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Abstract

We consider hypotheses about nondeterministic computation that have been studied in dif-
ferent contexts and shown to have interesting consequences:

• The measure hypothesis: NP does not have p-measure 0.

• The pseudo-NP hypothesis: there is an NP language that can be distinguished from any
DTIME(2n

ε

) language by an NP refuter.

• The NP-machine hypothesis: there is an NP machine accepting 0∗ for which no 2n
ε

-time
machine can find infinitely many accepting computations.

We show that the NP-machine hypothesis is implied by each of the first two. Previously, no
relationships were known among these three hypotheses. Moreover, we unify previous work by
showing that several derandomizations and circuit-size lower bounds that are known to follow
from the first two hypotheses also follow from the NP-machine hypothesis. In particular, the NP-
machine hypothesis becomes the weakest known uniform hardness hypothesis that derandomizes
AM. We also consider UP versions of the above hypotheses as well as related immunity and
scaled dimension hypotheses.

1 Introduction

The following uniform hardness hypotheses are known to imply full derandomization of Arthur-
Merlin games (NP = AM):

• The measure hypothesis: NP does not have p-measure 0 [20].

• The pseudo-NP hypothesis: NP has a language that can be distinguished from any DTIME(2nε
)

language by an NP refuter [28].

• NE ∩ coNE cannot infinitely-often be decided in 22εn
time [19].

While the hypotheses are quite different, each of these results rely on the ingenious “easy witness
method” of Kabanets [22]: try to show that the hypothesis is false by searching for an easy witness,
a witness that has low circuit complexity when viewed as the truth-table of a Boolean function. If
the hypothesis is true, we can show that this search must fail. Therefore there are no easy witnesses
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and we can use the mechanism in the hypothesis to nondeterministically generate witnesses of high
circuit complexity that are sufficient for derandomizing AM [33, 25].

Given the similarity in the proofs, it is natural to ask how much more these hypotheses have
in common. We show that all three of the above hypotheses imply the following NP-machine
hypothesis:

There is an NP machine accepting 0∗ for which no 2nε
-time machine can find infinitely

many accepting computations.

Roughly speaking, this hypothesis says that there is an NP search problem that cannot be solved
in subexponential time. This hypothesis and several variations have been used a few times in
complexity theory [14, 11, 13, 35]. The NP-machine hypothesis in this form is due to Pavan and
Selman [35], who showed that it implies a separation of NP-completeness notions.

The easy witness method readily applies to show that the NP-machine hypothesis also implies
NP = AM. Therefore we have the following picture:

Measure Hypothesis =⇒

Pseudo-NP Hypothesis =⇒ NP-Machine Hypothesis =⇒ NP = AM

NE ∩ coNE Hypothesis =⇒

Thus the NP-machine hypothesis becomes the weakest known “uniform hardness” hypothesis that
derandomizes AM.

While the NP-machine hypothesis has been used before in complexity theory, prior to our work
it was never observed to have a connection with derandomization or circuit complexity. In fact,
not only is the NP-machine hypothesis amenable to the easy witness method, it can be viewed as
having the essential character needed to apply the method. This is because NP-machine hypothesis
has an equivalent formulation in terms of Levin’s Kt complexity [27] and Allender and Ronneberger
[2] showed that Kt complexity has an equivalence with E-oracle circuit complexity.

The derandomization of AM is just one of many consequences of the measure hypothesis (see
e.g. [31]). We show that many of the same or slightly weaker consequences also follow from the
NP-machine hypothesis. For example:

• PNP = BPPNP.

• PP = BP · PP, which implies PH ⊆ PP.

• ENP does not have subexponential-size circuits.

• NEXP does not have polynomial-size circuits.

• PNP does not have nk-size circuits for fixed k.

• NP is not easy on average.

Furthermore, from the work of Fenner, Fortnow, Naik, and Rogers [11] on a statement they called
Proposition Q, it is immediate that the NP-machine hypothesis has some additional consequences:

• There is an NP multi-valued total function that does not have a polynomial-time refinement.

• P 6= NP ∩ coNP or there is an NP multi-valued total function that does not have a NP
single-valued refinement.
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Therefore these statements about NP functions also follow from the measure hypothesis – such a
result was not known prior to this paper.

Pavan and Selman [35] showed that NP-machine hypothesis is true if NP ∩ coNP has a 2nε
-bi-

immune language. Thus, if this bi-immunity assumption holds for NP ∩ coNP, then circuit lower
bounds for ENP and NEXP follow. This is particularly interesting because concepts such as bi-
immunity and circuit complexity have been studied for a long time under different contexts. Our
results demonstrate that they have underlying relationships.

We also consider two variants of the NP-machine hypothesis. The UP-machine hypothesis is
shown to have several interesting consequences that are stronger than those of the NP-machine
hypothesis. The RP-machine hypothesis is placed in the same category as some other RP-hardness
assumptions and shown to be equivalent to ZPP = EXP.

Finally, we consider the hypothesis “the −3rd-order scaled dimension of NP is positive,” which is
weaker than the measure hypothesis but seems incomparable with the other hypotheses. However, it
can be viewed as implying an advice version of the NP-machine hypothesis, from which we obtain
the partial derandomization AM ⊆ NP/nε for every ε > 0. We also show that this dimension
hypothesis implies NEXP 6⊆ P/poly.

This paper is organized as follows. Section 2 contains preliminaries. The hypotheses about
nondeterministic computation are compared in section 3. Section 4 presents the consequences of
the NP-machine hypothesis. We consider variations of the NP-machine hypothesis in section 5 and
scaled dimension in section 6. We conclude in section 7 with a summary and some open problems.

2 Preliminaries

For a language L, Ln denotes the set {x | |x| = n, x ∈ L}. Given a string x, we write L(x) = 1 if
x ∈ L, and L(x) = 0 if x /∈ L. We write L|n = L(s1) · · ·L(s2n), where s1, s2, · · · s2n are the strings
of length n in lexicographic order. For a complexity class C, the class io-C is

{L | (∃A ∈ C)(∃∞n)Ln = An}.

