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Abstract

We survey the average-case complexity of problems in NP.

We discuss various notions of good-on-average algorithms, and present completeness results due to
Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but
somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then
all problems in NP are easy-on-average with respect to all samplable distributions. Applying the
theory to natural distributional problems remain an outstanding open question. We review some
natural distributional problems whose average-case complexity is of particular interest and that do
not yet fit into this theory.

A major open question whether the existence of hard-on-average problems in NP can be based on
the P 6=NP assumption or on related worst-case assumptions. We review negative results showing
that certain proof techniques cannot prove such a result. While the relation between worst-case
and average-case complexity for general NP problems remains open, there has been progress in
understanding the relation between different “degrees” of average-case complexity. We discuss
some of these “hardness amplification” results.
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Chapter 1

Introduction

The study of the average-case complexity of intractable problems began in the 1970s motivated by
two distinct applications: the developments of the foundations of cryptography and the search for
methods to “cope” with the intractability of NP-hard problems.

All definitions of security for cryptographic problems require that any efficient algorithm that
tries to “break” the protocol “succeeds” only with very small probability. The formalizations
of breaking and succeeding depend on the specific application, but it has been known since the
1980s that there is a unifying concept: no cryptographic task (for example, electronic signature,
or data encryption) is possible unless one-way functions exist.1 Informally, a one-way function is
an efficiently computable function f : {0, 1}∗ → {0, 1}∗ that maps {0, 1}n to {0, 1}n and such that,
if we are given f(x) for a random x ∈ {0, 1}n, it is intractable (in time polynomial in n) to find
a pre-image x′ such that f(x′) = f(x). In particular, the existence of one-way functions implies
that there is a search problem in NP (given y ∈ {0, 1}n, find x ∈ {0, 1}n such that f(x) = y)
that is intractable to solve on random inputs sampled from a simple distribution (the distribution
f(x) where x is chosen randomly from {0, 1}n). The fact that all of cryptography is predicated on
the existence of average-case intractable problems in NP is a main motivation for the study of the
theory we describe in this survey.

In particular, a long-standing open question is whether it is possible to base the existence of one-way
functions on the P 6= NP assumption, or related ones (such as NP-complete problems not allowing
polynomial size circuits).

The second motivation for the study of the average-case complexity of problems in NP comes from
the analysis of heuristic algorithms. Unless P = NP, we cannot hope for efficient algorithms that
solve NP-complete problem exactly on all inputs. We may hope, however, for algorithms that
are “typically efficient” on inputs sampled from distributions that occur in practice. In order to
understand the limitations of such an approach, it would be desirable to have an “average-case
analog” of the theory of NP-completeness. Such a theory would enable us to prove that for certain
problems, with respect to certain distributions, it is impossible to have algorithms that perform
well on “typical” inputs, unless an entire class of presumably intractable problems can be efficiently
solved.

1The realizability of many cryptographic tasks, in fact, is equivalent to the assumptions that one-way functions
exist.

1



2 CHAPTER 1. INTRODUCTION

The basic foundations of such a theory have been laid out. Surprisingly subtle difficulties arise
even when just developing the analogs of trivial elements of the theory of NP-completeness, such
as the definition of computational problem, the definition of efficient algorithm, the definitions
of reduction and completeness, and the equivalent complexity of decision versus search for NP-
complete problems. In this survey we will discuss these difficulties, and show how they were
resolved. We will see a number of results, insights, and proof techniques whose usefulness goes
beyond the study of average-case complexity.

The right techniques to apply such a theory to natural problems and distributions have not been
discovered yet. From this point of view, the current state of the theory of average-case complexity
in NP is similar to the state of the theory of inapproximability of NP optimization problems before
the PCP Theorem.

Finding ways of applying this theory to natural problems is another outstanding open question in
this area.

1.1 Roadmap

In this section we give an overview of the content of this survey.

1.1.1 Definitions of Tractability.

The first difficulty in developing a theory of average-case intractability is to come up with a formal
definition of what it means for a problem to be “intractable on average” or, equivalently, what
it means to be “average-case tractable.” A natural definition would be to consider an algorithm
efficient-on-average if it runs in expected polynomial time. Such a definition has various shortcomings
(related to the fact that it is too restrictive). For example, if an algorithm A runs in time t(x)
on input x, and its simulation B (on a different model of computation) runs in time t2(x) on
input x, it is natural that we would like our definition to be such that A is efficient-on-average
if and only if B is. Suppose, however, that our inputs come from the uniform distribution, and
that A runs in time n2 on all inputs of length n, except on one input on which A takes time
2n. Then the expected running time of A is polynomial but the expected running time of B is
exponential. Looking at the median running time of an algorithm gives us a more robust measure
of complexity, but still a very unsatisfactory one: if an algorithm runs in polynomial time on
70% of the inputs, and in exponential time on 30% of the inputs, it seems absurd to consider
it an efficient-on-average algorithm. The right way to capture the notion of “efficient on typical
instances” should be that it is fine for an algorithm to take a large amount of time on certain
inputs, provided that such inputs do not occur with high probability: that is, inputs requiring
larger and larger running times should have proportionally smaller and smaller probability. This is
the idea of Levin’s definition of average-case complexity. In (an equivalent formulation of) Levin’s
definition [Lev86], an algorithm is polynomial-time-on-average if there is a constant c > 0 such
that the probability, over inputs of length n, that the algorithm takes more than time T is at most
poly(n)/T c. As usual in complexity theory, various choices can be made in the definition: we may
look at deterministic algorithms, randomized algorithms, or non-uniform families of circuits. An
additional choice is whether we require our algorithm to always be correct, but possibly run in
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superpolynomial time on some inputs, versus requiring the algorithm to always run in polynomial
time, but to give an incorrect answer to some inputs. This will lead to several possible definitions,
each meaningful in some applications. (See Section 2.) The important thing will be that almost all
the other results we discuss in this survey are based on reductions that preserve tractability under
all of these definitions. Hence, the treatment of completeness, reductions, families of distributions
and decision versus search is independent of the specific notion of tractability that one is interested
in.

1.1.2 Reductions Between Distributional Problems

Let L be a decision problem and D be a distribution over inputs,2 we call the pair (L,D) a distri-
butional problem. All the definitions of average-case tractability have a characteristic in common:
than an algorithm A is efficient for (L,D) if a certain set of “bad” inputs has low probability under
D. (Depending on the cases, the bad inputs could be the ones where the algorithm A takes very long
time, or those on which A outputs an incorrect answer, and so on.) This motivates the following
definition of reduction [Lev86]: we say that (L,D) reduces to (L′,D′) if there is a polynomial time
computable function f such that x ∈ L if and only if f(x) ∈ L′ and, in addition, for every input y,
the probability of generating y by picking x at random according to D and then computing f(x) is
at most poly(|x|) larger than the probability of sampling y at random from D′.3 The motivation
for this definition is the following. Suppose that A′ is a good algorithm for (L′,D′), so that the
set B′ of inputs that are bad for A′ has small probability according to D′. Consider the following
algorithm for (L,D): on input x, output A′(f(x)). Now, the bad inputs for this algorithm are the
inputs x such that f(x) ∈ B′. The probability of sampling such an x, according to D, however, is
upper bounded by poly(|x|) times the probability of sampling an element of B′ according to D′,
which we had assumed to be small. Hence, we have a good algorithm for (L,D), and the definition
of reduction preserves average-case tractability. Note that, in this argument, we used nothing about
the definition of tractability except the notion of “bad” input. (See also Section 3.)

1.1.3 A Completeness Result

Having given the definition of computational problem and of reduction, we will present a com-
pleteness result [Lev86]. We consider the bounded halting problem BH, where on input (M,x, 1t)
we have to determine whether the non-deterministic Turing machine M accepts input x within
t steps. This problem is readily seen to be NP-complete. We show that for every distributional
problem (L,D), where L is in NP and D is a polynomial-time computable distribution there is
a reduction from (L,D) to (BH,UBH), where UBH is a reasonable formalization of the notion of
a “uniformly chosen” random input for BH. Informally, the reduction maps an input x into the
triple (M ′, C(x), 1t) where C is a (carefully chosen) injective polynomial time computable encoding
function; M ′ is a non-deterministic machine that first recovers x from C(x) and then simulates the
non-deterministic polynomial time Turing machine that decides whether x ∈ L (recall that L is in
NP); and t is a polynomial upper bound to the running time of M ′. The main claim in the analysis
of the reduction is that, for x selected from D, C(x) is “approximately” uniformly distributed.

2Additional difficulties arise in defining how to specify D.
3When the second condition holds, we say that D′ dominates D.
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Technically, we show that the distribution of C(x) is dominated by the uniform distribution. This
will follow from a choice of C as an information-theoretic optimal compression scheme.

The completeness result implies that if (BH,UBH) has a good-on-average algorithm (according to
one of the possible definitions) then all problems (L,D) where L is in NP and D is polynomial time
computable also have good-on-average algorithms.

The proof uses the fact that all polynomial time computable distributions D allow polynomial
time computable optimal compression schemes. Many natural distributions are polynomial-time
computable, but there are a number of important exceptions. The output of a pseudorandom
generator, for example, defines a distribution that is not optimally compressible in polynomial time
and, hence, is not polynomial time computable.

1.1.4 Decision versus Search

The second result that we present, due to Ben-David et al. [BCGL92], shows that if (BH,UBH)
has a good-on-average algorithm, then for all NP relations R and all polynomial time computable
distributions D, there is an efficient algorithm that, given x sampled from D, almost always finds
a y such that R(x, y), provided that such a y exists. This shows that the question of whether there
are intractable-on-average search problems in NP (with respect to polynomial-time computable
distributions) is equivalent to the question of whether there are intractable-on-average decision
problems in NP (with respect to such distributions). Both questions are equivalent to the specific
decision problem (BH,UBH) being intractable.

1.1.5 Computable, Samplable, and Arbitrary Distributions

The restriction of the completeness result to samplable distributions is quite undesirable, because
it rules out reasonably natural distributions that can occur in certain applications. Ideally, it would
be desirable that the theory put no restriction whatsoever on the distributions, and that we could
prove results of the form “if there is a good-on-average algorithm for (BH,UBH), then for every L
in NP and every distribution D there is a good-on-average algorithm for (L,D).” The conclusion,
however, is equivalent to P = NP.4 More specifically, there is a distribution D such that, for
every language L in NP, if there is a good-on-average algorithm for (L,D) then there is a good-
on-worst-case algorithm for L. As we discuss below, there are difficulties in relating the worst-case
complexity to the average-case complexity of all problems in NP, and so it seems unlikely that the
theory can be generalized to handle completely arbitrary distributions. An important intermediate
case between polynomial-time computable distributions and arbitrary distributions is the class of
polynomial time samplable distributions. Such class includes some natural distributions that are
not polynomial time computable (for example, the output of a pseudorandom generator), and
an argument can be made that any distribution that occurs “in nature” should be samplable.
Impagliazzo and Levin [IL90] show that the completeness result can be extended to all samplable
distributions. That is, if (BH,UBH) admits a good-on-average algorithm, then for every problem L
in NP and every samplable distribution D, the problem (L,D) has a good-on-average algorithm. In
Sections 5.1 and 5.2 we present two proofs of this result. A simpler one, appearing in the paper of
Impagliazzo and Levin, which applies only to some (but not all) definitions of “good-on-average,”

4This was first proved by Levin. In Section 2.5 we present a later proof by Li and Vitányi [LV92].
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and a second proof, also due to Impagliazzo and Levin, but unpublished, that is more complex but
that applies to all definitions. The first proof is similar to the proof of the completeness result for
polynomial-time computable distributions, but using a randomized encoding scheme. An input x
for L is mapped into an input (M ′, (r, C(r, x)), 1t) for BH, where r is randomly chosen. The desired
properties of the randomized encoding C are: (i) over the choices of r, the encoding x → (r, C(x, r))
is “approximately injective,” and (ii) the distribution (r, C(x, r)) is “approximately uniform” when
r is uniformly chosen and x is sampled from D. Some additional difficulties arise: in order to
compute the randomized encoding one needs some extra information about x, and the reduction
just “guesses” all possible values for this extra information, and, for technical reasons, this forces
us to work with the search rather than the decision version of L. This is done without loss of
generality given the reduction of Ben-David et al. [BCGL92]. The idea for the second proof is
that, if S is the sampling algorithm for L, and L is hard-on-average over the outputs of S, then
the problem “on input r, is it true that S(r) ∈ L?” should be hard-on-average with respect to the
uniform distribution. This intuition is quite difficult to translate into a proof, especially in the case
in which the computation of the sampler S is a one-way function.

1.1.6 Worst Case versus Average Case

In order to unify the theory of average-case complexity with the rest of complexity theory, it
would be highly desirable to prove a theorem of the form “if P 6= NP then there is a hard-on-
average problem (L,D) where L is in NP and D is samplable.” In order to prove such a result
via a reduction, we would need to find an oracle algorithm R (the reduction) such that if A is a
good-on-average algorithm for (L,D) then RA is a good-on-worst-case algorithm for, say, 3SAT.
Feigenbaum and Fortnow [FF93] show that (under standard assumptions) such a result cannot
be proved via a non-adaptive random self-reduction, that is, via an algorithm R that makes non-
adaptive queries and such that each query has the distribution D (regardless of the input of R).
Bogdanov and Trevisan [BT03] show that the same impossibility result holds even if R is allowed
to make arbitrary non-adaptive queries, provided that R works for arbitrary oracles. It remains
possible that a worst-case-to-average-case reduction in NP exists which makes adaptive access to
the oracle, or that uses the code of the algorithm A (and, hence, does not work for arbitrary
oracles). Guttfreund and Ta-Shma [GT06] make some progress in the latter direction. An even
more ambitious goal is to show, via reductions that “if P 6= NP then one-way functions exist.”
The result of Bogdanov and Trevisan rules out the possibility of proving such a result via oracle
non-adaptive reductions; Akavia et al. [AGGM06] present a simpler proof in the setting of one-
way function (which, unlike the Bogdanov-Trevisan proof, works also in the uniform setting) and
are also able, for a restricted class of one-way functions, to rule out non-adaptive reductions. See
Section 7.

1.1.7 Degrees of Average-Case Intractability

If a problem L is worst-case intractable, then every efficient algorithm makes an infinite number
of mistakes; if a problem (L,D) is average-case intractable, then every efficient algorithm makes
mistakes5 on a set of inputs that has noticeably large probability according to D. Given the

5Or fails, depending on the definition of average-case tractability that we are using.
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difficulties in relating these two settings, it is interesting to ask what happens if we consider different
quantitative formulations of “noticeably large.” O’Donnell [O’D02] shows that any quantification
between 1/2 − 1/n.33 and 1/poly(n) leads essentially to an equivalent intractability assumption.
O’Donnell’s argument, presented in Section 6, gives a far-reaching generalization of Yao’s XOR
Lemma [Yao82].

1.1.8 Specific Problems

Eventually, we would like the theory to talk about the complexity of specific natural problems
with specific natural distributions. It follows from Cook’s reduction that if there is a hard-on-
average problem (L,D) where L is in NP and D is samplable, then every NP-hard problem is
hard on average with respect to some samplable distribution, albeit a very unnatural one. On the
other hand, Levin’s completeness result shows (under the same assumption) that there are hard-on
average problems (L,D) where D is uniform, but L is quite artificial. Yet the theory of average-case
completeness has little to say about specific cases of interest where both L and D are natural: for
instance the hardness of 3SAT or maximum independent set with respect to natural distributions
on inputs.

A specific problem whose average-case behavior has been widely investigated is random kSAT with
respect to the following distribution of instances: Choose at random mk(n) out of the 2k

(n
k

)

possible
clauses of kSAT independently. The tractability of this problem appears to depend heavily on the
number of clauses mk(n). While it is believed that random kSAT is hard for certain choices of
mk(n), no hardness result supporting this intuition is known. However, Feige [Fei02] shows the
following surprising connection between hardness of random 3SAT and hardness of approximation:
Assuming that random 3SAT is hard for certain values of m3(n), it is worst-case hard to approximate
certain problems in NP (e.g., maximum bipartite clique within n−ε for some ε > 0.)

For certain lattice problems we know an equivalence between worst-case and average-case complexity
[Ajt96, Mic04, MR04, Reg05]. If such equivalences could be proved for NP-complete lattice problems
we would have a positive solution to the question of whether the existence of hard-on-average
problems in NP can be based on the worst-case assumptions on NP-complete problems.

1.2 A Historical Overview

In this section we review the historical progression towards the results described in the previous
section.

1.2.1 One-Way Functions and Cryptography

The average-case performance of algorithms on random inputs has been studied since the beginning
of the modern theory of efficient algorithms in the 1950s and 1960s. Such work was often focused on
problems for which worst-case polynomial time algorithms were also known. Volume 3 of the Art
of Computer Programming [Knu73] (published in 1973) extensively surveys average-case analyses
of algorithms for problems such as sorting and median-finding.

The study of the average-case of (conjectured) intractable problem began in the 1970s motivated
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by the development of the foundations of cryptography and by interest in heuristic approaches to
NP-complete problems.

When Diffie and Hellman [DH76] introduced the notion of public-key cryptography, they speculated
that one could base a trapdoor permutation on the difficulty of an NP-complete problem.6 Even,
Yacobi and Lempel [EY80, Lem79] devised a public key cryptosystem such that an efficient adver-
sary that breaks the system for every key implies an efficient algorithm for an NP-complete problem.
An efficient adversary that breaks the system on almost all keys, however, is also discussed.

Shamir [Sha79] discusses the difficulty in formulating a definition of intractability for cryptographic
applications. Worst-case complexity is immediately seen as inadequate. Furthermore, Shamir
emphasizes that a cryptographic system cannot be considered secure if there is an attack that
takes expected polynomial time. In fact, Shamir adds, it is not even enough to rule out expected
polynomial time attacks. Consider for example a system that can be broken by an attacker whose
expected running time is very large but whose median running time is efficient. This is possible if
the attacker takes a very long time, say, on one third of the keys but is efficient otherwise. Even
though the expected running time of the adversary is large, such a system cannot be considered
secure.

The median running time of an adversary is thus a better complexity measure of the expected
running time, Shamir notes, but one needs to go beyond, and consider the running time of, say,
the 1% fraction of inputs on which the algorithm is fastest. This short discussion anticipates the
formal definition of one-way function and the difficulties in defining a robust notion of “average-case
tractability” in Levin’s theory of average-case complexity.

The work of Blum, Goldwasser, Micali and Yao [GM84, BM84, Yao82] put cryptography on solid
foundational grounds, and introduced the modern definitions of one-way functions, trapdoor per-
mutation, pseudorandom generator, and secure encryption. In their definition, an efficiently com-
putable function f is one-way if there is no polynomial time algorithm that finds a preimage of
f(x) with more than inverse polynomial probability over the choice of x. This means that if f is
a one-way function then the computational problem “given y = f(x) find a pre-image of y,” has
no algorithm of expected polynomial time, no algorithm of median polynomial time, no algorithm
that runs in polynomial time on the easiest 1% fraction of inputs, and so on.

1.2.2 Levin’s Theory of Average-Case Intractability

The development of the theory of NP-completeness gave evidence that a large number of important
computational problems do not admit worst-case efficient algorithms and motivated the design of
good-on-average algorithms as a way to “cope” with intractability.

Following this approach, the goal is to analyse worst-case super-polynomial time algorithms for
NP-complete problems and to show that on “typical” instances they are efficient. A celebrated
example is Karp’s algorithm for TSP in the plane [Kar77]. An annotated bibliography by Karp et
al. [KLMK85] written in 1985 reports several results on average-case tractability of NP-complete
problems on natural distributions.

6Indeed, Diffie and Hellman give two main justifications for their claim that “we stand on the brink of a revolution
in cryptography:” the availability of cheap and efficient computers (in the 1970s!) and the development of NP-
completeness.



8 CHAPTER 1. INTRODUCTION

The initial success in the design of good-on-average algorithms led to the question of the limitations
of such an approach. Are there NP-complete problems that, with respect to natural distributions,
do not even have good-on-average algorithms? Are there general techniques, analogous to the
theory of NP-completeness, to prove average-case intractability? 7

Levin [Lev86] laid the foundations for a theory of the average-case tractability of problems in NP.
Levin introduced the definition of average-case tractability and of reduction outlined above, and
proved the first completeness result, for the class (NP,PComp) of problems (L,D) such that L is
in NP and D is polynomial-time computable.

Levin’s paper, both in the one-page conference version and in the two-page full version [Lev86],
gives few details about the intuition behind the definitions and the possibility of generalized or
alternative definitions.

Ben-David et al. [BCGL92] consider two issues not addressed in Levin’s paper. One issue is the
class of distributions to consider. Levin restricts his attention to the class of “polynomial time com-
putable distributions,” that includes several natural distributions but that excludes, for example,
the output of a pseudorandom generator and other natural distributions. Ben David et al. ob-
serve that the more general class of “efficiently samplable” distributions is a better formalization
of the notion of natural distribution and formulate the question of whether Levin’s completeness
result can be extended to the corresponding class (NP,PSamp) of distributional problems (L,D)
such that L is in NP and D is samplable. Another issue studied in [BCGL92] is the average-case
complexity of decision versus search problems, and their main result shows that if every decision
problem in NP can be solved efficiently with respect to the uniform distribution, then every search
problem in NP can also be solved efficiently with respect to the uniform distribution. Impagliazzo
and Levin [IL90], solving the main open question formulated in [BCGL92], prove that there is a
problem that is complete for (NP,PSamp).

