
Statistical Zero-Knowledge Arguments for NP

from Any One-Way Function∗

Minh-Huyen Nguyen Shien Jin Ong Salil Vadhan

Division of Engineering and Applied Sciences

Harvard University

Cambridge, Massachusetts, USA.

E-mail: {mnguyen,shienjin,salil}@eecs.harvard.edu
June 19, 2006

Abstract

We show that every language in NP has a statistical zero-knowledge argument system under
the (minimal) complexity assumption that one-way functions exist. In such protocols, even a
computationally unbounded verifier cannot learn anything other than the fact that the assertion
being proven is true, whereas a polynomial-time prover cannot convince the verifier to accept a
false assertion except with negligible probability. This resolves an open question posed by Naor,
Ostrovsky, Venkatesan, and Yung (CRYPTO ‘92, J. Cryptology ‘98).

Departing from previous works on this problem, we do not construct standard statistically
hiding commitments from any one-way function. Instead, we construct a relaxed variant of
commitment schemes called “1-out-of-2-binding commitments,” recently introduced by Nguyen
and Vadhan (STOC ‘06).

Keywords: cryptography, one-way functions, zero-knowledge arguments, statistically hiding and
computationally binding commitments.

∗All three authors were supported by NSF grant CNS-0430336 and ONR grant N00014-04-1-0478.

Electronic Colloquium on Computational Complexity, Report No. 75 (2006)

ISSN 1433-8092

1 Introduction

As first discovered by Shannon [Sha49] for the case of encryption, most interesting cryptographic
tasks are impossible to achieve with absolute, information-theoretic security. Thus, modern cryp-
tography aims to design protocols that are computationally intractable to break. Specifically,
following Diffie and Hellman [DH76], this is typically done by showing that breaking the protocol is
as hard as some intractable problem from complexity theory. Unfortunately, proving lower bounds
of the sort needed seems beyond the reach of current techniques in complexity theory, and indeed
would require at least proving P 6= NP.

Given this state of affairs, research in the foundations of cryptography has aimed to design
cryptographic protocols based on complexity assumptions that are as weak and general as possible.
This project was enormously successful in the 1980’s. In a beautiful sequence of works, it was
shown that many cryptographic primitives, such as pseudorandom generators, pseudorandom func-
tions, private-key encryption and authentication, digital signatures, (computationally hiding) bit
commitment, and (computational) zero-knowledge proofs could be constructed from any one-way
function [HILL99, GGM86, Rom90, Nao91, GMW91], and moreover this complexity assumption
is minimal in the sense that each of these primitives (and indeed almost any cryptographic task)
implies the existence of one-way functions [IL89, OW93]. Moreover, it was shown that many of
the remaining primitives, such as public-key encryption, collision-resistant hashing, and oblivi-
ous transfer, could not be reduced to the existence of one-way functions in a “black-box” man-
ner [IR89, Sim98].

However, a few important primitives have resisted classification into the above categories. That
is, it is only known how to build these primitives from seemingly stronger assumptions than the
existence of one-way functions, yet there is no black-box separation between these primitives and
one-way functions. In this work, we are interested in an example involving zero-knowledge protocols.

1.1 The Complexity of Zero Knowledge

Zero-knowledge proofs are protocols whereby one party, the prover, convinces another party, the
verifier, that some assertion is true with the remarkable property that the verifier “learns nothing”
other than the fact that the assertion being proven is true. Since their introduction by Goldwasser,
Micali, and Rackoff [GMR89], zero-knowledge proofs have played a central role in the design and
study of cryptographic protocols. Part of the reason for their vast applicability is the fact that,
under certain complexity assumptions (discussed below), every language L in NP has a zero-
knowledge proof system [GMW91]. That is, a prover can efficiently convince a verifier that x ∈ L
in a zero-knowledge manner, provided that the prover possesses an NP witness to the membership
of x in L. This means that when designing cryptographic protocols, any time that one party needs
to convince others of some fact (e.g., that it has followed the specified protocol) without revealing
additional knowledge, it can do so provided that it possesses a witness to the fact (e.g., its own
secret keys and coin tosses).

Zero-knowledge protocols come in several flavors, depending on how one formulates the two
security conditions: (1) the zero-knowledge condition, which says that the verifier “learns nothing”
other than the fact the assertion being proven is true, and (2) the soundness conditions, which
says that the prover cannot convince the verifier of a false assertion. In statistical zero knowledge,
the zero-knowledge condition holds regardless of the computational resources the verifier invests
into trying to learn something from the interaction. In computational zero knowledge, we only

1

require that a probabilistic polynomial-time verifier learn nothing from the interaction.1 Similarly,
for soundness, we have statistical soundness, a.k.a. proof systems, where even a computationally
unbounded prover cannot convince the verifier of a false statement (except with negligible prob-
ability), and computational soundness, a.k.a. argument systems [BCC88], where we only require
that a polynomial-time prover cannot convince the verifier of a false statement.

Of course, it would be ideal to have both security conditions be statistical, and thus hold
against computationally unbounded adversaries. Unfortunately, the resulting notion, statistical
zero-knowledge proofs, while quite interesting and nontrivial (cf., [Vad99]), can only be achieved for
languages in AM ∩ coAM [For89, AH91]. Because AM ∩ coAM is not believed to contain NP
(cf., [BHZ87]), it is unlikely that every problem in NP possess statistical zero-knowledge proofs.
Thus at best, we can have one of the security conditions be statistical.

Computational zero-knowledge proofs (with statistical soundness) was the original notion pro-
posed in [GMR89]. Goldreich, Micali, and Wigderson [GMW91] showed that we can construct
such proof systems for all of NP from any bit-commitment scheme that is computationally hiding
and statistically binding. By [Nao91, HILL99], such commitment schemes can be constructed from
any one-way function, and thus we obtain computational zero-knowledge proofs for NP from any
one-way function. This complexity assumption is essentially minimal due to results of Ostrovsky
and Wigderson [OW93], who showed that zero-knowledge proofs for any non-trivial language imply
a weak form of one-way functions.

Brassard, Chaum, and Crepeau [BCC88] proposed instead the notion of statistical zero-knowledge
arguments,2 between the which is what we study in this paper. One reason that this variant of zero-
knowledge proofs may be preferable to the original one is that breaking the soundness property must
be done “on-line” during the interaction with the verifier and thus we need only protect against the
adversary’s present-day computational resources, whereas breaking the zero-knowledge property
can involve the adversary investing effort long after the interaction to try and learn something from
the transcript of the interaction. Thus, it seems preferable for the zero-knowledge property to be
the one with the stronger, statistical guarantee.

It is evident from the constructions of [GMW91, BCC88] that to construct statistical zero-
knowledge arguments for all of NP, it suffices to construct bit-commitment schemes that are sta-
tistically hiding and computationally binding. The early constructions of such schemes were based
on specific number-theoretic complexity assumptions [BCC88, BKK90], and were later generalized
to any family of claw-free permutations [GK96], and then to any family of collision-resistant hash
functions [NY89] (see also [DPP98]).3

In 1992, Naor, Ostrovsky, Venkatesan, and Yung [NOVY98] showed that the collision resistance
criterion4 is not necessary, by giving a beautiful construction of statistically hiding commitments

1More precisely, in statistical zero knowledge, we require that the verifier’s view of the interaction can be efficiently
simulated up to negligible statistical distance, whereas in computational zero knowledge, we only require that the
simulation be computationally indistinguishable from the verifier’s view.

2Actually, [BCC88] and some subsequent works (such as [NOVY98]) constructed perfect zero-knowledge arguments,
which intuitively guarantee that the verifier learns something from the interaction with zero probability (as opposed
to negligible probability, as in statistical zero knowledge). However, this distinction is minor in comparison to the
distinction between the statistical and computational zero knowledge, which refer to computationally unbounded and
polynomial-time verifier strategies, respectively.

3The fact that claw-free permutations imply collision-resistant hash functions was shown in [GMR88, Dam87], and
the early constructions of claw-free permutations based on specific number-theoretic complexity assumptions were
given by [GMR88, BKK90].

4We note that one-way permutations and collision-resistant hashing are known to be incomparable under “black-

2

(in fact perfectly hiding ones) and thus statistical zero-knowledge arguments for NP from any
one-way permutation. They left as an open question whether these primitives could be based on
arbitrary one-way functions, which would again be essentially minimal by [Ost91, OW93].5

The only progress in the past decade came in 2005 when Haitner et al. [HHK+05] showed
how to construct statistically hiding commitments from any “approximable preimage size” one-way
function, that is a one-way function where we can efficiently approximate the preimage size of
points in the range.

Motivated by this recent development, in this paper we resolve the complexity of statistical
zero-knowledge arguments for NP:

Theorem 1.1. If one-way functions6 exist, then every language in NP has a statistical zero-
knowledge argument system.

Deviating from prior works on this problem, we do not prove this theorem by constructing
the standard notion of statistically hiding commitments from any one-way function. Instead, as
described below, we work with a relaxed variant of commitment schemes recently introduced by
Nguyen and Vadhan [NV06], which we describe in the next section.

We also remark that our protocol has a polynomial number of rounds, while a constant number
of rounds can be achieved based on collision-resistant hashing [NY89, BCY91]. However, achiev-
ing a subpolynomial (no(1)) number of rounds is open even assuming the existence of one-way
permutations (cf., [NOVY98]).

1.2 Techniques

We begin by recalling the notion of a commitment scheme. A commitment scheme is a two-stage
protocol between a sender and a receiver. In the first stage, the sender ‘commits’ to a value v, and
in the second, the sender ‘reveals’ this value to the receiver. We want two security properties from
a commitment scheme. The hiding property says that the receiver does not learn anything about
the value v during the commit stage. The binding property says that after the commit stage, there
is at most one value that the sender can successfully open (without the receiver rejecting). As with
zero-knowledge protocols, each of these security properties can be computational or statistical.
For commitments, it is impossible to have both properties be statistical. As mentioned earlier,
statistically binding commitments can be constructed from any one-way function [Nao91, HILL99],
but our interest is in statistically hiding commitments.

Recently, Nguyen and Vadhan [NV06] introduced a new relaxation of commitment schemes,
called 1-out-of-2-binding commitment schemes, symbolically written as

(2
1

)
-binding commitment

schemes. These are commitment schemes with two phases, each consisting of a commit stage and a
reveal stage. In the first phase, the sender commits to and reveals one value v1, and subsequently,
in the second phase, the sender commits to and reveals a second value v2. We require that both
phases are hiding, but only that one of them is binding. That is, the binding property only requires
that with high probability, the sender will be forced to reveal the correct committed value in at least

box reductions” [Sim98, Rud88, KSS00].
5The results of [Ost91, OW93] are stated only for proof systems, but they also hold for argument systems.
6As in most treatments of zero knowledge, we use a nonuniform notion of security, and thus require our one-way

functions to be secure against nonuniform algorithms (i.e., circuits). Uniform treatments of zero-knowledge proofs
and arguments are possible (see [Gol93, BLV04]) but are much more cumbersome.

3

one of the phases (but which of the two phases can be determined dynamically by the malicious
sender).

In [NV06], it was shown that such commitment schemes still suffice to construct zero-knowledge
protocols for all of NP. Thus, our task is reduced to constructing

(
2
1

)
-binding commitment schemes

that are statistically hiding and computationally binding from any one-way function. Unfortunately,
we do not know how to do this. Instead, we construct polynomially many two-phase commitment
schemes, with the guarantee that at least one of the schemes is hiding (in both phases), and all of
the schemes are

(2
1

)
-binding. Fortunately, a similar issue arose also in [NV06] and it was shown

how even such a collection could be used to construct zero-knowledge protocols for NP.
Even though we draw upon [NV06] for the notion of

(2
1

)
-binding commitments and its utility

for zero knowledge, there are many differences between the contexts of the two works and the
constructions of

(2
1

)
-binding commitments. In [NV06], the goal was to prove unconditional results

about prover efficiency in zero-knowledge proofs (that one can transform zero-knowledge proofs with
inefficient provers into ones with efficient provers). This was done by showing that every problem
having a zero-knowledge proof has an “instance-dependent”

(
2
1

)
-binding commitment scheme, where

the sender and receiver get an instance x of the problem as auxiliary input and we only require
hiding to hold when x is a “yes instance” and binding when x is a “no instance.” Here, we are
giving conditional results (assuming the existence of one-way functions) and are obtaining standard
(as opposed to instance-dependent)

(2
1

)
-binding commitments. Moreover, the focus in [NV06] is

on proof systems and statistically
(
2
1

)
-binding commitments; thus here we need to develop new

formulations to work with argument systems and the computational binding property.
Our initial construction, which gives a

(2
1

)
-binding commitment scheme satisfying a “weak

hiding” property, is inspired by the construction of [NV06]. Indeed, the second phase in [NV06]
was also introduced to deal with non-regular functions (corresponding to “non-flat distributions”
in their setting), and our construction can be seen as applying the same idea to a variant of the
protocol of [HHK+05]. However, in [NV06], this construction immediately gives a “strong hiding”
property, whereas much of the technical work in the current paper comes from amplifying the “weak
hiding” property we obtain into a strong one.

1.3 Outline

We present the basic notations and definitions in Section 2. The statements of our main results
are in Section 3. As a warm up, we present a construction (of

(2
1

)
-binding commitments) based

on regular one-way functions in Section 4, and in Section 5, we present our main ideas on how we
can base our construction on any general one-way function. The details of the construction are
in Sections 6 and 7. In Section 8, we show how to construct statistical zero-knowledge arguments
from

(
2
1

)
-binding commitment schemes.

2 Preliminaries

Let X be a random variable taking values in a finite set T . We write x← X to indicate that x is
selected according to X. For a finite set S, we write x← S to indicate that x is selected uniformly
amongst all the elements of S. The support of a random variable X is Supp(X) = {x : Pr [X = x] >
0}. Random variable X is flat if it is uniform over its support.