2.1 Circuit Complexity

An oracle circuit is a circuit that has special gates called oracle gates, in addition to the normal
AND, OR, and NOT gates. Given an oracle A, an A-oracle circuit is an oracle circuit that has
A as an oracle, i.e, if x is the input of an oracle gate, then the output is A(x). Given a Boolean
function f : Σn → {0, 1}, and an oracle A, the A-oracle circuit complexity of f is the size of the
smallest A-oracle circuit that computes f . The class SIZEA(s(n)) contains all languages B such
that for all but finitely many n, the characteristic function of Bn has A-oracle circuit complexity
at most s(n).

2.2 Kolmogorov Complexity

Let U be an efficient universal Turing machine. For a time bound t(n), the t-time-bounded Kol-
mogorov complexity of a string x is

Kt(x) = min{|p| | U(p) = x in at most t(|x|) steps}.

The Levin complexity of a string x is

Kt(x) = min{|p| + log t | U(p) = x in at most t steps}.
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2.3 Immunity

Let C be a complexity class. A language L is C-immune if L is infinite and no infinite subset
of L belongs to C. We say that L is C-bi-immune if both L and L are C-immune. We write
T (n)-immune and T (n)-bi-immune for DTIME(T (n))-immune and DTIME(T (n))-bi-immune, re-
spectively. Balcázar and Schöning [7] observed that a language L is T (n)-bi-immune if and only if
every machine that decides L takes more than T (n) time on all but finitely many strings. A set S is
t(n)-printable if there exists a t(n)-time-bounded algorithm that on input 0n outputs all elements
of Sn.

2.4 Resource-Bounded Measure

Lutz [29] developed resource-bounded measure theory, analogous to classical Lebesgue measure, to
study the quantitative structure of complexity classes. Here we briefly give the definitions; we refer
to the survey papers [30, 4] for more detail.

A martingale is a function d : Σ∗ → [0,∞) with the property that, for all w ∈ Σ∗, 2d(w) =
d(w0) + d(w1). A martingale d succeeds on a language A ⊆ Σ∗ if

lim sup
n→∞

d(A�n) = ∞,

where A � n is the length n prefix of A’s characteristic sequence. A class X of languages has
p-measure zero, written µp(X) = 0, if there exists a polynomial-time computable martingale that
succeeds on every language in X.

2.5 Pseudo Classes

Kabanets [22] defined pseudo classes and refuters. Let A and B any two languages and R be
a nondeterministic polynomial-time machine. We assume that R prints an output along every
accepting path. We can view R as a machine that computes a multi-valued function. We say R
distinguishes A from B, if for infinitely many n, every output of R(0n) is in (A∆B) ∩ Σn. Such R
is called a refuter.

Given a class C, [pseudoNP]-C is the class of all languages L such that there exists a language
L′ in C and every NP machine R, R does not distinguish L from L′. We similarly define the class
[pseudoUP]-C where we only insist that no UP machine distinguishes L from L′.

2.6 Derandomization

Next we briefly review definitions of pseudorandom generators. We refer the reader to the recent
surveys of Miltersen [34] and Kabanets [23] for more details.

Let Gn : {0, 1}r log n → {0, 1}n be a family of functions, and let C = {Cn}n the class of SIZE(n)-
circuits. Then we say G is a pseudo-random generator if

∀n, |Prx∈Σr log n [Cn(Gn(x))] − Prx∈Σn [C(x)]| ≤
1

n
.

The celebrated result of Impagliazzo and Wigderson [21] states that pseudo-random generators
can be constructed from any Boolean function with high circuit complexity. Klivans and van Melke-
beek [25] observed that, the construction of Impagliazzo and Wigderson relativizes, i.e, for any A,
given a Boolean function with high A-oracle circuit complexity, one can construct a pseudorandom
generator that is secure against A-oracle circuits. More precisely,
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Theorem 2.1. (Klivans and van Melkebeek [25]) Let A be any language. There is a polynomial-
time computable function F : Σ∗ × Σ∗ → Σ∗, with the following properties. For every ε > 0, there
exists a, b ∈ N such that

F : Σna
× Σb log n → Σn,

and if r is the truth table of a a log n-variable Boolean function whose A-oracle circuit complexity
is bigger than naε, then Gr(s) = F (r, s), r ∈ Σna

, s ∈ Σb log n, is a pseudo-random generator that is
secure against SIZEA(n) circuits. If A = SAT, then this pseudo-random generator can be used to
derandomize AM to NP and BPPNP to PNP.

3 Comparing Hypotheses

We now formally state our principle hypotheses.

Measure Hypothesis. NP does not have p-measure 0.

Pseudo-NP Hypothesis. There exists ε > 0 such that

NP 6⊆ [io-pseudoNP]-DTIME(2nε
),

i.e., there exists a language L in NP such that for every language L′ in DTIME(2nε
), there exists

a NP refuter R such that for almost every n, R(0n) has an output, and if R(0n) outputs a string x
on some path, then |x| = n and x ∈ L∆L′.

NP-Machine Hypothesis. There exists an NP-machine M and ε > 0 such that M accepts 0∗

and no 2nε
-time-bounded Turing machine computes infinitely many accepting computations of M .

First, we show that NP-machine hypothesis is weaker than the measure hypothesis.

Theorem 3.1. The measure hypothesis implies the NP-machine hypothesis.

Theorem 3.1 follows immediately from Lemma 3.2 and Theorem 3.3 below.

Definition. A language L does not have superpolynomial gaps if there is a polynomial p(n) such
that for all n, there is some string x in L with n ≤ |x| ≤ p(n).

Lemma 3.2. The measure hypothesis implies that NP contains a DTIME(2nε
)-bi-immune language

that does not have superpolynomial gaps.