1.2.3 Average-Case Intractability and Derandomization

Yao [Yao82] proves that the existence of pseudorandom generators implies the possibility of de-
randomizing probabilistic algorithms, and that pseudorandom generators can be constructed using
one-way permutations. (H̊astad et al. [HILL99] later proved that the existence of one-way func-
tions is sufficient.) The existence of a one-way permutation f can be stated as the average-case
intractability of the distributional search problem of inverting f on a random input, so Yao’s result
proves that a specific average-case assumption (for certain search problems within NP) implies
derandomization of probabilistic algorithms. The connection between average-case complexity and
derandomization became more direct, simpler, and more general in the work of Nisan and Wigder-
son [NW94]. Their work requires the existence of hard-on-average distributional decision problems
in EXP. The work of Nisan and Wigderson raised the

question of whether derandomization could be based on worst-case assumptions about problems
in EXP instead of average-case assumptions. The question led to the study of worst-case versus

7Interestingly, around the same time (mid 1970s), another approach was studied to “cope” with the intractability
of NP-complete optimization problems, namely, to design provably efficient approximate algorithm that deliver near-
optimal solution, and the question was asked of when not even such algorithms exist. In the 1990s, the theory
of probabilistically checkable proofs gave a powerful tool to prove intractability of approximation problems. A
satisfactory and general theory to prove average-case intractability, unfortunately, does not exist yet.
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average-case complexity in EXP, and to such tools as random-self-reduction [BFNW93], amplifica-
tion of hardness [Imp95, IW97], and error-correcting codes [STV01]. As a result of this decade-long
investigation we now know that worst-case and average-case are equivalent in complexity classes
such as EXP and PSPACE. The interested reader can find an account of such results in a survey
paper by Trevisan [Tre04] (see, in particular, Section 4) and in a survey paper by Kabanets [Kab02].

1.2.4 Worst-Case versus Average Case within NP

The proofs of the worst-case and average-case equivalence for complete problems in EXP, PSPACE
and other classes raise the question whether a similar worst-case and average-case equivalence
also holds for intractable problems within NP. This is related to fundamental questions in the
foundations of cryptography: Is it possible to base one-way functions on NP-completeness? If so,
what about one-way permutations, or public key encryption?

It is easy to see that one-way permutations cannot be based on NP-completeness, unless NP = coNP
(or AM = coAM if one allows randomized reductions, or NP/poly = coNP/poly if one allows
non-uniform reductions). Not even the intractability of worst case inversion can be based on NP-
completeness (see Section 7.2).

On the other hand it is possible to define “one-way functions” that are computable in polynomial
time and that cannot have a “worst-case inverter” (that is, a polynomial time inverter that works
on all inputs) unless P = NP. For this reason, when we ask whether the existence of one-way
functions (under the standard, average-case, definition) can be based on NP-completeness, we are
asking a question about the average-case complexity of inverters.

To clarify before we continue: The existence of one-way permutations implies the existence of one-
way functions, which implies the existence of hard-on-average distributional problems in (NP,PSamp)8

which implies that P is different from NP. We do not know how to prove the inverse of any of
those implications, even though we believe that all the statements are true, and so they all imply
each other vacously.

We can ask, however, whether reverse implications can be proved via reductions, that is, for example,
whether there is a distributional problem (L,D) in (NP,PSamp) and a reduction R such that, for
every algorithm A that solves (L,D) well on average, the reduction R plus the algorithm A give a
worst-case algorithm for 3SAT.

Feigenbaum and Fortnow [FF93] study a special case of the above question. They consider the
case in which R is a “non-adaptive random self-reduction.” They show that the existence of such a
reduction implies the collapse of the polynomial hierarchy (which contradicts standard conjectures.)
The result of Feigenbaum and Fortnow rules out a certain way of proving equivalence of worst-case
and average-case for NP-complete problems, including the way used in the work on EXP and
PSPACE [BFNW93, Imp95, IW97, STV01] (see Section 7.3).

In a celebrated breakthrough, Ajtai [Ajt96], describes a distributional problem in (NP,PComp)
whose average-case complexity is at least as high as the worst-case complexity of a related (promise)
problem in NP — a version of the shortest vector problem for lattices in R

n. Ajtai also proves
the existence of one-way functions that are based on the worst-case complexity of problems in NP.
Ajtai and Dwork [AD97] present a public-key cryptosystem based on a worst-case assumption, and

8This implication is non-trivial; see Section 4.3.
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Micciancio and Regev [Mic04, MR04, Reg05] present various improvements.

The security of the cryptosystems of Ajtai, Dwork, Micciancio and Regev relies on the worst-case
complexity of problems that are not known to be NP-complete and, in fact, are in NP ∩ coNP.
It remains an open question whether these techniques can be refined and improved to the point
where cryptography primitives can be constructed that rely on the worst-case complexity of an
NP-complete problem.

Bogdanov and Trevisan [BT03] prove that no non-adaptive worst-case to average-case reduction
exist for NP-complete problems unless NP/poly = coNP/poly. Akavia et al. [AGGM06] prove that
one-way functions cannot be based on NP-complete problems via non-adaptive reductions unless
AM = coAM (see Section 7.3).

It seems likely that reductions cannot relate worst case and average case hardness in NP. What
about different degrees of average-case intractability? For instance, if there exist distributional
problems in NP that are hard on some non-negligible fraction of instances, does it follow that there
are distributional problems in NP that are hard on almost all instances? These questions have been
answered in the affirmative by O’Donnell [O’D02] and Healy, Vadhan, and Viola [HVV04] in the
non-uniform setting and by Trevisan [Tre03, Tre05] in the uniform setting (see Section 6.)



Chapter 2

Definitions of “Efficient on Average”

A distributional decision problem is a pair (L,D) where L is a language and D describes how inputs
are distributed. There are various possible formalizations of how D is specified, of what constitutes
a “natural” subset of distribution of inputs to restrict to, and of what it means for a distributional
problem to have a good-on-average algorithm. We discuss the various definitions, and the relations
among them, in this section.

2.1 Distribution over Inputs

There are at least two common conventions on how to specify D. The convention introduced by
Levin [Lev86] is that D is a probability distribution over the set {0, 1}∗ of all possible bit strings.
This convention is convenient in many applications, and, for example, it leads to a simple definition
of reduction preserving average-case algorithms. Sometimes, however, the single-distribution con-
vention leads to counter-intuitive definitions: in the uniform distribution over {0, 1}∗, as defined by
Levin, each binary string of length n has probability Θ(n−22−n). In the single-distribution setting
it is also harder to quantify average-case hardness and to give definitions of circuit complexity, and
both of these notions are important for applications to derandomization.

The other possibility is to define for each n a finite distribution Dn, with the intuition that Dn is a
distribution over inputs of “size” n, and to let D be the ensemble D = {Dn}n>0. This convention
is common in cryptography and derandomization. In cryptography, it is common to call n the
security parameter of the distribution Dn.

In this paper we adopt the second convention, where D is an ensemble of distributions. When
discussing average-case complexity with respect to samplable ensembles, the two definitions are
essentially equivalent, as we discuss in Section 5.

In Section 3 we discuss an average-case analog of the notion of NP-completeness. Intuitively, we
would like a definition of “average-case NP-hard” distributional problem (L,D) such that if (L,D)
is average-case tractable (a notion that has several possible formalizations, more later on this)
then for every problem L′ in NP and every ensemble D′, the distributional problem (L′,D′) is also
average-case tractable. Unfortunately, such an approach is unlikely to work:

• As we show in Section 2.5 below, a conclusion of the form “for every problem L′ in NP and

11
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every D′, the distributional problem (L′,D′) is average-case tractable” implies P = NP, even
if we allow very weak notions of average-case tractability;

• As we show in Section 7, it is unlikely that we can use reductions to prove statements of the
form ”if (L,D) is average-case tractable then P = NP,” where L is in NP and D is, say, the
uniform ensemble.

Together, these two results imply that an average-case analog of the theory of NP-completeness
cannot refer to the class of all distributional problems (L,D) with L in NP, and that it is necessary
to put some restriction to the class of distributions to be considered.

The most natural restriction is to consider samplable ensembles, that is, ensembles of distributions
that can be realized as outputs of a polynomial time sampling algorithm. There are, in turn,
several possible formalizations of the notion of samplable distributions: among other choices, we
may require the sampling algorithm to always run in polynomial time (in which case the sampler
is said to run in strict polynomial time) or to run in expected polynomial time (the latter notion
itself has various possible formalizations), and we may require the output of the sampler to be a
perfect, statistical or computational simulation of the true distribution. The distinction between
these various notions of efficient samplability is important in the study of zero-knowledge protocols,
and we refer the reader to the chapter on Zero Knowledge in Oded Goldreich’s book [Gol01]. For
our purposes, it will convenient to just consider the simplest definition, corresponding to perfect
sampling with strict polynomial running time.1

Definition 1 (Samplable Ensemble). An ensemble D = {Dn} is polynomial time samplable if
there is a randomized algorithm A that, on input a number n, outputs a string in {0, 1}∗ and:

• There is a polynomial p such that, on input n, A runs in time at most p(n), regardless of its
internal coin tosses;

• For every n and for every x ∈ {0, 1}∗, Pr[A(n) = x] = Dn(x).

We will also be interested in a more restricted class of distributions, those for which the cumulative
probability of a given string is efficiently computable. Let � denote the lexicographic ordering
between bit strings, then if D is a distribution we define fD(x) = D({y : y � x}) =

∑

y�x D(y).

Definition 2 (Computable Ensemble). We say that an ensemble D = {Dn} is polynomial time
computable if there is an algorithm that, given an integer n and a string x, runs in time polynomial
in n and computes fDn(x).

Observe that if {Dn} is a computable ensemble, then in particular the function Dn(x) is computable
in time polynomial in n.

We let PSamp denote the class of polynomial-time samplable ensembles, and PComp denote the
class of polynomial time computable ensembles.

The uniform ensemble U = {Un}, where Un is the uniform distribution over {0, 1}n, is an example
of a polynomial time computable ensemble. Abusing notation, we also denote the class whose only
member is the uniform ensemble by U .

1We stress, however, that the results that we prove about samplable ensembles remain true even if we adopt more
relaxed definitions of samplability.
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It is not difficult to see that every polynomial-time computable ensemble is also polynomial-time
samplable (see Section 3.3). The converse does not hold unless P = P#P. In fact, PComp = PSamp

if and only if P = P#P.

Distributional Complexity Classes. A distributional complexity class is a collection of distri-
butional decision problems. For a class of languages C and a class of ensembles D, we use (C,D) to
denote the distributional complexity class consisting of all problems (L,D) where L ∈ C and D ∈ D.
In this survey we focus on the distributional complexity classes (NP,PSamp), (NP,PComp), and
(NP,U).

2.2 Heuristic and Errorless Algorithms

In this section we define two notions of average-case tractability.

Suppose that we are interested in algorithms that are efficient on average for some samplable
ensemble D = {Dn}. For technical reasons, our algorithms are given, in addition to the input x, a
parameter n corresponding to the distribution Dn from which x was sampled. We write A(x;n) to
denote the output of algorithm A on input x and parameter n.

2.2.1 Average Polynomial Time and Errorless Heuristics

We begin by considering algorithms that never make mistakes and that are efficient on “typical
instances.” A simple measure of average-case complexity of an algorithm A would be its expected
running time, and so we may think of defining an algorithm A as having “polynomial on average”
running time for a distributional problem (L,D) if there is a polynomial p such that

Ex∼Dn [tA(x;n)] =
∑

x∈{0,1}∗
Dn(x)tA(x;n) ≤ p(n)

for every n, where tA(x;n) is the running time of A on input x and parameter n.

Such a definition is problematic because there are algorithms that we would intuitively consider
to be “typically efficient” but whose expected running time is superpolynomial. For example,
suppose that A is an algorithm of expected polynomial running time, and let B be an algorithm
that is quadratically slower than A. (That is, for every x, tB(x;n) = (tA(x;n))2.) Then we should
definitely think of B as being typically efficient. Suppose, however, that Dn is the uniform ensemble
and that A runs in time, say, O(n2) on all inputs of length n, except on a set of 2n/2 inputs on
which it takes time O(2n/2); then the expected running time of A is O(n2) (the few “hard inputs”
only contribute an additive constant to the average running time). If B, however, is quadratically
slower than A, then B takes time O(n4) on all inputs except on 2n/2 on which it takes time O(2n).
The average expected running time of B is now O(2n/2), dominated by the time taken on the hard
inputs.

In order to be less dependent on the running time of exceptional inputs, we may decide to look at
the median running time instead of the expected running time. Such a choice would work well with
the above example: both A and B have polynomial median running time. More generally, if A is
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an algorithm of polynomial median running time and B runs polynomially slower than A, then B
must also have polynomial median running time.

Consider, however, an algorithm that runs in time O(n2) on 2
3 ·2n inputs and in time O(2n) on 1

3 ·2n

inputs of length n. Such an algorithm has polynomial median running time with respect to the
uniform ensemble, but intuitively we wouldn’t consider it to be a “typically” efficient algorithm.

We may choose to consider the 99th percentile instead of the median, but each such threshold
would be arbitrary. What we would really like to capture with a definition is the notion that a
“typically efficient” algorithm may take very long, even exponential, time on some inputs, but
that the fraction of inputs requiring larger and larger running time are smaller and smaller. In
formalizing this intuition, it is natural to require a polynomial trade-off between running time and
fraction of inputs. This leads us to our first definition.

Definition 3 (Average Polynomial Running Time – Trade-off Definition). An algorithm A has
average polynomial running time with respect to the ensemble D if there is an ε > 0 and a polynomial
p such that for every n and every t:

Prx∼Dn [tA(x;n) ≥ t] ≤ p(n)

tε

If A satisfies the above definition, then the median running time of A is polynomial, and, further-
more, A runs in polynomial time on all but at most a 1/n fraction of the inputs, in time at most
O(nO(log n)) on all but at most a 1/nlog n fraction of the inputs, and so on. Levin gave the following
equivalent definition.

Definition 4 (Average Polynomial Running Time – Levin’s Definition). An algorithm A has av-
erage polynomial running time with respect to the ensemble D if there is an ε > 0 such that

Ex∼Dn [tA(x;n)ε] = O(n)

Naturally, O(n) can be replaced by an arbitrary polynomial in n. The two definitions are easily
seen to be equivalent.

Proposition 5. An algorithm A has average polynomial running time with respect to the ensemble
D according to Definition 3 if and only if it does according to Definition 4.

Proof. Suppose that the running time tA of A satisfies

PrDn [tA(x;n) ≥ t] ≤ nct−ε

for some constants c, ε and for every sufficiently large n. Define δ = ε/(c + 2). Then
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EDn [tA(x;n)δ ] =
∑

t
PrDn [tA(x;n)δ ≥ t]

≤ n +
∑

t≥n
PrDn [(tA(x;n)) ≥ t1/δ ]

≤ n +
∑

t≥n
nct−ε/δ

= n +
∑

t≥n
nct−(c+2)

≤ n +
∑

t
t−2

= n + O(1)

This proves if A satisfies Definition 3 then it satisfies Definition 4. For the other implication,
suppose

EDn [tA(x;n)ε] = O(n)

Then, by Markov’s inequality

PrDn [tA(x;n) ≥ t] = PrDn [tA(x;n)ε ≥ tε] ≤ EDn [tA(x;n)ε]

tε
= O(nt−ε)

We now describe a third equivalent way to think of average polynomial time. Suppose that A is an
algorithm of average polynomial running time according to the above definitions. If we think about
running A “in practice,” it is reasonable to assume that we will not be able to run A for more than
a polynomial number of steps. We can then think of the inputs on which A takes super-polynomial
time as inputs on which A “fails,” because we have to stop the computation without being able to
recover the result.

The notion of an algorithm that fails on some inputs is captured by the following definition.

Definition 6 (Errorless Heuristic Scheme). We say that an algorithm A is a (fully polynomial-
time) errorless heuristic scheme for (L,D) if there is a polynomial p such that

• For every n, δ > 0, and every x in the support of Dn, A(x;n, δ) outputs either L(x) or the
special failure symbol ⊥;

• For every n, δ > 0, and every x in the support of Dn, A(x;n, δ) runs in time at most p(n/δ);

• For every n and every δ > 0,

Prx∼Dn [A(x;n, δ) = ⊥] ≤ δ

We now show that errorless heuristic schemes are yet another way to capture the notion of average-
case tractability of Definition 3 and Definition 4.
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Proposition 7. A distributional problem (L,D) admits a fully polynomial time errorless heuristic
scheme if and only if it admits an algorithm whose running time is average-polynomial according
to Definition 3 and Definition 4.

Proof. Suppose that A is an algorithm that runs in average-polynomial time according to Definition
3, that is, assume that there is a polynomial p and an ε > 0 such that for every n,

PrDn [tA(x;n) ≥ t] ≤ p(n)

tε

Then define the algorithm A′ that on input x and parameters n, δ simulates A(x;n) for (p(n)/δ)1/ε

steps. If the simulation halts within the required number of steps, then A′(x;n, δ) gives the same
output as A(x;n); otherwise A′(x;n, δ) outputs ⊥. It is easy to see that A′ satisfies the definition
of an errorless heuristic scheme.

Suppose now that A′ is an errorless heuristic scheme for (L,D). Define the algorithm A as follows:
On input (x;n), simulate A(x;n, 1/2), if A(x;n, 1/2) 6= ⊥, then return the output of A(x;n, 1/2),
otherwise simulate A(x;n, 1/4), and so on, simulating A(x;n, 1/8), . . . , A(x;n, 2−k), . . . until we
reach a value of δ such that A(x;n, δ) 6= ⊥. Eventually, the algorithm succeeds, because when δ <
Dn(x) then A(x;n, δ) cannot output ⊥. After k iterations, A uses time

∑k
i=1 p(2in) = O(k ·p(2kn)),

for a polynomial p, and it halts within k iterations on all but a 1/2k fraction of inputs. It is now
easy to verify that A runs in average polynomial time according to Definition 3.

Having given three equivalent formulations of “efficient on average” algorithms, we are ready to
define a complexity class of distributional problems.

Definition 8 (Average Polynomial Time). We define AvgP to be the class of distributional prob-
lems that admit an errorless heuristic scheme.

The third approach to the definition leads naturally to a finer quantitative definition.

Definition 9 (Errorless Heuristic Algorithms). Let L be a language, D be an ensemble, and δ :
N → R

+. We say that an algorithm A is an errorless heuristic algorithm for (L,D) with failure
probability at most δ if

• For every n and every x in the support of Dn, A(x;n) outputs either L(x) or the special
failure symbol ⊥, and

• For every n, Prx∼Dn [A(x;n) = ⊥] ≤ δ(n).

For a function t : N → N, we say that (L,D) ∈ AvgδDTIME(t(n)) if there is an errorless heuristic
deterministic algorithm A that for every n and every x ∈ Supp(Dn) runs in time t(n) with failure
probability at most δ(n).

We define AvgδP as the union over all polynomials p of AvgδDTIME(p(n)).

We use AvgnegP to denote the union of all classes AvgδP, where δ is a negligible function. Recall
that δ is negligible if, for every polynomial p and for every sufficiently large n, δ(n) ≤ 1/p(n).

Observe that an errorless heuristic scheme for a distributional problem automatically yields errorless
heuristic algorithms with error probability 1/p(n) for the same problem, for every polynomial p.
For certain problems, heuristic algorithms can conversely be turned into heuristic schemes. We
discuss this connection in Section 3.3.
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2.2.2 Heuristic Algorithms

So far we have considered only algorithms that never make mistakes: they always either produce
a correct answer or fail. It is also interesting to consider algorithms that return incorrect answers
on a small fraction of inputs, which is what we do next.

Definition 10 (Heuristic Algorithms). Let L be a language, D be an ensemble, and δ : N → R
+.

We say that an algorithm A is a heuristic algorithm for (L,D) with error probability at most δ if
for all n > 0,

Prx∼Dn [A(x;n) 6= L(x)] ≤ δ(n) .

Definition 11 (Heuristic Polynomial Time). For functions t : N → N and δ : N → R
+, we say

that (L,D) ∈ HeurδDTIME(t(n)) if there is a heuristic deterministic algorithm A that for every n
and every x ∈ Supp(Dn) runs in time t(n) with failure probability at most δ(n).

We define HeurδP as the union over all polynomials p of HeurδDTIME(p(n)).

We say that an algorithm A is a (fully polynomial-time) heuristic scheme for (L,D) if there is a
polynomial p such that

• For every n, for every x in the support of Dn and every δ > 0, A(x;n, δ) runs in time at
most p(n/δ);

• For δ > 0, A(·; ·, δ) is a heuristic algorithm for (L,D) with error probability at most δ.

We define HeurP to be the class of distributional problems that admit a heuristic scheme.

We use HeurnegP to denote the union of all classes HeurδP, where δ is a negligible function.

An errorless algorithm can be easily turned into a heuristic algorithm by replacing the failure
symbol ⊥ by an arbitrary output. Thus AvgC ⊆ HeurC and AvgδC ⊆ HeurδC for all classes of
this type described above.

2.3 Non-uniform and Randomized Heuristics

We will also be interested in non-uniform and randomized heuristic algorithms.

Deterministic heuristics turn out to be an inadequate notion in much of average-case complexity,
including many of the results stated in this survey. For instance, the decision-to-search reduction
of Ben-David et al. in Section 4 and the reductions of Impagliazzo and Levin from (NP,PSamp) to
(NP,U) in Section 5 are both randomized, so to understand these reductions one must first define
the notion of a randomized heuristic. The results on hardness amplification in Section 6 make use
of both randomness and non-determinism.

