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Abstract

We present a brief survey of results on relations between the Kolmogorov complexity
of infinite strings and several measures of information content (dimensions) known
from dimension theory, information theory or fractal geometry.

Special emphasis is laid on bounds on the complexity of strings in constructively
given subsets of the Cantor space. Finally, we compare the Kolmogorov complexity
to the subword complexity of infinite strings.

The aim of this paper is to briefly survey several results on the Kolmogorov
complexity of infinite strings. We focus on those results which can be de-
rived by elementary methods from the Kolmogorov complexity of finite strings
(words) and counting arguments for sets of finite strings (languages) as e.g.
structure functions and the concept of entropy of languages.

The concept of Kolmogorov or program size complexity was introduced in the
papers by Solomonoff [27], Kolmogorov [14] and Chaitin [6] in the sixties (for
the complete history see the textbooks by Calude [4] or Li and Vitányi [15]). It
measures the information content of a (finite) string as the size of the smallest
program that computes the string, that is, the complexity of a string is the
amount of information necessary to print the string.

The original intention of Kolmogorov was to give an alternative approach to
information theory not depending on probability theory. A first fact proving
evidence of this intention was P. Martin-Löf’s [19] characterisation of infinite
random strings. Roughly speaking, if an infinite string is random then most
of its initial words have maximum Kolmogorov complexity, that is, have a

? This paper was presented at the 7th Workshop ”Descriptional Complexity of
Formal Systems‘‘, June 30 - July 2, 2005, Como, Italy

Email address: email: staiger@informatik.uni-halle.de (Ludwig Staiger).

Preprint submitted to Elsevier Science 26 April 2006

Electronic Colloquium on Computational Complexity, Report No. 70 (2006)

ISSN 1433-8092




complexity which is close to their length. To put it into the context of infor-
mation, the amount of information which must provided in order to specify a
particular symbol of a random sequence is one unit of information (e.g. one
bit if we consider binary sequences).

Although Kolmogorov was interested mainly in the complexity of finite strings,
Kolmogorov complexity was also applied to infinite strings. Here it was com-
pared to information-theoretic size measures (or dimensions). These dimen-
sions are also known from fractal geometry (see [10]). It turned out that some
of them are closely related to Kolmogorov complexity. Whereas the papers
[8,9] give an account on the Kolmogorov complexity of single infinite strings,
the papers [2,3,23–25,28,31] set Kolmogorov complexity of individual infinite
strings in relation to the dimension (topological entropy, Hausdorff dimension)
of sets containing these strings.

The first one of those dimensions is called Minkowski or box-counting dimen-
sion. It is also known under several other names (cf. [10]). The other measures
are the Hausdorff dimension and the packing or modified box-counting dimen-
sion.

Another way to approach Kolmogorov complexity of infinite strings is to
further pursue the investigation of randomness (see [4,15,26,38]) and par-
tial randomness [5,31,36]. Here we have several characterisations of random
strings combining complexity or martingales and order functions as initiated
by Schnorr [26]. Recently the constructivisation of dimension as in [1,16–18]
gave new insight into these problems. These papers use the concept of so-
called s-gales, a combination of martingales and exponential order functions.
Their relation to Kolmogorov complexity is based on Levin’s [40] construction
of a universal semi-measure. The coincidence of Lutz’s [1,16–18] constructive
dimension and Kolmogorov complexity of infinite words is immediate from
Theorem 3.4 of [40] and Theorem 3.6 [18]. For a detailed explanation see also
[35].

In this paper we focus on results linking Kolmogorov complexity of sets of in-
finite strings to their dimensions. A major point is that we show how to derive
these results utilising simple bounds on the Kolmogorov complexity of finite
strings and transfer them from languages (sets of finite strings) to sets of infi-
nite strings by means of limit concepts. This is done in an elementary manner
using structural (combinatorial) properties as the entropy of languages. Sim-
ilar approaches were already pursued in part in the papers [13] and [31,34].
In contrast to Hitchcock’s paper [13] which uses the concept of s-gales the
present paper is based on elementary properties of Kolmogorov complexity of
finite strings.

We start with a brief account of Kolmogorov complexity of finite strings and
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the entropy of languages in Section 2. Then, in Section 3, we proceed to the
derivation of results linking the entropy of languages to dimensions of sets of
infinite strings. Section 4 gives general bounds on Kolmogorov complexity of
sets of infinite strings by their dimensions.

More precise bounds on complexity via dimension for certain classes of sets
of infinite strings are obtained utilising structural properties. In Section 5 we
present results for sets having self-similarity properties or defined by com-
putability constraints.

In the final Section 6 we introduce another version of complexity of infinite
strings and present its relation to dimension and Kolmogorov complexity.

1 Notation

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers. Let X be an alphabet of
cardinality |X| = r ≥ 2. By X∗ we denote the set of finite words on X,
including the empty word e, and Xω is the set of infinite strings (ω-words)
over X. Subsets of X∗ will be referred to as languages and subsets of Xω as
ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗∪Xω.
For a language W let W ∗ :=

⋃

i∈IN W
i, and by W ω := {w1 · · ·wi · · · : wi ∈

W \ {e}} we denote the set of infinite strings formed by concatenating words
in W . Furthermore |w| is the length of the word w ∈ X∗ and pref(B) is
the set of all finite prefixes of strings in B ⊆ X∗ ∪ Xω. We shall abbreviate
w ∈ pref(η) (η ∈ X∗ ∪Xω) by w v η, and η[0..n] is the n-length prefix of η
provided |η| ≥ n. A language W ⊆ X∗ is referred to as prefix-free provided
w v v and w, v ∈W imply w = v.