A negligible function, denoted by neg, is a function that vanishes more quickly than any inverse

4

polynomial. That is, for all c ∈ N, neg(n) < n−c for all sufficiently large n. Let poly(n) denote any
polynomial, that is poly(n) ≤ nc for some c ∈ N, and for all sufficiently large n.

The statistical difference between two random variables A and B over {0, 1}n is defined as

∆(A,B)
def
= max

T⊆{0,1}n
|Pr[A ∈ T]− Pr[B ∈ T]| = 1

2

∑

x∈{0,1}n
|Pr[A ∈ T]− Pr[B ∈ T]| .

We say that distributions A and B are ε-close if ∆(A,B) ≤ ε.
Let I be a set of strings. A probability ensemble of a sequence of random variables indexed

by I is denoted as {Ax}x∈I . We say that two ensembles {Ax}x∈I and {Bx}x∈I are statistically
indistinguishable if there exists a negligible function ε such that Xx and Yx are ε(|x|)-close for
every x ∈ I. We write {Ax}x∈I ≈s {Bx}x∈I to denote that the two ensembles are statistically
indistinguishable.

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on input x and coin
tosses r. PPT refers to probabilistic algorithms that run in strict polynomial time. A nonuniform
PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite series of strings where |zn| =
poly(n), and A is a PPT algorithm that receives pairs of input of the form (x, z|x|). (The string zn
is called the advice string for A for inputs of length n.) Nonuniform PPT algorithms are equivalent
to families of polynomial-sized Boolean circuits.

Definition 2.1 (one-way function). Let s : N→ N be any function. A function f : {0, 1}∗ → {0, 1}∗
is a s(n)-secure one-way function if f is computable in polynomial time and for every non-uniform
PPT A,

Pr
x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1/s(n),

for all sufficiently large n. We say that f is a one-way function if f is s(n)-secure for every
polynomial s.

Without loss of generality, we only consider one-way functions that are length-preserving, that
is for all x ∈ {0, 1}∗, |f(x)| = |x|. This is because general one-way functions can be converted
into ones that are length-preserving (cf., [Gol01, p. 39]). We say that a one-way function f is
regular with preimage size g(n) if there exists a function g : N → N such that ∀y ∈ Supp(f(Un)),
|{x ∈ {0, 1}n : f(x) = y}| = g(n).

2.1 Statistical Zero-Knowledge Arguments

We follow the standard definitions of zero-knowledge arguments, as in [Gol01, Sec. 4.8]. For an
interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process obtained by
having A and B interact on common input x, (private) auxiliary inputs a and b to A and B,
respectively (if any), and independent random coin tosses for A and B. We call the protocol (A,B)
public coin if all of the messages sent by B simply consist of coin tosses (independent of the history),
except for the final accept/reject message which is computed as a deterministic function of the
transcript.

Definition 2.2. An interactive protocol (P, V) is an argument (or computationally sound proof
system) for a language L if the following three conditions hold:

1. (Efficiency) P and V are computable in probabilistic polynomial time.

5

2. (Completeness) If x ∈ L, then V accepts in (P, V)(x) with probability at least 2/3.

3. (Soundness) If x /∈ L, then for every nonuniform PPT adversarial prover P ∗, V accepts in
(P ∗, V)(x) with probability at most 1/3.

By sequential repetition, both the completeness and soundness error probabilities can be re-
duced to exponentially small; that is from the completeness from 2/3 to 1 − 2−n, and soundness
from 1/3 to 2−n. (Parallel repetition does not seem to reduce the soundness error of argument
systems [BIN97].) All the protocols presented in this paper will have perfect completeness, i.e., V
accepts with probability 1 when x ∈ L.

We write viewA(A(a), B(b))(x) to denote A’s view of the interaction, i.e., a transcript (x, γ1, γ2, . . . , γt; r),
where the γi’s are all the messages exchanged and r is A’s coin tosses. (Similarly, we can define
viewB(A(a), B(b))(x) to denote B’s view of the interaction.) Let outputA(A(a), B(b)) denote A’s
private output after the interaction. (Similarly, we can define outputB(A(a), B(b))(x) to denote B’s
private output after the interaction.) Let transcript(A(a), B(b))(x) denote the messages exchanged
in the protocol including the common input x, i.e., (x, γ1, γ2, . . . , γt).

Definition 2.3 (statistical zero knowledge). We say an argument system (P, V) is (black-box)
statistical zero knowledge if there exists a universal PPT simulator S such that for all verifiers V ∗,
we have

{viewV ∗(P, V ∗)(x)}x∈L ≈s {SV ∗

(x)}x∈L.

The above definition of zero knowledge is a black box definition in the sense that the simulator
is universal for all (even computationally unbounded) verifier strategies V ∗, and in particular does
not depend on the code of V ∗. The zero-knowledge protocols we construct will all be black-box
zero Wknowledge and thus satisfy the above definition.

2.2 1-out-of-2-Binding Commitments

We now introduce the notion of
(2
1

)
-binding commitments that will play a central role in establishing

our results. These are commitment schemes with two sequential and related stages such that in
each stage, the sender commits to and reveals a value.

Definition 2.4. A 2-phase commitment scheme (S,R), with security parameter n and message
length k = k(n), consists of four interactive protocols: (S1

c , R
1
c) the first commitment stage, (S1

r , R
1
r)

the first reveal stage, (S2
c , R

2
c) the second commitment stage, and (S2

r , R
2
r) the second reveal stage.

For us, both reveal phases will always be noninteractive, consisting of a single message from the
sender to the receiver. Throughout, both parties receive the security parameter 1n as input.

1. In the first commitment stage, S1
c receives a private input σ(1) ∈ {0, 1}k and a sequence of coin

tosses rS . At the end, S1
c and R1

c receive as common output a commitment z(1). (Without
loss of generality, we can assume that z(1) is the transcript of the first commitment stage.)

2. In the first reveal stage, S1
r and R1

r receive as common input the commitment z(1) and a string
σ(1) ∈ {0, 1}k and S1

r receives as private input rS. At the end, S1
r and R1

r receive a common
output τ . (Without loss of generality, we can assume that τ is the transcript of the first
commitment stage and the first reveal stage and includes R1

r ’s decision to accept or reject.)

6

3. In the second commitment stage, S2
c and R2

c both receive the common input τ ∈ {0, 1}∗,
and S2

c receives a private input σ(2) ∈ {0, 1}k and the coin tosses rS . S2
c and R2

c receive as
common output a commitment z(2). (Without loss of generality, we can assume that z(2) is
the concatenation of τ and the transcript of the second commitment stage.)

4. In the second reveal stage, S2
r and R2

r receive as common input the commitment z(2) and a
string σ(2) ∈ {0, 1}k , and S2

r receives as private input rS . At the end, R2
r accepts or rejects.

• S = (S1, S2) = ((S1
c , S

1
r), (S2

c , S
2
r)) and R = (R1, R2) = ((R1

c , R
1
r), (R

2
c , R

2
r)) are computable

in probabilistic polynomial time.

• We say that (S,R) is public-coin if it is public-coin for R.

Note that instead of providing S with decommitment values as private outputs of the commit-
ment phases, we simply provide it with the same coin tosses throughout (so it can recompute any
private state from the transcripts of the previous phases).

As for standard commitment schemes, we define the security of the sender in terms of a hiding
property. Loosely speaking, the hiding property for a 2-phase commitment scheme says that both
commitment phases are hiding. Note that since the phases are run sequentially, the hiding property
for the second commitment stage is required to hold even given the receiver’s view of the first stage.

Definition 2.5 (hiding). 2-phase commitment scheme (S,R), with security parameter n and mes-
sage length k = k(n), is statistically hiding if for all adversarial receiver R∗,

1. The views of R∗ when interacting with the sender in the first phase on any two messages are
statistically indistinguishable. That is, for all σ(1), σ̃(1) ∈ {0, 1}k ,

{
viewR∗(S1

c (σ(1)), R∗)(1n)
}

n∈N

≈s

{
viewR∗(S1

c (σ̃(1)), R∗)(1n)
}

n∈N

.

2. The views of R∗ when interacting with the sender in the second phase are statistically in-
distinguishable no matter what the sender committed to in the first phase. That is, for all
σ(1), σ(2), σ̃(2) ∈ {0, 1}k ,

{
viewR∗(S2

c (σ(2)), R∗)(Λ, 1n)
}

n∈N

≈s

{
viewR∗(S2

c (σ̃(2)), R∗)(Λ, 1n)
}

n∈N

,

where Λ = transcript(S1(σ(1)), R∗)(1n).

We stress that the second condition of the above hiding definition (Definition 2.5) requires that
the view of receiver in the second phase be indistinguishable for any two messages even given the
transcript of the first phase, Λ = transcript(S1(σ(1)), R∗)(1n).

Loosely speaking, the binding property says that at least one of the two commitment phases
is (computationally) binding. In other words, for every polynomial-time sender S∗, there is at
most one “bad” phase j ∈ {1, 2} such that given a commitment z(j), S∗ can open z(j) successfully
both as σ(1) and σ̃(1) 6= σ with nonnegligible probability. Actually, we allow this bad phase to be
determined dynamically by S∗. Moreover, we require that the second phase be statistically binding
if the sender breaks the first phase. Our construction achieves this stronger property, and using it
simplifies some of our proofs.

7

Definition 2.6 (1-out-of-2-binding). 2-phase commitment scheme (S,R), with security parameter
n and message length k = k(n), is computationally

(2
1

)
-binding if there exist a set B of first phase

transcripts and a negligible function ε such that:

1. For every (even unbounded) sender S∗, the first-phase transcripts in B make the second phase
statistically binding, i.e. ∀S∗,∀τ ∈ B, with probability at least 1−ε(n) over z(2) = (S∗, R2

c)(τ),
there is at most one value σ(2) ∈ {0, 1}k such that output(S∗, R2

r)(z
(2), σ(2)) = accept.

2. ∀ nonuniform PPT S∗,7 S∗ succeeds in the following game with probability at most ε(n) for
all sufficiently large n:

(a) S∗ and R1
c interact and output a first-phase commitment z(1).

(b) S∗ outputs two full transcripts τ and τ̃ of both phases with the following three properties:

• Transcripts τ and τ̃ both start with prefix z(1).

• The transcript τ contains a successful opening of z(1) to the value σ(1) ∈ {0, 1}k
using a first-phase transcript not in B, and R1

r and R2
r both accept in τ .

• The transcript τ̃ contains a successful opening of z(1) to the value σ̃(1) ∈ {0, 1}k
using a first-phase transcript not in B, and R1

r and R2
r both accept in τ̃ .

(c) S∗ succeeds if all of the above conditions hold and σ(1) 6= σ̃(1).

3 Our Results

Our main theorem, Theorem 1.1, is established via the following theorems.

Theorem 3.1. If one-way functions exist, then on security parameter n, we can construct in time
poly(n) a collection of public-coin 2-phase commitment schemes Com1, · · · ,Comm for m = poly(n)
such that:

• There exists an index i ∈ [m] such that scheme Comi is statistically hiding.

• For every index j ∈ [m], scheme Comj is computationally
(
2
1

)
-binding.

Theorem 3.2. Assume that on security parameter n, we can construct in time poly(n) a collection
of public-coin 2-phase commitment schemes Com1, · · · ,Comm for m = poly(n) such that:

• There exists an index i ∈ [m] such that scheme Comi is statistically hiding.

• For every index j ∈ [m], scheme Comj is
(
2
1

)
-computationally binding.

Then, every language in NP has a public-coin statistical zero-knowledge argument system.

The proof of Theorem 3.2 is very similar to that in [NV06] for
(
2
1

)
-statistically binding commit-

ments, with a bit more work to handle the computational binding property, and can be found in
Section 8.

7Definitions of cryptographic primitives in the literature often use the reverse order of quantifiers, asking that for
every (nonuniform) PPT adversary S

∗, there exists a negligible function ε(n) such that the success probability of S
∗

is at most ε(n). However, the two resulting definitions turn out to be equivalent [Bel02].

8

4 Warm-up: 1-out-of-2-Binding Commitments from Regular One-

Way Functions

In this section, as a warm-up to Section 5 where we construct secure 2-phase commitments from
general one-way functions, we first describe a standard commitment scheme from a regular one-
way function with known preimage size (based on [HHK+05]), and then show how to construct a
collection of statistically hiding, computationally

(2
1

)
-binding commitments from regular one-way

functions with unknown pre-image size.
The tools used in these commitments schemes are pairwise-independent hash functions and

interactive hashing protocols, both described in the next subsections.

4.1 Hashing and Randomness Extraction

Entropy. The entropy of a random variable X is H(X) = E
x

R←X
[log(1/Pr[X = x])]), where here

and throughout the paper all logarithms are to base 2. Intuitively, H(X) measures the amount of
randomness in X on average (in bits). The min-entropy of X is H∞(X) = minx[log(1/Pr[X = x])];
this is a “worst-case” measure of randomness. In general H∞(X) ≤ H(X), but if X is flat (i.e.
uniform on its support), then H(X) = H∞(X) = log |Supp(X)|.

A family of hash functions Ha,b = {h : {0, 1}a → {0, 1}b} is pairwise independent if for any
two x 6= x′ ∈ {0, 1}a and any two y, y′ ∈ {0, 1}b, when we randomly choose h ← Ha,b, we have:
Pr[h(x) = y ∧ h(x′) = y′] = 1

22b . We define `(a, b) to be the number of bits required to describe an
element of the hash function family Ha,b; that is, `(a, b) = max{a, b}+ b. We will use the following
strong extractor property of Ha,b.