However, the definitions of non-uniform and randomized heuristics contain some subtleties, and
the the reader feels overwhelmed by definitions at this point he may skip ahead to Section 2.4.

Non-Uniform Heuristics. For a function s : N → N, we define HeurδSIZE(s(n)) and HeurP/poly
in the same way we define HeurδDTIME(t(n)) and HeurP, respectively, but referring to “circuits
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of size s(n)” instead of “algorithms running in time t(n).” Similarly, we define the non-uniform
errorless heuristic classes AvgδSIZE(s(n)) and AvgP/poly.

A small technical point is that, when we consider a distributional problem (L, {Dn}), the inputs
in the support of Dn may have different lengths. In such a case, we need to fix a convention to
allow Boolean circuits to accept inputs of various lengths. Once such a convention is chosen, then,
for example, (L, {Dn}) ∈ AvgδSIZE(s(n)) means that there is a family of circuits Cn such that, for
every n: (i) Cn is of size at most s(n); (ii) for every x in the support of Dn, Cn(x) outputs either
L(x) or ⊥; (iii) Prx∼Dn [C(x) 6= L(x)] ≤ δ(n).

Randomized Heuristics. When defining randomized heuristic algorithms, there are two ways
in which the algorithm can fail to produce a correct answer: It can either run on an input on
which the heuristic fails, or it can run on an input for which the heuristic is good but make a
bad internal coin toss. It is important to keep this distinction in mind when defining randomized
errorless heuristic algorithms. Here “errorless” refers to the choice of input and not to the internal
coin tosses of the algorithm.

In particular, we allow the randomized errorless algorithm to sometimes output incorrect answers,
as long as for every instance x, the fraction of random strings for which the algorithm outputs the
wrong answer is small compared to the fraction of random strings for which it outputs either the
right answer or ⊥.

Definition 12 (Randomized Errorless Heuristics). Let (L,D) be a distributional problem and δ :
N → R

+. We say that a randomized polynomial-time algorithm A is a randomized errorless heuristic
algorithm of failure probability at most δ if, for every n > 0, and every x in the support of Dn,

Pr[A(x;n) 6∈ {L(x),⊥}] ≤ 1/4

where the probability is taken over the coin tosses of A, and

Prx∼Dn

[

Pr[A(x;n) = ⊥] ≥ 1/4
]

≤ δ(n)

where the inner probability is over the internal coin tosses of A.

To see why this definition makes sense, fix an input (x;n) and imagine running the algorithm k
times, for some large k. If substantially more than k/4 — say, k/3 — of these runs return the
failure symbol ⊥, we can interpret this as a sign that the algorithm doesn’t know the answer for x.
The second condition of Definition 12, together with standard Chernoff-type bounds, guarantees
that this won’t happen for more than a δ(n)-fraction of instances x ∼ Dn with high probability
over the randomness of the algorithm.

If, on the other hand, the number of runs that return ⊥ is smaller than k/3, then the first condition
of Definition 12 guarantees that with high probability, a majority of the runs that do not output
⊥ will output the correct answer, so we obtain the correct answer for x with high probability over
the randomness of the algorithm.

This argument shows that the choice of constant 1/4 is arbitrary, and any constant bounded away
from 1/3 can serve in the definition. In the other direction, the algorithm A′ that simulates A
k = k(n) times satisfies:

Pr[A′(x;n) 6∈ {L(x),⊥}] = 2−Ω(k(n)) (2.1)
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and

Prx∼Dn

[

Pr[A′(x;n) = ⊥] ≥ 1

2k(n)/100

]

≤ δ(n). (2.2)

If the constant 1/4 is replaced by 0 in the first condition of Definition 12, we obtain the definition
of zero-error randomized errorless heuristics.

Definition 13 (Randomized Errorless Classes). We say that (L,D) is in AvgδBPTIME(t(n)) if
there is a randomized errorless algorithm A of failure probability at most δ(n) and of running
time at most t(n) on inputs in the support of Dn. If A is zero-error, we say that (L,D) is in
AvgδZPTIME(t(n)).

We define AvgδBPP, AvgBPP, AvgδZPP, and AvgZPP in the obvious way.

If we choose k(n) = O(n) in equations (2.1) and (2.2), the probabilities over the internal coin tosses
of A′ can be made smaller than 2n, and using Adleman’s proof that BPP ⊆ P/poly [Adl78], we
have AvgδBPP ⊆ AvgδP/poly, AvgBPP ⊆ AvgP/poly and so on.

In the case of heuristic algorithms that are allowed to make errors the definition simplifies as we do
not have to distinguish between errors owing to bad inputs and errors owing to bad internal coin
tosses.

Definition 14 (Randomized Heuristics). Let (L,D) be a distributional problem and δ : N → R
+.

We say that a randomized algorithm A is a randomized heuristic of failure probability at most δ if
for every n,

Prx∼Dn

[

Pr[A(x;n) 6= L(x)] ≥ 1/4
]

≤ δ(n)

where the inner probability is over the internal coin tosses of A.

Definition 15 (Randomized Heuristic Classes). We say that (L,D) is in HeurδBPTIME(t(n)) if
there is a randomized errorless algorithm A of failure probability at most δ(n) and of running time
at most t(n) on inputs in the support of Dn. We define HeurδBPP and HeurBPP in the obvious
way.

For all classes of the type AvgδC and HeurδC defined above, we define AvgnegC and HeurnegC as
their union over all negligible functions δ, respectively.

For the non-uniform and randomized heuristic classes, we have the standard containments AvgC ⊆
HeurC. For the classes of type AvgδC and HeurδC it is possible to improve the containments in
the deterministic case, as the algorithm can randomly (or non-uniformly) guess the answer for ⊥,
so that AvgδC ⊆ Heurδ/2C.

2.4 Representing Inputs

Average-case complexity is more sensitive to how we encode inputs to algorithms than worst-case
complexity. For instance, operations like changing the alphabet or duplicating an instance do not
have much effect in most treatments of worst-case complexity, while in average-case complexity
they can considerably modify the distribution on inputs.
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It will therefore be convenient to fix an encoding for inputs that is robust for average-case reductions
and algorithms. In the applications described in this survey, it will be necessary to have robust
representations of the following types of inputs with respect to the uniform distributions: tuples of
strings, machines, and hash functions. For instance, one feature of the encodings is that a random
string in the uniform distribution will represent a valid tuple or a valid hash function with non-
negligible probability. It is not difficult to imagine why this is crucial for average-case algorithms.
In contrast, many natural encodings of these objects that are perfectly adequate in worst-case
complexity do not have these property.

We do not try to optimize our representations in any manner; we simply choose representations
that will be adequate for all applications covered in this survey.

Tuples. We represent inputs to algorithms as strings in {0, 1}∗. A good representation for tuples
of strings (in the uniform distribution) should have the property that the probability of generating
a tuple (x1, . . . , xt) should be roughly 2−(|x1|+···+|xt|). We will adopt the following convention
for tuples: First, write a prefix free encoding of the number |x1| by repeating every bit twice
and ending with 01. Then write down x1. Repeat with x2, x3, up to xt. Thus the description
length of (x1, . . . , xt) is 2 log|x1| + · · · + 2 log|xt| + |x1| + · · · + |xt| + O(t). Alternatively, the
probability of generating (x1, . . . , xt) in the uniform distribution according to this representation
is (|x1| . . . |xt|)−22−(|x1|+···+|xt|+O(t)). Observe that this representation is prefix-free.

When all of the strings in the tuple have the same length more compact representations are of
course possible; such representations will be necessary for the results on hardness amplification in
Section 6.

Machines. Sometimes the input (or a part of it) is the description of a machine. The exact way
in which machines are represented is irrelevant, so we fix an arbitrary representation for machines.

Hash functions. In Section 4 and Section 5, algorithms take as part of their input a description
of a hash function h. By ”hash function” we mean a random instance from a family of pairwise
independent hash functions mapping {0, 1}m to {0, 1}n for fixed m and n. To be specific, we can
think of the family of affine transformations h(x) = Ax + b, where A is an m × n matrix, b is an
n bit vector, and the operations are over Z2. We represent such transformations by specifying the
tuple (A, b), so that the description length is 2 log m + 4 log n + mn + n + O(1).

For a function h : {0, 1}m → {0, 1}n, we use h|j (where 1 ≤ j ≤ n) to denote the function that
consists of the first j output bits of h. If h is a hash function, then so is h|j .
We will also consider hash functions from {0, 1}≤m (the set of binary strings of length at most m)
to {0, 1}n. We will identify such functions with hash functions from {0, 1}m+1 to {0, 1}n, where
{0, 1}≤m is embedded in {0, 1}m+1 in the natural way: String x maps to 0m−|x|1x.
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2.5 A Distribution for Which Worst-Case and Average-Case Are

Equivalent

In this section we show that there exists a (possibly non-samplable) ensemble of distributions
with respect to which worst-case and average-case tractability are equivalent notions. Thus the
study of average-case complexity with respect to all ensembles reduces to the study of worst-case
complexity, and in this sense it is natural to consider restricted classes such as computable and
samplable ensembles, as we do in the remainder of this survey.

Theorem 16 (Levin, Li and Vitányi). There is an ensemble D such that if L is a decidable language
and the distributional problem (L,D) is in Heur1/n3P, then L ∈ P.

We present a proof due to Li and Vitányi [LV92] that relies on Kolmogorov complexity.

We consider pairs (M,w), where M is a machine and w is a string. Recall that if M is ` bits long
and w is n bits long, then (M,w) has length ` + n + 2 log ` + 2 log n + O(1).

For a binary string x, denote K(x) as the length of the shortest pair (M,w) such that M on input
w outputs x. The value K(x) is called the (prefix-free) Kolmogorov complexity of x.

The universal probability distribution K is defined so that the probability of a string x is 2−K(x).
Observe that

∑

x 2−K(x) ≤ 1 since the representation of (M,w) is prefix-free. (In fact,
∑

x 2−K(x) <
1 so K is technically not a probability distribution, but we can correct this by assigning, say, to the
empty string ε the probability 1−∑

x 6=0 2−K(x).) Finally, let {Kn} be the ensemble of distributions
where Kn is the distribution K conditioned on strings of length n.

It turns out that for every language L, solving L well on average with a heuristic algorithm is as
hard as solving L well on the worst case.

Proof of Theorem 16. We use the ensemble {Kn} defined above.

Let A be the polynomial time heuristic algorithm that witnesses (L, {Kn}) ∈ Heur1/n3P. We will
argue that there is only a finite number of inputs x such that A(x; |x|) 6= L(x), which implies that
L ∈ P.

We first need to understand the distributions Kn in the ensemble. By definition,

Kn(x) =
2−K(x)

∑

y∈{0,1}n 2−K(y)

and we can see that
∑

y∈{0,1}n 2−K(y) = Ω(1/n(log n)2) because the string 0n has Kolmogorov

complexity at most log n + 2 log log n + O(1) and so contributes at least Ω(1/n(log n)2) to the sum.

This implies
Kn(x) = O(n(log n)2 · 2−K(x)) = 2−K(x)+log n+2 log log n+O(1)

Let now x be a string of length n such that A(x;n) 6= L(x); since the overall probability of all such
strings is at most 1/n3, in particular we must have Kn(x) ≤ 1/n3, and

K(x) = log
1

Kn(x)
− log n − 2 log log n − O(1) ≥ 2 log n − 2 log log n − O(1) (2.3)



22 CHAPTER 2. DEFINITIONS OF “EFFICIENT ON AVERAGE”

Consider now the lexicographically first string x in {0, 1}n (if any) such that A(x;n) 6= L(x). Such
a string can be computed by an algorithm that, given n, computes A(x;n) and L(x) for all strings
x ∈ {0, 1}n and outputs the lexicographically first x for which A(x;n) 6= L(x). (Here we are using
the assumption that L is decidable.) Such an algorithm proves that K(x) ≤ log n+2 log log n+O(1),
and, for sufficiently large n, this is in contradiction with (2.3).

We conclude that there can only be a finite number of input lengths on which A and L differ, and
so a finite number of inputs on which A and L differ.



Chapter 3

A Complete Problem for Computable

Ensembles

In this section we give a definition of reduction that preserves average-case tractability and we
prove the existence of a problem complete for (NP,PComp).

3.1 Reductions Between Distributional Problems

We begin by defining an appropriate notion of reduction. Besides the usual correctness requirement
for reductions in worst-case complexity, a reduction in average-case complexity must in some sense
match the distributions on instances of the two problems. Namely, in a reduction from (L,D) to
(L′,D′), we want that the process of sampling an instance from D, then applying the reduction to
it, roughly yields the distribution D′.

Definition 17 (Reduction Between Distributional Problems). Let (L,D) and (L′,D′) be two dis-
tributional problems. We say that (L,D) reduces to (L′,D′), and write (L,D) ≤AvgP (L′,D′) if
there is a function f that for every n, on input x in the support of Dn and parameter n can be
computed in time polynomial in n and

1. (Correctness) x ∈ L if and only if f(x;n) ∈ L′

2. (Domination) There are polynomials p and m such that, for every n and every y in the support
of D′

m(n),

∑

x:f(x;n)=y
Dn(x) ≤ p(n)D′

m(n)(y)

Part (1) of the definition is the standard requirement of mapping reductions. The intuition for
part (2) is that if we sample a string x from Dn and then compute y = f(x;n), we generate y with
probability not much larger than if y had been sampled according to D′

m(n).

The reduction preserves the notions of average-case tractability as defined in Section 2.

23
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Lemma 18. If (L,D) ≤AvgP (L′,D′) and (L′,D′) ∈ C, where C is one of the distributional classes
AvgP,AvgnegP,HeurP,HeurnegP,AvgBPP,HeurBPP,AvgP/poly,HeurP/poly, then (L,D) ∈ C.

Proof. For concreteness, we show the case C = AvgP, but the same proof works for all the other
cases. Suppose that (L′,D′) is in AvgP and let A′ be the fully polynomial time errorless heuristic
scheme for (L′,D′), let f be the reduction from (L,D) to (L′,D′), let p and m be the polynomials
as in the definition of reduction.

We claim that A(x;n, δ) := A′(f(x;n);m(n), δ/p(n)) is a fully polynomial time errorless heuristic
scheme for (L,D).

To prove the claim, we bound the failure probability of A. Let us fix parameters n and δ, and let
us define B to be the set of “bad” strings y such that A′(y;m(n), δ/p(n)) = ⊥, and let Bm be B
restricted to the support of D′

m. Observe that D′
m(n)(Bm(n)) ≤ δ/p(n). Then

Prx∼Dn [A(x;n, δ) = ⊥] =
∑

x:f(x;n)∈Bm(n)

Dn(x)

≤
∑

y∈Bm(n)

p(n)D′
m(y)

= p(n) · D′
m(n)(Bm(n))

≤ δ

This establishes the claim and proves that (L,D) ∈ AvgP.

3.2 The Completeness Result

In this section we prove the existence of a complete problem for (NP,PComp), the class of all
distributional problems (L,D) such that L is in NP and D is polynomial time computable. Our
problem is the following “bounded halting” problem for non-deterministic Turing machines:

BH = {(M,x, 1t) : M is a non-deterministic Turing machine that accepts x in ≤ t steps.} (3.1)

Note that BH is NP-complete: Let L be a language in NP and M be a non-deterministic Turing
machine that decides L in time at most p(n) on inputs of length n. Then a reduction from L to
BH is simply the mapping that takes a string x of length n to the triple (M,x, 1p(n)).

We would like to show that the distributional problem (BH,UBH), where UBH = {UBH
n } is the

“uniform” ensemble of inputs for BH (we will get to the exact definition of this ensemble shortly)
is complete for (NP,PComp). The standard reduction is clearly inadequate, because, if (L,D) is a
distributional problem in (NP,PComp) and D is a distribution that is very far from uniform, then
the triples (M,x, 1p(n)) produced by the reduction will not be uniformly distributed.

The key idea in the reduction is to find an injective mapping C such that if x is distributed
according to D then C(x) is distributed “almost” uniformly. The reduction then maps (x;n) into
(M ′, C(x), 1p′(n)), where M ′ is a machine that on input C(x) computes x and then runs M on x,
and where p′(n) is a polynomial upper bound to the running time of M ′. We will show that such
a mapping exists whenever D is a polynomial time computable ensemble.
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Before moving on, let us define the “uniform distribution” of inputs for BH. The instances of the
problem are triples (M,x, 1t), so if the representation of M has length ` and x has length n, then
the length of the representation of (M,x, 1t) is 2 log ` + 2 log n + 2 log t + ` + n + t + Θ(1).

We think of the “uniform distribution” over inputs of length N as follows: we flip random bits
b1, . . . , bi until either i = N or we have generated a valid prefix-free representation (according to
the above rules) of M,x. In the former case, we output b1, . . . , bN , in the latter case we output
(M,x, 1N−i). We denote this distribution by UBH

N . In UBH
N , an instance (M,x, 1t) has probability

2−(2 log `+2 log n+`+n+Θ(1)), where ` is the length of the representation of M and n is the length of x.
(By convention, we declare that outputs not of the proper form (M,x, 1t) are not in the language
BH.)

We now prove the following completeness result.

Theorem 19. The distributional problem (BH,UBH) is complete in (NP,PComp) under the re-
ductions of Definition 17.

Proof. Let (L,D) be a distributional problem in (NP,PComp).

Claim 20. Suppose D = {Dn} is a polynomial-time computable distribution over x. Then there
exists an algorithm C(x) such that for all n, C(x) runs in time polynomial in n and

1. For every fixed n, for all x in the support of Dn, C(x) is injective as a function of x, and

2. |C(x)| ≤ 1 + min
{

|x|, log 1
Dn(x)

}

.

Observe that since Dn is polynomial-time computable, there exists a polynomial m(n) such that
no string in the support of Dn can be more than m(n) bits long.

Proof. Fix an x ∈ SuppDn. If Dn(x) ≤ 2−|x| then simply let C(x) = 0x, that is, 0 concatenated
with x.

If, on the other hand, Dn(x) > 2−|x|, let y be the string that precedes x in lexicographic order
among the strings in {0, 1}n and let p = fDn(y) (if x is the empty string, then we let p = 0.)
Then we define C(x;n) = 1z. Here z is the longest common prefix of fDn(x) and p when both are
written out in binary. Since fDn is computable in polynomial time, so is z. C is injective because
only two binary strings s1 and s2 can have the same longest common prefix z; a third string s3

sharing z as a prefix must have a longer prefix with either s1 or s2. Finally, since Dn(x) ≤ 2−|z|,
|C(x)| ≤ 1 + log 1

Dn(x) .

Let M be the nondeterministic Turing machine that, on input y, accepts if and only if there exists
a string x such that y = C(x) and x ∈ L. Since L is in NP, machine M can be implemented so
that, on input C(x), where x is of length n, M runs in time at most q(n), where q is a polynomial.

We can now describe the reduction. On input x and parameter n, the reduction outputs the instance
(M,C(x), 1t(x)) of length N(n); here, N(n) is chosen large enough so that when |C(x)| ≤ m(n), we
have t(x) ≥ q(n) (for instance, N(n) = m(n) + q(n) + 2 log m(n) + 2 log q(n) + O(1) suffices.)

It is immediate to see that x ∈ L if and only if (M,C(x), 1t(x)) ∈ BH. Regarding the domination
condition, we observe that the reduction is injective, and so we simply need to check that for every
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n and x ∈ SuppDn we have

Dn(x) ≤ poly(n) · UBH
N(n)(M,C(x), 1t(x)).

To verify the inequality, let ` be the length of the binary representation of M . We have

UBH
N(n)(M,C(x), 1q(n)) = 2−(2 log `+2 log |C(x)|+`+|C(x)|+Θ(1))

We observe that log|C(x)| ≤ log(m(n) + 1) and that |C(x)| ≤ log(1/Dn(x)) + 1, and so

UBH
N(n)(M,C(x), 1q(n)) ≥ 2−(2 log `+`) · (m(n) + 1)−2 · Dn(x) · Ω(1)

as desired.

3.3 Some Observations

3.3.1 Completeness of Bounded Halting: A Perspective

The main idea in the proof of Theorem 19 is that it is possible to extract the randomness from
samples in a computable ensemble. In the proof of Theorem 19, the randomness is extracted
through compression: Indeed, the algorithm C compresses samples x from Dn in such a way that
the output C(x) is dominated by the uniform distribution.

Another possible way to extract the randomness from samples of a computable ensemble is by
inversion. Namely, if one views an instance x ∼ Dn as the output of some sampler S, then the
problem of extracting the randomness from x can be solved by inverting S. More precisely, one
arrives at the following question: Given x, is there an efficient procedure that produces a random
r such that S(n; r) = x? Such a procedure would map samples of Dn to samples of the uniform
distribution and can be used to reduce the distributional problem (L,D) to some distributional
problem (L′,U). This perspective leads to an alternate proof of Theorem 19.1

Alternate proof of Theorem 19. First, it is not difficult to see that every polynomial-time com-
putable ensemble D = {Dn} is also polynomial-time samplable. To sample from a distribution
Dn, the sampling algorithm S(n) generates random bits r1, r2, . . . , rm(n) and, using binary search,
returns the lexicographically smallest x such that fDn(x) > 0.r1r2 . . . rm(n). Here, m(n) is the
running time of the algorithm that computes fDn , and we assume without loss of generality (for
technical reasons) that m is injective. It is easy to check that each sample is produced with the
correct probability.