We denote by B/w := {η : w · η ∈ B} the left derivative of the set B ⊆
X∗ ∪ Xω. As usual a language W ⊆ X∗ is regular provided its set of left
derivatives {W/w : w ∈ X∗} is finite. In the sequel we assume the reader to
be familiar with basic facts of language theory. As usual, the class of recursively
enumerable languages is denoted by Σ1, the class containing their complements
by Π1. Thus, Σ1 ∩ Π1 is the class of recursive languages.

We consider the set Xω as a metric space (Cantor space) (Xω, %) of all ω-words
over the alphabet X where the metric % is defined as follows.

%(ξ, η) := inf{r−|w| : w @ ξ ∧ w @ η} .
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This space is a compact, and C(F ) := {ξ : pref(ξ) ⊆ pref(F )} turns out to
be the closure of the set F (smallest closed subset containing F ) in (Xω, %).

Besides the ω-power W ω we define still two more mappings transforming lan-
guages to ω-languages, the δ- or i.o.-limit

−→
W := {ξ : |pref(ξ) ∩W | = ∞}

and the a.e.-limit W↑ := {ξ : |pref(ξ) \ W | < ∞}. It is immediate that

W↑ ⊆
−→
W ⊆

−−−−−−→
pref(W ) = pref(W )↑ and C(F ) = pref(F )↑ =

−−−−−→
pref(F ) .

Moreover, we have

−−−−−−−−−→
pref(

−→
V ) ∩ V =

−→
V and (pref(W↑) ∩W )↑ = W↑ . (1)

2 Kolmogorov complexity of finite words and the entropy of lan-
guages

In this section we briefly recall the concept of Kolmogorov complexity of finite
words. For a more comprehensive introduction see the textbooks [4] and [15].
To this end let ϕ : X∗ → X∗ be a partial-recursive function. The complexity
of a word w ∈ X∗ with respect to ϕ is defined as

Kϕ(w) := inf{|π| : π ∈ X∗ ∧ ϕ(π) = w}. (2)

It is well known that there is an optimal partial-recursive function U : X∗ →
X∗, that is, a function satisfying that for every partial-recursive function ϕ

∃cϕ∀w(w ∈ X∗ → KU(w) ≤ Kϕ(w) + cϕ) (3)

If one considers only partial-recursive functions ϕ with prefix-free domain
dom(ϕ) ⊆ X∗ we obtain in the same way an optimal partial-recursive function
C.

Proposition 1 There is a partial recursive function C : X∗ → X∗ with prefix-
free domain dom(C) such that for every partial-recursive functions ϕ with
prefix-free domain dom(ϕ) there is a constant cϕ such that

∀w(w ∈ X∗ → KC(w) ≤ Kϕ(w) + cϕ) .

Following [15] the complexity KC will be called prefix complexity.

A third version useful for our considerations is the conditional complexity. Let
A ∈ {IN, X∗}, consider a partial-recursive function ψ : X∗ ×A → X∗ and set

Kψ(w | a) := inf{|π| : π ∈ X∗ ∧ ψ(π, a) = w}. (4)
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Again we have an optimal partial-recursive function A : X∗ ×A → X∗ satis-
fying that for every partial-recursive function ψ

∃cψ∀w∀a(w ∈ X
∗ ∧ a ∈ A → KA(w | a) ≤ Kψ(w | a) + cψ) .

For this conditional complexity we have the following two properties. The first
one is Theorem 1.2 in [40] (see also Theorem 2.1.3 in [15]).

Theorem 2 (Kolmogorov) Let M ⊆ X∗ × A be a recursively enumerable
set such that each section Ma := {w : (w, a) ∈ M} is finite. Then there is a
c ∈ IN such that K(w | a) ≤ logr |Ma|+ c for all a ∈ A and w ∈Ma.

The next theorem is a slight extension of Theorem 2.9 of [31].

Theorem 3 Let M,M ′ ⊆ X∗ × A be recursively enumerable sets such that
each section M ′

a := {w : (w, a) ∈ M} is finite, and let s : A → IN be a
recursive function satisfying |M ′

a| ≤ s(a).

Then there is a c ∈ IN such that K(w | a) ≤ logr(max{s(a)− |Ma|, 1})+ c for
all a ∈ A and w ∈M ′

a \Ma.

PROOF. We construct a function ψ : X∗ ×A → X∗ such that Kψ(w | a) ≤
logr(max{s(a)− |Ma|, 1}) for all a ∈ A and w ∈M ′

a \Ma.

Let M (t)
a ⊆ M ∩M ′, t ≤ |Ma ∩M

′
a| be the set of the first t elements of the

form (v, a) in the enumeration of M ∩M ′.