Proof. The measure hypothesis actually yields a much stronger conclusion. Mayordomo [32] showed
that the class X of all languages that are not DTIME(2cn)-bi-immune has p-measure 0. It well
known that the strong law of large numbers holds for p-measure; in particular, the set

Y =

{

A

∣

∣

∣

∣

lim
n→∞

|An|

2n
6=

1

2

}

has p-measure 0. Therefore if NP does not have p-measure 0, then NP contains a language that is
not in X ∪ Y , i.e., a language that is DTIME(2cn)-bi-immune and asymptotically contains half of
all strings.

Theorem 3.3. If NP contains a DTIME(2nε
)-immune language that does not have superpolynomial

gaps, then the NP-machine hypothesis holds.
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Proof. Let L ∈ NP be a language satisfying the hypothesis and let p(n) = nl be a polynomial
witnessing that L does not have superpolynomial gaps. Since every t(n)-immune language is t(n)-
printable-immune, L is DTIME(2nε

)-printable-immune. Thus for every machine N that prints an
infinite subset of L, N(0n) takes more than 2nε

time almost everywhere.
Let R(·, ·) be a polynomial-time decidable relation that is associated with L, i.e, there exists a

polynomial q(·) such that
x ∈ L ⇔ ∃w, |w| ≤ q(n), R(x,w) = 1.

We now define a NP machine M that accepts 0∗. Given 0n as input, M guesses strings x and w
such that n ≤ |x| ≤ p(n) and |w| ≤ q(|x|). M accepts along this path if and only if R(x,w) = 1.
Since for every n, L has a string whose length is in between n and p(n), M accepts 0∗. Let δ = ε/2.

Assume that there exists a 2nδ
time-bounded machine N that computes infinitely many accepting

computations of M .
Consider the following algorithm. On input 0n, run N on 0n1/l

, 0n1/l+1, · · · 0n. If N outputs
xw and |x| = n then output x. By our assumption, for infinitely many n, N outputs an accepting
computation of M(0n). Note that every accepting computation of M(0n) is of the form xw such
that n ≤ |x| ≤ nl and R(x,w) = 1. Thus for infinitely many n, the above algorithm outputs a string
x in L∩Σn. It is clear that the running time of the this algorithm is at most 2nε

. This implies that L
is not DTIME(2nε

)-printable-immune which is a contradiction. Thus no 2nδ
time-bounded machine

can compute infinitely many accepting computations of M . Thus the NP-machine hypothesis is
true.

In addition to Theorem 3.3, the following is also known regarding immunity and the NP-machine
hypothesis.

Theorem 3.4. (Pavan and Selman [35]) If NP∩coNP contains a DTIME(2nε
)-bi-immune language,

then the NP-machine hypothesis holds.

The hypothesis of the following theorem was considered by Impagliazzo, Kabanets, and Wigder-
son [19]. They used the easy witness method to show that it implies NP = AM.

Theorem 3.5. If NE ∩ coNE 6⊆ io-DTIME(22εn
) for some ε > 0, then the NP-machine hypothesis

holds.

Proof. Let L ∈ NE∩coNE but not in io-DTIME(22εn
). Let N be a strong nondeterministic machine

for L running in time 2cn. Each computation path of N outputs “accept,” “reject,” or “?”. If a
string is in L, then there is at least one accepting path and no rejecting paths; if a string is not in
L, then there is at least one rejecting path and no accepting paths. We define a nondeterministic
machine M that does the following on input 0n:

• Run N on each string of length log n.

• If all strings of length log n have been decided, accept.

Then M is an NP machine running in time O(nc+1). Suppose that we can compute infinitely many
accepting computations of M in 2nε

time. Observe that behavior of M is identical on 0m for all
m where 2n ≤ m < 2n+1 (recall that log is the discrete logarithm), so we can compute infinitely
many accepting computations of M when the size of the input is a power of 2. Then the following
algorithm decides L on length n infinitely often. On input of x of length n:

• Compute an accepting computation of M on input 02n
.
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• Examine this computation to find the decision for x.

The algorithm runs in time O(22εn
) and is correct for infinitely many lengths, contradicting our

assumption about L. Therefore the NP-machine hypothesis holds.

In Theorem 3.7 we will prove that the pseudo-NP hypothesis also implies the NP-machine hy-
pothesis. Our proof makes use of a connection with Kt complexity. The NP-machine hypothesis
says that there is an NP search problem (finding an accepting computation for the machine satisfy-
ing the hypothesis) which cannot be solved in 2nε

time. Levin [27] showed that an asymptotically
optimal algorithm for an NP search problem is to search through all witnesses in order of increasing
Kt complexity. If the search problem can be solved in O(t(n)) time, then Levin’s algorithm will
finish in O(t(n)) time. Also, the algorithm will only examine witnesses with Kt complexity at most
O(log t(n)). Therefore the search problem in the NP-machine hypothesis is for strings that have Kt
complexity greater than nε because Levin’s algorithm cannot finish in 2nε

time. Also, the converse
holds: if there is an NP search problem for strings with Kt complexity greater than nε, then the
NP-machine hypothesis holds. The following theorem makes this precise.

Theorem 3.6. The following are equivalent.

(1) The NP-machine hypothesis.

(2) There is an NP machine M accepting 0∗ and an ε > 0 such that for all sufficiently large n,
every accepting computation path w of M(0n) has Kt(w) > nε.

(3) There is an NP machine M that has an output on 0n for all n and there is an ε > 0 such that
for all sufficiently large n, every output w of M(0n) has Kt(w) > nε.

Proof. (1) ⇒ (2): Assume that M and ε satisfy the NP-machine hypothesis. Run Levin’s universal
search algorithm for 2nε

steps to try to find an accepting computation path of M on input 0n. This
search will fail, but it only considers paths that have Kt complexity at most nε. Therefore all the
accepting paths have Kt complexity greater than nε, and (2) is satisfied by M .