Observe that the sampler S is efficiently invertible in the following sense: There exists an algorithm
I that on input x ∈ Supp(Dn) runs in time polynomial in n and outputs a uniformly random
r ∈ {0, 1}m(n) conditioned on S(n; r) = x (meaning that S(n) outputs x when using r for its internal
coin tosses.) The algorithm I first determines fDn(x) and Dn(x) using binary search and oracle
calls to fDn , then samples a m(n)-bit number uniformly from the interval (fDn(x)−Dn(x), fDn(x)].

1The statement is actually weaker as the alternate reduction is randomized.
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Now consider the language L′ that contains all r such that S(n; r) ∈ L, where |r| = m(n) (recall
that m is injective.) Then L′ is an NP language, and moreover (L,D) reduces to the distribu-
tional problem (L′,U): The reduction is implemented by the inversion algorithm I, and both the
correctness and domination properties are straightforward from the definition.

Finally, consider the canonical reduction from (L′,U) to (BH,UBH) which maps instance r of L′ to
instance (M ′, r, 1q(|x|)) of BH, where M ′ is a non-deterministic Turing machine for L’, and q(n) is
the running time of M ′ on inputs of length n. Let ` denote the size of M ′, and |r| = m. Then for
an appropriate choice of N , we have

UBH
N (M ′, r, 1q(m)) = 2−(2 log `+2 log m+`+m+Θ(1)) = 2−(2 log `+`) · m−2 · Um(r) · Ω(1),

and this reduction also satisfies the domination condition (as ` does not grow with input size).

The two proofs of Theorem 19 are not that different, as the encoding function C in the original
proof plays much the same role as the inverter I in the alternate proof. However despite the
somewhat artificial technical distinction, the perspectives are quite different: To “recover” the
uniform ensemble from a computable ensemble D, one may either attempt to compress D or to
invert its sampler. Indeed, the two approaches lead to different insights and different proofs (and
even somewhat different theorems) when we extend these arguments to the case of polynomial-time
samplable ensembles in Section 5.

3.3.2 Heuristic Algorithms versus Heuristic Schemes.

When defining average-case complexity classes we distinguished between heuristic algorithms and
heuristic schemes: For heuristic algorithms, we fix a failure probability δ and require that the
algorithm succeeds on all but a δ-fraction of the instances. For heuristic schemes, we require a
single algorithm that works for all δ, but we allow the running time to grow as a function of 1/δ.

It is clear that if a distributional problem has a heuristic scheme, then it has heuristic algorithms
with failure probability δ(n) = n−c for every c > 0. In other words, for every c > 0, HeurP ⊆
Heurn−cP, HeurBPP ⊆ Heurn−cBPP, AvgP ⊆ Avgn−cP, and so on.

In general the containments do not hold in the other direction: For instance, Heurn−cP contains
undecidable problems but HeurP doesn’t. However, the class (NP,PComp) as a whole admits
heuristic schemes if and only if it admits heuristic algorithms, as formalized in the following propo-
sition.

Proposition 21. If (BH,UBH) ∈ Avg1/nC (respectively, Heur1/nC), then (NP,PComp) ⊆ AvgC
(respectively, HeurC). Here, C is one of P, BPP, or ZPP.

Proof. For concreteness, let us show that if (BH,UBH) is in Avg1/nP, then (NP,PComp) ∈ AvgP.

By completeness of (BH,UBH) with respect to distributional reductions, it is sufficient to show that
(BH,UBH) ∈ AvgP.

Let A be an errorless heuristic algorithm for (BH,UBH) with failure probability 1/n. Using A, we
construct an errorless heuristic scheme A′(·; ·). The idea is to use self-reducibility and padding in
order to map short instances of BH into longer ones. Since the error probability of A decreases with
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instance length, the scheme A′ can solve any desired fraction of instances by choosing a padding of
appropriate length.

We claim that the following A′ is an errorless heuristic scheme for (BH,UBH): A′((M,x, 1t);N, δ) =
A((M,x, 1t+d1/δe);N + d1/δe), where N is the length of the instance (M,x, 1t). (When the input is
not of the proper form (M,x, 1t), A′ rejects it.) From the definition of the ensemble UBH, we have
that for all N ,

UBH
N+d1/δe(M,x, 1t+d1/δe) = UBH

N (M,x, 1t).

On inputs from distribution UBH
N+d1/δe, A outputs ⊥ on at most a 1/(N + d1/δe) < δ fraction of

instances, so it follows that A′ outputs ⊥ on at most a δ fraction of instances from UBH
N .

In fact, the error parameter 1/n in Proposition 21 can be replaced with 1/nε for any fixed ε > 0.



Chapter 4

Decision versus Search and One-Way

Functions

In worst-case complexity, a search algorithm A for an NP-relation V is required to produce, on
input x, a witness w of length poly(|x|) such that V accepts (x;w), whenever such a w exists.
Abusing terminology, we sometimes call A a search algorithm for the NP-language LV consisting
of all x for which such a witness w exists. Thus, when we say “a search algorithm for L” we mean
an algorithm that on input x ∈ L outputs an NP-witness w that x is a member of L, with respect
to an implicit NP-relation V such that L = LV .

Designing search algorithms for languages in NP appears to be in general a harder task than
designing decision algorithms. An efficient search algorithm for a language in NP immediately
yields an efficient decision algorithm for the same language. The opposite, however, is not believed
to be true in general (for instance, if one-way permutations exist, even ones that are hard to invert
in the worst case). However, even though search algorithms may be more difficult to design than
decision algorithms for specific problems, it is well known that search is no harder than decision
for the class NP as a whole: If P = NP, then every language in NP has an efficient (worst-case)
search algorithm.

In this section we revisit the question of decision versus search in the average-case setting: If all
languages in distributional NP have good on average decision algorithms, do they also have good
on average search algorithms? The answer was answered in the affirmative by Ben-David et al.,
though for reasons more subtle than in the worst-case setting. Their argument yields search to
decision connections even for interesting subclasses of distributional NP. For instance, if every
language in NP is easy on average for decision algorithms with respect to the uniform distribution,
then it is also easy on average for search algorithms with respect to the uniform distribution. We
present their argument in Section 4.2.

From a cryptographic perspective, the most important distributional search problem in NP is the
problem of inverting a candidate one-way function. By the argument of Ben-David et al., if all
problems in distributional NP are easy on average, then every candidate one-way function can be
inverted on a random output. In Section 4.3 we will see that this conclusion holds even under
the weaker assumption that every problem in NP is easy on average with respect to the uniform
distribution. Thus cryptographic one-way functions can exist only if there are problems in (NP,U)
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that are hard on average for decision algorithms.

The search-to-decision reduction presented in this Section yields randomized search algorithms for
distributional NP. We begin by defining the types of search algorithms under consideration.

4.1 Search Algorithms

By analogy with worst-case complexity, it is easiest to define search algorithms for NP whose
running time is polynomial on average. For illustration, we present the definition for deterministic
algorithms.

Definition 22 (Average polynomial-time search). For an NP language L and ensemble of distri-
butions D, we say A is a deterministic average polynomial-time search algorithm for (L,D) if for
every n and every x in L and in the support of Dn, A(x;n) outputs an L-witness for x and there
exists a constant ε such that for every n, Ex∼Dn [tA(x;n)ε] = O(n).

As in the case of decision algorithms, the existence of average polynomial-time search algorithms is
equivalent to the existence of errorless heuristic search algorithms, which we define next. In the case
of randomized algorithms, the adjective “errorless” refers to the random choice of an input from
the language, and not to the choice of random coins by the algorithm. To make this distinction
clear, we first define “errorless search” in the deterministic case, then extend the definition to the
randomized case.

Definition 23 (Deterministic errorless search). We say A is a deterministic errorless search scheme
for (L,D), where L ∈ NP, if there is a polynomial p such that

• For every n, δ > 0, and every x in the support of Dn, A(x;n, δ) runs in time at most p(n/δ);

• For every n, δ > 0, and every x in L and in the support of Dn, A(x;n, δ) outputs either an
L-witness w for x or ⊥;

• For every n and every δ > 0, Prx∼Dn [A(x;n, δ) = ⊥] ≤ δ.

Observe that when x 6∈ L, the output of the algorithm can be arbitrary. If the algorithm outputs
anything other than the special symbol ⊥, this provides a certificate that x is not in L, as it can
be efficiently checked that the output of the algorithm is not a witness for x.

In the case of randomized algorithms, we can distinguish different types of error that the algorithm
makes over its randomness. A “zero-error” randomized search algorithm is required to output, for
all x ∈ L, either a witness for x or ⊥ with probability one over its randomness. The type of search
algorithm we consider here is allowed to make errors for certain choices of random coins; namely,
even if x ∈ L, the search algorithm is allowed to output an incorrect witness with probability
bounded away from one.

Definition 24 (Randomized errorless search). We say A is a randomized errorless search algorithm
for (L,D), where L ∈ NP, if there is a polynomial p such that

• For every n, δ > 0, A runs in time p(n/δ) and outputs either a string w or the special symbol
⊥;



4.2. REDUCING SEARCH TO DECISION 31

• For every n, δ > 0, and x ∈ L,

PrA[A(x;n, δ) outputs a witness for x or A(x;n, δ) = ⊥] > 1/2;

• For every n and δ > 0,

Prx∼Dn

[

PrA[A(x;n, δ) = ⊥] > 1/4
]

≤ δ.

This definition is robust with respect to the choice of constants 1/2 and 1/4; it would remain
equivalent if 1/2 and 1/4 were replaced by any two constants c and c′, respectively, where 0 < c′ <
c < 1. Using standard error reduction be repetition, the constants 1/2 and 1/4 can be amplified to
1 − exp(−(n/δ)O(1)) and exp(−(n/δ)O(1)), respectively.

Finally, we define heuristic search algorithms: Such algorithms are allowed to output incorrect
witnesses on a small fraction of inputs.

Definition 25 (Randomized heuristic search). We say A is a randomized heuristic search algorithm
for (L,D), where L ∈ NP, if for every n, on input x in the support of Dn and parameter δ > 0, A
runs in time polynomial in n and 1/δ, and

Prx∼Dn

[

x ∈ L and PrA[A(x;n, δ) is not a witness for x] > 1/4
]

≤ δ.

4.2 Reducing Search to Decision

It is well known in worst-case complexity that the hardness of search and decision versions of NP-
complete problems are equivalent. Namely, if any NP-complete problem has an efficient decision
algorithm (on all instances), then not only does all of NP have efficient decision algorithms, but
all of NP has efficient search algorithms as well. The same question can be asked for distributional
NP: If every decision problem in NP has good on average algorithms with respect to, say, the
uniform distribution, does every search problem in NP also have efficient algorithms with respect
to the uniform distribution?

We show a result of Ben-David et al. that establishes the equivalence of search and decision
algorithms for NP with the uniform distribution. We focus on the uniform distribution not only
because it is the most natural distribution of instances, but also because the equivalence of search
and decision complexities for the uniform distribution will be used to establish a much more general
result in Section 5.1.

Let us recall the common argument used to establish the equivalence of NP-hardness for search and
decision problems in the worst-case setting, and see why this argument fails to carry over directly
to the average-case setting. Given a decision oracle for NP, and an instance x of an NP-language
L, a search algorithm for x finds a witness by doing binary search for the lexicographically smallest
w such that the oracle answers “yes” on the NP-query:

(x,w): Is there an L-witness for x that is lexicographically at most w?

To see why this reduction is useless in the average-case setting with respect to the uniform dis-
tribution, fix the lexicographically smallest witness wx for every x ∈ L, and suppose that the
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average-case decision oracle answers all queries correctly, except those (x,w) where the distance
between w and wx in the lexicographic order is small. Then the algorithm obtains only enough
information from the oracle to recover the first few significant bits of wx and cannot efficiently
produce a witness for x.

To understand the idea of Ben-David et al., let us first consider the special case when L is an NP
language with unique witnesses. Given an input x, the reduction attempts to recover a witness for
x by making oracle queries of the type

(x, i): Does there exists a witness w for x such that the ith bit wi of w is 1?

for every i = 1, . . . ,m(|x|), where m(n) is the length of a witness on inputs of length n. (Since
L ∈ NP, we have that m(n) = poly(n).) Given a worst-case decision oracle for this NP language,
the sequence of oracle answers on input x ∈ L allows the search algorithm to recover all the bits of
the unique witness w. In this setting, the reduction also works well on average: Given an average-
case decision oracle that works on a 1−δ/m(n) fraction of inputs (x, i) where |x| = n and i ≤ m(n),
the search algorithm is able to recover witnesses (if they exist) on a 1− δ fraction of inputs x ∼ Un.

In general, witnesses need not be unique. However, using the isolating technique of Valiant and
Vazirani [VV86] it is possible to (randomly) map instances of L to instances of another NP-language
L′ in such a way that (1) The distribution of each query is dominated by uniform; (2) If x maps to
x′, then any witness that x′ ∈ L′ is also a witness that x ∈ L, and (3) If x ∈ L, then x maps to an
instance x′ ∈ L′ with a unique witness with non-negligible probability.

The language L′ is defined as follows:

L′ = {(x, h, i, j) : there exists an L-witness w for x such that wi = 1 and h|j(w) = 0j},

where i and j are numbers between 1 and m(n), and h is a hash function mapping {0, 1}m(n)

to {0, 1}m(n). The argument of Valiant and Vazirani guarantees that if j is the logarithm of the
number of L-witnesses for x, there is a unique w satisfying h|j(w) = 0 with constant probability
over the choice of h. The reduction R, on input x ∼ Un, chooses a random hash function h :
{0, 1}m(n) → {0, 1}m(n) and queries the average-case oracle for L′ on instances (x, h, i, j), for all i, j
between 1 and m(n).

If, for any j, the sequence of answers to the queries (x, h, i, j) received from the oracle is an L-
witness for x, the search algorithm for L outputs this witness. If no witness is found, a heuristic
search algorithm outputs an arbitrary string. An errorless algorithm outputs the special symbol ⊥
if this symbol was ever encountered as an answer to a query and an arbitrary string otherwise.

Theorem 26 (Ben-David et al.). If (NP,U) ⊆ AvgBPP (respectively, HeurBPP), then every
problem in (NP,U) has an errorless (respectively, heuristic) randomized search algorithm.

Observe that the search-to-decision reduction only applies to decision algorithms that succeed on
most instances. For the argument to achieve non-trivial parameters, the fraction of instances on
which the decision algorithm fails must be smaller than 1/m(n)2.
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4.3 Average-Case Complexity and One-Way Functions

If every problem is easy on average for the uniform ensemble, can one-way functions exist? The
above arguments show that in the case for one-way permutations, the answer is no. Given any
efficiently constructible family of permutations fn : {0, 1}n → {0, 1}n solving the search problem
“Given y, find f−1

n (y)” on most y chosen from the uniform ensemble gives the ability to invert
fn(x) on a randomly chosen x ∼ Un.

In the general case, the answer is not immediately clear; to illustrate, consider the case of a function
fn : {0, 1}n → {0, 1}n whose image has density 2−n/2 in {0, 1}n under the uniform distribution. An
average-case inversion algorithm for fn may fail to answer any queries that fall into the image of
fn, yet be efficient with respect to the uniform distribution by not failing on the other queries.

To rule out the existence of general one-way functions in this setting, it is sufficient by H̊astad et
al. to show that no pseudo-random generators exist. We argue that this is the case in the errorless
setting, that is under the assumption (NP,U) ⊆ AvgBPP. Given a candidate pseudo-random
generator Gn : {0, 1}n−1 → {0, 1}n, consider the NP decision problem “Is y in the image set of
G|y|?” An errorless algorithm A for this problem must always answer “yes” or ⊥ when the input
is chosen according to Gn(Un−1). On the other hand, A(y;n, 1/4) must answer “no” on at least
a 1/4 fraction of inputs y ∼ Un, since at least a 1/2 fraction of such inputs are outside the image
of Gn, and the algorithm is allowed to fail on no more than a 1/4 fraction of inputs. Hence A
distinguishes Gn(Un−1) from the uniform distribution, so Gn is not a pseudo-random generator.

In the case of heuristic algorithms, this argument fails because there is no guarantee on the behavior
of A on inputs that come from Gn(Un−1). However, a different argument can be used to rule out
one-way functions under this more restrictive assumption. H̊astad et al. show that if one-way
functions exist, then a form of “almost one-way permutations” exists: There is a family of strongly
one-way efficiently constructible functions fn : {0, 1}n → {0, 1}n such that the image of fn has non-
negligible density in {0, 1}n, that is Un(fn({0, 1}n)) =

∑

x∈Image(fn) Un(x) ≥ n−O(1). By choosing
parameters appropriately, every such family of functions can be inverted on a large fraction of the
image set fn({0, 1}n). This gives an algorithm that inverts fn(x) on a non-neglibible fraction of
inputs x and contradicts the assumption that fn is strongly one-way.

In Section 5, we give a different proof of this result that bypasses the analysis of H̊astad et al.
Summarizing, and using the equivalence of weakly and strongly one-way functions, we have the
following:

Theorem 27. If (NP,U) ⊆ HeurBPP, then for every polynomial-time computable family of func-
tions fn : {0, 1}n → {0, 1}∗ there is a randomized algorithm I(y;n, δ) running in time polynomial
in n and 1/δ such that for every n and δ > 0,

Prx∼Un [I(fn(x);n, δ) ∈ f−1
n (fn(x))] ≥ 1 − δ.
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Chapter 5

Samplable Ensembles

The worst-case NP hardness of computational problems does not always reflect their perceived
difficulty in practice. A possible explanation for this apparent disconnect is that even if a problem
may be hard to solve in the worst-case, hard instances of the problem are so difficult to generate
that they are never encountered. This raises the intriguing possibility that an NP hard problem,
for instance SAT, does not have an efficient algorithm in the worst case, but generating a hard
instance of SAT is in itself an infeasible problem. More precisely, for every sampler of presumably
hard instances from SAT, there is an efficient algorithm that solves SAT on most of the instances
generated by the sampler.

When the distribution of instances is known in advance, it makes sense to restrict attention to a
fixed sampler and design algorithms that work well with respect to the output distribution of this
sampler. This is a viewpoint commonly adopted in average-case algorithm design, where newer
algorithms for problems such as kSAT are designed that work well on average for larger and larger
classes of distributions on inputs. From a complexity theoretic perspective, on the other hand, one
is more interested in the inherent limitations of average case algorithms, and it is natural to think
of the sampler as chosen by an adversary that tries to generate the hardest possible instances of
the problem.

How much computational power should such a sampler of “hard” instances be allowed? It does not
make sense to give the sampler more computational power than the solver, since the solver must
have at least sufficient time to parse the instance generated by the sampler. On the other hand, in
practice the sampler will have access to the same computational resources as the solver, so if our
notion of “efficient on average” solver is that of a polynomial-time algorithm, the sampler should
also be allowed to perform arbitrary polynomial-time computations. This motivates the study of
the distributional class (NP,PSamp).

Even though instances drawn from a samplable ensemble may be harder than instances drawn from
a computable (or from the uniform) ensemble for a specific problem in NP, it turns out this is not
the case for the class NP as a whole: If uniformly distributed inputs are easy for every problem in
NP, then so are inputs drawn from an arbitrary samplable ensemble.

35
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5.0.1 Samplable Ensembles versus Samplable Distributions.

In the work of Ben-David et al. [BCGL92] that explains and extends Levin’s original definitions
from [Lev86], a distribution over {0, 1}∗ is considered samplable if it is generated by a randomized
algorithm S that runs in time polynomial in the length of its output.

Working with ensembles of samplable distributions instead of a single samplable distribution does
not incur any loss of generality: In fact, for every samplable distribution D there exists a samplable
ensemble {Dn} such that A is a heuristic scheme with respect to D if and only if some algorithm A′

(a slight modification of A) is a heuristic scheme with respect to {Dn}. (The equivalence preserves
the errorless property of heuristic schemes.)

To sketch the proof, let Xn be the set of all x ∈ {0, 1}∗ such that the sampler S for D outputs x in
n or fewer steps. Let Dn be the distribution D conditioned on the event x ∈ Xn, so that for every
x ∈ Xn, Dn(x) = D(x)/D(Xn). Let n0 be the smallest n for which D(Xn) ≥ 1/2. The ensemble
{Dn} is samplable,1 the support of Dn is contained in {0, 1}≤n, and D(Xn) = 1 − on(1).

Given an algorithm A that is good on average for D, we define

A′(x;n, δ) =

{

A(x; δ/2), if n ≥ n0,

L(x), otherwise.

For n < n0, the distribution Dn contains strings of length at most n0, and the answers for these
inputs are hardcoded into A′. For n ≥ n0, we have

Prx∼Dn [A′(x;n, δ) 6= L(x)] ≤ Prx∼D[A′(x;n, δ) 6= L(x)]/D(Xn) ≤ Prx∼D[A(x; δ/2) = ⊥]/1
2 ≤ δ.

Conversely, given an algorithm A′ that is good on average for {Dn}, we define

A(x; δ) = A′(x; p(|x|), δ/2|x|2),
where p(n) is an upper bound on the time it takes S takes to output a string of length n. We have

Prx∼D[A(x; δ) 6= L(x)] = Prx∼D[A′(x; p(|x|), δ/2|x|2) 6= L(x)]

=
∑∞

n=0
Prx∼D[A′(x; p(n), δ/2n2) 6= L(x) and |x| = n]

≤
∑∞

n=0
Prx∼D[A′(x; p(n), δ/2n2) 6= L(x) and S → x in p(n) steps]

≤
∑∞

n=0
Prx∼Dp(n)

[A′(x; p(n), δ/2n2) 6= L(x)]

≤
∑∞

n=0
δ/2n2 < δ.