Lemma 4.1 (Leftover Hash Lemma [BBR88, ILL89]). Let Ha,b be a pairwise independent family of
hash functions mapping {0, 1}a to {0, 1}b. Let Z be a random variable taking values in {0, 1}a such
that H∞(Z) ≥ b + 2 log(1/ε). Then the following distribution has statistical difference at most ε
from the uniform distribution on Ha,b×{0, 1}b: Choose h←Ha,b and x← Z and output (h, h(x)).

4.2 Interactive Hashing

Ostrovsky, Venkatesan and Yung [OVY93] introduced a powerful tool known as interactive hashing
(IH), which is a protocol between a sender SIH and receiver RIH. The sender begins with a private
input y, and at the end both parties outputs y0 and y1 such that y ∈ {y0, y1}. Informally, the IH
protocol has the following properties:

1. (Hiding) If the sender’s input y is uniformly random, then the receiver does not learn which
of y0 or y1 equals to y.

2. (Binding) The sender can “control” the value of at most one of the two outputs.

Naor, Ostrovsky, Venkatesan and Yung [NOVY98] showed that interactive hashing can be used to
construct statistically hiding commitment schemes from one-way permutations.

We extend the notion of interactive hashing to allow multiple outputs (instead of just two output
strings). Since we allow the number of outputs to be possibly superpolynomial, we succinctly
describe the set of outputs as the image of a polynomial-sized circuit C : {0, 1}k → {0, 1}q , where
k and q are polynomially related to the security parameter.

9

For a relation W , let Wy = {z : W (y, z) = 1} and we refer to any z ∈Wy as a valid witness for
y. In the definitions below, we use general relations, and hence do not require that relation W be
polynomial-time computable.

Definition 4.2. An interactive hashing scheme with multiple outputs is a polynomial-time protocol
(SIH, RIH) where both parties receive common inputs (1q, 1k), SIH receives a private input y ∈
{0, 1}q , with the common output being a circuit C : {0, 1}k → {0, 1}q , and the private output of
SIH being a string z ∈ {0, 1}k . We denote q to be the input length and k to be the output length.
The protocol (SIH, RIH) has to satisfy the following security properties:

1. (Correctness) For all R∗ and all y ∈ {0, 1}q , letting C = (SIH(y), R∗)(1q, 1k) and z =
outputSIH

(SIH(y), R∗), we have that C(z) = y.

2. (Perfect hiding) For allR∗, (V,Z) is distributed identically to (V,Uk), where V = viewR∗(SIH(Uq), R
∗)

and Z = outputSIH
(SIH(Uq), R

∗).

3. (“Computational” binding) There exists an oracle PPT algorithm A such that for every S∗ and
any relationW , letting circuit C = (S∗, RIH)(1q , 1k) and ((x0, z0), (x1, z1)) = outputS∗(S∗, RIH),
if it holds that

Pr[x0 ∈WC(z0) ∧ x1 ∈WC(z1) ∧ z0 6= z1] > ε,

where the above probability is over the coin tosses of RIH and S∗. Then we have that

Pr
y←{0,1}q

[AS∗

(y, 1q, 1k, ε) ∈Wy] > 2−k · (ε/q)O(1).

We make three remarks regarding the above definition.

1. The security requirements should hold for all, even computationally unbounded R∗ (for cor-
rectness and perfect hiding) and computationally unbounded S∗ (even though binding is
“computational”). In addition, the relation W need not be polynomial-time computable.

2. To simplify notation, we often write AS∗

(y), or even A(y), to denote AS∗

(y, 1q, 1k, ε).

3. Although the output of the honest sender SIH is always a string z, the output of the cheating
sender S∗ is arbitrary; hence, we can assume without loss of generality that S∗ breaks binding
by producing two pairs of strings (x0, z0) and (x1, z1).

We think of the string z ∈ {0, 1}k as a k-bit string commitment associated to one of the 2k

outputs strings, namely y = C(z), and a witness x ∈ Wy = WC(z) as a decommitment to z.
Intuitively, the knowledge of x gives the sender the ability to decommit to z. The “computational”
binding property, read in its contrapositive, says that if it is hard to find a witness for a uniformly
random string y, then it is hard for a sender to successfully decommit to two different values. Notice
that this property holds even if the set of “hard” y’s is not fixed in advance, but depends on the
algorithm trying to find a witness for y, namely an element in Wy. In several places, however, we
will only need the special case of a static set of y’s as captured in the following lemma.

The computational binding property in Definition 4.2 can be extended to the case of static sets
as in following lemma.

10

Lemma 4.3 (binding for static sets). For any protocol (SIH, RIH) satisfying the computational
binding condition of Definition 4.2, the following holds: For all S∗ and any set T ⊆ {0, 1}q , letting
C = (S∗, RIH)(1q , 1k), we have

Pr[∃z0 6= z1 s.t. C(z0), C(z1) ∈ T] < (µ(T) · 2k)Ω(1) · poly(q),

where the above probability is taken over the coin tosses of S∗ and RIH.

Compare the bound of the above lemma to the case where adversarial sender S∗ had control
of only one output string. This means that the rest of the 2k − 1 outputs strings are distributed
uniformly on {0, 1}q , and hence the bound would be µ(T) · (2k − 1). (S∗ will make the string that
it controls lie in T , and the probability that at least one of the rest of the 2k − 1 strings lie in T is
at most µ(T) · (2k − 1), by a union bound argument.) The above bound is almost as good, and in
particular if µ(T) is negligible and k logarithmic, both probabilities are negligible.

Proof of Lemma 4.3. Define the relation W = {(a, b) : a ∈ T}, that is W (a, b) = 1 if a ∈ T (for all
values of b), and 0 if a /∈ T (no matter what the value of b is). Hence, if we have S∗ that violates
the lemma—by outputting two elements z0 6= z1 with C(z0), C(z1) ∈ T—with probability ε, there
will be a procedure over a random y ← {0, 1}q makes y ∈ T with probability 2−k · (ε/q)O(1), by the
computational binding condition of Definition 4.2. Since T is a fixed set, it must be the case that
2−k · (ε/q)O(1) ≤ µ(T). This implies that ε < (µ(T) · 2k)c · poly(q), for some constant c > 0. �

We extend the proof in [NOVY98] to obtain the following theorem. The protocol is obtained
by simply ending the NOVY protocol k−1 rounds earlier. The proof that it satisfies Definition 4.2
is given in Appendix B.

Theorem 4.4. There exists an interactive hashing scheme with multiple outputs, namely Proto-
col 4.5.

11

Protocol 4.5. Interactive Hashing Scheme with Multiple Outputs (SIH, RIH).

Inputs:

1. Input length 1q and output length 1k, both given as common input.

2. String y ∈ {0, 1}q , given as private input to sender SIH.

Protocol:

RIH: Select h0, h1, . . . , hq−k−1 such that each hi is a random vector over GF[2] of the form
0i1{0, 1}q−i−1 (i.e., i number of 0’s followed by a 1, and random choice for the last
q − i− 1 positions).

For j = 0, . . . , q − k − 1, do the following:

RIH → SIH: Send hj .

SIH → RIH: Send cj = 〈hj , y〉.

Output:

• Common output is a circuit C : {0, 1}k → {0, 1}q . computing an affine transformation
whose image is {y : 〈hj , y〉 = cj ∀j = 0, . . . , q − k − 1}.

• Output of SIH is a string z ∈ {0, 1}k such that C(z) = y. (In fact, z can be taken to be
the last k bits of y.)

4.3 From Regular One-Way Function with Known Preimage Size

We first informally describe a (standard) commitment scheme from a regular one-way function with
known preimage size and known hardness s(n) = nω(1), based loosely on Haitner et al. [HHK+05]
(who prove a stronger result, no needing to know the hardness).

Let f : {0, 1}n → {0, 1}n be a regular one-way function such that the entropy H(f(Un)) = t
is known (this is equivalent to knowing the preimage size of f). In the commitment scheme, the
sender S generates a random string x ∈ {0, 1}n and sets y = f(x). S picks a random hash function
h : {0, 1}n → {0, 1}t−∆ where ∆ = (log s(n))/2. (S,R) then run the interactive hashing protocol
(with k = 1) with S having input (h, h(y)). Their common output is a pair (w0, w1) = (C(0), C(1)),
and the sender receives d ∈ {0, 1} such that wd = w. To commit to the bit b, S sends c = d⊕b. The
commitment z is defined as (w0, w1, c). In the reveal phase, S sends b, d, and the string x ∈ {0, 1}n
used to generate y. R checks that f(x) = y, c = d⊕ b, and wd is of the form (h, h(y)).

Intuitively, the commitment scheme is hiding since there are 2t possible values of y hence
(h, h(y)) is (1/s(n))Ω(1)-close to the uniform distribution by the Leftover Hash Lemma (Lemma 4.1),
which implies that the commitment scheme is hiding by the hiding property of interactive hashing.
As for the binding property, the one-wayness of f intuitively guarantees that the set T of y’s for
which a sender S∗ can compute an element of f−1(y) is of density at most 2−s(n) in Image(f),
i.e. of size at most 2H(f(Un))−s(n). Thus the set of pairs (h, h(y)) such that y ∈ T has density at

12

most 2H(f(Un))−s(n)/2t−∆ = s(n)9/10 = neg(n). By the binding property of interactive hashing
(Lemma 4.3), the probability that S∗ can force both w0, w1 ∈ T is negligible and the scheme is
computationally binding. (The complete argument to prove the binding property is actually more
subtle because the set T is not actually fixed in advance, and we need to use the computationally
binding property of interactive hashing given in Definition 4.2)

4.4 From Regular One-Way Function with Unknown Preimage Size

We show that if regular one-way functions with known hardness exist, then on security parameter
1n, we can construct a collection of 2-phase commitment schemes Com1, · · · ,Comn such that:

• There exists an index i ∈ [n] such that scheme Comi is statistically hiding.

• For every index j ∈ [n], scheme Comj is
(2
1

)
-computationally binding.

To deal with the case where the preimage size is unknown, a first attempt would be to try all
possible values of t in the protocol sketched above in Section 4.3 and obtain a collection of standard
commitments. However, the above commitment scheme only seems to be computationally binding
when t >

∼
H(f(Un)) (and is hiding when t <

∼
H(f(Un))) not matching the guarantees of the desired

collection of commitments.
We will in fact use the above protocol as the first phase. However, we also introduce a second

phase that will be binding when t <
∼
H(f(Un)) and hiding when t >

∼
H(f(Un)). This will be obtained

by the sender using (a hash of) the preimage x as an input to another execution of interactive
hashing. Note that given y = f(x), x is distributed uniformly over a set of size |f−1(y)| =
2n−H(f(Un)) so hiding and binding follow from the properties of interactive hashing. In fact these
schemes for regular one-way functions achieve a stronger property than

(
2
1

)
-binding. For each value

of t, either the first phase is always binding or the second phase is always binding (i.e. the sender
cannot choose which binding property to break). However, we will in fact show that

(2
1

)
-binding

in the sense of Definition 2.6 is achieved for any one-way function f , regardless of whether it is
regular. We use this

(2
1

)
-binding commitment for each possible value of t. This ensures that all are(2

1

)
-binding and at least one of the commitments in this collection is hiding.

4.5 The Protocol

Let f : {0, 1}n → {0, 1}n be any function, not necessarily regular nor one-way—as we shall later
see, the regularity condition and one-way security of the function give us the hiding and binding
properties, respectively. Let Ha,b = {ha,b : {0, 1}a → {0, 1}b} be a family of pairwise hash functions.
The description of each element in Ha,b takes `(a, b) = max{a, b} + b < 2(a + b) bits. For a, b <
poly(n), it is convenient to make `(a, b) = q(n) − b, for some fixed polynomial q(n), so that for
every y ∈ {0, 1}a, |h, h(y)| = q(n). This can be done by padding random bits to the description of
h.

In addition, it will be convenient to work with protocols where the sender has no input σ to be
committed to, but rather privately receives an output d ∈ {0, 1}k at the end of each phase of the
commitment. If we can ensure that d is (nearly) uniform given the receiver’s view, such a protocol
can be tuned into a standard commitment scheme, where the sender can commit to an σ of its
choice by sending d⊕ σ at the end of the commit phase.

13

Protocol 4.6. 2-Phase Commitment Scheme (S,R) based on f : {0, 1}n → {0, 1}n.

Parameters: Integers t ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , n}, ∆1 ∈ {0, 1, . . . , t}, and ∆2 ∈
{0, 1, . . . , n− t}.

Sender’s private input: String x ∈ {0, 1}n. (Note that this is not the value to which the
sender is committing, but is rather part of its coin tosses, which will be chosen uniformly
at random by S unless otherwise specified.)

First phase commit:

1. S1
c sets y = f(x).

2. Let H1 = {h1 : {0, 1}n → {0, 1}t−∆1} be a family of pairwise independent hash
functions. S1

c chooses a random hash h1 ← H1, and computes v = (h1, h1(y)) ∈
{0, 1}q .

3. (S1
c , R

1
c) run Interactive Hashing Scheme (Protocol 4.5) (SIH(v), RIH)(1q, 1k), with

S1
c and R1

c acting as SIH and RIH respectively.

Let circuit C(1) : {0, 1}k → {0, 1}q be the common output and d(1) ∈ {0, 1}k be
SIH’s private output in (SIH(v), RIH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k.

First phase reveal:

S1
r sends the tuple γ(1) = (d(1), y, h1).

Receiver R1
r accepts if and only if C(1)(d(1)) = (h1, h1(y)).

Second phase commit:
Second phase common input: First-phase transcript τ = transcript(S1(x), R1), which in
particular includes the string y.

1. Let H2 = {h2 : {0, 1}n → {0, 1}n−t−∆2} be a family of pairwise independent hash
functions. S2

c chooses a random hash h2 ← H2, and computes w = (h2, h2(x)) ∈
{0, 1}q .