(2) ⇒ (3): Assume that M and ε satisfy (2). Define M ′ to run M . If M accepts, then M ′

outputs the accepting computation history of M . Then M ′ and ε satisfy (3).
(3) ⇒ (1): Assume that M and ε satisfy (3). Define M ′ to run M . If M has an output on

a computation path, then M ′ accepts. Let ε′ < ε. Suppose that we can compute infinitely many

accepting computations of M ′ in 2nε′

time. Let w be the accepting computation we compute for
some 0n, and let x be output of M embedded in w. Then

Kt(x) ≤ Kt(w) + O(log n)

≤ log n + log 2nε′

+ O(log n)

< nε

if n is sufficiently large. This contradicts (3), so M ′ must satisfy the NP-machine hypothesis with
constant ε′.

Using this Kolmogorov complexity connection, we now show that the NP-machine hypothesis
is implied by the pseudo-NP hypothesis.

Theorem 3.7. The pseudo-NP hypothesis implies the NP-machine hypothesis.
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Proof. Assume that the pseudo-NP hypothesis holds and let L be a language NP that is not in
[io-pseudoNP]-DTIME(2nε

). Consider the following algorithm that tries to decide L. On input x of
length n:

Use Levin’s universal search algorithm to consider every witness w with Kt(w) ≤ nε,
accepting x if a witness is found that proves x ∈ L. Otherwise reject x.

Let L′ be the language decided by this algorithm. Then L′ ⊆ L and L′ ∈ DTIME(2nε
).

Since L is not in [io-pseudoNP]-DTIME(2nε
), there exists a NP refuter R such that for all but

finitely many n, R(0n) has an output and every output of R(0n) is a string of length n that is in
L∆L′. Since L′ ⊆ L, every output of R(0n) is actually in L − L′. Also, note that if R(0n) outputs
x on some path, then every witness w of x has Kt(w) > nε.

We now define an NP machine M that satisfies condition (3) of Theorem 3.6:

Run R(0n). If this computation outputs a string x, guess a witness that proves x ∈ L
and output it.

Therefore the NP-machine hypothesis holds.

4 Consequences

In this section we show that several interesting consequences of the NP-machine hypothesis.
Given a string x of length m, we can view it as boolean function fx : {0, 1}log m → {0, 1}.

Allender and Ronneberger [2] showed that the Kt-complexity of a string x is, up to a polynomial
factor, the E-oracle circuit complexity complexity of fx.

Theorem 4.1. (Allender and Ronneberger [2]) Let A be a complete set for E. For any string x:

• If the A-oracle circuit complexity of fx is at most m, then Kt(x) = O(m log m).

• If Kt(x) ≤ m, then the A-oracle circuit complexity of fx is O(m3).

Let M be a machine that satisfies the NP-machine hypothesis. By Theorem 3.6, the Kt com-
plexity of every accepting path a of M(0n) is at least nε. Thus the E-oracle circuit complexity of
fa is Ω(nε/3). We obtain that the NP machine hypothesis is equivalent to being able to generate
strings with high SIZEE complexity:

Theorem 4.2. Let M be an NP machine that accepts 0∗ and et A be complete for E under linear-
time reductions. The following are equivalent.

1. There exists ε > 0 such that no 2nε
-time bounded Turing machine computes infinitely many

accepting computations of M .

2. There exists δ > 0 such that for all sufficiently large n, for every accepting computation a of
M(0n), the A-oracle circuit complexity of fa is at least nδ.

We remark the above theorem can shown without referring to Kt-complexity. The proof that
1. implies 2. can be done as follows. Let M be a machine that satisfies the NP-machine hypothesis
with constant ε. Consider the following machine N that attempts to find accepting computations of
M . On input 0n, N considers every A-oracle circuit C, over k log n inputs, of size nδ and computes
the string w = C(x1)C(x2) · · ·C(xnk), where x1, x2, · · · xnk are all strings of length k log n. If w is
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an accepting computation of M(0n), then N outputs w. An A-oracle nδ-size circuit can make at
most nδ queries each of size at most nδ. Since A can be decided in time 2cn, each oracle query can
be answered in time 2cnδ

time. Thus the total time taken to evaluate the value of the circuit on
all inputs is O(22cnδ

). A circuit of size of size nδ can be encoded as a string of length nδδ log n.

Thus the machine N considers at most 2n2δ
circuits. Thus the total time taken by N is O(22n2δ

)
which is less than 2nε

. Since no 2nε
-time-bounded machine can compute infinitely many accepting

computations of M , the above machine N fails to output accepting computations of M(0n) for
all but finitely many n. Thus for all but finitely many n, for every accepting computation wn of
M(0n), the A-oracle circuit complexity of fwn is bigger than nδ.

The following theorem states several consequences of the NP-machine hypothesis.

Theorem 4.3. The NP-machine hypothesis implies the following for every A ∈ E.

(1) BP · NPA = NPA. In particular, AM = NP.

(2) There exists ε > 0 such that ENP 6⊆ io-SIZEA(2εn).

(3) BP · ∆P,A
2 = ∆P,A

2 . In particular, BPPNP = PNP.

(4) NEXP 6⊆ P/poly.

(5) For every constant k > 0, PNP 6⊆ io-SIZE(nk).

(6) There exist ε > 0, δ > 0 such that NP 6⊆ io-DTIME(2nδ
)/nε.

(7) BP · PP = PP. In particular, PH ⊆ PP.

(8) NP is not easy on average.1

Proof. Since the NP machine hypothesis is true, there exist an NP machine M and ε > 0 such
that no 2nε

-time-bounded machine can compute infinitely many accepting computations of N . By
Theorem 4.2, there is a δ > 0 such that for every accepting computation a of M(0n), fa has A-oracle
circuit complexity at least nδ. Without loss of generality assume that the length of every accepting
computation of M(0n) is nk.