5.1 The Compressibility Perspective

In Section 3 we showed that the distributional problem (BH,UBH) is complete for the class (NP,PComp).
We did so by giving a reduction that maps instances of an arbitrary distributional problem (L,D)
in (NP,PComp) to instances of (BH,UBH).

1When n ≥ n0, run S for n steps repeatedly until a sample is produced; for smaller n, the distribution Dn can
be hard-coded in the sampler. This sampler runs in expected polynomial-time, so Dn does not in fact satisfy the

definition on perfect samplability; however, it is within statistical distance 2−poly(n) of a samplable distribution, and
we will ignore the distinction.
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Recall that the key idea of the proof was to find an efficiently computable mapping C with the
following properties:

1. The map C is injective, or equivalently, the encoding computed by C is uniquely decodable.

2. When x is distributed according to D, the output C(x) is distributed “almost” uniformly. If
we think of C as a compression procedure, it means that the rate of C is close to optimal.

In general it is not clear if an encoding C with such properties exists for arbitrary samplable
ensembles. Our approach will be to gradually relax these properties until they can be satisfied for
all samplable ensembles D.

To relax these properties, we look at randomized encodings. First, observe that randomness can
be added to the encoding without affecting the correctness of the reduction: Suppose that C is a
mapping such that when x is chosen according to the ensemble D, the image C(x) is distributed
almost uniformly. Define a random mapping C ′ that, on input x, chooses a uniformly random
string r of some fixed length and outputs the pair (C(x), r). It is evident that if the mapping C
satisfies conditions (1)-(3), then so does the mapping C ′. We use C ′(x; r) to denote the output of
C ′ on input x and randomness r; thus C ′(x; r) = (C(x), r).

The advantage of a randomized encoding is that it allows for a natural relaxation of condition (1):
Instead of requiring that the mapping be injective, we can now consider encodings that are “almost
injective” in the sense that given C ′(x; r), the encoding needs to be uniquely decodable only with
high probability over r.

In fact, we will further weaken this requirement substantially, and only require that C ′(x; r) be
uniquely decodable with non-negligible probability. Then a query made by the reduction is unlikely
to be uniquely decodable, but by running the reduction several times we can expect that with high
probability, at least one run of the reduction will yield a uniquely decodable query.

To summarize, we have the following situation: We are given a reduction that queries (BH,UBH) on
several instances, and which expects to obtain the correct answer for at least one of these instances.
We do not know which of the instances produced by the reduction is the good one, but since BH
is an NP problem, instead of asking for a yes/no answer to the queries we can in fact ask for a
witness that at least one of the queries produced by the reduction is a “yes” instance of BH. In
fact, the search to decision reduction from Section 4 shows that obtaining a witness is no harder
than obtaining a membership answer (for randomized reductions.)

There is one important complication that we ignored in the last paragraph. Many of the queries
produced by the reduction may not be uniquely decodable. Such queries may turn out to be “yes”
instances of BH even if x was a “no” instance of L, so certifying that a query y is a “yes” instance
BH is not sufficient to conclude that x ∈ L. Indeed, we will need to certify not only that y ∈ BH,
but also that y is uniquely decodable.

5.1.1 Reductions Between Search Problems

We now formalize the properties of the reduction from the above discussion. Since the reduction
needs to access witnesses for membership of its queries, we formalize it as a reduction between
search problems. We only consider the case when one is reducing to a problem with respect to the
uniform distribution, as this is our case of interest.
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For two distributional problems (L,D) and (L′,U) in (NP,PSamp), a randomized heuristic search
reduction from (L,D) to (L′,U) is an algorithm R that takes an input x and a parameter n and runs
in time polynomial in n, such that for every n and every x, there exists a set Vx ⊆ SuppR(x;n)
(corresponding to the “uniquely decodable” queries) with the following properties:

1. Disjointness: There is a polynomial p such that for every n, Vx ⊆ {0, 1}p(n) and the sets Vx

are pairwise disjoint.

2. Density: There is a polynomial q1 such that for every n and every x in the support of Dn,

PrR[R(x;n) ∈ Vx] ≥ 1/q1(n).

3. Uniformity: For every n and every x in the support of Dn, the distribution of queries y ∼
R(x;n) conditioned on y ∈ Vx is uniform.

4. Domination: There is a polynomial q2 such that for every n and every x,

Dn(x) ≤ q2(n) · Up(n)(Vx).

5. Certifiability: There exists a polynomial-time algorithm Q such that for every n, if x ∈ L and
y ∈ Vx, then for every L′-witness w for y, Q(w) is an L-witness for x.

A randomized search reduction is weaker than a reduction between decision problems in that it is
only guaranteed to work with small probability, and only on “yes” instances. However, if we are
given a randomized search algorithm for L′, it gives a randomized search algorithm for L as well,
since it allows us to recover witnesses for L from witnesses for L′. If we run the reduction several
times, the probability we hit a witness for L′ becomes exponentially close to one, so the search
algorithm for L can be made to work with very high probability on all instances.

Claim 28. If there is a randomized search reduction from (L,D) to (L′,U) and (L′,U) has a
randomized heuristic search scheme, then (L,D) has a randomized heuristic search scheme.

Proof. Let A′ be a randomized heuristic search scheme for (L′,U). The search scheme A for (L,D)
will run the reduction N times, producing N search queries for A′. For each witness wi returned
by A′, A will check whether wi yields a witness for L.

Specifically, on input x and parameters n and δ, A does the following:

1. Run R(x;n) independently N = 16q1(n) times, producing queries y1, . . . , yN .

2. Compute wi = A′(yi; p(n), δ/2q2(n)) for every i.

3. If, for some i, Q(wi) is an L-witness for x, output Q(wi) (and otherwise output an arbitrary
string.)

Assume x ∈ L, and denote by F the set of all y on which A′(y; ·) behaves incorrectly. Specifically,
let F be the set of all y such that y ∈ L′ but A′(y; p(n), δ/2q2(n)) fails to return a witness of y with
probability 1/4 or more. Since A′ is a heuristic scheme for L′, we have that Up(n)(F ) ≤ δ/2q2(n).



5.1. THE COMPRESSIBILITY PERSPECTIVE 39

Let B be the set of all x ∈ L∩ SuppDn for which a large portion of the uniquely decodable queries
Vx are “bad” for A′ in the sense that they fall inside F . Specifically, define B as the set of all x
such that

Up(n)(Vx ∩ F ) ≥ Up(n)(Vx)/2.

The set B cannot have much weight according to Dn, since every x ∈ B is “responsible” for many
bad queries in Vx ∩ F , and if there were many such queries then F would be large. In particular,

Dn(B) =
∑

x∈B
Dn(x)

≤
∑

x∈B
q2(n)Up(n)(Vx) (by domination)

≤
∑

x∈B
2q2(n)Up(n)(Vx ∩ F )

≤ 2q2(n)Up(n)(F ) ≤ δ (by disjointness.)

Now fix x 6∈ B, and consider one of the queries yi generated by A in step (1). We have that

Pr[Q(wi) is an L-witness for x]

≥ Pr[yi ∈ Vx and wi is an L′-witness for yi] (by certifiability)

≥ Pr[yi ∈ Vx − F and wi is an L′-witness for yi]

= Pr[yi ∈ Vx] ·Pr[yi ∈ Vx − F | yi ∈ Vx]

· Pr[wi is an L′-witness for yi | yi ∈ Vx − F ]

≥ 1

q1(n)
· 1

2
· 1

4
=

1

8q1(n)
,

by density, uniformity, and the definition of F . By the choice of N , it follows that at least one of
Q(w1), . . . , Q(wN ) is an L-witness for x with probability 1/2.

This claim shows randomized search reductions can be used to prove completeness results for
HeurBPP. However, the proof of the claim does not extend to the class AvgBPP, the reason being
that the domination condition is too weak. For heuristic algorithms, this condition guarantees that
the algorithm A′ for (L′,U) will provide witnesses to most of the “yes” instances of (L,D). The
“evidence” that an instance of (L,D) is a “no” instance is that no such witness is found.

In the case of errorless algorithms, however, we need to certify “no” instances of (L,D). It is
reasonable to attempt the following: First, run the reduction several times to estimate the fraction
of queries that A′ answers by ⊥. If this fraction turns out too large, this is evidence that A′ is
unable to provide witnesses reliably for this instance, so we answer ⊥. Otherwise, we look for a
witness and answer accordingly. Unfortunately, the definition is insufficient to guarantee that ⊥
won’t be answered too often, since it may be that the distribution of queries is skewed in such a
way that, whenever a query for x falls outside Vx, the answer to this query is very likely to be ⊥.

5.1.2 Compressing Arbitrary Samplable Distributions

Let S be a polynomial time sampler that on input n runs in time m(n), where m is some polynomial,
and Dn denote the distribution of the random variable S(n). As for computable distributions, our
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goal is to extract a sufficient amount of randomness from S(n) so that the output of the extraction
procedure is dominated by the uniform distribution.

To describe the approach, it is convenient to begin by considering the problem for certain restricted
classes of distributions Dn, then gradually remove the restrictions until all samplable distributions
are encompassed.

We begin by considering the case of flat distributions: We say that Dn is kn-flat if for each x
in the support of Dn, Dn(x) = 2−kn . Flat distributions are convenient to consider because their
randomness can be extracted via the Leftover Hash Lemma: In particular, when x is chosen from
a kn-flat distribution and h is a random hash function from {0, 1}<m(n) into {0, 1}kn+7, the output
of the mapping Cn(x;h) = (h, h(x)) is dominated by the uniform distribution. It is not difficult
to check that Cn satisfies the properties of randomized heuristic search reductions: The “uniquely
decodable” strings Vx are those pairs (h, y) for which h−1(y) = {x}. By the choice of parameters,
for every x in the support of Dn, (h, h(x)) ∈ Vx for all but a small fraction of possible h, giving
both density and domination. (Uniformity and certifiability are trivial.)

Now we consider a small but important generalization of flat distributions: Instead of requiring
that all samples in the support of Dn have the same probability, we allow their probabilities to
vary, but require that these probabilities be efficiently computable in the following sense: There is
an algorithm that on input x and parameter n, runs in time polynomial in n and computes the
approximate entropy of x, which is the value

kn(x) = b− log2 Dn(x)c = m(n) − dlog2 #{r : S(n; r) = x}e.

Notice that kn(x) is an integer between 0 and m(n). This scenario subsumes the previous one, where
kn(x) was the same for all x in the support of Dn. The reasoning for flat distributions extends to
this scenario, as long as we tailor the length of the output of the hash function to depend on the
entropy k(x). Namely, the mapping Cn(x;h) = (h, h|kn(x)+7(x)), where h is a function mapping

{0, 1}<m(n) to {0, 1}m(n)+7 satisfies the properties of randomized heuristic search reductions.

For arbitrary S, kn(x) could be difficult to compute and it is not clear if the approach of compressing
samples via hashing can be extended. One idea is for the reduction to attempt all possible values
for kn(x), and declare Vx to be the subset of encodings for which the guess was correct. However, it
is now possible that strings of higher entropy (lower probability) than x become possible decodings
of (h, h(x)): There may be many such strings, and it is likely that some of them collide with x
under h.

The solution is to append the encoding Cn(x) of x with a “certificate” that the entropy of x is
not too high, namely that kn(x) ≤ k. This roughly amounts to certifying that the size of the set
{r : S(n; r) = x} is at least 2m(n)−kn . The certificate of this statement will be randomized: We ask
to see a string r such that S(r) = x and g(r) = 0 for a random hash function g that is approximately
2kn-to-one. Such a certificate is only approximately correct, but this is sufficient to guarantee that
with constant probability, for a random h, h(x) has a unique preimage for h mapping {0, 1}<m(n)

to {0, 1}kn+7.



5.1. THE COMPRESSIBILITY PERSPECTIVE 41

5.1.3 The Construction

Putting everything together, the encoding for x chosen from distribution Dn is

Cn(x;h, g, k) = (h(x), h, g, k),

where k is a number between 0 and m(n), h is a hash function mapping {0, 1}<m(n) to {0, 1}k+7, and
g is a hash function mapping {0, 1}m(n) to {0, 1}m(n)−k−4. (In reality, h maps to {0, 1}m(n)+7 and
g maps to {0, 1}m(n)−4 and we use the truncated versions h|k+7 and g|m(n)−k−4 but for simplicity
of notation we will not make this distinction.) Let p(n) denote the output length of Cn.

The “uniquely decodable” encodings are defined as follows:

Vx is the set of all (y, h, g, k) such that k = kn(x), h(x) = y, and

1. There is an r such that S(n; r) = x and g(r) = 0.

2. If h(S(n; r)) = y and g(r) = 0, then S(n; r) = x.

The reduction R maps instance (x;n) to instance (h(x), h, g, k) of the following NP-language L′:

(y, h, g, k) ∈ L′ if there exists an r of length < m(n) such that S(n; r) ∈ L and
h(S(n; r)) = y and g(r) = 0m(n)−k−4.

Observe that a certificate that (y, h, g, k) ∈ L′ in particular contains a certificate that S(n; r) ∈
L, so under appropriate conditions witnesses for membership in L can be extracted from the
corresponding witnesses for L′.

Theorem 29 (Impagliazzo and Levin). (L,D) reduces to (L′,U) via a randomized search reduction.

Combining this result with the completeness of (BH,UBH) for problems in (NP,U), which follows
from Cook’s reduction (or as a special case of Theorem 19), and also using the search-to-decision
equivalence of Theorem 26, we obtain the following corollary.

Corollary 30. If (BH,UBH) ∈ HeurBPP, then (NP,PSamp) ⊆ HeurBPP.

Proof of Theorem 29. We show that the reduction R satisfies the five conditions for randomized
heuristic search reductions. Let us fix n. Disjointness, uniformity, and certifiability follow from the
definitions, so we focus on density and closeness.

Let kn(x) = b− log2 Dn(x)c = m(n) − dlog2|{r : S(n; r) = x}|e. Let p(n) denote the length of the
output of the reduction when x is chosen from Dn.

Density: We show that Prh,g[(h(x), h, g, k) ∈ Vx] is lower bounded by a constant conditioned on
k = kn(x). Since k = kn(x) with probability at least 1/m(n), it will follow that

PrR[(h(x), h, g, k) ∈ Vx] = Ω(1/m(n)).

We first show that with probability 7/8, there exists an r such that S(n; r) = x and g(r) = 0.
Observe that the number of rs satisfying S(n; r) = x is at least 2m(n)−k−1. Since the range of g is
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{0, 1}m(n)−k−4, in expectation there are at least eight rs such that S(n; r) = x and g(r) = 0. By
the pairwise independence of g, at least one r satisfies these conditions with probability 7/8.

We now show that there are at most 1/8 fraction of pairs h, g such that h(S(n; r)) = y and g(r) = 0
for some r with S(n; r) 6= x. Indeed,

Prh,g[∃r : S(n; r) 6= x and h(S(n; r)) = h(x) and g(r) = 0]

≤
∑

r:S(n;r)6=x
Prh[h(S(n; r)) = h(x)]Prg[g(r) = 0]

≤
∑

r∈{0,1}<m(n)
2−k−72−m(n)+k+4 = 1/8.

It follows that each of conditions (1) and (2) in the definition of Vx is satisfied with probability 7/8
separately, so that

Prh,g[(h(x), h, g, k) ∈ Vx | k = kn(x)] ≥ 3/4.

Domination: Observe that for given n, a random instance of UBH
p(n) is a 4-tuple of the correct form

(y, h, g, k) with probability at least 1/poly(p(n)). Therefore

UBH
p(n)(Vx) = Pry,g,h,k[(y, h, g, k) ∈ Vx] · 1/poly(p(n))

≥ Prh,g[(h(x), h, g, k) ∈ Vx | k = kn(x)]

Pry[y = h(x) | k = kn(x)]Prk[k = kn(x)] · 1/poly(p(n))

≥ 3/4 · 2−kn(x)−7 · 1/(m(n)poly(p(n)))

= Ω(Dn(x)/m(n)poly(p(n))).

An important example of a problem in (NP,PSamp) is the problem of inverting a supposed one-
way function fn : {0, 1}n → {0, 1}∗: The question of finding an inverse f−1

n (y) is an NP question,
and the distribution ensemble on which the function ought to be inverted is {fn(Un)}. Therefore,
if (BH,UBH) has a heuristic scheme, then no one-way functions exist.

5.2 The Invertibility Perspective

In this section we present a different proof that (NP,PSamp) is no harder on average than (NP,U)
for randomized algorithms. This proof works for heuristic as well as errorless algorithms.

Ignoring efficiency considerations for the moment, given an NP language L and a polynomial-
time sampler S, the distributional problem “Compute f on input x”, where x ∼ S(n;Um(n)), can
be solved by first sampling a random r ∼ Um(n) conditioned on S(n; r) = x, and then solving the
distributional problem “Compute f(S(r)) on input r.” Observe that given an algorithm that solves
the latter problem well on average with respect to the uniform ensemble yields an algorithm for
the original problem with respect to the ensemble S(n;Um(n)).

The difficulty, of course, is in efficiently carrying out the step of sampling a random r conditioned
on S(n; r) = x. In a general setting this does not seem possible, as S(n; r) may be a one-way
function of r, in which case finding any, let alone a random preimage of x, is an impossible task.
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However, if all of (NP,U) has efficient on average algorithms, by Theorem 27 there are no one-way
functions. Impagliazzo and Luby [IL89] show that if there are no one-way functions then there
are no distributionally one-way functions: Given any efficiently computable family of functions
fn : {0, 1}n → {0, 1}∗, for most y it is possible to efficiently sample an x such that fn(x) = y and
the distribution of x conditioned on fn(x) = y is close to uniform. More precisely, there exists a
(randomized) algorithm I running in time polynomial in n and 1/δ such that the statistical distance
between the distributions (x, fn(x)) and (I(fn(x);n, δ), fn(x)) is at most δ. In particular, given an
input x ∼ S(n;Um(n)), it is possible to sample an almost uniform r such that S(n; r) = x.

Theorem 31 (Impagliazzo and Levin). If (NP,U) ⊆ AvgZPP (respectively, HeurBPP), then
(NP,PSamp) ⊆ AvgZPP (respectively, HeurBPP).

Proof. Consider an arbitrary problem (L,D) ∈ (NP,PSamp). Let S be the polynomial-time sam-
pler for D. Assume without loss of generality that on input n, S uses exactly m(n) random bits
and that m is an injective function. Under the assumption of the theorem, by Theorem 27 and the
result of Impagliazzo and Luby, there is an algorithm I running in time polynomial in n and 1/δ
and such that for every n, the statistical distance between the distributions

{(r, S(r)) : r ∈ {0, 1}m(n)} and {(I(S(r)), S(r)) : r ∈ {0, 1}m(n)} (5.1)

is at most δ/3. (For simplicity of notation, we omit the parameters n and δ in parts of the proof.)
Let A be a heuristic scheme for the distributional problem (L◦S,U), where L◦S is the NP language
{r : S(r) is a yes instance of L}.
We show that the algorithm

B(x;n, δ) = A(I(x);m(n), δ/3)

is a heuristic scheme for (L,D). Observe that if A is errorless then B is also errorless (since I can
be made errorless by checking that S maps its input to its output, and outputing ⊥ if this is not
the case.) Now, it is sufficient to show that

Prx∼S(n;Um(n))[B(x) = L(x)] = Prr∼Um(n)
[B(S(r)) = L(S(r))] ≥ 1 − δ.

We relate the probability of the event B(S(r)) = L(S(r)) to the probability of the event A(r) =
L(S(r)). By indistinguishability (5.1), for any event E, the probabilities of E(r) and E(I(S(r)))
when r ∼ Um(n) can differ by at most δ/3, so in particular

Prr∼Um(n)
[A(r) = L(S(r))] ≤ Prr∼Um(n)

[A(I(S(r))) = L(S(I(S(r))))] + δ/3

= Prr∼Um(n)
[B(S(r)) = L(S(I(S(r))))] + δ/3.

Applying indistinguishability (5.1) again, the distributions (S(r), S(r)) and (S(I(S(r))), S(r)) are
δ/3 statistically close, so in particular Prr[S(r) 6= S(I(S(r)))] < δ/3 and

Prr∼Um(n)
[B(S(r)) = L(S(I(S(r))))]

≤ Prr∼Um(n)
[B(S(r)) = L(S(I(S(r)))) and S(r) = S(I(S(r)))]

+ Prr∼Um(n)
[S(r) 6= S(I(S(r)))]

≤ Prr∼Um(n)
[B(S(r)) = L(S(r))] + δ/3.
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Putting the last two equations together, we obtain

Prr∼Um(n)
[B(S(r)) = L(S(r))] ≥ Prr∼Um(n)

[A(r) = L(S(r))] − 2δ/3 ≥ 1 − δ.

Notice that the assumption that (NP,U) has good on average algorithms was used twice in the
proof: Once to invert the sampler S and once to solve L ◦ S on the uniform distribution. In
other words, given an average-case oracle for (BH,UBH), to obtain an algorithm for a problem in
(NP,PSamp) one needs to place two rounds of queries to the oracle. The first round of queries is
used to obtain a preimage r of x under S, and the second round (in fact, a single query) is used
to solve L ◦ S on input r. In contrast, Theorem 29 solves problems in (NP,PSamp) using a single
round of oracle queries.



Chapter 6

Hardness Amplification

Generally speaking, the goal of hardness amplification is to start from a problem that is known (or
assumed) to be hard on average in a weak sense (that is, every efficient algorithm has a noticeable
probability of making a mistake on a random input) and to define a related new problem that is
hard on average in the strongest possible sense (that is, no efficient algorithm can solve the problem
noticeably better than by guessing a solution at random).

