+1 and f(0t(n)+1) = 0t(n)}

Note that X, Y ∈ P. We argue that both sets, X and Y , are subsets of C − B′: Let
0t(n) ∈ X∪Y . At least one of the strings 0t(n) and 0t(n)+1 is not contained in E. Therefore,
since f reduces E ∪ F to E, at least one of the strings 0t(n) and 0t(n)+1 is not contained
in E ∪ F = B′ ∪ 0B′. Hence both strings, 0t(n) and 0t(n)+1, are not contained in B′.
Therefore, either X or Y is an infinite subset of C−B′. This contradicts the P-immunity
of C − B′ and proves Claim 4.27.

Claim 4.28 (E, F ) is p-separable.

Choose the greatest n that does not satisfy Claim 4.27. Define the separator as

S =def {0
t(m)

∣
∣ m > n, f(0t(m)) = 0t(m)}∪{0t(m)+1

∣
∣m > n, f(0t(m)) = 0t(m)+1}∪(E∩Σ≤t(n)+1).

Note that S ∈ P. We show that S separates (E, F ).

Assume x ∈ E. Then x = 0t(m) or x = 0t(m)+1 for some m. If m ≤ n, then x ∈ S and we
are done. Otherwise, m > n and hence by the choice of n, f(0t(m)) = f(0t(m)+1) = 0t(m) or
f(0t(m)) = f(0t(m)+1) = 0t(m)+1. If x = 0t(m), then we must have f(0t(m)) = f(0t(m)+1) =
0t(m) and hence x ∈ S. If x = 0t(m)+1, then we must have f(0t(m)) = f(0t(m)+1) = 0t(m)+1

and hence x ∈ S.
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Assume x ∈ F . So x /∈ E and x = 0t(m) or x = 0t(m)+1 for some m. If m ≤ n, then
x /∈ S and we are done. Otherwise, m > n and hence by the choice of n, f(0t(m)) =
f(0t(m)+1) = 0t(m) or f(0t(m)) = f(0t(m)+1) = 0t(m)+1. If x = 0t(m), then we must have
f(0t(m)) = f(0t(m)+1) = 0t(m)+1 and hence x /∈ S. If x = 0t(m)+1, then we must have
f(0t(m)) = f(0t(m)+1) = 0t(m) and hence x /∈ S. This proves Claim 4.28.

Since B′
1 ⊆ E and B′

2 ⊆ F , any separator for (E, F ) is also a separator for (B′
1, B

′
2). So

by Claim 4.28, (B′
1, B

′
2) is p-separable via some separator S ∈ P.

Note that B′
1 ⊆ S ∩C and B′

2 ⊆ C −S. So both sets S ∩C and C −S are infinite sets in
P. By A’s P-immunity, no finite modification of S ∩ C can be a subset of A. Therefore,
S∩C∩A is an infinite set in NP∩coNP. We argue that S∩C ∩A ⊆ C−B′: If not, then
there exists an x ∈ S ∩ C ∩ A such that x ∈ B′. So x ∈ S while S separates (B′

1, B
′
2).

Therefore, x ∈ B′
1 and hence x ∈ A which is a contradition. This shows that S ∩ C ∩ A

is an infinite subset of C −B′. This contradicts the NP ∩ coNP-immunity of C −B′. So
also Case 2 leads to a contradiction. This shows E ∪ F 6≤p

mE. 2

We now show that Theorem 4.25 separates 2-dtt-reducibility from m-reducibility within
NP:

Corollary 4.29 If NP has NP∩ coNP-bi-immune sets and NP∩ coNP has P-bi-immune
sets, then there exists A, B ∈ NP − coNP such that such that A≤p

2−dttB, but A 6≤p
mB.

Proof Let E and F be the sets asserted in Theorem 4.25. Define A =def E ∪ F and
B =def E. So A ∈ NP and B ∈ NP − coNP. If A ∈ coNP, then A ∈ NP ∩ coNP
and hence E ∈ coNP which contradicts Theorem 4.25. Therefore, A, B ∈ NP − coNP.
A 6≤p

mB follows immediately from Theorem 4.25. Let F≤p
mE via reduction f ∈ FP. Then

g(x) =def x ∨ f(x) witnesses A≤p
2−dttB. 2
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[KS97] J. Köbler and U. Schöning. High sets for NP. In Advances in Algorithms,
Languages, and Complexity, pages 139–156, 1997.
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