(1) Let L be any language in AM. Let the randomness of Arthur is bounded by nrk. Let
ε′ = δ/k. Let a and b be the constants from Theorem 2.1. The following NP machine accepts
L. Given an input x of length n guess an accepting computation w of M(0nra

). Let m = nkr.
Note that |w| = nkra and it can be viewed as a boolean function over a log m variables. By
Theorem 4.2, any accepting computation w gives a boolean function over a log m variables whose
SAT-oracle circuit complexity at least (nra)δ = maε′ . By Theorem 2.1, from this hard Boolean
function a pseudorandom generator that maps b log m bits to m = nkr bits can be constructed,
which derandomizes the AM protocol.

(2) Let A be any language in E. Let an denote the maximum accepting computation of M(0n).
Thus |an| = nk. By Theorem 4.2, fan has A-oracle circuit complexity bigger than nδ. We now
define a language L as follows: Let L|m denote the characteristic sequence of L on strings of length
m. Given m, let m′ be the largest integer such that m′ < m and m′ is divisible by k. Let n = 2m′/k.
We set L|m = an0l, where l = 2m − 2m′

.
We claim that L is in ENP. Given a string x of length m, we can compute m′ and now the goal

is to compute the maximum accepting computation of M(02m′/k
) which gives L|m. Note that the

1For the definition of easy on average we refer to [10].
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length of the maximum accepting computation of M(02m′/k
) = 2m′

≤ 2m. Thus we can extract the

maximum accepting computation of M(02m′/k
) in linear-exponential time using an NP oracle.

Let δ′ = δ/2k. Assume that L ∈ io-SIZEA(2δ′m). Thus for infinitely many m there exists
a A-oracle circuit that accepts Lm. This implies that the A-oracle circuit complexity of fL|m is

at most 2δ′m. Recall that L|m = an0l, where n = 2m′/k and l = 2m − 2m′
. Thus the A-oracle

circuit complexity of fan is at most 2δ′m. However nδ = 2m′δ/k > 2δ′m for large enough m. Thus
if L ∈ io-SIZEA(2δ′m), then for infinitely many n the A-oracle circuit complexity of an is less than
nδ. This is a contradiction.

(3) This immediately follows from (2) and Theorem 2.1.
(4) Impagliazzo, Kabanets, and Wigderson [19] showed that if NEXP ⊆ P/poly, then NEXP =

MA. By item (1), the NP-machine hypothesis implies AM = NP. Thus NEXP = NP which is a
contradiction of the nondeterministic time hierarchy theorem. Therefore NEXP 6⊆ P/poly.

(5) By the results of Kannan [24], Bshouty et al. [9], and Kobler and Watanabe [26], ZPPNP 6⊆
io-SIZE(nk) for any k > 0. Since the NP-machine hypothesis implies BPPNP = PNP, PNP 6⊆
io-SIZE(nk) for every k > 0.

(6) Let ε′ = ε/3 and δ′ = ε/6k. Suppose NP ⊆ io-DTIME(2nδ′

)/nε′ . Consider the following
language in NP.

L′ =

{

〈0n, y〉

∣

∣

∣

∣

|y| ≤ nk, there exists w such that yw
is an accepting computation of N on 0n

}

.

We can use a pairing function 〈·, ·〉 that encodes all tuples of the form 〈0n, y〉, |y| ≤ nk, at the
length nr. Thus L′ has strings at length nr, n ≥ 1.

We now define a language L as follows: at lengths of the form nr, L coincides with L′. Let m

be a length between nr and (n + 1)r. We define L|m = (L|nr)02m−2nr

.
Observe that if there is an oracle that gives the membership of all strings of length nr in L′,

then we can compute an accepting computation of M(0n). Thus if there is an oracle that gives
membership of all strings of length m, for some m between nr and nr+1, in L, then also we can

compute an accepting computation of M(0n). Since NP ⊆ io-DTIME(2nδ′

)/nε′ , there is a L′′ in

DTIME(2nδ′

) and an advice hn such that, |hn| ≤ nε′ ,

∃∞m,∀x ∈ {0, 1}m, x ∈ L ⇔ 〈x, hm〉 ∈ L′′.

Consider the following algorithm that computes infinitely many accepting computations of M .
On input 0n, it considers each length m such that nr ≤ m < nr+1. For each length m its considers
all advices of size up to mε′ and with each advice it tries to compute a witness for M(0n) witness
by querying L′′. For infinitely many lengths m, there is an advice hm such that x ∈ L if and only
if 〈x, hm〉 ∈ L′′. Thus this algorithm outputs infinitely many accepting computations of M . It can
be verified that the algorithm is 2nε

-time bounded. This is a contradiction.
(7) Given an instance x of a BP ·PP language, guess a computation path p of the NP-machine.

If p is accepting, it has high circuit complexity, so build a generator with it and derandomize the
BP ·PP computation (as in [5]) for x. Let d be the length of a computation path that implements
this derandomization. If p is rejecting, make a computation tree of depth d that is half accepting
paths and half rejecting paths.

(8) Buhrman, Fortnow, and Pavan [10] showed that if NP is easy on average, then for any NP-
machine M accepting a tally set, there is a polynomial-time algorithm M that outputs accepting
computations of M . Therefore if NP is easy on average, then the NP-machine hypothesis is false.
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From Theorem 3.4, we know that if NP ∩ coNP has 2nε
-bi-immune sets, then the NP-machine

hypothesis is true. This gives the following corollary.

Corollary 4.4. If NP ∩ coNP has 2nε
-bi-immune sets, then all the consequences in Theorem 4.3

follow.