6.1 Yao’s XOR Lemma

For decision problems, Yao’s XOR Lemma [Yao82] is a very powerful result on amplification of
hardnes. In the XOR Lemma, we start from a Boolean function f : {0, 1}n → {0, 1} and define a
new function f⊕k(x1, . . . , xk) := f(x1) ⊕ · · · ⊕ f(xk), and the Lemma says that if every circuit of
size ≤ S makes at least a δ fraction of errors in computing f(x) for a random x, then every circuit
of size ≤ S · poly(δε/k) makes at least a 1/2 − ε fraction of errors in computing f⊕k, where ε is
roughly Ω((1 − δ)k).

Various proofs of the XOR Lemma are known [Lev87, BL93, Imp95, GNW95, IW97]. In this section
we describe Impagliazzo’s proof [Imp95], because it is based on a tool, Impagliazzo’s “hard core
distribution” theorem, that will be very useful later.

For simplicity, we will restrict ourselves to results in the non-uniform (circuit complexity) setting.
The following definition will be useful.

Definition 32. We say that a Boolean function f : {0, 1}n → {0, 1} is (S, δ)-hard with respect to
a distribution D if, for every circuit C of size ≤ S, we have

Prx∼D[f(x) 6= C(x)] > δ

To relate this definition to our previous definitions, observe that (L, {Dn}) ∈ Heurδ(n)SIZE(S(n)) if
and only if, for every n, Ln is not (S(n), δ(n))-hard with respect to Dn, where Ln : {0, 1}n → {0, 1}
is the characteristic function of the set L ∩ {0, 1}n.

Impagliazzo [Imp95] proves that, if a Boolean function is “mildly” hard on average with respect to
the uniform distribution, then there is a large set of inputs such that the function is “very” hard
on average on inputs coming from that set.

45



46 CHAPTER 6. HARDNESS AMPLIFICATION

Lemma 33 (Impagliazzo). Let f : {0, 1}n → {0, 1} be a (S, δ)-hard function with respect to the
uniform distribution. Then, for every ε, there is a set H ⊆ {0, 1}n of size δ2n such that f is
(S · poly(ε, δ), 1

2 − ε)-hard with respect to the uniform distribution over H.

We can now present Impagliazzo’s proof of the XOR Lemma.

Theorem 34 (XOR Lemma, Impagliazzo’s version). Let f : {0, 1}n → {0, 1} be (S, δ)-hard with
respect to the uniform distribution, let k be an integer, and define g : {0, 1}nk → {0, 1} as

g(x1, . . . , xk) := f(x1) ⊕ · · · ⊕ f(xk) .

Then, for every ε > 0, g is (S · poly(ε, δ), 1
2 − ε − (1 − δ)k)-hard with respect to the uniform

distribution.

Let H be a set as in Lemma 33. The main idea in the proof is that if we are a small circuit, then
our chances of computing f(x) for x ∼ H are about the same as our chances of guessing the value
of a random coin flip. Now, we are given x1, . . . , xk and we need to compute f(x1) ⊕ · · · ⊕ f(xk);
if some xj is in H, then, intuitively, our chances of correctly doing the computation are about the
same as our chances of computing f(x1) ⊕ · · · ⊕ f(xj−1) ⊕ b ⊕ f(xj+1) · · · ⊕ f(xk), where b is a
random bit. A random bit xor-ed with other independent values is also a random bit, and so, in
that case, we will be correct only with probability 1/2. So our probability of being correct is at
most 1/2 plus (1 − δ)k (the probability that none of the xj is in H) plus ε (to account for the
difference between our ability to guess a random bit and our ability to compute f(x) for x ∼ H).

Even though this proof sketch may look completely unsound, it leads to a surprisingly simple formal
proof, that we present below.

Proof of Theorem 34. Apply Lemma 33, and let H be the set of size δ2n such that f is (S ·
poly(ε, δ), 1

2 − ε)-hard with respect to the uniform distribution over H.

Let C be a circuit of size S′ such that

Pr[C(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk)] >
1

2
+ (1 − δ)k + ε

Let D be the uniform distribution over k-tuples (x1, . . . , xk) ∈ ({0, 1}n)k conditioned on at least
one xj being an element of H. By conditioning on the event that some xj ∈ H, we obtain

Pr(x1,...,xk)∼D[C(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk)] >
1

2
+ ε

We can see the process of picking a k-tuple (x1, . . . , xk) ∼ D as first picking a non-empty subset
S ⊆ [k] with an appropriate distribution, then, for each j ∈ S, picking xj uniformly from H, and,
for each j 6∈ S, picking xj uniformly from {0, 1}n −H, so the above expression can be rewritten as

ES 6=∅

[

Prxj∼H,j∈S;xj∼({0,1}n−H),j 6∈S[C(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk)]
]

>
1

2
+ ε

Fix the set S that maximizes the outside expectation, and let i be the first element of S. Then we
have

Prxj∼H,j∈S;xj∼({0,1}n−H),j 6∈S[C(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk)] >
1

2
+ ε
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or equivalently

Exj∼H,j∈S−{i};xj∼({0,1}n−H),j 6∈S

[

Prxi∼H [C(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk)]
]

>
1

2
+ ε

Let aj for j 6= i be the assignment for xj that maximizes the above expectation. Then we have

Prxi∼H [C(a1, . . . , ai−1, xi, ai+1, . . . , ak)

= f(a1) ⊕ · · · ⊕ f(ai−1) ⊕ f(xi) ⊕ f(ai+1) ⊕ · · · ⊕ f(ak)] >
1

2
+ ε

which we can rearrange as

Prx∼H [C(a1, . . . , ai−1, xi, ai+1, . . . , ak)

⊕ f(a1) ⊕ · · · ⊕ f(ai−1) ⊕ f(ai+1) ⊕ · · · ⊕ f(ak) = f(x)] >
1

2
+ ε

Note that the left-hand side expression above can be computed by a circuit of size at most S′ + 1,
showing that f is not (S′ + 1, 1

2 − ε)-hard with respect to the uniform distribution over H. We can
choose S′ = S · poly(ε, δ) in a way that contradicts our assumption about f being (S, δ)-hard with
respect to Un, and so we conclude that g is indeed (S ·poly(ε, δ), 1

2 − ε− (1− δ)k)-hard with respect
to the uniform distribution.

6.2 O’Donnell’s Approach

The XOR Lemma does not allow us to prove results of the form “if there is a midly hard-on-average
distributional problem in NP with respect to the uniform distribution then there is a very hard-
on-average distributional problem in NP with respect to the uniform distribution.” The difficulty
is that if L is (the characteristic function of) a problem in NP, then, given x, y, it is not clear that
the problem of computing L(x) ⊕L(y) is still in NP. Indeed, if L is NP-complete, then computing
L(x) ⊕ L(y) is not in NP unless NP = coNP.

We note, however, that if g : {0, 1}k → {0, 1} is a monotone function, and L is in NP, then comput-
ing g(L(x1), . . . , L(xk)) given (x1, . . . , xk) is a problem in NP. We may then ask whether there are
monotone functions g such that, if L is mildly hard on average, then computing g(L(x1), . . . , L(xk))
is very hard on average.

To address this question, we return to the informal proof of the XOR Lemma outlined in the
previous section. Let f : {0, 1}n → {0, 1} be a (S, δ)-hard function, and let H be a set as in
Impagliazzo’s Lemma. Define the probabilistic function F such that F (x) = f(x) for x 6∈ H and
F (x) is a random bit for x ∈ H. Our informal proof of the XOR Lemma was that, for a small circuit,
computing F (x1) ⊕ · · · ⊕ F (xk) given (x1, . . . , xk) is about as hard as computing f(x1) ⊕ · · · f(xk)
given (x1, . . . , xk); no algorithm, however, can solve the former problem with probability larger than
1
2 + (1 − δ)k, for information-theoretic reasons, and so this is also an approximate upper bound to
the probability that a small circuit correctly solves the latter problem.

O’Donnell [O’D02] shows that there are monotone functions g such that computing g(F (x1), . . . , F (xk))
given (x1, . . . , xk) cannot be done with probability larger than 1/2 + ε, provided k is at least
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poly(1/ε, 1/δ), and a similar upper bound holds for the probability that a small circuit can com-
pute g(f(x1), . . . , f(xk)) given (x1, . . . , xk).

Let us start with a formalization of the information-theoretic result. For a function f : {0, 1}n →
{0, 1} and a set H ⊆ {0, 1}n, we denote by FH a random variable distributed over functions
{0, 1}n → {0, 1}, defined so that FH(x) is a random bit for x ∈ H and FH(x) = f(x) for x 6∈ H.
We say that a Boolean function is balanced if Pr[f(Un) = 1] = 1

2 .

Lemma 35 (O’Donnell). For every ε > 0, δ > 0 there is a k = poly(1/ε, 1/δ) and a monotone
function g : {0, 1}k → {0, 1}, computable by a circuit of size O(k), such that for every balanced
function f : {0, 1}n → {0, 1}, every subset H ⊆ {0, 1}n of size δ2n and every function A : {0, 1}kn →
{0, 1} we have

Prx1,...,xk
[A(x1, . . . , xk) = g(FH (x1), . . . , FH(xk))] ≤

1

2
+ ε

where different occurrences of FH in the above expression are sampled independendently.

The proof of the Lemma is not easy, and we refer the reader to [O’D02] for more details. Let us see
how to use the Lemma for the sake of hardness amplification. We need to formalize the notion of
g(FH (x1), . . . , FH(xk)) and g(f(x1), . . . , f(xk)) being similarly hard to compute for a small circuit.
Specifically, we prove the following result.

Lemma 36. Let f : {0, 1}n → {0, 1} be a (S, δ)-hard function. Then, for every α > 0, there is a
set H of size δ2n such that for every k, and every function g : {0, 1}k → {0, 1} computable by a
circuit of size at most s, and for every circuit A of size at most S · poly(α, δ) − s, we have

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≤ Pr[A(x1, . . . , xk) = g(FH (x1), . . . , FH(xk))] + k · αδ

In order to skecth the proof Lemma 36, we first need to introduce the notion of computational indis-
tinguishability. We say that two distributions X,Y ranging over {0, 1}n are (S, ε)-indistinguishable
if for every circuit C of size ≤ S we have

∣

∣Pr[C(X) = 1] −Pr[C(Y ) = 1]
∣

∣ ≤ ε

Proof sketch of Lemma 36. Given a (S, δ)-hard function f , we first find a set H as in Impagliazzo’s
Lemma, such that f is (S′, 1/2 − α)-hard with respect to the uniform distribution on H, where
S′ = S · poly(α, δ). Then we consider the distributions (x, f(x)) and (x, FH(x)), for uniformly
distributed x, and we prove that they are (S′ − O(1), αδ)-indistinguishable. From this point, it is
not hard to show, using a hybrid argument, that the distributions

(x1, . . . , xk, f(x1), . . . , f(xk))

and
(x1, . . . , xk, FH(x1), . . . , FH(xk))

are (S′ − O(1), kαδ)-indistinguishable. Suppose now that g is a function computable in size s and
that A is a circuit of size S′′ such that

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] > Pr[A(x1, . . . , xk) = g(FH (x1), . . . , FH(xk))] + k · αδ
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Define the circuit

C(x1, . . . , xk, b1, . . . , bk) := A(x1, . . . , xk) ⊕ g(b1, . . . , bk)

of size S′′ + s + O(1) showing that the two above distributions are not (S′′ + s + O(1), kαδ)-
indistinguishable. It is possible to choose S′′ = S · poly(α, δ) so that this is a contradiction.

Lemma 36, together with Lemma 35, is sufficient to provide amplification of hardness within NP
for problems whose characteristic function is balanced.

Lemma 37. Let f : {0, 1}n → {0, 1} be a balanced (S, δ)-hard function. Then for every ε there is
a k = poly(1/ε, 1/δ) and a monotone g : {0, 1}k → {0, 1} computable by a circuit of size O(k) such
that if we define

h(x1, . . . , xk) := g(f(x1), . . . , f(xk))

we have that h is (S · poly(ε, δ), 1/2 − ε)-hard.

Proof. Apply Lemma 35 and find a k = poly(1/ε, 1/δ) and a function g : {0, 1}k → {0, 1} such that
for every set H of size δ2n and every A we have

Prx1,...,xk
[A(x1, . . . , xk) = g(FH (x1), . . . , FH(xk))] ≤

1

2
+

ε

2

Apply Lemma 36 with α = εδ/2k to find a set H such that for every circuit A of size at most
S · poly(α, δ) − s = S · poly(ε, δ) we have

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≤ Pr[A(x1, . . . , xk) = g(FH (x1), . . . , FH(xk))] +
ε

2

Combining the two expressions, we have that for every circuit A of size at most S · poly(ε, δ)

Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≤
1

2
+ ε.

Some extra work is needed to remove the assumption that the funtion be balanced, and to optimize
the constants. O’Donnell final result is the following.

Theorem 38 (O’Donnell). Suppose that for every language L in NP we have (L,U) ∈ Heur1/2−1/n.33P/poly.
Then for every polynomial p and for every language L in NP we have

(L,U) ∈ Heur1/p(n)P/poly.

The result was improved by Healy et al. [HVV04], but only for balanced languages (that is, for
languages whose characteristic function is balanced on every input length).

Theorem 39 (Healy et al.). Suppose that for every balanced language L in NP there is a polynomial
p such that (L,U) ∈ Heur1/2−1/p(n)P/poly. Then for every polynomial p and for every balanced
language L in NP we have

(L,U) ∈ Heur1/p(n)P/poly
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Trevisan [Tre03, Tre05] proves weaker results for the uniform HeurBPTIME classes. Specifically,
Trevisan proves that there is a constant c such that if (NP,U) ⊆ Heur1/2−1/(log n)cBPP then, for
every polynomial p, (NP,U) ∈ Heur1/p(n)BPP.

Indeed, the actual result is slightly stronger.

Theorem 40 (Trevisan). Suppose that for every language L in NP there is a polynomial time
randomized algorithm A such that for every n

Prx∼Un;coin tosses of A[A(x) 6= L(x)] ≤ 1

2
+

1

(log n)c

Then, for every polynomial p, (NP,U) ∈ Heur1/p(n)BPP.

Note that the assumption in the theorem is (possibly) weaker than (NP,U) ⊆ Heur1/2−1/(log n)cBPP,
which requires

Prx∼Un

[

Prcoin tosses of A[A(x) 6= L(x)] >
1

4

]

≤ 1

2
+

1

(log n)c



Chapter 7

Worst-Case versus Average-Case and

Cryptography

The results on hardness amplification from Section 6 indicate that the notion of average-case
hardness is very robust with respect to the hardness parameter. Namely, it is just as hard to
solve hard problems in (NP,U) on slightly more than half their inputs as it is to solve them on a
1 − 1/poly(n) fraction of inputs. It is reasonable to ask if this connection can be pushed to the
extreme: Is it the case that solving problems in (NP,U) on slightly more than half their inputs is
no easier than solving them on all inputs? In other words, are there problems in (NP,U) whose
tractability would imply that NP ⊆ BPP?

A related and fundamental question in cryptography is whether the security of various cryptographic
primitives can be reduced to a reasonable worst-case complexity theoretic assumption, such as
NP 6⊆ BPP. This question has not been settled yet, and there is contrasting evidence about the
possibility of such a connection. In this Section we review and explain several results related to
this topic. As we shall see, at the heart of the question of basing cryptography on a worst-case
assumption is the connection between worst-case and average-case complexity.

Various cryptographic tasks require cryptographic primitives of seemingly different strength. Here,
we focus on the worst-case assumptions necessary for the existence of one-way functions (equiva-
lently, symmetric key cryptography) and public key encryption.

Since under the assumption NP ⊆ BPP no one-way functions exist, a worst-case assumption nec-
essary for the existence of one-way functions must be at least as strong as NP 6⊆ BPP. Is this
assumption sufficient for the existence of one-way functions? And if it is not, is it possible to base
the existence of one-way functions on a possibly relaxed, but still reasonable worst-case complexity
assumption?

Assuming the worst-case intractability of certain promise problems on lattices, it is possible to
obtain provably secure constructions of cryptographic one-way functions, as well as seemingly
stronger primitives such as collision resistant hash functions and public-key encryption schemes.
However, all known worst-case intractable problems that yield secure cryptographic primitives are
both in NP and coNP, thus are unlikely to be NP hard.1

1The worst-case assumption that statistical zero knowledge contains intractable problems, which seems to be much
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At this point, it is an open question whether the average-case tractability of (NP,U) would imply
that NP ⊆ BPP, and whether any form of cryptography can be based on the assumption NP 6⊆ BPP.
In this Section we review evidence that points to some difficulties in establishing such connections.

7.1 Worst-Case to Average-Case Reductions

What do we mean when we say that the existence of one way functions can be based on the
assumption NP 6⊆ BPP? The most general interpretation would be to say that there exists a proof
of the statement “NP 6⊆ BPP implies that one-way functions exist”. At this point no such proof is
known; however, it is difficult to rule out the existence of a proof, for that would imply that either
“NP 6⊆ BPP” or “one-way functions exist” would not be provable. One plausible interpretation of
the claim that the existence of one-way functions requires assumptions stronger than NP ⊆ BPP
would be to say that any “plausible” way to obtain a worst-case algorithm for SAT (or some other
NP-complete problem) from an imagined inverter for the universal one-way function fails, or at
least violates some reasonable assumption.

To see what we mean by “plausible”, let us see how a possible proof of the claim might go. Generally
such proofs are carried out by reduction; namely, there is an efficiently computable procedure that
maps candidate inverters for the one-way function to algorithms for SAT. Moreover, the reductions
typically use the one-way function inverter as a black box only. Such a reduction can be modeled
as an efficient oracle procedure R that, when given oracle access to an average case inverter for the
one-way function, solves SAT correctly on almost all instances. With this in mind, the notion that
one-way functions can be based on the assumption “NP 6⊆ BPP” can be liberally interpreted as
the existence of a reduction R of the form described above.

We would also like to consider the possibility that one-way functions can be based on stronger
assumptions. This motivates the notion of a worst-case to average-case reduction. First, we define
the notion of an “inversion oracle” for a one-way function.

Definition 41 (Inversion oracle). Let {fn : {0, 1}n → {0, 1}∗} be a family of functions. An inver-
sion oracle for {fn} with error δ(n) is a family of (possibly randomized) functions {In : {0, 1}∗ →
{0, 1}n} such that for all n,

Prx∼Un,In [In(fn(x)) 6∈ f−1
n (fn(x))] ≤ δ(n).

Thus, if there is an efficiently computable inversion oracle for f with inverse polynomial error, then
f is not strongly one-way.

Definition 42 (Worst-case to average-case reduction). A worst-case to average-case reduction
from a language L to inverting a family of functions {fn} with average-case error δ(n) is an oracle
procedure R such that for all inversion oracles I with error δ(n), all sufficiently large n, and all x
of length n,

PrR,I [R
I(x) 6= L(x)] < 1/3.

stronger than NP 6⊆ BPP, is known to imply the existence of infinitely often one-way functions, a primitive object
seemingly weaker than the one-way function [Ost91]. This primitive does not appear to have any useful applications.
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The reduction is called non-adaptive if the reduction makes all its queries in parallel, that is, each
query are independent of answers to previous queries.

If the function f were not one-way, the inversion oracle could be implemented by an efficient
algorithm, and the reduction would give an efficient algorithm for L. Thus a worst-case to average-
case reduction can be viewed as a fairly general tool for establishing a connection between the
average-case complexity of inverting f and the worst-case complexity of L.

In a similar fashion, we can define worst-case to average-case reductions for other primitives in
average-case complexity, in particular distributional decision problems and distributional search
problems (of which one-way functions are a special case). The only part of the definition that
differs for these primitives is the notion of an inversion oracle, which we call “approximate oracle”
in this context. For illustration we state the definition for deterministic oracles, and for decision
problems only.

Definition 43. Let L be a language and D an ensemble of distributions. An approximate oracle
for (L,D) with error δ(n) is a function A : {0, 1}∗ → {0, 1,⊥} such that for all n,

Prx∼Dn [A(x) 6= L(x)] < δ(n).

The approximate oracle is errorless if for all x, A(x) ∈ {L(x),⊥}.
A worst-case to average-case reduction with error δ(n) from L to (L′,D) is an efficient oracle
procedure R such that for all approximate oracles A with error δ(n), all sufficiently large n, and all
x of length n, PrR[RA(x) 6= L(x)] < 1/3.

Thus if (BH,UBH) has an efficiently computable approximate oracle, then (NP,PSamp) ⊆ HeurBPP;
if the oracle is errorless, then (NP,PSamp) ⊆ AvgZPP. Assuming NP 6⊆ BPP, the existence
of a worst-case to average-case reduction from SAT to (BH,UBH) implies that (NP,PSamp) 6⊆
HeurBPP (or (NP,PSamp) 6⊆ AvgZPP, if the reduction only works with respect to errorless ora-
cles).

This definition of “worst-case to average-case reduction” models the framework used to establish
the amplification of hardness results from Section 6. Also, in the extreme case δ = 0, the definition
becomes the standard notion of reducibility between worst-case problems.

Alternative Definitions. The notion of “worst-case to average-case reduction” attempts to cap-
ture a reasonable class of possible approaches for basing average-case complexity and cryptography
on NP-hardness. We wish to stress, however, that the definition is by no means canonical and that
it is natural to consider certain variants. For simplicity we focus on Definition 43.