For input (π, a) we enumerateM until we get t0 := max{s(a)−r|π|, 1} elements
of the form (w, a). Let π be the qth element of X |π| in lexicographical order.
Now enumerate M ′ until q elements in M ′

a \M
(t0)
a appear and put ψ(π, a) := v

when (v, a) is this qth element.

A special case of the conditional complexity is the length-conditional complex-
ity. Here we have a partial-recursive function ψ : X∗ × IN→ X∗ and set

Kψ(w | n) := inf{|π| : ψ(π, n) = w ∧ |w| = n}. (5)

Again we have an optimal partial-recursive function L : X∗ × IN→ X∗ satis-
fying that for every partial-recursive function ψ

∃cψ∀w∀n(w ∈ X∗ ∧ n ∈ IN→ KL(w | n) ≤ Kψ(w | n) + cψ) .
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The following relation between the optimal functions is obvious.

KL(w | |w|) ≤ KU(w) + c1 ≤ KC(w) + c2 (6)

holds for all w ∈ X∗ and constants c1, c2 depending only on L,U and C. In
the sequel we shall fix these optimal functions and denote the corresponding
complexities by K(· | n), K and H , respectively. 1

The inequalities in Eq. (6) can be, to some extent, reversed (see [4,15]).

K(w | |w|) + 2 · logr |w|+ c1 ≥ K(w) and

K(w) + 2 · logr |w|+ c2 ≥ H(w)
(7)

for all w ∈ X∗ and suitable constants c1, c2 ∈ IR.

For a language W ⊆ X∗ define its length-structure function 2
sW : IN→ IN by

sW (n) := |W ∩Xn| and its entropy as (cf. [7,12,31]),

HW = lim sup
n→∞

logr(1 + sW (n))

n
.

Then α > HW implies
∑

w∈W

r−α·|w| <∞, and
∑

w∈W

r−α·|w| <∞ implies α ≥ HW .

We have the following connection between the length-structure function or
the entropy of a language W ⊆ X∗ and the Kolmogorov complexity of words
w ∈W . The first one is a simple counting argument.

Corollary 4 If W ⊆ X∗ and W ∩ Xn 6= ∅ then K(wn | n) ≥ logr sW (n) for
some wn ∈ W ∩X

n.

The next one is an easy consequence of Theorems 2 and 3.

Corollary 5 If W ∈ Σ1 ∪ Π1 then there is a c > 0 such that

∀w(w ∈ W → K(w | |w|) ≤ logr sW (|w|) + c) .

In a similar way one can prove

1 This follows the notation of [4] whereas [15] uses C for the usual complexity and
K for the prefix complexity.
2 This function is not to be confused with the Kolmogorov structure function defined
e.g. in [15, Section 2.2.2].
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Corollary 6 If W ∈ Σ1 ∩ Π1 then there is a c > 0 such that

∀w(w ∈W → K(w) ≤ logr
∑|w|

i=0
sW (i) + c) .

We conclude this introductory section with the consideration of the sets Wα :=
{w : K(w) < α · |w|}. A simple counting argument shows that

HWα
≤ α for 0 ≤ α ≤ 1 . (8)

For certain α ∈ [0, 1] the sets Wα can be effectively described. To this end
we mention that a real number α ∈ [0, 1] is called left-computable 3 provided
{(p, q) : p, q ∈ IN ∧ p

q
< α} ∈ Σ1.

Lemma 7 If α ∈ [0, 1] is left-computable then Wα ∈ Σ1.

The proof is by standard methods of computable analysis (see e.g. [39]). It uses
the well-known fact (see e.g. [4,15]) that the set {(w, k) : k ∈ IN∧ k ≥ K(w)}
is recursively enumerable.

It should be mentioned that Eq. (8) and Lemma 7 hold also if we replace K
by one of the complexities K(· | n) and H .

3 Sets of infinite words and their dimensions

In this section we define the various size measures (dimensions) related to
Kolmogorov complexity, and we show how these dimensions are related to
the entropy of languages. We start with the simplest one, the box counting
dimension.

Definition 8 Let F ⊆ Xω. The quantities

dimB F = lim inf
n→∞

logr(spref (F )(n)+1)

n
and

dimB F = lim sup
n→∞

logr(spref (F )(n)+1)

n
= Hpref(F )

are called the lower and upper Minkowski (or box counting) dimension of F ,
respectively.

Since pref(F ) = pref(C(F )), we have dimB F = dimB C(F ) and dimB F =
dimB C(F ).

3 These numbers are also called semi-computable from below.
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Next we recall the definition of the Hausdorff measure and Hausdorff dimen-
sion of a subset of (Xω, %) (see e.g. [10]). In the setting of languages this can
be read as follows (see [31,34]). For F ⊆ Xω and 0 ≤ α ≤ 1 the equation

ILα(F ) := lim
l→∞

inf
{

∑

w∈W

r−α·|w| : F ⊆W ·Xω ∧ ∀w(w ∈W → |w| ≥ l)
}

(9)

defines the α-dimensional metric outer measure on Xω. ILα satisfies the fol-
lowing (For a typical plot of ILα(F ) as a function of α see Figure 1 below.).

Corollary 9 If ILα(F ) <∞ then ILα+ε(F ) = 0 for all ε > 0.