By Theorem 3.3, if NP has a 2nε
-bi-immune language that does not have superpolynomial

gaps, then the NP-machine hypothesis is true. Thus all the consequences of Theorem 4.3 follow
if NP has a 2nε

-bi-immune language that does not have superpolynomial gaps. We now consider
the hypothesis “NP has a 2nε

-bi-immune language”. This is weaker than both the hypotheses
“NP ∩ coNP has a 2nε

-bi-immune set” and “NP contains a 2nε
-bi-immune language that does not

have superpolynomial gaps.” What consequences follow from this hypothesis?
If L is any 2nε

-bi-immune language in NP, then for infinitely many n, 0n belongs to L. By using
similar arguments as in Theorem 4.2, we can show that for infinitely many n, every witness of 0n

has high circuit complexity. This gives infinitely-often versions of the consequences in Theorem 4.3.
For example:

Theorem 4.5. If NP has a 2nε
-bi-immune language, then the following hold.

(1) AM ⊆ io-NP.

(2) There exists ε > 0 such that for every A in E, ENP 6⊆ SIZEA(2εn).

(3) NEXP 6⊆ P/poly.

Fenner, Fortnow, Naik, and Rogers [11] studied the following hypothesis Q:

For any NP machine M that accepts {0, 1}∗, there is a polynomial-time algorithm that
computes an accepting computation of M for each input.

Clearly the NP-machine hypothesis implies that Q is false. It is shown in [11] that Q has
several equivalent characterizations, so we obtain from there a number of consequences of the NP-
machine hypothesis. For example, while we do not know if the NP-machine hypothesis implies that
P 6= NP ∩ coNP, we have the following.

Corollary 4.6. The NP-machine hypothesis implies that P 6= NP∩ coNP or there is an NP multi-
valued total function that does not have a NP single-valued refinement.

Corollary 4.7. The NP-machine hypothesis implies there is a NP multi-valued total function that
does not have a polynomial-time refinement.

By Theorem 3.1, the measure hypothesis implies that NP-machine hypothesis. This gives the
following corollary.

Corollary 4.8. Assume that the measure hypothesis holds. The following statements hold:

• Either P 6= NP ∩ coNP or there is an NP multi-valued total function that does not have a
NP-single valued refinement.

• There is a NP multi-valued total function that does not have a polynomial-time refinement.

11



We note that these consequences were not known to follow from the measure hypothesis. Our
connection between the measure hypothesis and the NP-machine hypothesis makes these conse-
quences possible.

We conclude this section with some observations about the NP-machine hypothesis and sets
of strings that have high Kolmogorov complexity. Allender [3, 1] defined for any language L the
function

KtL(n) = min{Kt(x) | x ∈ L=n}.

If L is empty at length n, then KtL(n) is undefined. In [2], the following conditions are shown
equivalent:

• There is a language L ∈ P and an ε > 0 such that for all large n, KtL(n) is defined and
KtL(n) > nε.

• There is a language L ∈ NP and an ε > 0 such that for all large n, KtL(n) is defined and
KtL(n) > nε.

• There is a language L ∈ AC0 and an ε > 0 such that for all large n, KtL(n) is defined and
KtL(n) > nε.

The following theorem states that these conditions are also equivalent to the NP-machine hy-
pothesis. The proof is straightforward given Theorem 3.6.

Theorem 4.9. The following are equivalent.

(1) The NP-machine hypothesis.

(2) There is a language L ∈ NP and an ε > 0 such that for all large n, KtL(n) is defined and
KtL(n) > nε.

These equivalences also extend to time-bounded Kolmogorov complexity:

Theorem 4.10. The following are equivalent.

(1) The NP-machine hypothesis.

(2) There is a set A ∈ P containing a string at all but finitely many lengths and an ε > 0 such that

for all w ∈ A, K2nε

(w) > nε.

(3) There is a set A ∈ P containing a string at all but finitely many lengths and an ε > 0 such that

for all w ∈ A, K2nε

(w) > log n + O(1).

Pavan and Selman [35] showed that NP-machine hypothesis implies that ≤p
T-completeness is

different from ≤p
m-completeness for NP. An earlier result of Watanabe and Tang [36] achieved the

same separation for PSPACE, under a Kolmogorov complexity hypothesis that is strikingly similar
to the statements in Theorem 4.10 that are equivalent to the NP-machine hypothesis.

Theorem 4.11. (Watanabe and Tang [36]) Suppose there is a set A ∈ PSPACE without super-
polynomial gaps and an ε > 0 such that for every polynomial p, for all but finitely many x ∈ A,
Kp(n)(x) > nε. Then ≤p

T-completeness differs from ≤p
m-completeness for PSPACE.
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5 Variations of the NP-Machine Hypothesis

In this section we consider variations of our nondeterministic hypotheses: replacing NP with UP and
RP. We show that the UP-machine hypothesis yields additional consequences. The RP-machine
hypothesis turns out to be equivalent to ZPP = EXP.

UP-Machine Hypothesis. There exists a UP-machine M and ε > 0 such that M accepts 0∗ and
no 2nε

-time-bounded Turing machine computes infinitely many accepting computations of M .

Pseudo-UP Hypothesis. There exists ε > 0 such that UP 6⊆ [io-pseudoUP]-DTIME(2nε
).

Theorems 5.1 and 5.2 below are analogues of Theorems 3.7 and 3.5. However, we do not have
a UP version of Theorem 3.1, which would state that the measure hypothesis for UP implies the
UP-machine hypothesis.

Theorem 5.1. The pseudo-UP hypothesis implies the UP-machine hypothesis.

Proof. Similar to the proof of Theorem 3.7.

Theorem 5.2. The UP-machine hypothesis is equivalent to (∃ε > 0)UE∩coUE 6⊆ io-DTIME(22εn
).

Proof sketch. The proof from right to left is analogous to Theorem 3.5. For the other direction, let
M and ε satisfy the UP-machine hypothesis. We define a UE ∩ coUE language A as follows. For
length n, we look at the unique accepting computation path of M on input 0N where N = 2n/ε.
This path has at least 2n bits, and we use the first 2n bits for the characteristic string of A at
length n.

The following result is analogous to Theorem 4.2.