One alternative to Definition 43 is to consider generic procedures that, given oracle access to any
worst-case hard language L, produce an average-case hard language (L′,D). For such a procedure
A to be useful for NP-languages it should be the case that A itself is an NP procedure with
access to an oracle. This notion is interesting because such procedures exist in higher complexity
classes such as PSPACE and EXP, where they are used to establish worst-case to average-case
connections. The amplification results of Section 6 are also of this type. Viola [Vio05] (see also
[Vio04]) shows that no such oracle procedure exists in NP, and even in the polynomial hierarchy
(unless (NP,PSamp) 6⊆ HeurP/poly, in which case A exists trivially.)
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In summary, Viola’s result shows that any worst-case to average-case reduction in NP must use
specific properties of the worst-case language it is reducing from. Indeed, the worst-case to average-
case reductions of Ajtai, Micciancio, and Regev heavily exploit properties that are specific to
lattices.

A serious limitation of Definition 43 is that it does not impose any computational restriction on the
average-case oracle.2 In reality, to base average-case complexity on NP-hardness, the reduction need
only consider candidate average-case oracles that can be implemented in BPP. This intriguing type
of a reduction is called a “BPP-class black-box reduction” by Gutfreund and Ta-Shma [GT06]: As
in Definition 43, the reduction only obtains oracle (black-box) access to the average-case solver, but
is allowed to behave arbitrarily if the oracle cannot be implemented in BPP. Gutfreund, Shaltiel,
and Ta-Shma [GST05, GT06] show an interesting setting in which BPP-class black-box reductions
are provably more powerful than ordinary worst-case to average-case reductions (under reasonable
assumptions.) However, it is not known whether such reductions can be used to base average-case
complexity for NP and cryptography on NP-hardness.

It is of course possible to further relax the definition and allow the reduction non-black box access
to an implementation of the inversion oracle. Little is known about the power of such a setting.

7.2 Permutations and Range-Computable Functions

What is the hardest language L for which we can expect to have a worst-case to average-case
reduction from L to inverting some one-way function? Let us look at some simple cases first.

First, let us consider the case of a reduction R from L to a one-way permutation f : {0, 1}n →
{0, 1}n. Then it is not difficult to see that L must be in AM∩ coAM (NP∩ coNP if the reduction is
deterministic). The situation is completely analogous for L and L, so it is sufficient to prove that
L ∈ AM. A simple two-round protocol for deciding membership in L works as follows: In the first
round, the verifier sends the coins used by the reduction to the prover. In the second round, the
prover sends the verifier a transcript that describes the computation on R when given access to an
oracle that inverts f on all inputs. When R makes oracle query q, the honest prover answers with
the unique a such that f(a) = q. The verifier can check that all the answers provided by the prover
are consistent with its queries, thus forcing the prover to perfectly simulate a computation of R
when given oracle access to an inverter for f . At the end of the interaction, the verifier accepts iff
the transcript provided by the prover is an accepting transcript for R.

It follows that the average-case hardness of any one-way permutation can be based, at best, on
the worst-case hardness of some problem in AM ∩ coAM. Thus there appears to be no hope of
basing the hardness of any cryptosystem that requires one-way permutations on the assumption
NP 6⊆ BPP.

7.2.1 k-to-One Functions

A permutation is a function that is both onto and one-to-one; Akavia et al. [AGGM06] consider
what happens when the function f : {0, 1}n+log k → {0, 1}n is k-to-one, namely every element in

2In fact, all results presented in this Section hold for Σ2 oracles, and in some cases for NP oracles.
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{0, 1}n has exactly k pre-images under f . The crucial difference between the cases k = 1 and k > 1
is that when k = 1, the function f admits a unique inverting oracle, while for k > 1 there are many
such oracles. To illustrate the significance of this, let us see what happens when the above protocol
for permutations is applied to a two-to-one function f . Since the number of inverting oracles for
f is now doubly exponential in n, it may be the case that for every choice of randomness by the
reduction, there exists some inversion oracle that makes the reduction output the incorrect answer.
A cheating prover can then force the verifier to output the incorrect answer by using this inversion
oracle in its simulation.

The solution of Akavia et al. is to force the prover to commit to a particular oracle that is
independent of the randomness used by the reduction. Let us first illustrate this with the case
k = 2. Then it is easy to modify the protocol for L so that the prover is always forced to simulate
interaction with the “smallest” inverting oracle for f : This is the inverter that, on input q, always
answers with the lexicograpically smaller pre-image of q under f . To check correctness, for every
query q the verifier always asks to see both preimages of q, and always uses the smaller of the two
values in its simulation of the reduction. It is straightforward that this argument works for any k
up to poly(n).

For values of k larger than poly(n), it is infeasible to ask the prover to provide a complete list of
pre-images for each query. Instead, the prover is forced to provide a random pre-image, which is
independent of the randomness used by the reduction. Thus the prover will simulate the interaction
of R with a random inverter. Let us outline how such a random pre-image might be obtained. The
random inverter that the proof system intends to simulate is the following one: For each possible
query q, choose a random hash function h mapping n bits to slightly fewer than log2(k/s) bits,
where s = poly(n). With high probability, the size of the set S = h−1(0) ∩ f−1(q) is about s. Out
of all the elements of S, choose the lexicographically smallest one (and if S is empty, choose an
arbitrary inverse of q).

As a first attempt, consider this proof system for simulating the inverter on a query q: The verifier
chooses a random hash function h, asks the prover for a complete list of members of S, and chooses
the lexicographically smallest one. Notice that no prover can include fictitious members of S in
its list, because membership in S is an efficiently verifiable property. Therefore, provers can only
cheat in a “one-sided” manner: A cheating prover can attempt to omit members of S, but never
claim fictitious members of S.

A cheating prover may, of course, fool the verifier by claiming that, say, S is empty. The verifier
knows that the size of S must be approximately s, so the verifier can protect against such an attack
by rejecting all sets S whose size deviates substantially from s. The problem is that the cheating
prover may fool the verifier even by omitting a single entry of S, namely the lexicographically
smallest one. Hence the verifier must ensure that the prover has not omitted even a single element
of S.

This appears impossible to achieve in general, as deviation bounds on the size of S only guarantee
that S will have roughly the expected number of elements. Instead, Akavia et al. consider what
happens when we fix the randomness used by the reduction and execute this protocol t = poly(n)
times independently in parallel. Let Si denote the set S resulting from the ith run of the protocol.

Now suppose that for every potential query q, it can be guaranteed that in a 1− ε fraction of the t
protocol runs, the prover provides the correct set Si. Then at least a 1− ε fraction of the protocol
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runs provide a correct answer to the first query asked by the reduction; out of those, a 1−ε fraction
of runs provide a correct answer to the second query, and so on. If the verifier asks ` queries, then a
(1− ε)` fraction of runs will have all their queries answered correctly. By choosing ε small enough,
it can be ensured that a random run simulates the reduction correctly with high probability.

Therefore the main task is to design a verifier test that ensures a 1−ε fraction of the t protocol runs
yield the correct set Si. The crucial point is that in order to make the verifier fail with probability
ε, a cheating prover must now omit at least εt elements from the union of sets S1 ∪ · · · ∪ St.

3 For
t � s/ε2, εt becomes a significant deviation from st, the expected size of this union. Statistically,
we know that with high probability,

∣

∣|S1 ∪ · · · ∪ St| − st
∣

∣ < εt/2

so if the verifier checks that
∑t

i=1
|prover’s claim for Si| ≥ st − εt/2

the honest prover will pass this check with high probability. On the other hand, this severely limits
the power of a cheating prover: If any prover omits more than εt elements from S1 ∪ · · · ∪ St, then

∑t

i=1
|prover’s claim for Si| < |S1 ∪ · · · ∪ St| − εt < (st + εt/2) − εt < st − εt/2,

and the verifier rejects. Notice that the soundness of this protocol relies on the fact that the power
of a cheating prover is one-sided: A cheating prover can only understate, but never overstate the
size of the sets Si.

One additional condition that must be ensured is that the sets Si are nonempty for most i, for
otherwise not even the honest prover can correctly simulate the inverter for f . This can be achieved
by an appropriate choice of parameters.

Size-Computable, Size-Approximable, and Size-Certifiable functions. A family of func-
tions fn : {0, 1}n → {0, 1}∗ is size-computable if there is an efficient algorithm that on inputs n and
y runs in time polynomial in n and outputs the number |f−1

n (y)|. The k-to-one functions considered
above can be viewed as a special case of size-computable functions. If the algorithm outputs an
approximation of |f−1

n (y)| within an arbitrary factor that is inverse polynomial in n, the family is
called size-approximable. If the algorithm is nondeterministic, the family is called size-certifiable.
The protocol of Akavia et al. naturally extends to the case of size-computable, size-approximable,
and size-certifiable functions.

Theorem 44 (Akavia et al.). Suppose there exists a worst-case to average-case reduction from
language L to inverting a size-approximable or size-certifiable family of functions {fn}. Then
L ∈ AM ∩ coAM.

An example of a size-certifiable family is the family of functions

fn(p, q) =

{

p · q if p and q are bn/2c-bit primes,

0 otherwise.

It is widely believed that this family of functions is weakly one-way. However, Theorem 44 shows
that the problem of inverting this family is unlikely to be NP-hard.

3By convention we assume that the sets are pairwise disjoint.
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7.3 General One-Way Functions and Average-Case Hard Languages

Theorem 44 can be interpreted as evidence that it may not be possible to base the hardness of one-
way functions on an NP-complete problem. The requirement the family {fn} be range-certifiable
may appear to be a technical one, and it is often the case that the existence of one-way functions
satisfying some additional technical requirement is equivalent to the existence of general one-way
functions.

We will argue that this interpretation of Theorem 44 is mistaken. Observe that the protocol of
Akavia et al. in fact simulates a run of the reduction interacting with a worst-case inversion oracle
for fn, not an average case one; thus it shows that even the more difficult problem of inverting
y = fn(x) on every output y is unlikely to be NP-hard.

On the other hand, we do know of one-way functions that are NP-hard to invert in the worst case.
For instance, consider the function f that maps a CNF ϕ and an assignment a for ϕ to (ϕ,ϕ(a)). A
worst-case inversion algorithm for f solves the search version of SAT. Naturally, we do not interpret
this as saying that “f is a one-way function that is NP-hard to invert”, because it may well be the
case that even though f is NP hard to invert on all inputs, it is invertible on most inputs. (This is
in fact true for many natural choices of distribution on inputs.)

Thus if it is indeed the case that the hardness of inverting one-way functions cannot be based on
an NP complete problem, the argument must use the fact that the assumed reduction from the NP
complete problem to the inversion oracle works correctly with respect to an average-case inversion
oracle, not only for a worst-case one.

At this point it is not known whether such reductions exist in general. The techniques described in
the previous Section can be viewed as partial progress towards a negative result that are obtained
by putting restrictions on the type of one-way function under consideration. In this Section we
present a different approach which allows for general one-way functions but places restrictions on
the type of reduction used to establish the worst-case to average-case equivalence. In contrast to
Theorem 44, some of the results presented below make essential use of the fact that the one-way
function must be hard to invert on average.

We begin by looking at the connection between worst-case and average-case hardness for languages,
rather than functions. In particular, we focus on the relation between the conjectures NP 6⊆ BPP
and (NP,U) 6⊆ HeurBPP.

7.3.1 The Feigenbaum-Fortnow Approach

What can a worst-case to average-case reduction from a language L to a distributional NP problem
(L′,U) look like?

To begin with, we observe that if the reduction is deterministic, then L must be in P: For any
x ∈ {0, 1}∗, the answer produced by the reduction on input x must be independent of the choice
of average-case oracle for L′. One such average-case oracle is the oracle that agrees with L′ on
all the strings that are not queried by the reduction on input x, and answers ⊥ on all the other
queries. From the point of view of the reduction, however, this oracle is indistinguishable from the
oracle that answers ⊥ on every query. Therefore, an efficient algorithm for L can be obtained by
simulating the reduction on input x with access to an oracle that always answers ⊥.
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It follows that any nontrivial worst-case to average-case reduction must make randomized queries to
the average-case oracle. Feigenbaum and Fortnow [FF93] consider the case in which the reduction
is non-adaptive and the distribution of every query made by the reduction on input x of length n
is uniform in {0, 1}n′

for some n′ = poly(n). Reductions of these type are called locally random
reductions. The reason such reductions are interesting is that is that they provide a natural way
of establishing a worst-case to average-case connection: If the reduction asks q queries, then any
average-case oracle that is 1/4qn′-close to L′ with respect to the uniform distribution is indistin-
guishable from L′ itself from the point of view of the reduction with probability 3/4. Thus if there
exists a locally random reduction from L to L′, and L is hard in the worst-case, then L′ is hard to
solve on more than a 1 − 1/4qn′-fraction of inputs. Locally random reductions have been used to
establish worst-case to average-case connections in settings other than NP.

Feigenbaum and Fortnow essentially rule out locally random reductions as a tool for establishing
worst-case to average-case connection for all of NP. More precisely, they show that if there exists
a locally random reduction from a language L to a language L′ in NP, then it must be that L is
in NP/poly ∩ coNP/poly. In particular, L is unlikely to be NP-hard: If L is NP-hard, then NP is
contained in coNP/poly, and the polynomial hierarchy collapses to the third level.

To prove this, Feigenbaum and Fortnow give a way to simulate the reduction (on input x) by an
AM proof system that uses polynomial length non-uniform advice. The outcome of the simulation
then determines whether x is a “yes” or a “no” instance of L. Thus the protocol can be used to
determine membership in both L and L. An AM proof system with advice can be turned into a
non-deterministic circuit, giving the conclusion L ∈ NP/poly ∩ coNP/poly.

The Feigenbaum-Fortnow Protocol. Let R be a locally random reduction from L to L′ ∈ NP.
Suppose that on an input of length n, R makes k queries, each of which is uniformly distributed
in {0, 1}n′

. Without loss of generality, assume that R is correct with very high probability (say
1 − 1/k3) over its random coins.

We show an interactive protocol for membership in L. The protocol for L is identical except that
it inverts the answers given by R.

The non-uniform advice used by the protocol will be the value p = Pry∼{0,1}n′ [y ∈ L′].

The protocol. On input x ∈ {0, 1}n,

1. Verifier: Run R(x) independently m = 64k2 log k times to generate m sets of queries
(y1

1 , . . . , y
1
k), . . . , (y

m
1 , . . . , ym

k ). Send all queries to the prover.

2. Prover: For each yj
i , respond by saying whether yj

i ∈ L′. Accompany each claim that yj
i ∈ L′

by an NP-certificate for yj
i .

3. Verifier: Accept if all of the following conditions hold:

(a) R(x) accepts in all m iterations using the answers provided by the prover,

(b) All certificates sent by the prover are valid, and

(c) For every 1 ≤ j ≤ k, at least pm − m/2k of the queries y1
j , . . . , y

m
j are answered “yes”.
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If x ∈ L and the prover follows the protocol, then R(x) accepts in all m iterations with high
probability, and the verifier accepts provided condition 3(c) is satisfied. Note that for each fixed
j, the strings y1

j , . . . , y
m
j are independent and uniformly distributed in {0, 1}n′

, and each one has
probability p of being a yes instance. By Chernoff bounds, with probability at least 1/4k at least
pm − 4

√
m log k > pm − m/2k of them are yes instances. By a union bound with probability 3/4

this is satisfied for all j and condition 3(c) holds.

If x 6∈ L, to make the verifier accept, the prover must send an erroneous answer in every one of the
m runs of R(x), so in particular there must be at least m errors among the prover’s answers. All the
erroneous answers of the prover must be yes instances on which it answers no (if the prover tries to
cheat the other way, it wouldn’t be able to provide certificates.) In particular, there must be some
j such that among the queries y1

j , . . . , y
m
j at least m/k are answered no even though they were yes

instances. By a Chernoff bound as above, it is unlikely that there are more than pm + 4
√

m log k
yes instances among y1

j , . . . , y
m
j , so the prover is giving at most pm+4

√
m log k−m/k < pm−m/2k

“yes” answers for y1
j , . . . , y

m
j . Then the verifier rejects with high probability in step 3(c).

7.3.2 Arbitrary Non-Adaptive Reductions

For the result of Feigenbaum and Fortnow, it is not necessary that the distribution of each query
made by the reduction be uniform over {0, 1}n′

, but it is essential that the marginal distribution
of queries made by the reduction be independent of the reduction’s input. This restriction is quite
strong, and in this sense, the result is extremely sensitive: If one modifies the distribution of queries
even by an exponentially small amount that depends on the input, all statistical properties of the
reduction are preserved, but one can no longer draw the conclusion that L ∈ NP/poly∩coNP/poly.

Bogdanov and Trevisan [BT03] show that the conclusion of Feigenbaum and Fortnow holds in a
more general setting. They show that the existence of any non-adaptive worst-case to average-case
reduction from L to an arbitary problem (L′,D) in (NP,PSamp) implies that L is in NP/poly ∩
coNP/poly, with no restriction on the distribution of queries made by the reduction. In particular,
the queries made by the reduction are allowed to depend arbitrarily on the input x. This formulation
extends the result of Feigenbaum and Fortnow in two directions: First, it allows for a more general
class of worst-case to average-case reductions; second, it allows average-case complexity to be
measured with respect to an arbitrary samplable distribution, not only the uniform distribution.

Theorem 45 (Bogdanov and Trevisan). Suppose that there exists a non-adaptive worst-case to
average-case reduction from a language L to a decision problem (L′,D) in (NP,PSamp). Then
L ∈ NP/poly ∩ coNP/poly.

The proof of Bogdanov and Trevisan uses essentially the fact that the reduction is correct when given
access to an arbitrary average-case oracle for (L′,D). The idea of the proof is again to simulate the
reduction querying an average-case oracle for (L′,D) with an AM protocol using advice. Observe
that the Feigenbaum-Fortnow protocol works for arbitrary non-adaptive reductions whenever it is
given as auxiliary input the probability px that a random query made by the reduction on input x
is a “yes” instance of L′ according to distribution D. For a general reduction, however, the value
px cannot be provided as advice for the protocol, because it may depend on the particular input x.
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The idea of Bogdanov and Trevisan is to use a different protocol to compute the value px, then
use the Feigenbaum-Fortnow protocol for membership in L using the value px as auxiliary input.
Initially, a weaker version of the theorem is proved where D is the uniform distribution. To begin
with, let us allow the distribution of queries made by the reduction to depend on x, but restrict it
to be “α-smooth”: We assume that every query y is generated with probability at most α · 2−|y|,
where α is a constant. Suppose that, given a random query y, we could force the prover to reveal
whether or not y ∈ L′. Then by sampling enough such queries y, we can estimate px as the fraction
of “yes” queries made by the reduction. But how do we force the prover to reveal if y ∈ L′? The
idea is to hide the query y among a sequence of queries z1, . . . , zk for which we do know whether
zi ∈ L′, in such a way that the prover cannot tell where in the sequence we hid our query y. In
such a case, the prover is forced to give a correct answer for y, for if he were to cheat he wouldn’t
know where in the sequence to cheat, thus would likely be caught.

The problem is that we do not know a specific set of queries zi with the desired property. However,
the strings zi were chosen by sampling independently from D, then with high probability pk±O(

√
k)

of these queries will end up in L′, where p is the probability that a string sampled from D is in
L′. Since p depends only on the length of x but not on x itself, it can be given to the verifier
non-uniformly. This suggests the following verifier strategy: Set k = ω(α2), generate k uniformly
random queries z1, . . . , zk of length n, hide y among z1, . . . , zk by inserting it at a random position
in the sequence, send all the queries to the prover and ask for membership in L′ together with
witnesses that at least pk − O(

√
k) queries belong to L′. Then with high probability, either the

verifier rejects or the answer about membership of y in L′ is likely correct. Intuitively, a cheating
prover can give at most O(

√
k) wrong answers. The prover wants to use this power wisely and

assign one of these wrong answers to the query y. However, smoothness ensures that no matter
how the prover chooses the set of O(

√
k) queries to cheat on, it is very unlikely that the query y

falls into that set.

For a reduction that is not smooth, it is in general impossible to hide a query y among random
queries from D using the above approach. However, suppose that the verifier had the ability to
identify queries y that occur with probability ≥ α · 2−|y|; let us call such queries “heavy”, and the
other ones “light”. The fraction of heavy queries in D is at most 1/α. Suppose also that the prover
answers all light queries correctly. The prover can then certify membership in L as follows: If the
query made by the reduction is heavy, pretend that the average-case oracle answered ⊥, otherwise
use the answer provided by the prover. This process simulates exactly a run of the reduction when
given access to an average-case oracle that agrees with L′ on all the light queries, and answers ⊥
on all the heavy queries. In particular, the oracle agrees with L′ on a 1 − 1/α fraction of strings,
so the reduction is guaranteed to return the correct answer.

In general, the verifier cannot identify which queries made by the reduction are heavy and which
are light. The last element of the construction by Bogdanov and Trevisan is an AM protocol with
advice that accomplishes this task.

The case of a general samplable distribution D can be reduced to the case when D is the uniform
distribution using Theorem 29, observing that the reduction in the proof is indeed non-adaptive.
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7.3.3 Distributional Search Problems and One-Way Functions

Theorem 45 shows that non-adaptive worst-case to average-case reductions from an NP-hard prob-
lem to decision problems in (NP,PSamp) are unlikely to exist. How about reductions to search
problems? Using the fact that search-to-decision reduction described in Section 4.2 is non-adaptive,
we can conclude that non-adaptive reductions from NP-hard problems to distributional search prob-
lems in NP are also unlikely to exist.