2. (S2
c , R

2
c) run Interactive Hashing Scheme (Protocol 4.5) (SIH(w), RIH)(1q, 1k), with

S2
c and R2

c acting as SIH and RIH respectively.

Let circuit C(2) : {0, 1}k → {0, 1}q be the common output and d(2) ∈ {0, 1}k be
SIH’s private output in (SIH(v), RIH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k .

Second phase reveal:

S2
r sends the tuple γ(2) = (d(2), x, h2).

Receiver R2
r accepts if and only if f(x) = y and C(2)(d(2)) = (h2, h2(x)).

Lemma 4.7 (statistical hiding). If f is a regular function with H(f(Un)) ∈ (t0 − 1, t0], then

Protocol 4.6, with setting of parameters t = t0, k ≤ q(n), and ∆1 = ∆2 = ω(log n), is statistically
hiding in the sense of Definition 2.5.

Proof Sketch. For every y ∈ Support(f(Un)), we have p(y) = Pr[f(Un) = y] ∈ [2−t0 ; 2−t0+1)
We denote the distribution f(Un) by Y . The flat source Y has min-entropy at least t0 − 1.

By the Leftover Hash Lemma (Lemma 4.1), the distribution Z = (H1,H1(Y)) is 2−Ω(∆1)-close
to the uniform distribution (H1, Ut−∆1). By the hiding property of interactive hashing, the first
commitment phase is 2−Ω(∆1)-statistically hiding.

Let τ be the transcript of the first phase and y the string sent in the first reveal phase. Con-
ditioned on τ , the string x comes from the uniform distribution X over f−1(y) and X is a flat
souce with min-entropy at least n − t0. By the Leftover Hash Lemma (Lemma 4.1), the distribu-
tion W = (H2,H2(X)) is 2−Ω(∆2)-close to the uniform distribution (H2, Un−t−∆2). By the hiding
property of interactive hashing, the second commitment phase is 2−Ω(∆2)-statistically hiding. �

Lemma 4.8. If f is a s(n)-secure one-way function (not necessarily regular), then for any value
of t ∈ {1, · · · , n}, Protocol 4.6, with setting of parameters k = O(log n), ∆1 = ∆2 ≤ (log(s(n)))/4,
is 1-out-of-2 computationally binding in the sense of Definition 2.6.

The proposition will be proved in two steps. For every t ∈ {1, · · · , n}, we define the set of
“light” strings Lt = {y ∈ {0, 1}n : PrUn [f(Un) = y] ≤ 2−t−∆3}, for a parameter ∆3 that we will set
at the end of the proof. We define B to be the set of transcripts where the sender reveals y ∈ Lt.
We will first show that if the first commitment transcript is in B, then the second phase will be
statistically binding. We will then prove that the first phase is computationally binding, i.e. if there
exists an adversary that can break the binding property for the first phase, then there exists an
adversary that can invert f with nonnegligible success probability.

Claim 4.9. For the binding set B defined above, Condition 1 of Definition 2.6 is satisfied with
ε(n) = poly(n) · 2−Ω(∆3−∆2).

Proof of Claim 4.9. Let y be the string sent in the first reveal phase. Let T = {(h2, h2(x)) : h2 ∈
Hn,n−t−∆2, x ∈ f−1(y)} and µ(T) denote the density of the subset T . Since h2 maps {0, 1}n to
{0, 1}n−t−∆2 , we have

µ(T) ≤ |f−1(y)| · 1

2n−t−∆2
≤ (2n · 2−t−∆3) · 1

2n−t−∆2
= 2(∆2−∆3)

By the binding property of the second execution of the interactive hashing protocol for static
sets, we have

Pr [(w0, w1) = output(S?
IH, RIH) satisfies w0 ∈ T ∧ w1 ∈ T] < 2−Ω(∆3−∆2) · poly(q).

�

Claim 4.10. For the binding set B defined above, if there exists a PPT S? that succeeds with
nonnegligible success probability ε in the game in Condition 2 of Definition 2.6, then there exists a
PPT T that can invert f with success probability at least

εO(1) · 1/poly(n) · 2−(k+∆1+∆3).

15

Proof of Claim 4.10. We define the relation R:

R = {((h1, w), (y, x)) : w = h1(y), y = f(x), y 6∈ Lt}
Let Rv = {(y, x) : R(v, (y, x)) = 1}. Suppose we have a PPT S? with success probability

greater than ε in the game of Definition 2.6. Then we have a PPT S∗IH in the interactive hashing
protocol such that

Pr[outputS∗

IH
(S∗IH, RIH) = ((v0, v1), (y, x), (y

′, x′)) such that

(v0, v1) = output(S∗IH, RIH), (y, x) ∈ Rv0 , (y
′, x′) ∈ Rv1] ≥ ε

By the binding property of the interactive hashing protocol, there exists a PPT A such that

Pr
v←H1×Ut−∆1

[A(v, 1`1 , ε) ∈ Rv] > 2−k ·
(
ε

`1

)c

Consider the PPT T that on input y picks a hash function h1 uniformly from Hn,t−∆1, runs A on
input v = (h1, h1(y)) and outputs the second component of A(v). Assume without loss of generality
that A is deterministic. Then:

Pr
Un,rB

[T (f(Un)) ∈ f−1(f(Un))]

= Pr
H1,Un

[A(H1,H1(f(Un)))2 ∈ f−1(f(Un))]

≥
∑

(h1,w)∈Hn,t−∆1
×{0,1}t−∆1

Pr
Un,H1,rA

[(H1,H1(f(Un))) = (h1, w) ∧A(h1, w) ∈ R(h1,w)]

=
1

|Hn,t−∆1 |
∑

(h1,w) s.t. A(h1,w)∈R(h1,w)

Pr[h1(f(Un)) = w]

≥ 1

|Hn,t−∆1 |
∑

(h1,w) s.t. A(h1,w)∈R(h1,w)

Pr[f(Un) = A(h1, w)1]

≥ 1

|Hn,t−∆1 |
·
(
|Hn,t−∆1 | · 2t−∆1 · 2−k ·

(
ε

`1

)c)
· 2−t−∆3

=

(
ε

`1

)c

· 2−(k+∆1+∆3)

The first inequality comes from considering fixed values of h1 and w and restricting the success
probability of A to the case where y 6∈ Lt. The third inequality comes from considering only values
of (h1, w) such that w = h1(y) for some y 6∈ Lt. Such strings y have mass at least 2−t−∆3 . �

The lemma follows from the above two claims by setting ∆3 = ∆2 +(log s(n))/4 ≤ (log s(n))/4.
With this, Claim 4.9 shows that Condition 1 in Definition 2.6 is satisfied with ε(n) = poly(n) ·
2−Ω(log s(n)) = neg(n) because s(n) = nω(1). Condition 2 of Definition 2.6 is satisfied with negligible
probability ε(n) because otherwise f can be inverted with probability

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) ≥ εO(1) · 1/poly(n) · 2−(O(log n)+(3/4)·(log s(n)))

= εO(1) · 1/poly(n) · s(n)−3/4,

which is greater than 1/s(n) if ε is nonnegligible.

16

5 Overview of Construction for General One-Way Functions

We now present an overview of how we generalize our construction for regular one-way functions
with unknown preimage size (Protocol 4.6) to arbitrary one-way functions. As shown in Lemma 4.8,
this protocol already achieves

(
2
1

)
-binding when f is any one-way function (for every value of t).

Thus the challenge is the hiding property. (Another issue is that Protocol 4.6 requires a one-way
function with known security. It turns out that our method for handling the hiding property also
eliminates the need to know the security.)

As discussed in Section 4, for regular one-way functions, Protocol 4.6 has a hiding first phase
when the parameter t satisfies t <

∼
H(f(Un)) and has a hiding second phase when t satisfies

t >
∼
H(f(Un)). Intuitively, when f is not regular, we should replace the fixed value H(f(Un))

with the ‘dynamic’ value Hf (y)
def
= log(1/Pr[f(Un) = y]), where y = f(x) is the value chosen

by the sender in the pre-processing step, because Hf (y) can be viewed as measuring the amount
of “entropy” in y. The “approximable preimage-size one-way functions” studied by Haitner et
al. [HHK+05] come equipped with an algorithm that estimates Hf (y), but for general one-way
functions, this quantity may be infeasible to compute.

A weakly hiding scheme (details in Section 6). One natural approach is to have the sender
choose t at random and “hope” that it is close to Hf (y). When we choose t too small, only the
first phase will be hiding, and when we choose t too large, only the second phase will be hiding.
But we have a nonnegligible probability δ (specifically, δ = 1/n) that t ≈ Hf (y), and thus both
phases will be hiding. Thus we have a

(2
1

)
-binding commitment scheme satisfying a “weak hiding”

property, where with probability δ, both phases are hiding, and it is always the case that at least
one phase is hiding. Actually, in order to simplify our analysis, we will include t as a parameter
to the protocol. Then there exists a choice of t such that the protocol is weakly hiding in the sense
above, and for all choices of t the protocol is

(2
1

)
-binding. At the end, we will enumerate over all

values of t, resulting in a collection of commitment schemes as claimed in Theorem 3.1, albeit with
a weak hiding property.

Unfortunately, we do not know how to directly construct zero-knowledge arguments from a
weakly hiding

(
2
1

)
-binding commitment scheme. Thus instead, much of the effort in this paper

is devoted to amplifying the weak hiding property (δ = 1/n) into a strong hiding property (δ =
1− neg(n)), while maintaining the

(2
1

)
-binding property.

Amplifying the hiding property (details in Section 7). Inspired by the breakthrough results
of Reingold [Rei05] and Dinur [Din06] on different topics, we do not amplify the hiding probability
from δ = 1/n to δ = 1 − neg(n) in “one shot,” but instead perform a sequence of log n iterations,
each one of which increases δ by a roughly factor of 2. This results in δ = Ω(1), and then we are
able to get δ = 1− neg(n) in just one more amplification step.

How do we double δ? A natural idea is to consider several, executions of the previous weakly
hiding scheme. Specifically, if we take m = O(1) executions, the probability that at least one of
the executions has both phases hiding is roughly m · δ. Moreover, each of the remaining m − 1
executions have either the first phase hiding or the second phase hiding. Thus for some value of
β, there are β + 1 first phases that are hiding and m − β second phases that are hiding. It turns
out that we can choose β so that this exact (β+ 1,m−β) breakdown given that one execution has
both phases hiding occurs with probability Ω(1/

√
m). Thus we are in the situation described with

17

probability m · δ · Ω(1/
√
m) > 2δ, for a large enough constant m.

Now our aim is to combine the outcomes of the weakly hiding schemes in such a way that when
the above-described situation occurs, which happens with probability at least 2δ, both phases are
hiding. Notice that the secret values σ1, . . . , σm ∈ {0, 1}k to which the sender commits in the first
commit phases have entropy (even min-entropy) at least (β + 1) · k conditioned on the receiver’s
view (because (β + 1) of them are hiding), and similarly the sender’s secrets in the second commit
phases have entropy at least (m− β) · k conditioned on the receiver’s view. Let us compare this to
the situation with binding. Since each execution is

(2
1

)
-binding, a cheating polynomial-time sender

can break the binding property for either at most β of the first phases or at most m− β − 1 of the
second phases. Thus the number of possible values to which the sender can open in each case is
at most 2m · 2k·β in the first phase or at most 2k·(m−β−1), where the 2m factor in the first bound
comes from the sender’s ability to choose which subset of executions to break (and it is this factor
that limits us to taking m to be a constant). We can view these as strong forms of “entropy” upper
bounds m+ kβ and k · (m− β − 1). In at least one phase, there will be an entropy gap of at least
k −m.

How can we exploit these entropy gaps? It turns out that interactive hashing, again, is a useful
tool. Specifically, in the first phase we have the sender choose a random pairwise independent hash
function h1 mapping to approximately (β + 1) · k bits and use (h1, h1(σ1, . . . , σm)) as the input
to an Interactive Hashing protocol, and analogously for the second phase. By the Leftover Hash
Lemma, this pairwise independent hashing converts the min-entropy lower bound described above
to an almost-uniform distribution, so the Interactive Hashing hiding property applies. As for the
binding property, the bound on the number of the sender’s choices gets translated to saying that
the sender’s input (in the first phase) comes from a set T of density 2−(k−m), so the Interactive
Hashing binding property applies. The analyses for the second phase are similar. Formalizing
these ideas, we get a new

(2
1

)
-binding commitment scheme in which both phases are hiding with

probability at least 2δ.
When we try to iterate this amplification step O(log n) times, we run into a new difficulty.

Specifically, the above sketch hides the fact that we pay entropy losses of ω(log n) in both the
hiding and binding analyses. The entropy loss of ω(log n) in the hiding property comes from the
Leftover Hash Lemma, in order to ensure that (h1, h1(σ1, . . . , σm)) has negligible statistical distance
from uniform. The entropy loss of ω(log n) in the binding property comes from needing the µ(T) ·2k

factor to be negligible when applying Lemma 4.3. This forces us to go, in one step of amplification,
from a commitment scheme for secrets of length k to a scheme for secrets of length k−m−ω(log n).
As in Lemma 4.8, we can take the initial secret length to be k = Θ(log s(n)) = ω(log(n)) if the
one-way function has known security s(n) = nω(1). But to tolerate log n losses of ω(log n), we would
need s(n) = nω(log n) (i.e., at least quasipolynomial security).