6

-
q

ILα(F )

α

0 1
α0 = dimH F

ILα0(F )

∞

0

Fig. 1. A typical plot of ILα(F ) as a function of α when |F | =∞

Then the Hausdorff dimension of F is defined as

dimH F := sup{α : α = 0 ∨ ILα(F ) =∞} = inf{α : ILα(F ) = 0} .

For the definition of the packing dimension dimP we use its characterisation
as modified upper box counting dimension dimMB (see [10]).

dimP F := dimMB F = inf{supi∈IN dimB Fi :
⋃

i∈IN
Fi ⊇ F}

The following properties of the just introduced dimensions should be men-
tioned. First,

dimH F ≤ dimB F ≤ dimB F and dimH F ≤ dimP F ≤ dimB F .

Every dimension is monotone, that is, E ⊆ F implies dimE ≤ dimF and
shift invariant, that is, dimw · F = dimF . Moreover dimB , dimP , dimH have
the following properties.

dimB (E ∪ F )= max{dimBE, dimB F} and

dim(
⋃

i∈INFi)= supi∈IN dimFi for dim ∈ {dimP , dimH }

That is, the upper box counting dimension is stable, and Hausdorff and pack-
ing dimension are countably stable.
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Finally, we give a connection to the entropy of languages (see [31]). We start
with some simple inequalities.

dimH
−→
V ≤HV (10)

dimPW
↑≤HW (11)

PROOF. In order to prove Eq. (10) we show that α > HV implies ILα(
−→
V ) =

0.

If α > HV then
∑

v∈V r
−α·|v| <∞. Define V (i) := {v : v ∈ V ∧ |pref(v)∩ V | =

i + 1}, that is, V (i) is the set of words in V having exactly i proper prefixes

in V . By construction V (i) · Xω ⊇
−→
V , and V =

⋃

i∈IN V
(i) is a disjoint union.

Now, Eq. (9) shows that ILα(
−→
V ) ≤

∑

v∈V (i) r−α·|v|. The latter tends to zero as
i approaches infinity.

To show Eq. (11) we observe that W↑ =
⋃

w∈X∗ Ew where Ew := {ξ :
pref(ξ) ⊆ pref(w) ∪ (W ∩ w · X∗)}. It is readily seen that dimBEw ≤ HW .

Thus dimPW
↑ ≤ HW .

These inequalities can, to some extent, be reversed (cf. [21,31]).

Lemma 10 Let F ⊆ Xω. Then

dimH F = inf{HV : F ⊆
−→
V } and dimP F = inf{HW : F ⊆W↑} .

For the sake of completeness we give a short proof.

PROOF. In view of Eq. (10) and (11) the inequalities ”≤‘‘ are obvious.

Let α > dimH F . Then ILα(F ) = 0. Consequently, for every i ∈ IN there is a
Vi ⊆ X∗ such that F ⊆ Vi ·X

ω and
∑

w∈Vi
r−α·|w| ≤ 2−i. Then

∑

w∈V r
−α·|w| <

∞ for V :=
⋃

i∈IN Vi. Thus HV ≤ α and, moreover, F ⊆
−→
V , since w ∈ Vi

implies |w| ≥ logr 2
α

. This completes the proof of the first identity.

For the proof of the second assertion it suffices to show that dimP F ≥ inf{HW :

F ⊆ W↑}. We start with a covering
⋃

i∈IN Fi ⊇ F satisfying supi∈IN dimB Fi ≤
dimP F + ε. Since dimB

⋃n
i=0 Fi = max0≤i≤n dimB Fi, we may assume that

Fi ⊆ Fi+1. This implies supi∈IN dimB Fi = limi→∞ dimB Fi. Define a family of
natural numbers (ni)i∈IN as follows:
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(1) ni < ni+1, and

(2)
logr spref(Fi)

(n)

n
≤ dimB Fi + 2−i for all n ≥ ni.

This is possible, because dimB Fi = lim supn→∞
logr sFi

(n)

n
.

Now define W in the following way: W ∩Xn := pref(Fi) ∩X
n for ni ≤ n <

ni+1. Since Fi ⊆ Fi+1, ξ ∈ Fi implies |pref(ξ) \W | ≤ ni, whence ξ ∈W↑.

Then logr sW (n)
n

≤
logr sFi

(n)

n
≤ dimB Fi + 2−i whenever ni+1 > n ≥ ni, and,

consequently, HW ≤ supi∈IN dimB Fi ≤ dimP F + ε.

Lemma 10 proves close connections between the Hausdorff dimension of an
ω-language and the limit

−→
V , on the one hand, and the packing dimension

and the limit W↑, on the other hand. In the next section we shall prove
similar connections between two version of Kolmogorov complexity and the
limit-operations

−→
V and W↑.

4 General bounds on Kolmogorov complexity by dimensions

The Kolmogorov complexity of an infinite word ξ ∈ Xω is a function k : IN→
IN mapping the n-length prefix ξ[0..n] of ξ to its corresponding complexity
K(ξ[0..n]) (or H(ξ[0..n]) or K(ξ[0..n] | n), respectively) (see [8]). A large part
of investigations deals with the following first order approximations of the
complexity of individual ω-words and sets of ω-words:

κ(ξ) := lim sup
n→∞

K(ξ[0..n])

n
, κ(F ) := sup

ξ∈F
κ(ξ) and

κ(ξ) := lim inf
n→∞

K(ξ[0..n])

n
, κ(F ) := sup

ξ∈F
κ(ξ)

which will be referred to as the upper and lower Kolmogorov complexity of ξ
or F , respectively. Observe that κ and κ are independent of the chosen word
complexity K, H or K(· | n).