A case of special interest is when the distributional search problem is inverting a one-way function:
If there exists a non-adaptive worst-case to average-case reduction from a language L to a family
of functions {fn}, then L ∈ NP/poly ∩ coNP/poly. Using a more refined argument for the case of
one-way functions, Akavia et al. obtain a simulation of the reduction by an AM protocol without
advice:

Theorem 46 (Akavia et al.). Suppose that there exists a non-adaptive worst-case to average-case
reduction from language L to inverting a family of functions {fn}. Then L ∈ AM ∩ coAM.

7.4 Public Key Encryption

Do there exist public key encryption schemes whose security can be based on the assumption NP 6⊆
BPP? Since public key encryption schemes are harder to design than one-way functions, we expect
that this question should be only harder to answer in the affirmative than the question whether
one-way functions follow from the assumption NP 6⊆ BPP. Conversely, the lack of cryptographic
primitives based on NP hardness assumptions should be easier to explain in the public-key setting
than in the symmetric-key setting.

As in the case of one-way functions, we interpret the question whether public key encryption can be
based on the assumption that NP 6⊆ BPP as asking for the existence of an efficiently computable
reduction that converts any adversary that breaks the encryption scheme into an algorithm for
SAT. By an encryption scheme, we mean a collection consisting of a key generation algorithm G,
an encryption algorithm E, and a decryption algorithm D (all randomized) such that

• Algorithm G takes as input a hardness parameter n, runs in time polynomial in n, and
produces a pair of keys: the public key pk and the secret key sk.

• Algorithm E takes as inputs a hardness parameter n, a public key pk, and a bit b to be
encrypted, runs in time polynomial in n, and satisfies the property that for most public keys pk
(obtained by running G(n)), the distributions E(n, pk, 0) and E(n, pk, 1) are computationally
indistinguishable (with respect to the parameter n, by an algorithm that takes as auxiliary
input n and pk).

• Algorithm D takes as inputs a hardness parameter n, a secret key sk, and a ciphertext c,
runs in time polynomial in n, and satisfies the property that for all b, and most pairs (pk, sk)
obtained from G(n), D(n, sk,E(n, pk, b)) = b with probability negligible in n.

The existence of one bit encryption is sufficient to construct public key encryption schemes for
messages of arbitrary length that satisfy very strong notions of security.
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As in the case of one way functions, it is not known in general whether there exists a reduction from
SAT to an adversary for some one bit encryption scheme. However, such reductions can be ruled
out under certain restrictions either on the cryptosystem in question or on the way the reduction
works.

Goldreich and Goldwasser [GG98b], building upon previous work by Brassard [Bra79] restrict
attention to encryption schemes where for all n and pk, the sets E(n, pk, 0) ane E(n, pk, 1) are
disjoint, and moreover the set

S = {(1n, pk, c) : c 6∈ E(n, pk, 0) ∪ E(n, pk, 1)}

is in NP (namely, the property that c is a possible ciphertext is efficiently refutable). Goldreich
and Goldwasser observe that some, but not all known one bit encryption schemes satisfy these
properties. They observe that if there is a reduction from a language L to an adversary for an
encryption scheme of this type, then L ∈ AM ∩ coAM. The reason is that the reduction can be
simulated by a two-round proof system in which the prover plays the role of a distinguishing oracle
for the sets E(n, pk, 0) and E(n, pk, 1). In the first round, the verifier chooses the randomness
to be used by the reduction and sends it to the prover. In the second round, the prover sends
a transcript of the reduction interacting with an adversary for the encryption scheme. When the
reduction queries the adversary on input (n, pk, c), there are three possibilities: Either c ∈ (n, pk, 0),
or c ∈ (n, pk, 1), or (n, pk, c) ∈ S. By assumption, all three of these cases are efficiently certifiable.
Therefore, a transcript of the reduction augmented by certificates for the answers made by every
query asked by the reduction constitutes a valid and efficiently checkable simulation of the reduction
interacting with a distinguishing oracle for one-bit encryption.

The requirement that the sets of possible encryptions of 0 and 1 are disjoint can be somewhat
relaxed, and the requirement that the set S is in NP can be substituted by a requirement that
the reduction is “smart”—it never queries invalid ciphertexts. Thus, the observation of Goldreich
and Goldwasser can be viewed as saying that the NP hardness of one bit encryption cannot be
established via “non-smart” reductions.

Should these arguments be viewed as an indication that public key cryptography cannot be based
on NP hard problems? Observe that the proof systems of Brassard and Goldreich and Goldwasser
do not use the fact that the reduction outputs the correct answer even if it interacts with an
average-case distinguisher between the encryptions of 0 and 1. Thus, these are essentially results
about the worst-case complexity of breaking encryption, showing that under certain restrictions
on the encryption scheme or on the reduction, the hardness of breaking the encryption in the
worst case is a problem in NP ∩ coNP. However, these restrictions on the encryption scheme or
on the reduction cannot be so easily removed. As was shown by Lempel [Lem79], there do exist
“encryption schemes” which are NP hard to break in the worst case, but are tractable to break on
average: Namely, the problem “On input (n, pk,E(n, pk, b)), find b” is NP hard in the worst case,
but is tractable on average. (Lempel’s result generalizes the observation that there exist one-way
functions that are NP hard to invert in the worst case but easy to invert on average to the setting
of public-key cryptography.) Currently, there is no known argument that explains why public-key
cryptography appears to require worst-case assumptions stronger than NP 6⊆ BPP beyond what is
known for one-way functions, i.e., symmetric key cryptography.
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7.5 Perspective: Is Distributional NP as Hard as NP?

So far we have focused on negative results regarding connections between the worst case and average
case complexity of NP. Since these results do not rule out the possiblity that distributional NP is
as hard as NP, the question remains if such a connection is possible, and if it is, how one should
go about establishing it.

The problem of basing cryptography on NP hardness has played a central role since the beginnings of
cryptography, and much research effort has been put into answering this question in the affirmative.
A breakthrough was made in work by Ajtai [Ajt96], who showed that the existence of intractable
problems in distributional NP follows from the assumption that there is no efficient algorithm that
approximates the length of the shortest vector on a lattice in the worst case (within a factor of nO(1),
where n is the dimension of the lattice). This is the first example of a problem in distributional
NP whose hardness follows from a reasonable worst-case intractability assumption. In later works,
Ajtai, Dwork, Micciancio, and Regev substantially extended Ajtai’s original result, showing that
(1) The existence of useful cryptographic objects, including one-way functions and public key
encryption schemes, also follows from reasonable worst-case intractability assumptions and (2) The
worst-case intractability assumption used by Ajtai can be substantially weakened, giving the hope
that further improvements could replace Ajtai’s assumption with the strongest possible worst-case
intractability assumption, namely NP 6⊆ BPP.

All known worst case to average case connections for NP are established by reductions, and all
known reductions start from a problem that is known to reside inside NP∩ coNP. One view of this
situation is that membership in NP∩coNP does not reveal anything fundamental about the relation
between worst case and average case complexity for NP, but is merely an artifact of the current
reductions; improved reductions could go beyond this barrier, and eventually yield an equivalence
between worst case and average case hardness for NP.

On the other hand, the results presented in this section, if liberally interpreted, seem to indicate the
opposite: The mere existence of a worst-case to average-case reduction for NP often implies that the
problem one is reducing from is in NP∩coNP (or AM∩coAM, or NP/poly∩coNP/poly.) Moreover,
the reason for this connection appears to be fairly universal: A worst-case to average-case reduction
can be viewed as a proof system in which the verifier runs the reduction, and the prover simulates
the average-case oracle. The difficulty is in forcing even a cheating prover to simulate the average-
case oracle correctly; currently, it is known how to do this only under restrictive assumptions on the
reduction (Theorems 45 and 46). However, further improvements may lead to the conclusion that
this connection between worst-case to average-case reduction and constant-round proof systems is
a universal one, and thus there is no hope of basing average-case complexity for NP on NP hardness
assumptions by means of a reduction.
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Chapter 8

Other Topics

The theory of average-case complexity for NP lacks the wealth of natural complete problems en-
countered in worst-case complexity. Yet, there are many natural distributional problems that are
believed to be intractable on average.

One such problem is random kSAT, whose instances are generated by choosing clauses indepen-
dently at random. In Section 8.1 we survey some of the known results about random kSAT,
especially for k = 3. While random 3SAT is not known to be average-case complete, some versions
of it are not known to have efficient errorless heuristics. An unusual result of Feige shows that
the intractability of random 3SAT would have some interesting consequences in approximation
complexity.

Another class of problems that are believed to be intractable on average is derived from lattice
based cryptography. The importance of these problems stems from the fact that they are the only
known examples of problems in distributional NP that are hard according to a worst-case notion of
hardness: If these problems were easy on average, then the corresponding problems on lattices, long
believed to be hard, could be solved in the worst case. We survey some key results in Section 8.2.

8.1 The Complexity of Random kSAT

A widely investigated question in both statistics and the theory of computing is the tractability of
random kCNF instances with respect to natural distributions. The most widely studied distribution
on kCNF instances is the following: Given parameters n > 0 and mk(n) > 0, choose at random
mk(n) out of the 2k

(n
k

)

possible clauses of a kCNF on n boolean variables. An essentially equivalent
model is to choose each of the possible 2k

(n
k

)

clauses independently with probability mk(n)/2k
(n
k

)

.

By a counting argument, it follows that when mk(n)/n ≥ 2k ln 2, a random kCNF is almost always
unsatisfiable as n grows large. Better analysis improves this upper bound by a small additive
constant. Achlioptas and Peres [AP04], following Achlioptas and Moore [AM02], prove that when
mk(n) < 2k ln 2− k ln 2/2− c (for a constant c), then a random kCNF is almost always satisfiable.
Their result is non-constructive, that is, they do not provide an efficient algorithm that finds
satisfying assignments for a large fraction of such formulas.

For specific values of k, better lower and upper bounds are known. All known such lower bounds,

65
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except for the Achlioptas-Peres and Achlioptas-Moore results, are algorithmic. In particular, it is
known that 3.51 < m3(n)/n < 4.51.

Friedgut [Fri99] showed that for every k ≥ 2, satisfiability of random kCNF exhibits a (possibly)
non-uniform threshold. More precisely, for every ε > 0 and sufficiently large n there exists a value
ck(n) such that a random kCNF is satisfiable with probability 1− ε when mk(n)/n ≤ (1− ε)ck(n),
and with probability at most ε when mk(n)/n ≥ (1 + ε)ck(n). It is conjectured that the sequence
ck(n) converges to a value ck, known as the kSAT threshold, as n → ∞. Experiments indicate for
instance that c3(n) → c3 ≈ 4.26.

Assuming the existence of a threshold for kSAT, the existence of heuristic algorithms for random
kSAT with respect to this family of distributions becomes trivial everywhere except possibly at
the threshold.1 However, the situation is different with respect to errorless algorithms. Below
the threshold, where most of the formulas are satisfiable, an errorless algorithm must certify most
satisfiable formulas efficiently. In fact, since the lower bounds for mk(n) are algorithmic, we know
that for every k there is an errorless algorithm for kSAT when mk(n)/n < ak2

k/k, where the
sequence ak converges to some positive value. It is conjectured that algorithms for finding satisfying
assignments on most kCNF instances exist all the way up to the kSAT threshold.

8.1.1 Refuting Random CNF Instances

Above the kSAT threshold, where most of the formulas are unsatisfiable, an errorless algorithm is
required to refute most kCNF instances efficiently. A useful way of thinking of such a refutation
algorithm is the following: The algorithm is given a kCNF instance ϕ and wants to distinguish
between the case when ϕ is satisfiable and when ϕ is “typical” for the distribution on inputs.
The algorithm can subject ϕ to any efficiently computable test that a random ϕ passes with high
probability. If the instance ϕ does not pass these tests, the algorithm can output ⊥. The challenge
is to design a set of tests such that every ϕ that passes all the tests must be unsatisfiable, in which
case the algorithm rejects ϕ.

When mk(n) > Ωk(n
k−1), the following naive refutation algorithm works: Take a variable, say x1,

and consider all the clauses that contain it. Fixing x1 to true yields a (k − 1)CNF consisting of
those Ωk(n

k−2) clauses that contain the literal x1, and this formula can be refuted recursively (the
base case being a 2CNF, for which an efficient refutation algorithm exists.) Repeat by fixing x1 to
false. (For an improved version of this approach, see [BKPS98].)

A more sophisticated approach for refuting random kCNF that handles smaller values of mk(n)
was introduced by Goerdt and Krivelevich [GK01]. Their idea is to reduce kCNF instances to
graphs (using a variant of Karp’s reduction from 3SAT to maximum independent set) so that
satisfiable formulas map to graphs with large independent sets, while the image of a random kCNF
instance is unlikely to have a large independent set. Moreover, they show that for most graphs
derived from random kCNF, it is possible to efficiently certify that the graph does not have a large
independent set via eigenvalue computations. Subsequent improvements of this argument yield
refutation algorithms for random kCNF with mk(n) = ω(ndk/2e) [CGLS03]. For the case k = 3
there are better refutation algorithms, and the best known works for m3(n) = ω(n3/2) [FO04]. This

1In the literature on random kSAT, usually the error parameter of the average-case algorithm is implicitly fixed to
o(1) or n

−c for some fixed c. Not much is known for the case of algorithms with negligible error or heuristic schemes.
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algorithm departs from previous work in that it does not reduce 3SAT to maximum independent
set but uses a different reduction by Feige [Fei02], which we describe in the next Section.

Do refutation algorithms for random kCNF exist when mk(n) is above the satisfiability threshold
ckn, but below nk/2? For the case of 3CNF, there is evidence suggesting that refuting random
formulas may be hard for m3(n) < n3/2−ε for every ε > 0. Ben-Sasson and Wigderson [BSW01]
(following [CS98]) show that for this range of parameters, most formulas require refutations by

resolution of size 2Ω(nε/(1−ε)). (The naive refutation algorithm above can be viewed as implementing
a simple proof by resolution.) Recently, Feige and Ofek [FO06] showed that a different approach
based on semi-definite programming that subsumes the algorithm of [FO04] also fails to certify
unsatisfiability when m3(n) < n3/2/poly log(n).

A very recent breakthrough of Feige, Kim, and Ofek [FKO06] gives a non-deterministic refutation
algorithm for m3(n) = ω(n7/5), thus showing that random 3SAT with respect to this distribution
is in Avgo(1)coNP.2

8.1.2 Connection to Hardness of Approximation

Feige [Fei02] conjectures that for every constant c, unsatisfiability of random 3CNF is hard to
certify (within negligible error) whenever m3(n) < cn. In particular, Feige’s conjecture implies that
(NP,PSamp) 6⊆ AvgnegP, but there is no evidence as to whether random 3SAT with parameter
m3(n) < cn is complete for the class (NP,PSamp).

Instead of pursuing connections with average-case complexity, Feige views his conjecture as a
strengthening of the famous result by H̊astad [H̊as01] about the inapproximability of 3SAT in
the worst case. Indeed, H̊astad shows that assuming P 6= NP, it is hard to distinguish between
satisfiable 3CNF instances and 3CNF instances where no more than a 7/8+ε fraction of the clauses
can be satisfied. The class of instances on which no more than 7/8 + ε fraction of the clauses can
be satisfied in particular includes most random 3CNF instances with cn clauses for sufficiently
large c. Feige’s conjecture says that even if we restrict ourselves to these random instances, the
distinguishing problem remains intractable. As several inapproximability results assuming P 6= NP
follow by reduction from the hardness of approximating 3SAT, it can be hoped that Feige’s stronger
conjecture may yield new or stronger conclusions.

The main technical result of Feige is the following theorem. For notation purposes, given a 3CNF
ϕ and an assignment a, let µi(ϕ, a) denote the fraction of clauses in ϕ where a satisfies exactly i
literals, for 0 ≤ i ≤ 3.

Theorem 47 (Feige). For every ε > 0 there exists an algorithm A that for all sufficiently large c
has the following properties:

• A accepts all but a negligible fraction of random 3CNF on n variables and cn clauses.

• For sufficiently large n, if ϕ is a satisfiable 3CNF with n variables and cn clauses and A
accepts ϕ, then for every satisfying assignment a of ϕ, it holds that µ1(ϕ, a) = 3/4 ± ε,
µ2(ϕ, a) < ε, and µ3(ϕ, a) = 1/4 ± ε.

2This class is defined in a way analogous to AvgδP; see Section 2.2).
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Observe that, in contrast, for most random 3CNF ϕ and every assignment a, we have that µ1(ϕ, a) =
µ2(ϕ, a) = 3/8 ± ε and µ0(ϕ, a) = µ3(ϕ, a) = 1/8 ± ε.

Assuming the conjecture, the theorem for instance implies the following: For a 3CNF ϕ with n
variables and cn clauses, it is hard to distinguish between the following cases:

• There exists an assignment for ϕ that satisfies all literals in a 1/4 − ε fraction of clauses

• No assignment for ϕ satisfies all literals in more than a 1/8 + ε fraction of clauses.

This hardness of approximation result is not known to follow from P 6= NP. Feige shows that
hardness of approximation results for balanced bipartite clique, min bisection, dense subgraph, and
the 2-catalog problem follow from it3 via combinatorial reductions.

8.2 The Complexity of Lattice Problems

Discrete lattices in R
n provide examples of problems in NP that are believed to be intractable in

the worst case and which worst-case to average-case reduce to certain distributional problems in
(NP,PSamp). Some of these reductions yield stronger objects such as one-way functions, collision
resistant hash functions, and public-key cryptosystems.

The lattice problems in question are all promise problems [ESY84, Gol05]. Instead of attempting
to list all their variants and the connections between them, for illustration we focus on the shortest
vector problem. (Other lattice problems exhibit similar behavior. For a more general treatment,
see [MG02] and [MR04].) A lattice L in R

n is represented by specifying a basis of n vectors for it
(all vectors have poly(n) size descriptions.)

The shortest vector problem SVPγ(n). The instances are pairs (L, d), where L is a lattice in
R

n and d is a number. In yes instances, there exists a vector v in L of length at most d.4 In no
instances, every vector in L has length at least γ(n)d.

This problem is in NP (for γ(n) ≥ 1.) The following seemingly easier variant also turns out to be
useful.

The unique shortest vector problem uSVPγ(n). This is the same as SVPγ(n), except that in
yes instances we require that every vector in L whose length is at most γ(n)d be parallel to the
shortest vector v.

We stress that we are interested in the worst-case hardness of these problems as the dimension of the
lattice n grows. The best known polynomial time approximation algorithm for the shortest vector
problem, due to Ajtai, Kumar, and Sivakumar [AKS01], solves SVPγ(n) for γ(n) = 2Θ(n log log n/ log n)

(previous algorithms of Lenstra, Lenstra, and Lovász [LLL82] and Schnorr [Sch87] achieve somewhat
worse approximation factors.) For polynomial approximation factors γ(n) = poly(n), the best
known algorithms run in time 2Θ(n) [AKS01, KS03].

In a seminal paper Ajtai [Ajt96] showed that assuming SVPO(nc) is intractable for some fixed
c > 0 there exist one-way functions. He constructs a family of functions {fn} for which there
exists a worst-case to average-case reduction from SVPO(nc) to inverting {fn}. Later, Ajtai and

3To be precise, Feige proves and needs a slightly more general result.
4To be specific we measure length in the `2 norm. The problem is no easier for other `p norms, see [RR06].
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Dwork [AD97] showed that public key encryption exists assuming uSVPO(nc) is intractable for some
fixed c > 0. The parameter c has been improved since the original constructions, and it is known
that

• One-way functions and collision resistant hash functions exist assuming SVPÕ(n) is intractable [MR04].

• Public key encryption exists assuming uSVPÕ(n1.5) is intractable [Reg03].

• Public key encryption exists assuming SVPÕ(n1.5) is intractable by quantum algorithms [Reg05].

A short, self-contained outline of a basic worst-case to average-case reduction from uSVP can be
found in a tutorial of Regev [Reg06].

These results greatly motivate the study of hardness of lattice problems: For instance, if it were
true that SVPn1.5+ε is NP-hard for some ε > 0, it would follow that one-way functions exist (and
in particular (NP,PSamp) 6⊆ HeurBPP) assuming only NP 6⊆ BPP.

However, the best hardness results known for the shortest vector problem fall short of what is
necessary for the current worst-case to average-case reductions. Micciancio [Mic01] (following
Ajtai [Ajt98]) showed that SVPγ(n) where γ(n) =

√
2−ε is NP-hard under randomized polynomial-

time reductions for every ε > 0. More recently, Khot [Kho04] improved the hardness to γ(n) =

2(log n)1/2−ε
for every ε > 0, but his reduction runs in randomized quasipolynomial time.

On the other hand, Goldreich and Goldwasser [GG98a] showed that SVPγ(n) ∈ coAM for γ(n) =

Ω(
√

n/ log n) and Aharonov and Regev [AR05] showed that SVPγ(n) ∈ coNP for γ(n) = Ω(
√

n).
This can be taken as evidence that SVPγ(n) is not NP-hard when γ(n) exceeds

√
n, but one must

be careful because SVPγ(n) is a promise problem, not a language. While it is true that assuming
NP 6= coNP, languages in NP ∩ coNP cannot be NP-hard, this conclusion fails in general for
promise problems: Even, Selman, and Yacobi [ESY84] give an example of a promise problem that
is NP-hard yet resides in NP ∩ coNP.

It is interesting to observe that the one-way functions constructed by Ajtai [Ajt96] and Micciancio
and Regev [MR04] are size-approximable (in fact, almost regular), so by Theorem 44 in the best
case the hardness of these functions can be based on problems in AM ∩ coAM.
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