Theorem 5.3. Let M be a UP machine that accepts 0∗ and let A be complete for E under linear-
time reductions. The following are equivalent.

1. There exists ε > 0 such that no 2nε
-time machine computes infinitely many accepting compu-

tations of M .

2. There exists δ > 0 such that for all sufficiently large n, the accepting computation of M(0n)
has A-oracle circuit complexity at least nδ.

It is obvious that all the consequences of the NP-machine hypothesis follow from the UP-machine
hypothesis. In addition, we obtain the following consequences.

Theorem 5.4. The UP-machine hypothesis implies the following.

(1) There exists ε > 0 such that for all A ∈ E, UE ∩ coUE 6⊆ io-SIZEA(2εn).

(2) PH ⊆ SPP.

(3) There exist ε > 0, δ > 0 such that UP ∩ coUP 6⊆ io-DTIME(2nδ
)/nε.

(4) For every constant k > 0, SPP 6⊆ io-SIZE(nk).

(5) BPP ⊆ UP ∩ coUP.

(6) There exists a language in NP for which search does not reduce to decision.2

2For the definition of “search reduces to decision” we refer to [8].
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Proof. Let M and ε satisfy the UP-machine hypothesis. From Theorem 5.3 we know that the
accepting computation of M(0n) has high A-oracle circuit complexity.

(1) The proof is similar to the proof of item 2 in Theorem 4.3. The construction of L is exactly
same, except that in this case an is the unique accepting computation of M(0n). Since an is the
unique accepting computation, we can place L in UE ∩ coUE.

(2) By the results of Fenner, Fortnow, and Kurtz [12], UE ∩ coUE ⊆ ESPP. Thus by (1), for
every k, there exists a language L in ESPP whose SATk-oracle circuit complexity is bigger than
2εn, where SATk is the set of satisfiable quantified boolean formula with k quantifiers. This implies
PH ⊆ SPP [16].

(3) The proof is similar to the proof of item 6 in Theorem 4.3. Consider the following language.

L = {〈0n, i〉 | the ith of the accepting computation of M(0n) is 1}.

Observe that L is in UP ∩ coUP. Let δ′ = ε/3 and ε′ = ε/6k. Assume L is in io-DTIME(2nε′

)/nδ′ .
As in the proof of item (6) in Theorem 4.3, we can cycle through all advices of length nδ′ and
compute the accepting computation of M(0n) for infinitely many n. This process takes at most 2nε

time. Thus UP ∩ coUP 6⊆ io-DTIME(2nε′

)/nδ′ .
(4) Kannan [24] showed that for every k > 0, PH 6⊆ io-SIZE(nk). Combining this with item (2),

we get for every k > 0, SPP 6⊆ io-SIZE(nk).
(5) Let L ∈ BPP. On input x, the UP machine guesses the accepting computation of M(0m).

This accepting computation has high circuit complexity. The UP machine uses this hard function
to construct a pseudorandom generator that can derandomize BPP.

(6) Consider the following machine M ′. Given 0n, M ′ guesses a path of M(022n

) and accepts
if and only if the guessed path is an accepting computation. Since M accepts 0∗, M ′ also accepts
0∗, and M ′ is an UEE machine. Since no 2nε

-time bounded machine can compute infinitely many
accepting computations of M , no EE machine can compute infinitely many accepting computations
of M ′. This implies that UEE 6= EE. Bellare and Goldwasser [8] showed that if NEE 6= EE, then
there exists a language in NP − P for which search does not reduce to decision.

Finally, we consider randomized versions of the hypotheses. Because of results in derandomiza-
tion we expect that P = RP, so we do not expect these hypotheses to be true. In fact, it turns out
that they are all equivalent to ZPP = EXP.

Pseudo-RP Hypothesis. There exists ε > 0 such that

RP 6⊆ [io-pseudoZPP]-DTIME(2nε
),

i.e., there exists a language L in RP such that for every language L′ in DTIME(2nε
), there exists

a ZPP refuter R such that for almost every n, every output of R(0n) is a string of length n that is
in L∆L′.

RP-Machine Hypothesis. There exists an RP machine M and ε > 0 such that M accepts 0∗

and no 2nε
-time-bounded Turing machine computes infinitely many accepting computations of M .

Kabanets [22] showed that the pseudo-RP hypothesis is equivalent to ZPP = EXP. Impagliazzo
and Moser [20] showed that µp(RP) 6= 0 is also equivalent to ZPP = EXP. Along the same lines,
we can show the same for the RP-machine hypothesis, yielding the following.

Theorem 5.5. The following are equivalent.
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(1) The RP-machine hypothesis.

(2) RP does not have p-measure 0.

(3) The pseudo-RP hypothesis.

(4) ZPP = EXP.

6 Scaled Dimension

In addition to the measure hypothesis on NP, hypotheses on the resource-bounded dimension of
NP can also be considered (see [15] for example). While dimension hypotheses are easily seen
to be weaker than the measure hypothesis, they seem incomparable with the other hypotheses
considered in this paper. In this section we consider a hypothesis on the scaled dimension of NP
and its consequences for derandomization of NP and circuit-complexity lower bounds for NEXP.
For background on scaled dimension, we refer to [18, 17].

In the following, we consider dim
(−3)
p (NP), the −3rd-order scaled polynomial-time dimension

of NP. If µp(NP) 6= 0, then dim
(−3)
p (NP) > 0. We now show that this seemingly much weaker

consequence of the measure hypothesis still implies a derandomization of AM, albeit with a small
amount of nonuniform advice. This derandomization should be compared with the unconditional
fact that AM ⊆ NP/poly.

Theorem 6.1. If dim
(−3)
p (NP) > 0, then AM ⊆ NP/nε for every ε > 0.