We obtain the following connection to the languages Wα.

{ξ : κ(ξ) ≤ α} =
⋂

γ>α

−→
Wγ and {ξ : κ(ξ) ≤ α} =

⋂

γ>α

W↑
γ (12)

PROOF. The inequalities {ξ : κ(ξ) ≤ α} ⊆
−→
Wγ and {ξ : κ(ξ) ≤ α} ⊆ W↑

γ ,
for α < γ, are immediate from the definitions.
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To show the reverse inclusions let ξ ∈
⋂

γ>α
−→
Wγ . Then for every ε > 0 there

are infinitely many n ∈ IN such that K(ξ[0..n]) < (α + ε) · n. Consequently,

lim infw→ξ
K(ξ[0..n])

n
≤ α + ε. Since ε > 0 was chosen arbitrarily, the assertion

is proved.

The proof of the other part is similar.

Now, from Eq. (12) and the upper bound of Corollary 5 one obtains the
following characterisation of κ(F ) and κ(F ) similar to the relation between
entropy and dimension in Lemma 10. For the case W ∈ Σ1 this lemma was
proved in [13, Lemma 5.5] (see also [1]) in a different manner.

Lemma 11

κ(F )= inf{HV : F ⊆
−→
V ∧ V ∈ Σ1 ∪ Π1} = inf{HV : F ⊆

−→
V ∧ V ∈ Σ1}

κ(F )= inf{HW : F ⊆W↑ ∧W ∈ Σ1 ∪ Π1}= inf{HW : F ⊆W↑ ∧W ∈ Σ1}

PROOF. The inequalities ”≤‘‘ are immediate from Corollary 5.

To show the converse inequality for κ observe that Eqs. (12) and (8) imply

κ(F ) = inf{γ : γ > κ(F ) ∧ γ is left-computable}

≥ inf{HWγ
: γ > κ(F ) ∧ γ is left-computable} .

In view of Lemma 7 Wγ ∈ Σ1 if only γ is left-computable. Thus the required

inequality κ(F ) ≥ inf{HV : F ⊆
−→
V ∧ V ∈ Σ1} follows.

The case of κ(F ) is proved in the same way.

Here Lemma 11 proves a similar connection between lower and upper Kol-
mogorov complexity and the limit-operations

−→
V or W↑ as Lemma 10 did for

Hausdorff and packing dimensions. In the sequel, these results will be used to
obtain bounds on the Kolmogorov complexity of infinite strings via Hausdorff
or packing dimension.

4.1 Lower bounds

It seems to be an obvious matter that similar to Corollary 4 large sets contain
complex elements. This is established by the following lower bounds on κ and
κ which were proved originally in [24, Theorem 2] and [1], respectively.
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Theorem 12 ([24,1]) dimH F ≤ κ(F ) and dimP F ≤ κ(F )

The proof is an easy consequence of Lemmas 10 and 11.

For the complexity functions derived from H(ξ[0..n]) or K(ξ[0..n] | n) we
obtain the following refined lower bounds.

Theorem 13 ([31,5]) Let F ⊆ Xω and ILα(F ) > 0.

(1) Then for every f : IN → IN satisfying
∑

n∈IN r
−f(n) <∞ there is a ξ ∈ F

such that K(ξ[0..n] | n) ≥ae α · n− f(n).
(2) Then there is a ξ ∈ F such that H(ξ[0..n]) ≥ae α ·n−c for some constant

c ∈ IR.

For subsets which have not necessarily non-null α-dimensional measure but
have certain structure properties we obtain also a tighter bound than the one
given in the first inequality of Theorem 12.

The first one of these classes will referred to as balanced subsets of Xω. In the
subsequent Sections 5.1 and 5.2 we will introduce two more of those classes.

We call a function g : IN→ IN of sub-exponential growth provided

lim
n→∞

g(n) · (1 + ε)−n = 0 for all ε > 0 .

A subset F ⊆ Xω is called balanced iff there is a function g of sub-exponential
growth such that for all w ∈ X∗ the left derivative F/w satisfies

sF/w(n) ≤ g(|w|) ·
spref(F )(n+ |w|)

spref(F )(|w|)
= g(|w|) ·

∑

|v|=|w| spref(F/v)(|w|)

spref(F )(|w|)

for all n ∈ IN. Balanced sets have the property that the length-structure
function of the nonempty derivatives (F/v)|v|=m do not exceed their average
too much. In view of this property we obtain the following theorems (see [30]
and [38,31]).

Theorem 14 ([30]) If F ⊆ Xω is balanced and closed then dimH F = dimB F .