To get around this difficulty, in the amplification, we work with more relaxed, “average-case”
measures of “entropy” for both the hiding and binding analyses. Specifically, for hiding, we keep
track of the expected collision probability of the sender’s secret, conditioned on the receiver’s view.
(Actually, we use the expected square root of the collision probability.) For binding, we work with
the expected number of values to which the sender can open. In both cases, we only require these
expectations to be within a constant factor of the ideal values (2−k and 1 respectively). With these
measures, it turns out that we need only lose O(m) = O(1) bits in the entropy gap with each
amplification step. Moreover, once we amplify δ to a constant, we can afford to take the number
of executions m to equal the security parameter n and get an Ω(n)-bit “entropy gap” in the final

18

amplification step. This allows us to achieve exponentially strong statistical hiding even when we
do not know the security and start with secret length of k = O(log n).

The hiding analysis of the above construction works only for certain values of t in the weakly
hiding scheme, and for certain values of the β’s in the amplification steps. We try out all possible
values of t and β’s, thus obtaining a collection poly(n) schemes, at least one of which is strongly
hiding and all of which are

(
2
1

)
-binding. Notice that the number of possible choices of t and the

β’s are polynomial in n since t ∈ {1, 2, . . . , n}, the β’s in the each step except for the last is in the
range {0, 1, . . . ,m− 1}, for some constant m, and the last β is in the range {0, 1, . . . , n}.

6 Weakly Hiding 2-Phase Commitments from One-Way Functions

As discussed in Section 4, for regular one-way functions, Protocol 4.6 has a hiding first phase when
the parameter t satisfies t <

∼
H(f(Un)) and has a hiding second phase when t satisfies t >

∼
H(f(Un)).

When f is not regular, then there will be one value of t ∈ {1, 2, . . . , n} such that H(f(Un)) ≈ t
with probability 1/n. This is the case because there are only n possible choices for the value of t.

With this observation in mind, our 2-phase commitment scheme from general one-way functions
will be the same as the scheme in Protocol 4.6, with setting of parameters t = t0, k = O(log n),
and ∆1 = ∆2 = 2 log n, for some t0 ∈ {1, 2, . . . , n}. In other words, the same scheme—with slightly
different setting of parameters—used in the case of regular one-way functions is also applicable to
general one-way functions.

This commitment scheme (using general one-way functions), as we will show, is statistically
hiding in both phases with probability at least 1/n (hence, called weakly hiding), and computa-
tionally

(
2
1

)
-binding. In order to obtain a tighter analysis when we amplify this scheme, we depart

from the standard measures of hiding and binding used in Section 4. Instead, we measure the sta-
tistical hiding property of our 2-phase commitments using the expected square root of the collision
probability of the sender’s secret, denoted as CP1/2, and defined in Section 6.1 below. We measure
the binding property by analyzing the expected number of values to which an adversarial sender
can open.

Later in Section 7, we show how to boost the statistical hiding probability to 1− 2−Ω(n) while
maintaining the computational

(2
1

)
-binding property.

6.1 Properties of Collision Probability

We first define the collision probability of a random variable, denoted as CP, and then define the
expected square root of the collision probability, denoted as CP1/2. In addition, we state several
lemmas about the CP1/2 measure.

Definition 6.1 (collision probability). For any random variable A, we define its collision probability
as the probability that two independent samples from A are equal. Equivalently,

CP(A)
def
=

∑

a∈Supp(A)

(Pr[A = a])2 .

Measuring the collision probability of a random variable is equivalent to measuring its Renyi
entropy of order 2, defined as

H2(A) = log
1

Ea←A [Pr[A = a]]
= log

1

CP(A)
.

19

Definition 6.2 (CP1/2 measure). For any random variable A, we define

CP1/2(A)
def
=
√

CP(A).

For any two (possibly correlated) random variables A and B, we define

CP1/2(A|B)
def
= E

b←B

[
CP1/2(A|B=b)

]
.

We think of CP1/2(A|B) ≤
√

2k as saying that A has “conditional Renyi entropy” of at least k
given B. The following lemmas show that CP1/2 behaves nicely as an entropy measure. Proofs are
in Appendix A.

Lemma 6.3. For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) =

m∏

i=1

CP1/2(Xi|Yi).

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent from
the other tuples.

In the language of “conditional Renyi entropy,” Lemma 6.3 states that the entropy is additive
for independent random variables. We will actually need a generalization of Lemma 6.3 to deal
with somewhat dependent random variables, as stated in the next lemma.

Lemma 6.4. Suppose random variables (X1, Y1), . . . , (Xm, Ym) satisfy the following conditions for
some values of α1, . . . , αm ∈ R

+ and all i = 1, 2, . . . ,m:

1. For any given (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αj .

2. For any given (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), even if we condition on Y1 = y1, . . . , Yi = yi,
the i+ 1 random variables X1,X2, . . . ,Xi, Yi+1 are independent.

Then,

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi.

Lemma 6.5. Let (X,Y) be any (possibly correlated) pair of random variables, and let H ← H
be chosen randomly (and independently from (X,Y)) from a family of pairwise-independent hash
functions with a range of {0, 1}α. Then,

CP1/2((H,H(X))|Y) ≤ CP1/2(H) · (CP1/2(X|Y) +
√

2−α).

We use Lemma 6.5 to show that doing pairwise independent extraction (h, h(x)) preserves the
CP1/2 measure, as stated in the next lemma.

20

Corollary 6.6. Let (X,Y) be any (possibly correlated) pair of random variables, and let H ← H
be chosen randomly (and independently from (X,Y)) from a family of pairwise-independent hash
functions with a range of {0, 1}α. Suppose the hash functions from H are represented by (q−α)-bit

strings and CP1/2(X|Y) ≤
√

2−(α+3). Then,

CP1/2((H,H(X))|Y) ≤
√

2−(q−1).

In other words, if X has at least α + 3 bits of “conditional Renyi entropy” given Y , then we
can extract α bits from X that have “conditional Renyi entropy” at least α − 1. Notice that this
entropy loss is only 4 bits, as compared to 2 log(1/ε) if we require that the output be ε-close to
uniform as in the Leftover Hash (Lemma 4.1). This constant loss of “conditional Renyi entropy”
allows us to do a tighter hiding analysis in Section 7.3.

Lemma 6.7. For any triple of (possibly correlated) random variables X, Y and Z,

CP1/2(X|Y) ≤ CP1/2(X|(Y,Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y).

This says that conditioning on random variable Z can only decrease the “conditional Renyi
entropy,” but does so by at most log(|Supp(Z)|) bits. The final lemma is a stronger variant of the
Leftover Hash Lemma (Lemma 4.1), with the hypothesis stated in terms of Collision Probability.

Lemma 6.8 (Leftover Hash Lemma [BBR88, ILL89]). Let H = {h : {0, 1}n → {0, 1}α} be a family
of pairwise-independent hash functions, and let q − α be the description of length of each element
in H. If CP(X) ≤ ε2 · 2−α, then ∆((H,H(X)), Uq) ≤ ε.

6.2 Average-Case Hiding and Binding Properties of Interactive Hashing

We now analyze the Interactive Hashing Scheme (Protocol 4.5) in terms of “average-case” measures.
For hiding, we use the CP1/2 measure introduced in the previous section. For the binding property,
we present an average-case version of Lemma 4.3, where we look at the expected number of outputs
that lies in any set T (rather than bound the probability that there is more than one output in T).

Lemma 6.9 (hiding in CP1/2 measure). Let (SIH, RIH) be the Interactive Hashing Scheme (Proto-
col 4.5). If the sender SIH’s input comes from a distribution Y over {0, 1}q and W is any (possibly
correlated) distribution (representing the receiver’s a priori information about Y), then for any
receiver R∗,

CP1/2(Z|(W,V)) ≤
√

2q−k · CP1/2(Y |W),

where Z = outputSIH
(SIH(Y), R∗)(1q, 1k) and V = viewR∗(SIH(Y), R∗)(1q, 1k).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (The randomized case
then follows by taking expectation over R∗’s coin tosses.) Now that since R∗ is deterministic, the
hash functions sent h0, . . . , hq−k−1 are fully determined by SIH’s responses c0, . . . , cq−k−1 ∈ {0, 1}
(refer to Protocol 4.5). Hence, the number of possible different receiver’s view is bounded by 2q−k.
This implies that |Supp(V)| ≤ 2q−k, where V = viewR∗(SIH(Y), R∗)(1q , 1k). By Lemma 6.7,

CP1/2(Y |(W,V)) ≤
√
|Supp(V)| · CP1/2(Y |W) ≤

√
2q−k · CP1/2(Y |W).

Observe that given any particular instantiation of W = w and V = v, the distributions
outputSIH

(SIH(Y), RIH)(1q, 1k)|W=w,V =v has the same collision probability with Y |W=w,V =v (in-

deed they are in bijective correspondence). Hence, CP1/2(Z|(W,V)) = CP1/2(Y |(W,V)) ≤
√

2q−k ·
CP1/2(Y |W). �

21

Lemma 6.10 (binding in expected measure). Let (SIH, RIH) be the Interactive Hashing Scheme
(Protocol 4.5). For any fixed subset T ⊆ {0, 1}q , and for any sender S∗, setting C = output((S∗, RIH)(1q, 1k)),
we have

E [|{z : C(z) ∈ T}|] < max{24, 2k+1 · µ(T)} ≤ 24 + 2k+1 · µ(T)

where the above expectation is taken over the coin tosses of S∗ and RIH.

This lemma and its proof are inspired by the work of Goldriech, Goldwasser, and Linial [GGL98],
who studied a protocol similar to interactive hashing for a different purpose (namely, random
selection protocols).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (Else, we can fix its
coin tosses to maximize the expectation.) Note that for iteration j = 0, . . . , q − k − 1, RIH will
send a random hj , partitioning the set of possible outputs into two sets {y : hj(y) = 0} and
{y : hj(y) = 1}, and S∗ chooses a side of the partition by sending a bit cj . Let T0 = T , and for
all j > 0, Tj = {y ∈ T : hi(y) = ci∀i < j} denote the set of compatible elements at iteration j.
Let µj = E[|Tj| · 2−(q−j)], where the expectation is taken over random choices of h0, . . . , hj−1. For
convenience of notation, assume that the hash function hi’s range is {±1}, instead of {0, 1}.

Consider a particular set Tj, and a particular hash function hj . Observe that for every y 6= y′ ∈
Tj , Prhj

[hj(y) = hj(y
′)] ≤ 1/2. Hence,

E
hj

[hj(y)hj(y
′)] ≤ 0. (1)

Observe that the set Tj+1 = {y ∈ Tj : hj(y) = cj}. Therefore,

E
hj

[µ(Tj+1)] = µ(Tj) + 2−(q−j) · E
hj




∣∣∣∣∣∣

∑

y∈Tj

hj(y)

∣∣∣∣∣∣




≤ µ(Tj) + 2−(q−j) ·

√√√√√E
hj





∑

y∈Tj

hj(y)




2
 (Cauchy-Schwartz/Jensen)

= µ(Tj) + 2−(q−j) ·
√
|Tj |+

∑

y 6=y′

E
hj

[hj(y)hj(y′)]

≤ µ(Tj) + 2−(q−j) ·
√
|Tj | (by (1))

= µ(Tj) +
√

2−(q−j) · µ(Tj).

22

Consequently,

µj+1 = E
h0,...,hj

[µ(Tj+1)]

= E
h0,...,hj−1

[E
hj

[µ(Tj+1)]]

≤ E
h0,...,hj−1

[
µ(Tj) +

√
2−(q−j) · µ(Tj)

]

≤ E
h0,...,hj−1

[µ(Tj)] +
√

2−(q−j) · E
h0,...,hj−1

[µ(Tj)] (Cauchy-Schwartz/Jensen)

= µj +
√

2−(q−j) · µj.

Assume that the µj’s are monotonically increasing (otherwise, we can make it so). This gives
us

µq−k ≤ µ0 +

q−k−1∑

j=0

√
2−(q−j) · µj

≤ µ0 +
√
µq−k ·

q−k−1∑

j=0

√
2−(q−j) (µj’s are monotonically increasing)

< µ0 +
√
µq−k ·

√
6/2k

≤ µ0 +
µq−k

2
(if µq−k ≥ 24 · 2−k),

giving us µq−k < 2µ0 = 2µ(T) if µq−k ≥ 24 · 2−k. Therefore, we can conclude that

E[|{z : C(z) ∈ T}| : C = output((S∗, RIH)(1q, 1k))] = µq−k · 2k < max{2 · µ(T) · 2k, 24}.

�

6.3 Hiding Property

Recall that our 2-phase commitment scheme (S,R) from general one-way functions is Protocol 4.6,
with setting of parameters t = t0, k = O(log n), and ∆1 = ∆2 = 2 log n, for some t0 ∈ {1, 2, . . . , n}.
We wish to analyze the collision probability of the sender’s private output, both in the first and
second phases, when interacting with an adversarial receiver R∗. The collision probability measure
will be CP1/2, as defined in Section 6.1.

When the sender’s input is x, let random variable viewR∗(S1
c (x), R∗) denote the view of receiver

R∗ in the first commit phase, let random variable outputS(S1(x), R∗) denote the sender’s private
output in the first phase, and let random variable transcript(S1(x), R∗) denote the first (commit
and reveal) phase transcript. Using similar notations, for transcript τ and sender’s input x, let
random variable viewR∗(S2

c (x), R∗)(τ) denote the view of receiver R∗ in the second commit phase,
let random variable outputS(S2(x), R∗)(τ) denote the sender’s private output in the second phase,
and let random variable transcript(S2(x), R∗)(τ) denote the second (commit and reveal) phase
transcript.

We prove that for a specific value of t, the above 2-phase commitment scheme is weakly hiding
(δ = 1/n) in both phases, then prove that is it also

(
2
1

)
-computationally binding (see Lemma 6.12).