Proof. From [17], we know that dim
(−3)
p (NP) > 0 implies there is a language A ∈ NP such that for

any Turing machine M that decides A, for all δ > 0, M halts within 2n steps on fewer than 2nδ

strings up to length n, for all but finitely many n.
Consider a machine N that on input x runs through all potential witnesses for x that (when

viewed as Boolean functions) have SAT-oracle circuit-size complexity bounded by n1/2. If any of
these witnesses that x ∈ A, then N accepts; otherwise N does an exhaustive search to decide if
x is in A. Let δ > 0. This searching of low-complexity witnesses takes less than 2n time, so we
can conclude from the above that for all sufficiently large n, no more than 2nδ/2

strings of length
n have a witness with SAT-circuit complexity less than n1/2. Divide {0, 1}n into 2nδ

consecutive

blocks of length 2n−nδ
. By the pigeonhole principle, we can use nδ bits of advice to identify a

“good” block of 2n−nδ
strings where all witnesses for membership in A are “hard witnesses” that

have SAT-circuit complexity at least n1/2. But what if A happens to be empty on this block? By
the following claim, we can additionally assume that A 6∈ X and therefore that this block contains
some string in A.

Claim. Let X be the class of all languages L such that (∃α > 0)(∃∞n) L is empty on some block

of size 2n−nα
at length n. Then dim

(−3)
p (X) = 0.

Proof sketch of claim. In fact, the stronger claim dim
(−1)
p (X) = 0 holds. We use the terminology

and techniques of [17]. Fix α. For each n, let Wn be the set of all characteristic strings of subsets

of {0, 1}≤n that are empty on some block of size 2n−nα

at length n. Then |Wn| ≤ 2nα+2n+1−2n−n
α

.
Define a measure ρn by letting

ρn(w) =
|{w′ ∈ Wn | w v w′}|

|Wn|
.

Let L ∈ X. Then for infinitely many n, L has a prefix wn ∈ Wn. Then

− log ρn(wn) = log |Wn| ≤ 2n+1 − 2n−nα

+ n
α
.
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This is less than g−1(|wn|, s) for any s > 0 when n is sufficiently large. Since all the ρn are computable
within a fixed polynomial-time bound (independent of α), the claim follows by [17].

�

Let B ∈ AM and δ > 0. We will show that B ∈ NP/nδ. Let the randomness of Arthur be
bounded by nr. Suppose the witnesses for length n in A have length nc. Fix ε = 1

2c and obtain the
constants a and b from Theorem 2.1. Let x ∈ {0, 1}n and let m = nr. Let δ′ = δ c

ar . Guess a hard

witness for a string of length n
ar
c , first using

(

n
ar
c

)δ′

= nδ bits of advice to identify a “good” block

as described above (provided that n is large enough for this to be enough advice). This witness has
length nar = ma, so it can be viewed as the truth-table of a Boolean function over a log m variables.
Since it is a hard witness, this function has SAT-oracle circuit complexity at least n

ar
2c = mεa. By

Theorem 2.1, we obtain a pseudorandom generator providing m = nr pseudorandom bits that can
be used to derandomize the AM computation. This argument works for all sufficiently large n, so
we have B ∈ NP/nδ.

The proof of Theorem 6.1 indicates that dim
(−3)
p (NP) > 0 implies an “advice” version of the

NP-machine hypothesis: there is an NP machine M that when given the correct nε bits of advice
accepts 0n and no 2nε

-time algorithm can compute infinitely many accepting computations, even
when given access to the advice.

Combining Theorem 6.1 arguments of Impagliazzo, Kabanets, and Wigderson [19], we show
that the same hypothesis implies NEXP does not have polynomial-size circuits.

Theorem 6.2. If dim
(−3)
p (NP) > 0, then NEXP 6⊆ P/poly.

Proof. Assume that dim
(−3)
p (NP) > 0 and NEXP ⊆ P/poly. By Theorem 6.1 we have

AM ⊆ NP/n (6.1)

and Corollary 8 of [19] tells us
EXP 6⊆ io-[NTIME(2n)/n]. (6.2)

Also EXP ⊆ NEXP, so we have EXP ⊆ P/poly which yields

EXP ⊆ MA. (6.3)

by [6]. Putting (6.1) and (6.3) together, we have

EXP ⊆ NP/n,

a contradiction of (6.2).

7 Conclusion

The following figure summarizes relations among several hypotheses and their consequences. It is
interesting to note that the UP-machine hypothesis implies P 6= UP ∩ coUP, whereas a similar
consequence is not known to follow from the NP-machine hypothesis. Theorem 3.1 partly explains
this. Since the measure hypothesis implies the NP-machine hypothesis, if the NP-machine hypoth-
esis implies P 6= NP ∩ coNP, then the measure hypothesis also implies P 6= NP ∩ coNP. However,
it seems that the measure hypothesis does not say much about NP ∩ coNP.
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ENP 6⊆ io-SIZE(2εn)

NP ∩ coNP has a
2nε

-bi-immune set

NEXP 6⊆ P/poly
ENP 6⊆ SIZE(2εn)
NP ⊆ io-AM

NP = AM

BPPNP = PNP

NEXP 6⊆ P/poly

PNP 6⊆ io-SIZE(nk)

NP has a 2nε
-bi-immune set

Measure HypothesisPseudo-NP Hypothesis

NP-Machine Hypothesis

NP 6⊆ io-DTIME(2nε
)/nδ

NE ∩ coNE 6⊆ io-DTIME(22εn
)

NP has a 2nε
-bi-immune

set without gaps

There are several unanswered questions. For example: does the NP-machine hypothesis imply
NEXP 6⊆ io-P/poly? How about NP 6⊆ SIZE(nk)? Though the NP-machine hypothesis implies
derandomization of AM and BPPNP, we do not know whether we can derandomize BPP. Note
that relative to any oracle where ZPP = EXP, the NP-machine hypothesis holds and BPP = EXP.
Perhaps we can derandomize BPP using the UP-machine hypothesis. Another interesting question
is the relation between these hypotheses and the existence of cryptographic one-way functions.
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