Theorem 15 If F ⊆ Xω is balanced and closed then there is a ξ ∈ F such
that

K(ξ[0..n] | n) ≥ae dimH F · n− o(n) .
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4.2 Upper bounds

After the derivation of lower bounds on the Kolmogorov complexity of infinite
words we turn to upper bounds. Here we need some computational constraints
on the set F . To this end we introduce the low classes of the arithmetical
hierarchy of ω-languages (see e.g. [22,32]).

Definition 16 (Π1-definable ω-languages) F ⊆ Xω is Π1-definable if and
only if there is a recursive language WF ⊆ X∗ (WF ∈ Σ1 ∩ Π1) such that

ξ ∈ F ←→ ∀w(w @ ξ → w ∈WF ) .

Definition 17 (Σ2-definable ω-languages) F ⊆ Xω is Σ2-definable if and
only if there is a recursive set MF ⊆ IN×X∗ such that

ξ ∈ F ←→ ∃i(i ∈ IN ∧ ∀w(w @ ξ : (i, w) ∈MF )) .

The other classes are defined in a similar way. Observe that we can char-
acterise several classes by recursive or recursively enumerable languages (see
[26,29,32]).

Lemma 18 For the classes Σ1,Π1,Σ2 and Π2 of the arithmetical hierarchy
of ω-languages in Xω the following identities hold true.

Σ1 = {W ·Xω : W ⊆ X∗ ∧W ∈ Σ1 ∩ Π1}

Π1 = {F : F is closed in (Xω, %) ∧ pref(F ) ∈ Π1}

Σ2 = {F : ∃W (W ⊆ X∗ ∧W ∈ Σ1 ∩ Π1 ∧ F = W↑)}

Π2 = {F : ∃W (W ⊆ X∗ ∧W ∈ Σ1 ∩ Π1 ∧ F =
−→
W )}

Other classes of interest are the following ones which are defined similar to
the characterisation of Π1 in Lemma 18.

P = {F : F is closed in (Xω, %) ∧ pref(F ) ∈ Π2}

S= {F : F is closed in (Xω, %) ∧ pref(F ) ∈ Σ1}

Figure 2 presents the inclusion relation between these classes. All inclusions
are proper, Σ2 and S are incomparable, and Σ1 is not included in P. For
instance, in Example 1.15 of [31] ω-languages E ∈ S \ Σ2 and F ∈ Π1 \ S

are given, and Σ1 6⊆ P follows from the fact that P contains only closed sets.

First we obtain an exact estimate for κ(F ) if F is Σ2-definable (see Theorem 5
of [34]).
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Fig. 2. Inclusion relations between various classes of ω-languages (B(K) denotes the
closure of K under Boolean operations)

Theorem 19 If F ⊆ Xω is Σ2-definable then

dimH F = sup{κ(ξ) : ξ ∈ F} .

Theorem 19 cannot be extended to higher classes of the arithmetical hierarchy.
The proof of Lemma 6 in [34] shows the following.

Lemma 20 There are a countable subset E ∈ S and an F ∈ Π1 such that
E ∩ F = {ζ}, for some ζ ∈ Xω, κ(ξ) = 1 for all ξ ∈ F , and κ(ξ) = 0 for all
ξ ∈ E \ F .

Thus, for the ω-language E in Lemma 20 we have κ(ζ) = κ(E) = 1 whereas
dimHE = dimPE = 0 as E is countable. This shows also that the set E given
in Lemma 20 is another witness for S \Σ2 6= ∅.

For sets in S we obtain an upper bound via Corollary 5.

Lemma 21 If E ∈ S then κ(E) ≤ dimBE.

Similarly one obtains the following.

Lemma 22 If E ∈ S ∪Π1 then κ(E) ≤ dimBE.

Finally, Lemma 20 showed that E∩F = {ζ} has κ(E∩F ) = 1. Consequently,
the bounds of Lemmas 21 and 22 do not extend to ω-languages of the form
E ∩ F where E ∈ S and F ∈ Π1.
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5 Kolmogorov complexity for ω-power languages and regular ω-
languages

As Lemma 20 showed the result of Theorem 19 cannot be extended to higher
classes of the arithmetical hierarchy. In the preceding Theorem 15 we saw that
structural properties might lead to tighter lower bounds. In this section classes
of ω-languages which allow for more precise bounds are presented.

5.1 ω-power languages

The first class is connected to ω-languages exhibiting a certain kind of self-
similarity, namely, ω-languages F ⊆ Xω containing, for a certain set of words
W ⊆ X∗ all of the shifts w·F where w ∈W in such a way that F =

⋃

w∈W w·F .
Among these ω-languages the maximal ones have the formW ω (see [33]). They
satisfy the following properties.

Proposition 23 Let W ⊆ X∗. Then W ω ⊆
−−→
W ∗ ⊆ C(W ω).

It is also obvious that W ω is closed if W is finite, and W ω is in the Borel class
Π2 if W is prefix-free. One cannot, however, bound the topological complexity
of sets of the form W ω as Finkel [11] showed that for every i ∈ IN the difference
of the Borel classes Πi+1 \ Πi contains an ω-power languages W ω where W is
a context-free language.

Eq. (6.2) of [31] and Corollary 3.9 of [10] give the following formulae for
Hausdorff and packing dimension.