23

Lemma 6.11. Let f : {0, 1}n → {0, 1}n be any function (not necessarily one-way). There exist an
integer t ∈ [1, n] and two sets T1, T2 ⊆ {0, 1}n such that for every k ≤ q(n), ∆1 ≥ log n + 4, and
∆2 ≥ 3, the following properties hold for 2-phase commitment scheme (S,R) in Protocol 4.6:

(H.1) T1 ∪ T2 = {0, 1}n and µ(T1 ∩ T2) ≥ 1/n.

(H.2) When the sender’s initial coin tosses x are chosen uniformly from T1, the sender’s private
output in the first phase has low collision probability. Formally, for any adversarial receiver
R∗,

CP1/2(A|V) ≤
√

2−(k−1),

where A = outputS(S1
c (T1), R

∗) and V = viewR∗(S1
c (T1), R

∗), where by abuse of notation we
write T1 to denote the uniform distribution on T1.

(H.3) When the sender’s coin tosses are in T2, the sender’s private output in the second phase
has low collision probability even when given the first phase transcript. Formally, for every
adversarial receiver R∗ and every τ ∈ Supp(Λ), where Λ = transcript(S1(T2), R

∗), we have

CP1/2(Bτ |Wτ) ≤
√

2−(k−1),

where (Bτ ,Wτ) = (outputS(S2
c (T2), R

∗), viewR∗(S2
c (T2), R

∗))|Λ=τ .

Proof. Without loss of generality, we may assume that R∗ is deterministic since we can fix the coin
tosses of R∗ that maximizes the collision probability. We prove that (S,R) satisfies the above three
properties as follows:

Property (H.1). Define p(y) = Prx←Un[f(x) = y], and for t ∈ {1, . . . , n}, define At = {y ∈
{0, 1}n : 2−t ≤ p(y) < 2−t+1}. Since ∪tAt = f({0, 1}n), there exists a t̂ such that Pr[f(Un) ∈ At̂] ≥
1/n. For the rest of the proof, we set t = t̂.

Define sets T1 and T2 as follows:

T1 = {x : p(f(x)) < 2−t+1}
T2 = {x : p(f(x)) ≥ 2−t}

By the definition of T1 and T2, we have that µ(T1 ∩ T2) = Pr[f(Un) ∈ At] ≥ 1/n, and T1 ∪ T2 =
{0, 1}n.

Property (H.2). In the case when the sender’s coin tosses is in T1, we analyze the collision
probability of the distribution of the first phase secret as follows.

CP(f(T1)) =

∑
y:p(y)<2−t+1 p(y)2

µ(T1)2

≤
(

max
y:p(y)<2−t+1

p(y)

)
·




∑

y:p(y)<2−t

p(y)


 · 1

µ(T1)2

< 2−t+1 · µ(T1) · µ(T1)
−2

≤ 2−(t−log n−1) (since µ(T1) ≥ 1/n)

24

Observe that CP(f(T1)) ≤ 2−(t−log n−1) ≤ 2−(t−∆1+3). Hence, by Corollary 6.6, letting Q =

(H1,H1(f(T1))), we have that CP1/2(Q) ≤
√

2−(q−1). By Lemma 6.9, letting A
def
=outputSIH

(SIH(Q), R∗) =

outputS(S1(T1), R
∗) and V

def
= viewR∗(SIH(Q), R∗) = viewR∗(S1

c (T1), R
∗), we have

CP1/2(A|V) ≤
√

2q−k ·
√

CP(Q) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1).

Property (H.3). In the case when the sender’s coin tosses is in T2, we analyze the collision
probability of the distribution of the second phase secret as follows. First we observe that for any
x, x′ ∈ {0, 1}n such that f(x) = f(x′), the first phase transcripts for both coin tosses x and x′ are
identical, that is transcript(S1(x), R∗) ≡ transcript(S1(x′), R∗).

Fix a first phase transcript τ ∈ transcript(S1(x), R∗) containing value y in the reveal phase.
Observe that the subset T2,y = f−1(y) ⊆ T2 is such that any element in T2,y is equally likely to
have generated τ . Note that the T2,y’s form a partition of T2.

Note that |T2,y| ≥ 2n−t by the definition of T2,y and T2, and hence CP(T2,y) ≤ 2−(n−t) ≤
2−(n−t−∆2+3). By Corollary 6.6, letting Q′ = (H2,H2(T2,y)), we have CP(Q′) ≤ 2−(q−1). Observing
that Bτ = outputS(S2(T2,y), R

∗)(τ) = outputSIH
(SIH(Q′), R∗) and Wτ = viewR∗(S2

c (T2,y), R
∗)(τ) =

viewR∗(SIH(Q), R∗), we can apply Lemma 6.9 to deduce that

CP1/2(Bτ |Wτ) ≤
√

2q−k ·
√

CP(Q′) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1).

Our proof is complete. �

6.4 Binding Property

The definition of
(2
1

)
-binding in Definition 2.6 considers the first phase (resp., second phase) to

be broken if the sender S∗ produces valid decommitments to two different values after the first
commit stage (resp., second commit stage). In this section and the next one, we will work with a
relaxed notion where we simply bound the expected number of values to which the sender can open.
To this end, we define openings(S∗, Ri) to be a random variable denoting the number of values to
which the sender successfully opens in phase i, where ‘successfully’ opens is defined for each phase
analogously to Definition 2.6. More formally, for a two-phase commitment scheme (S,R) and a
‘binding’ set B, we define openings(S∗, R1)(B) as follows:

• S∗ and R1
c interact to get first phase commitment z(1).

• After the interaction, S∗ outputs a sequence of values d1, . . . , d` and corresponding full tran-
scripts τ1, . . . , τ` of both phases.

• We let openings(S∗, R1)(B) be the set of distinct values di whose opening τi is valid, where
by valid we mean that τi begins with prefix z(1), τi contains an opening of z(1) to the value
d1 with a first-phase transcript not in B, and both R1

r and R2
r accept in τi.

Analogously, we define openings(S∗, R2)(τ (1)), where τ (1) is a first phase transcript, as follows:

• S∗ and R2
c interact to get second phase commitment z(2).

• After the interaction, S∗ outputs a sequence of values d1, . . . , d` and corresponding second-

phase transcripts τ
(2)
1 , . . . , τ

(2)
` .

25

• We let openings(S∗, R2)(τ (1)) be the set of distinct values di whose opening τ
(2)
i is valid, where

by valid we mean that τ
(2)
i starts with prefix z(2), τ

(2)
i contains an opening of z(2) to the value

di, and R2
r accepts in τ

(2)
i .

Now, we can describe the binding property of Protocol 4.6 in this language (even when the
underlying one-way function has unknown hardness).

Lemma 6.12. Let f : {0, 1}n → {0, 1}n be any one-way function. For every integers t ∈ [1, n],
k = O(log n), ∆1 = O(log n), and ∆2 = O(log n), the following properties hold for the 2-phase
commitment scheme (S,R) in Protocol 4.6 using f :

There exists a binding set B for (S,R) where:

(B.1) No nonuniform PPT adversary S∗ can break the first phase binding with nonneg-
ligible probability in the sense of Definition 2.6. That is, for any nonuniform PPT
S∗, we have | openings(S∗, R1)(B)| ≤ 1 with probability 1 − neg(n) over the coins
of S∗ and R1

c .

(B.2) For all τ ∈ B and any adversarial sender S∗,

E[
∣∣openings(S∗, R2)(τ)

∣∣] < 32,

where the above expectation is taken over the coin tosses of S∗ and R2.

Proof. We follow the proof of the binding property in Lemma 4.8, using both Claims 4.9 and
4.10 from that proof. Let B = {y ∈ {0, 1}n : PrUn [f(Un) = y] ≤ 2−t−∆3} be the same bind-
ing set as defined in both claims. We set ∆3 = ∆2 + O(log n) to be large enough so that the
binding parameter poly(n) · 2−Ω(∆3−∆2) in Claim 4.9 is at most 2−k. (This can be done since
k = O(log n).) Now, Claim 4.9 states that if τ ∈ B, then the second commitment phase is not
binding (i.e.,

∣∣output(S∗, R2)(τ)
∣∣ ≥ 2) with probability at most 2−k. Since

∣∣output(S∗, R2)(τ)
∣∣ ≤ 2k

(the commitment is to a k-bit string), taking expectations we have:

E[
∣∣output(S∗, R2)(τ)

∣∣] ≤ 2−k · 2k + (1− 2−k) · 1 < 2 < 32.

To see why property (B.1) holds, observe that the inversion success probability in Claim 4.10 is

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) = εO(1) · 1/poly(n) · 2−(k+∆1+∆2+O(log n)) =
εO(1)

poly(n)
,

since all k,∆1,∆2 = O(log n). That probability is nonnegligible if ε is nonnegligible. �

7 Converting Weakly Hiding 2-Phase Commitment Schemes into

Strongly Hiding Schemes

In the previous section, we constructed a 2-phase commitment scheme that is weakly statistically
hiding (δ = 1/n) and

(
2
1

)
-computationally binding. In this section, we show how to boost the hiding

probability to δ = 1− neg(n) (strongly hiding), while maintaining the
(2
1

)
-computationally binding

property.

26

We first show how to double the hiding probability by combining a constant number of schemes
to obtain a new scheme. We repeat this doubling amplification process O(log n) times to get the
hiding probability from 1/n to a constant c > 0. Now when the hiding probability is a constant, we
can boost it all the way to 1−neg(n) by combining poly(n) number of schemes (that have constant
hiding probability).

7.1 One Step Amplification Procedure

In Protocol 7.1, we present a hiding amplification procedure Amplify for 2-phase commitments that
takes as input scheme (S,R) and outputs a new scheme (S,R). The parameters for Amplify, all
given in unary, are listed below:

1. Security parameter n.

2. Number m of schemes (S,R) to be combined.

3. Integer r denoting S’s private input length.

4. Integer k denoting S’s private output length.

5. Integer k′ denoting S’s private output length.

6. Integral thresholds α1 and α2, for the first and second commit phases respectively.

Hence, we write (S,R) = Amplify((S,R); 1n, 1m, 1r, 1k, 1k′

, 1α1 , 1α2), whose protocol is presented
in the next page. To simplify notation, we also write (S,R) = Amplify((S,R)) when the parameters
are clear from context.

27

Protocol 7.1. Scheme (S,R) from Hiding Amplification of (S,R).

Sender’s private input: x = (x1, . . . , xm) ∈ {0, 1}mr .

First phase commit:

1. (S1
c ,R1

c) does m sequential executions of (S1
c , R

1
c), using xi for S1

c ’s secret in the
i-th execution. Let (S1

c,i(xi), R
1
c,i) denote the i-th execution of (S1

c , R
1
c). Define

ai = outputS(S1
c,i(xi), R

1
c,i) ∈ {0, 1}k , and let a = (a1, . . . , am).

2. Let H1 = {h1 : {0, 1}mk → {0, 1}α1} be a family of pairwise independent hash
functions. S1 chooses a random hash h1 ← H1, and computes y(1) = (h1, h1(a)) ∈
{0, 1}q .

3. (S1
c ,R1

c) runs Interactive Hashing Scheme (Protocol 4.5) (S1
IH(y(1)), R1

IH)(1q, 1k),
with S1 and R1 acting as S1

IH and R1
IH, respectively.

Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(1) ∈ {0, 1}k′

be
S1

IH’s private output in (S1
IH(y(1)), R1

IH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k′

.

First phase reveal:

S1
r sends tuple γ(1) = (d(1), a, h1)◦(γ(1)

1 , . . . , γ
(1)
m), where γ

(1)
i is the first phase revelation

string of S1
r,i in the above execution of (S1

r,i(xi), R
1
r,i).

Receiver R1
r accepts if only if C(d(1)) = (h1, h1(a)) and R1

r,i accepts (γ
(1)
i , ai) for all i.

Second phase commit:
Second phase common input: Transcript τ = (τ1, . . . , τm), where τi =
transcript(S1

i (xi), R
1
i).

1. (S2
c ,R2

c) does m sequential executions of (S2
c , R

2
c), using xi for S2’s secret and tran-

script τi in the i-th execution. Let (S2
c,i(xi), R

2
c,i)(τi) denote the i-th execution of

(S2, R2). Define bi = outputS(S2
c,i(xi), R

2
c,i)(τi) ∈ {0, 1}k , and let b = (b1, . . . , bm).

2. Let H2 = {h2 : {0, 1}mk → {0, 1}α2} be a family of pairwise independent hash
functions. S2 chooses a random hash h2 ← H2, and computes y(2) = (h2, h2(b)) ∈
{0, 1}q .

3. (S2
c ,R2

c) runs Interactive Hashing Scheme (Protocol 4.5) (S2
IH(y(2)), R2

IH)(1q, 1k),
with S2

c and R2
c acting as S2

IH and R2
IH, respectively.

Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(2) ∈ {0, 1}k′

be
S2

IH’s private output in (S2
IH(y(2)), R2

IH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k′

.

Second phase reveal:

S2
r sends tuple γ(2) = (d(2), b, h2) ◦ (γ

(2)
1 , . . . , γ

(2)
m), where γ

(2)
i is the second phase reve-

lation string of S2
r,i in the above execution of (S2

r,i(xi), R
2
r,i).

Receiver R2 accepts if only if C(2)(d(2)) = (h2, h2(b)) and R2
r,i accepts (γ

(2)
i , bi) for all i.

7.2 Iterative Amplification Procedure

We start off with a weakly-hiding 2-phase commitment scheme based on one-way function (cf.,
Section 6), denoted by (S0, R0). We get a new scheme (S,R) by iteratively applying the amplification
process Amplify, as described in Algorithm 7.2 below. Let D > 1 denote a large enough integer
constant. (We set m = D in all but the last iteration.)

Algorithm 7.2. Iterative Amplification Procedure.