Proposition 24 dimHW
ω = dimH

−−→
W ∗ = HW ∗

dimP C(W
ω) = dimBW

ω = Hpref(W ∗)

Moreover W ω contains always an ω-word of highest upper Kolmogorov com-
plexity (see [28,31]).

Lemma 25 For W ⊆ X∗ let (mi)i∈IN be a family of natural numbers and let
(vi)i∈IN be a family of words in pref(W ∗) such that |vi| < |vi+1|, mi/|vi| <
mi+1/|vi+1| and K(vi | |vi|) ≥ mi. Then there is a ξ ∈ W ω such that κ(ξ) ≥
sup{mi/|vi| : i ∈ IN}.

As corollaries we obtain bounds on κ(W ω).

Corollary 26 κ(W ω) = κ(C(W ω)) = max{κ(ξ) : ξ ∈W ω}.

15



The next corollary follows also from Theorem 12 and Proposition 24.

Corollary 27 κ(W ω) ≥ dimBW
ω = Hpref(W ∗)

Since W ∈ Σ1 implies W ∗ ∈ Σ1 and C(W ω) ∈ S, this corollary and Lemma 22
yield the following identity.

κ(W ω) = dimBW
ω if W ∈ Σ1 (13)

Proposition 24 and Lemma 11 yield a similar estimate for κ(W ω) similar to
Theorem 19 for Σ2-definable sets.

Theorem 28 ([31]) If W ∈ Σ1 ∪Π1 then dimHW
ω = κ(W ω).

5.2 Regular ω-languages

The class of regular ω-languages is the one which is most extensively investi-
gated, because it is the class of ω-languages definable by finite automata (cf.
[32,37]). As we shall see below, this class behaves most regularly also in case
of correspondences between complexity and dimension.

We refer to an ω-language F ⊆ Xω as regular provided there are an n ∈ IN
and regular languages Wi, Vi, i = 1, . . . , n such that

F =
⋃n

i=1
Wi · V

ω
i .

It is known that all regular ω-languages are in B(Σ2).

First we mention properties of regular ω-languages with respect to dimensions
which can be found in [31, Corollary 4.4].

Proposition 29 If F ⊆ Xω is a regular ω-language closed in (Xω, %) then
dimH F = dimB F .

A particular case of this proposition follows already from Proposition 24 and
the fact that HV = Hpref (V ) for regular languages V ⊆ X∗.

Corollary 30 If W ⊆ X∗ is a regular language then dimHW
ω = dimBW

ω.

This yields the following as a corollary.

Corollary 31 If F ⊆ Xω is a regular ω-language then dimH F = dimP F .

16



PROOF. Observe that dim
⋃n
i=1Wi · V

ω
i = max{dimV ω

i : 1 ≤ i ≤ n} holds
for dim ∈ {dimH , dimP }. Now the assertion follows with Corollary 30.

Regular ω-languages have non-null dimH -dimensional measure.

Theorem 32 ([31, Theorem 4.7]) Let F ⊆ Xω be a nonempty regular
ω-language. Then ILdimH F (F ) > 0.

This enables us to apply Theorem 13 to obtain lower bounds on the complexity
function for ω-words in regular ω-languages. Moreover, we can also transfer
P. Martin-Löf’s result [20] on complexity oscillations in Xω to all nonempty
regular ω-languages (see [31, Theorem 4.12]).

Theorem 33 Let F ⊆ Xω be nonempty and regular.

(1) If f : IN → IN satisfies
∑

n∈IN r
−f(i) < ∞ then there is a ξ ∈ F such that

K(ξ[0..n] | n) ≥ae dimH F · n− f(n).
(2) If f : IN→ IN is a recursive function and satisfies

∑

n∈IN r
−f(i) =∞ then

K(ξ[0..n] | n) ≤io dimH F · n− f(n) holds for all ξ ∈ F .

A general linear upper bound on the complexity function for ω-words in regular
ω-languages is the following one (cf. also [28,31]).

Theorem 34 (1) Let W ⊆ X∗ be a regular language. If dimHW
ω > 0

then there is a constant cW ∈ IR such that for all ξ ∈ W ω the bound
K(ξ[0..n]) ≤ae dimHW

ω · n+ cW holds.
(2) Let F be a regular ω-language such that dimH F > 0. Then for every

ξ ∈ F there is a constant cξ ∈ IR such that K(ξ[0..n]) ≤ae dimH F ·n+ cξ.

PROOF. Since W is regular, pref(W ω) is also regular, thus pref(W ω) ∈
Σ1 ∩Π1. According to Proposition 2.15 of [31] there is a constant c ∈ IR such
that spref(Wω)(n) ≤ c · rα·n for α = Hpref(Wω) and all n ∈ IN. Consequently,
∑n
i=0 spref(Wω)(i) ≤ c′ · rα·(n+1) for a suitable constant c′ ∈ IR. Now, our first

assertion is a consequence of Corollaries 6 and 30.

The second one follows, because ξ ∈ F =
⋃n
i=1Wi ·V

ω
i implies that ξ ∈ wξ,i ·V

ω
i

for suitable i ∈ {1, . . . , n} and wξ,i ∈Wi.

The theorem does not hold for dimH F = 0. In this case we have, in view of
Proposition 4.12 of [31] that a regular ω-language of Hausdorff dimension 0 is
countable and consists entirely of recursive ω-words.
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6 Subword complexity

It would be desirable to have an analogue to Lemma 11 for regular languages.
For regular languages V ⊆ X∗, however, the identity HV = Hpref(V ) is true.

In connection with the fact that F ⊆
−→
V implies pref(F ) ⊆ pref(V ) we

obtain the identity inf{HV : F ⊆
−→
V ∧ V is regular} = inf{HV : pref(F ) ⊆

pref(V ) ∧ V is regular}.

Consequently, since every dense subset F of Xω has pref(F ) = X∗, the infi-
mum is 1 for arbitrary dense subsets of Xω.

But if we restrict ourselves to single ω-words we obtain a variant of complexity,
the so called subword complexity. It turns out that this subword complexity
τ(ξ) of a string ξ ∈ Xω is also closely related to the Hausdorff dimension of
the regular ω-languages containing ξ. We start with some definitions. Let

infix(ξ) := {w : w ∈ X∗ ∧ ∃v∃ξ′(v · w · ξ′ = ξ)} and (14)

infix∞(ξ) := {w : w ∈ X∗ ∧ ∀n∃v∃ξ′(|v| ≥ n ∧ v · w · ξ′ = ξ)} (15)

be the set of subwords of ξ and the set of subwords occurring infinitely often
in ξ, respectively. We call τ(ξ) := Hinfix(ξ) the subword complexity of the string
ξ ∈ Xω.

Then the following identity holds (cf. [31, Section 5])

Lemma 35

τ(ξ) = Hinfix(ξ) = Hinfix∞(ξ) = inf{dimH F : F is regular ∧ ξ ∈ F}

= inf{dimB F : F is regular ∧ ξ ∈ F}

Moreover, every nonempty regular ω-language F contains a recursive ω-word
ξF of maximal subword complexity τ(ξF ) = dimH F .

Furthermore, we compare the functions κ and κ to this new complexity mea-
sure for infinite strings.

κ(ξ) ≤ κ(ξ) ≤ τ(ξ). (16)

To this end we define the sets of ω-words (fibre sets in [3]) of specific complexity
η ∈ {κ, κ, τ}

E(η)
α := {ξ : η(ξ) ≤ α} and F (η)

α := {ξ : η(ξ) < α} . (17)
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The sets E(κ)
α and E(κ)

α were already considered in Eq. (12). The following
inclusions are obvious.

F (η)
α ⊆ E(η)

α for η ∈ {κ, κ, τ} (18)

E(τ)
α ⊆ E(κ)

α ⊆ E(κ)
α and F (τ)

α ⊆ F (κ)
α ⊆ F (κ)

α (19)

It should be mentioned that Lemma 3.4 of [3] shows F (η)
α ⊂ E(η)

α for η ∈ {κ, κ}

The following relation between κ, κ and τ can be obtained from the results of
[23] or [3] and Lemma 35.

Theorem 36 Each of the sets E(η)
α , F (η)

α ,bb where η ∈ {κ, κ, τ}, has Haus-
dorff dimension α.

We give a short proof.

PROOF. In view of Eqs. (18) and (19) it suffices to show that F (τ)
α ⊆ E(κ)

α .

Theorem 12 shows dimHE
(κ)
α = dimH {ξ : ξ ∈ Xω ∧ κ(ξ) ≤ α} ≤ α.

In order to show α ≤ dimH F
(τ)
α = dimH {ξ : ξ ∈ Xω ∧ τ(ξ) < α} it suffices to

construct a countable union of regular ω-languages Fi ⊆ {ξ : ξ ∈ Xω ∧ τ(ξ) <
α} such that sup{dimH Fi : i ∈ IN} = α.

Let Mα := {(p, q) : p, q ∈ IN ∧ q 6= 0 ∧ p
q
< α}. For (p, q) ∈ Mα define

F(p,q) := (Xp ·0q−p)ω. Each of the sets F(p,q) is regular, and one easily calculates
dimH F(p,q) = p

q
. Then in view of Lemma 35 we have

⋃

(p,q)∈Mα
F(p,q) ⊆ {ξ : ξ ∈

Xω ∧ τ(ξ) < α}, and our assertion follows.

Since E
(η)
α′ ⊂ F (η)

α , for α′ < α we obtain as a corollary to Theorem 36 and
Lemma 3.4 of [3] that the families (E(η)

α )α∈[0,1] and (F (η)
α )α∈[0,1] form strictly

increasing chains of ω-languages.

What concerns the packing dimension, Theorem 12 shows likewise dimPE
(κ)
α =

dimP {ξ : ξ ∈ Xω∧κ(ξ) ≤ α} ≤ α. Thus, in view of α = dimH F
(τ)
α ≤ dimP F

(τ)
α

and Eq (19), we obtain also the following.

Lemma 37 Each of the sets E(η)
α , F (η)

α , where η ∈ {κ, τ}, has packing di-
mension α.

Lemma 37, however, does not hold for κ. In Section 5 of [35] it is mentioned
that already dimP {ξ : κ(ξ) = 0} = 1.
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[19] P. Martin-Löf. The definition of random sequences, Inform. and Control 9
(1966), 602 – 619.
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