Input: Security parameter n, constant integer D > 1, and thresholds t ∈ {1, 2, . . . , n},
β1, . . . , β` ∈ {0, 1, . . . ,D − 1}, β`+1 ∈ {0, 1, . . . , n}.

1. Let k0 = (16D) · log n, ` = log n, and (S0, R0) be the 2-phase commitment scheme
based on one-way function f : {0, 1}n → {0, 1}n from Protocol 4.6 using parameters
t, k = k0, and ∆1 = ∆2 = 2 log n.

2. For j = 1, 2, . . . , `, repeat the following:

(a) Set kj = kj−1 − 8D − 8.

(b) Set (Sj , Rj) = Amplify((Sj−1, Rj−1)) for settings of parameters m = D, r =
n · Dj−1, k = kj−1, k

′ = kj , α1 = (βj + 1)(kj−1 − 1) − 3 and α2 = (D −
βj)(kj−1 − 1)− 3.

3. Set (S,R) = Amplify((S`, R`)) for settings of parameters m = n, r = n ·D`, k = k`,
k′ = 1, α1 = b(β`+1 + 1

3δn)kc and α2 = b(n− β`+1 + 1
3δn)kc, where δ = 1/(2D).

Output: 2-phase commitment scheme (S,R).

Lemma 7.3. If scheme (S0, R0) used by Algorithm 7.2 runs in probabilistic polynomial time, then
scheme (S,R), the output of Algorithm 7.2, also runs in probabilistic polynomial time.

Proof. Scheme (S,R) consists of n ·D` = n ·DO(logn) = poly(n) executions of (S0, R0). In addition,
each amplification procedure Amplify adds an overhead time of poly(n) since both the sender and
receiver are doing Interactive Hashing. Since there are only 1+n+nD+nD2+· · ·+D`−1 = poly(n)
amplifications steps, the overhead time is polynomial. Hence, scheme (S,R) runs in probabilistic
polynomial time if (S0, R0) does too. �

7.3 Hiding Amplification

The following two lemmas, Lemma 7.4 and 7.5, provide us a way to understand the hiding property
(in the CP1/2 measure) of (S,R), the amplified hiding scheme as presented in Protocol 7.1, in terms
of (S,R).

Lemma 7.4 (intermediate step hiding amplification). For a sufficiently large constant D ∈ Z,

If there exists a 2-phase commitment scheme (S,R) having two associated subsets T1, T2 ⊆ {0, 1}r
such that the following holds for every adversarial receiver R∗:

(H.1) µ(T1 ∩ T2)
def
= δ and T1 ∪ T2 = {0, 1}r.

29

(H.2) CP1/2(A|V) ≤
√

2−(k−1), where A = outputS(S1
c (T1), R

∗) and V = viewR∗(S1
c (T1), R

∗).

(H.3) CP1/2(Bτ |Wτ) ≤
√

2−(k−1), for every τ ∈ Supp(Λ), where Λ = transcript(S1(T2), R
∗)

and (Bτ ,Wτ) = (outputS(S2
c (T2), R

∗), viewR∗(S2
c (T2), R

∗))|Λ=τ .

Then there exist an integer β ∈ [0,D − 1] such that scheme (S,R) = Amplify((S,R)), with para-
meters m = D, k′ = k − 8D − 8, α1 = (β + 1)(k − 1) − 3, and α2 = (D − β)(k − 1) − 3, has two
associated sets T ′1, T

′
2 ⊆ {0, 1}Dr such that the following holds for every adversarial receiver R∗:

(H’.1) µ(T ′1 ∩ T ′2) ≥ min{2δ, 1/D} and T ′1 ∪ T ′2 = {0, 1}Dr.

(H’.2) CP1/2(A′|V ′) ≤
√

2−(k′−1), where A′ = outputS(S1(T ′1), R
∗) and V ′ = viewR∗(S1(T ′1), R

∗).

(H’.3) CP1/2(B′τ ′ |W ′τ ′) ≤
√

2−(k′−1), for every τ ′ ∈ Supp(Λ′), where Λ′ = transcript(S1(T ′2), R
∗)

and (B′τ ′ ,W ′τ ′) = (outputS(S2
c (T ′2), R

∗), viewR∗(S2
c (T ′2), R

∗))|Λ′=τ ′ .

Proof. Without loss of generality, we may assume that R∗ is deterministic since we can fix the coin
tosses of R∗ that maximizes the collision probability. Throughout this proof, the value of m will
be fixed to D, although we will keep writing m.

Property (H.1) implies (H’.1). Define the sets T ′1 and T ′2 as follows (the value of β will be
determined later).

T ′1 = {(x1, . . . , xm) : ∃ i1, . . . , iβ+1 such that xi1 , . . . , xiβ+1
∈ T1},

T ′2 = {(x1, . . . , xm) : ∃ i1, . . . , im−β such that xi1 , . . . , xim−β
∈ T2}.

By the way we defined T ′1 and T ′2 together with the fact that T1∪T2 = {0, 1}r , we can conclude
that T ′1 ∪ T ′2 = {0, 1}mr . In addition, we know that µ(T1 ∩ T2) = δ. Choose any subset S ⊆ T1 ∩ T2

such that µ(S) = min{δ, 1/(2m)} def
= δ′. Hence, we have

Pr
x1,...,xm←{0,1}r

[exactly one xi ∈ S] = mδ′(1− δ′)m−1 ≥ mδ′(1− 1/(m − 1))m−1 = Ω(mδ′).

Given that exactly one xi ∈ S and wlog assume that xm ∈ S. Let pt denote the conditional
probability that exactly t of the rest of the m − 1 xi’s are in T1 \ T2. Choose β ∈ [0,m − 1] to
maximize pt, i.e., β = argmaxt pt. Let Ii, for i = 1, 2, . . . ,m − 1, be a binary random variable
indicating whether xi ∈ T1 or not; note that these are independent random variables conditioned
on the fact that xm ∈ S. Let the µ the mean of the Ii’s. By a Chernoff bound,

Pr

[∣∣∣∣∣
∑

i

Ii − µ · (m− 1)

∣∣∣∣∣ > 3
√
m− 1

]
≤ 2e((m−1)/3)·(3/

√
m−1)2 < 1/2.

This means that greater 1/2 of the weight is centered around µ · (m−1)±3
√
m− 1. Since we chose

β = argmaxt pt in a maximal way, we have

Pr
x1,...,xm←{0,1}r

[exactly β of xi’s are in T1 \ S | exactly one xi ∈ S] = Ω

(
1√
m

)
.

Knowing that T1 ∪ T2 = {0, 1}r , if exactly β of xi’s in T1 \S and exactly one xi ∈ S, then there
must be at least m− 1− β of xi’s in T2 \ S. Consequently,

Pr
x1,...,xm←{0,1}r

[(x1, . . . , xm) ∈ T ′1 ∩ T ′2] = Ω(mδ′) · Ω
(

1√
m

)
= Ω(

√
mδ′) > 2δ′ = min{2δ, 1/m},

for a large enough constant m = D.

30

Property (H.2) implies (H’.2). In the commit phase (S1
c , R

∗), the cheating receiver R∗ in-
teracts with m sequential executions of S1

c . Here we must analyze the case that the coin tosses
for S1

c in these m executions are given by x = (x1, . . . , xm) distributed uniformly in T ′1. We let
Ai = Ai(x) denote the private output of the sender and Vi = Vi(x) the view of the receiver in the
i’th execution. That is, for i = 1, . . . ,m,

Ai = outputS(S1
c (xi), R

∗(V1, . . . , Vi−1);

Vi = viewR∗(S1
c (xi), R

∗(V1, . . . , Vi−1)).

Note that while the sender’s behavior in the i’th execution is independent of the previous exe-
cutions, the cheating receiver may base its strategy on its previous views. We want to bound
CP1/2(A′′(X)|V ′′(X)), where A′′(X) = (A1(X), . . . , Am(X)), V ′′(X) = (V1(X), . . . , Vm(X)), and
X is distributed uniformly in T ′1. To do this, we consider, for each I ⊆ [m] of size at least β + 1,
the distribution XI on coin tosses for the sender, where we choose xi uniformly in T1 for i ∈ I,
and uniformly in T1 for i /∈ I. To get a bound on CP1/2(A′′(XI)|V ′′(XI)), we will have to refer to
Lemma 6.4 and see why the (Ai, Vi)’s satisfy the two conditions of the lemma.

Conditioned on the any previous view, i.e., V1(XI) = v1, . . . , Vi−1(XI) = vi−1 for any v1, . . . , vi−1,

it is the case that CP1/2(Ai(XI)|Vi(XI)) ≤
√

2−(k−1) if i ∈ I. This follows from Property (H.2)
because the (unbounded) receiver R∗ can incorporate the previous view v1, . . . , vi−1 as nonuniform
advice, and then the only randomness in the definition of Ai and Vi is the sender’s coin tosses
xi ← (XI)i, which are uniform in T1 (even conditioned on v1, . . . , vi−1). This shows that the first
condition of Lemma 6.4 is satisfied.

For the second condition, we need to show that conditioned on V1(XI) = v1, . . . , Vi(XI) = vi,
the random variables A1(XI), . . . , Ai(XI), Vi+1(XI) are independent. This can be seen by induction
on i as follows. It is vacuously true for i = 0. Assuming it is true for i = j − 1, we prove it for
i = j as follows. First condition on v1, . . . , vj−1. By inductive hypothesis, A1, . . . , Aj−1, Vj are
independent (omitting XI from the notation for readability). Moreover, since we have conditioned
on v1, . . . , vj−1, Aj and Vj are functions of only (XI)j , the sender’s coin tosses in the j’th execution,
which is independent of A1, . . . , Aj−1 (because we have only used (XI)1, . . . , (XI)j−1 so far). Thus,
if we condition on Vj = vj , Aj remains independent of A1, . . . , Aj−1. Vj+1 is independent of
A1, . . . , Aj because now it is only a function of (XI)j+1, which has not been used yet.

Applying Lemma 6.4, we have

CP1/2(A′′(XI)|V ′′(XI)) ≤
√

2−(β+1)(k−1), (2)

since from property (H.2), it is the case that for all i ∈ I, CP1/2(Ai|Vi) ≤
√

2−(k−1) (even condi-
tioned on the previous views), and |I| = β + 1.

Now, to bound CP1/2(A′′(X)|V ′′(X)) where X is uniform in T ′1, we observe that X = XI ,
where I is the distribution on subsets I of size at least β + 1 given by

Pr [I = I] = Pr
(x1,...,xm)←T ′

1

[{i : xi ∈ T1} = I].

That is, sampling from T ′1 can be broken into two steps; first sampling an I ← I, and second

31

sampling xi ← T1 for i ∈ I and xi ← T1 for i /∈ I. Therefore:

CP1/2(A′′(XI)|V ′′(XI)) ≤ CP1/2(A′′(XI)|(V ′′(XI),I)) (by Lemma 6.7)

= E
I←I

[
CP1/2(A′′(XI)|V ′′(XI)

]

≤
√

2−(β+1)(k−1) (by (2))

=
√

2−(α1+3).

And by Corollary 6.6, CP1/2(H1,H1(A
′′(X))|V ′′(X)) ≤

√
2−(q−1).

LetQ = (H1,H1(A
′′(X))). By Lemma 6.9, letting A′ = outputSIH

(SIH(Q), R∗IH) = outputS(S1(T ′1), R
∗)

and V ′ = (viewR∗

IH
(SIH(Q), R∗IH), V ′′) = viewR∗(S1(T ′1), R

∗), we have

CP1/2(A′|V ′) ≤
√

2q−k′ · CP1/2(Q|V ′′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1),

as required.

Property (H.3) implies (H’.3). Fix a transcript τ ′ ∈ Supp(Λ′), where Λ = transcript(S1(T ′2), R
∗)

τ ′ contains first-phase transcripts (τ1, . . . , τm) for the m executions of (S,R). Similarly to the above
proof of Property (H’.2), we define random variables

Bi(x) = outputS(S2
c (xi), R

∗(W1, . . . ,Wi−1)(τi);

Wi(x) = viewR∗(S2
c (xi), R

∗(W1, . . . ,Wi−1)(τi),

where xi are the coin tosses of the sender in the i’th execution of the the (S,R). For notational
simplicity, we omit the sender’s coin-tosses from the first-phase interactive hashing (they can be
considered fixed for the analysis below). As above, we want to bound CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)),
where B′′(Xτ ′) = (B1(Xτ ′), . . . , Bm(Xτ ′)), W ′′(Xτ ′) = (W1(Xτ ′), . . . ,Wm(Xτ ′)), Xτ ′ = X|Λ′(X)=τ ′ ,
and X is distributed uniformly in T ′2. To do this, we consider, for each J ⊆ [m] of size at least
m − β, the distribution XJ on coin tosses for the sender, where we choose xi uniformly in T2 for
i ∈ J , and uniformly in T2 for i /∈ J .

It is important to note that even when we condition on Λ′(X) = τ ′, the components (X1, . . . ,Xm)of
XJ remain independent, and the distribution of Xi|Λ′(XJ)=τ ′ is equivalent to Xi|Λ(Xi)=τi

, where only
condition on the transcript of the i’th execution. (Similarly to the inductive proof above, it can be
shown that (X1, . . . ,Xm) are independent given the receiver’s view Vm of the m executions of S1

c .
The only additional information revealed about the Xi’s in the first phase is (A1, . . . , Am), where
Ai is a function only of Xi once we condition on Vm.)

Thus from property (H.3), we have for all i ∈ J , CP1/2(Bi(XJ,τ ′)|Wi(XJ,τ ′)) ≤
√

2−(k−1), where
XJ,τ ′ = XJ |Λ′(XJ)=τ ′ , and this holds even conditioned on the previous views. Similar to the first
phase, we apply Lemma 6.4 to show that

CP1/2(B′′(XJ,τ ′)|W ′′(XJ,τ ′)) ≤
√

2−(m−β)(k−1). (3)

Similarly to above, we observe that Xτ ′ = XJ ,τ ′ for an appropriate distribution J on sets of
size at least m− β, and thus

CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)) ≤
√

2−(m−β)(k−1) =
√

2−(α2+3).

32

By Corollary 6.6, we have CP1/2(H2,H2(B
′′(Xτ ′))|W ′′(Xτ ′)) ≤

√
2−(q−1), which by Lemma 6.9

implies that

CP1/2(B′τ ′ |W ′τ ′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1),

as required. �

Lemma 7.5 (final step hiding amplification). For every constant δ > 0 and every k ≥ 100/s, the
following holds:

If there exists a 2-phase commitment scheme (S,R) having two associated subsets T1, T2 ⊆ {0, 1}r
such that the following holds for every adversarial receiver R∗:

(H.1) µ(T1 ∩ T2) = δ and T1 ∪ T2 = {0, 1}r .
(H.2) CP1/2(A|V) ≤

√
2−(k−1), where A = outputS(S1

c (T1), R
∗) and V = viewR∗(S1

c (T1), R
∗).

(H.3) CP1/2(Bτ |Wτ) ≤
√

2−(k−1), for every τ ∈ Supp(Λ), where Λ = transcript(S1(T2), R
∗)

and (Bτ ,Wτ) = (outputS(S2
c (T2), R

∗), viewR∗(S2
c (T2), R

∗))|Λ=τ .

Then there exist an integer β ∈ [0, n] such that scheme (S,R) = Amplify((S,R)), with para-
meters m = n, k′ = 1, α1 = b(β + 1

3δn)kc and α2 = b(n − β + 1
3δn)kc, has two associated sets

T ′1, T
′
2 ⊆ {0, 1}nr such that the following holds for every adversarial receiver R∗:

(H’.1) Both µ(T ′1), µ(T ′2) ≥ 1− 2−Ω(n).

(H’.2) (A′, V ′) is 2−Ω(n)-close to (U1, V
′), where A′ = outputS(S1

c (T ′1), R
∗) and V ′ =

viewR∗(S1
c (T ′1), R

∗).

(H’.3) (B′,W ′,Λ′) is 2−Ω(n)-close to (U1,W
′,Λ′), where B′ = outputS(S2

c (T ′2), R
∗)(Λ′)

and W ′ = viewR∗(S2
c (T ′2), R

∗)(Λ′), and Λ′ = transcript(S1(T2), R
∗).

Proof. Throughout this proof, the value of m will be fixed to n, although we will keep writing m.

Property (H.1) implies (H’.1). Let p = µ(T1). Set β = bpn − 1
2δnc, γ1 = bpn − 1

12δnc and
γ2 = b(1− p+ δ)n − 1

12δnc. Note that β ∈ [0, n] since p ∈ [δ, 1].
Define the sets T ′1 and T ′2 as follows:

T ′1 = {(x1, . . . , xn) : ∃ i1, . . . , iγ1 such that xi1, . . . , xiγ1
∈ T1},

T ′2 = {(x1, . . . , xn) : ∃ i1, . . . , iγ2 such that xi1, . . . , xiγ2
∈ T2}.

To lower bound µ(T ′1), note that µ(T1)−γ1/n = p−bpn− 1
12δnc/n ≥ 1

12δ = Ω(1) since δ = Ω(1).
Using a Chernoff bound, we get

µ(T ′1) = 1− Pr
(x1,...,xn)

[less than γ1 of the xi’s are in T1]

= 1− 2−Ω(n).

To analyze µ(T ′2), we note that µ(T2)−γ2/n = (1−p+δ)−b(1−p+δ)n− 1
12δnc/n ≥ 1

12δ = Ω(1).

Using a similar analysis as above, we get µ(T ′2) = 1− 2−Ω(n).

33

Property (H.2) implies (H’.2). Using the same analysis as in the proof of Lemma 7.4, we get

CP1/2(A′′|V ′′) ≤
√

2−γ1·(k−1),

where A′′ = (outputS(S1
1(x1), R

∗), . . . , outputS(S1
n(xn), R∗)) with (x1, . . . , xn) ← T ′1, and analo-

gously for V ′′. By Markov, we know that with probability greater than 1− 2−n over v′′ ← V ′′, we
have

CP(A′′|V ′′=v′′) ≤ 2−γ1(k−1) · 22n ≤ 2−α1−(1/24)δkn+3n ≤ 2−(α1+n), (4)

since k ≥ 100/δ.
Consider v′′ ∈ V ′′ such that the above (4) holds. Let Q = (H1,H1(A

′′)) and hence, Q|V ′′=v′′ =
(H1,H1(A

′′|V ′′=v′′)). By Lemma 6.8, we have that ∆(Q|V ′′=v′′ , Uq) ≤ 2−Ω(n). Therefore, by the per-
fect hiding property of Interactive Hashing (Theorem 4.4 following Definition 4.2), (VIH|V ′′=v′′ , A

′|V ′′=v′′)

is 2−Ω(n)-close to (VIH|V ′′=v′′ , U1), where VIH
def
=(viewR∗

IH
(SIH(Q), R∗IH) andA′

def
=outputSIH

(SIH(Q), R∗IH) =

outputS(S1(T ′1), R
∗).

Let V ′
def
= viewR∗(S1

c (T ′1), R
∗) = (V ′′, VIH). Since (VIH|V ′′=v′′ , A

′|V ′′=v′′) is 2−Ω(n)-close to (VIH|V ′′=v′′ , U1)
for all but a 2−n fraction of v′′ ← V ′′, it follows that (V ′, A′) is 2−Ω(n)-close to (V ′, U1), as required.

Property (H.3) implies (H’.3). Using similar ideas in the proof of Lemma 7.4, we can proceed
as above and obtain that Property (H’.3) holds assuming (H.3). �

7.4 Binding Preservation

In the execution of Algorithm 7.2, we obtain intermediate commitment schemes [(Sj , Rj)]1≤j≤`,
and final commitment scheme (S,R). Our goal is to prove that the final scheme (S,R) satisfies the(
2
1

)
-binding property of Definition 2.6. To achieve our goal, we inductively show that the expected

number of openings a sender can produce in the intermediate schemes is bounded by some constant,
namely 32. (This is captured by Lemma 7.7 below.) Then in the final step, for scheme (S,R), we
show how to shrink this expectation to value that is very close to 1, effectively proving that scheme
(S,R) is satisfies the

(2
1

)
-binding property. (This in turn is captured by Lemma 7.9.)

In the definition of the computational
(
2
1

)
-binding property (Definition 2.6), we stipulated that

the adversarial sender in the second phase can be computationally unbounded, whereas the adver-
sarial sender in the first phase must be probabilistic polynomial time (PPT). It will be rather messy
to work with PPT senders, hence we will first abstract away the PPT requirement by showing, in
the next section, how to convert any polynomial-time sender violating the

(2
1

)
-binding property in

the first phase into a computationally unbounded sender with a special “unique binding” property.
A sender with the unique binding property, intuitively, will not break the (first-phase) binding
property of any execution of the initial schemes (S0, R0), but might still break the binding property
of the intermediate schemes (Sj, Rj) (or final scheme (S,R)). Intuitively, we can restrict to such
senders because of the computational

(
2
1

)
-binding property of the initial scheme (S0, R0). Once we

have a sender with the unique binding property, the analysis of the amplification steps is entirely
information theoretic.

To formally define the unique binding property for senders, we observe that schemes [(Sj , Rj)]1≤j≤`

and (S,R) each contain multiple executions of initial scheme (S0, R0). Hence, when a cheating
sender S∗ interacts with Rj , it is actually also interacting with the i-th execution of R0, for each
i = 1, 2, . . . , which we will denote by R0[i]. Formally, we obtain a (computationally unbounded)

34

cheating sender strategy S∗[i] that interacts with this single execution of R0[i] (more precisely, the
first commit stage R1

0,c[i]), by simulating all of the other messages of Rj on its own until the end
of the first commit stage of R0[i]. Then it enumerates over all choices for the subsequent messages
of Rj and outputs all of the resulting transcripts of S∗’s interactions with R0[i] together with the
corresponding first-phase decommitment values.

Definition 7.6 (unique binding sender). For intermediate schemes [(Sj , Rj)]1≤j≤` and final scheme
(S,R), we say that a (deterministic) sender S∗ has the unique binding property if for all i, we have
| openings(S∗[i], R0[i])| ≤ 1 with probability 1 (over the coin tosses of S∗[i] and R0[i]

8) where
openings(·) is defined as in Section 6.4.

The following two lemmas, Lemma 7.7 and 7.9, provide us a way to understand the binding
property (in an average case sense) of (S,R), the amplified hiding scheme as presented in Proto-
col 7.1, in terms of (S,R). We might occasionally drop the superscript notations (1) and (2) from
the notations if it is clear which phase we are referring to.

Lemma 7.7 (intermediate step binding preservation). For some constant D ∈ N and any inte-
gers t ∈ [1, n], β1, . . . , β` ∈ [0,D − 1], and β`+1 ∈ [0, n], letting [(Sj , Rj)]1≤j≤` be the interme-
diate commitment schemes obtained in the execution of Algorithm 7.2 with parameters D, t, and
(β1, . . . , β`+1), there exists a binding set B such that the following two conditions hold for each
j = 1, 2, . . . , `:

(B.1) For every deterministic sender S∗ with the unique binding property,

E
[∣∣openings(S∗, R1

j)(B)
∣∣] < 32,

where the expectation is taken over the coins tosses of R1
j .

(B.2) For every τ ∈ B and for every deterministic sender S∗,

E
[∣∣openings(S∗, R2

j)(τ)
∣∣] < 32,

where the expectation is taken over the coins tosses of R2
j .

Proof. We proceed to prove by induction on j. In fact, we will start with a base case of j = 0,
i.e., consider the scheme (S0, R0) from Section 6. By Lemma 6.12, we know that Scheme (S0, R0)
satisfies both conditions (B.1) and (B.2). (Although Lemma 6.12 guarantees that (S0, R0) satisfies
condition (B.1) only for PPT S∗, it is also trivially satisfied for computationally unbounded S∗

with the unique binding property.)
For the inductive step, we assume (Sj, Rj) satisfy both (B.1) and (B.2), and show that so does

(Sj+1, Rj+1). Note that (Sj+1, Rj+1) is obtained by the amplification procedure (Protocol 7.1)
that combines m sequential executions of (Sj, Rj), i.e., (Sj+1, Rj+1) = Amplify(Sj , Rj). Hence, for
convenience of notation we will denote (Sj , Rj) and (Sj+1, Rj+1) as (S,R) and (S,R) respectively.
The i-th execution of (S,R) in (S,R) is denoted as (S[i], R[i]), not to be confused with the subscript
indexing notation of (Sj , Rj).

8Note that S
∗[i] is probabilistic even if S

∗ is deterministic, because it simulates all of the random choices of Rj

other than those of R0[i].

35

Also throughout this proof, the value of m will be fixed to D, although we will keep writing m.
Let B be the binding set for (S,R). We define our new binding set B′ for (S,R) in terms of B as
follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1, . . . , τjβ+1
∈ B}.

That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ iff at least β + 1 of τj’s are in B. Conversely, τ ′ /∈ B′ iff
at least m− β of the τj ’s are not in B.

Property (B.1). Consider a deterministic S∗ with the unique binding property interacting with
R1. The random coins of R1 can be broken up into independent random coins of R1[1], . . . , R1[m]
and R1

IH, the receiver in the Interactive Hashing Scheme.
Recall that the m executions of (S,R) in (S,R) are sequential. We want to focus on the

interaction of S∗ with (the commit phase of) R1[i]. To do so, define S∗[i], the sender interacting
with R1[i], as follows: S∗[i] simulates S∗ using fixed coin tosses rj for all the previous R1[j]’s (for
all j < i) and after the interaction with R1[i], S∗[i] outputs all the valid openings that occur in
some continuation of S∗’s interaction with R[i] (by enumerating over all coin tosses of the future
R[j]’s, j > i, the coin tosses of R1

IH, and the coin tosses of R2). Observe that S∗[i] inherits the
unique binding property from S∗. We will write S∗[i](r1, . . . , ri−1) to indicate the fixed coin tosses
rj that are used by S∗[i] in simulating R1[j].

Let Xi(r1, . . . , ri) =
∣∣openings(S∗[i](r1, . . . , ri−1, R

1[i](ri))(B)
∣∣, i.e., a count of the number of

valid decommitment in i-th execution, when the sender uses simulated coin tosses r1, . . . , ri−1 and
R1[i] uses coin tosses ri. Let U = (U1, . . . , Um), where Ui denotes the uniform distribution on coin
tosses ri for R[i]; note that these are independent because the honest receiver tosses independent
coins for each execution. We now consider the random variables Xi(U) = Xi(U1, . . . , Ui).

By our induction hypothesis, for all fixed (r1, . . . , ri−1), we have

E [Xi(U)|U1 = r1, . . . , Ui−1 = ri−1] = E [Xi(r1, . . . , ri−1, Ui)] < 32.

Because the previous Xj(U)’s, for j < i, only depend on U1, . . . , Uj , we have that the expected
value ofXi is less than 32 even given any previous values ofXj’s. That is, E

[
Xi|X1=x1,...,Xi−1=xi−1

]
<

32 for any (x1, . . . , xi−1) ∈ Supp(X1, . . . ,Xi−1). The following claim allows us to bound the expec-
tation of the product of these random variables.

Claim 7.8. Let Y1, . . . , Y` be nonnegative real-valued random variables such that for all i =
1, 2, . . . , `,

E[Yi|Y1=y1,...,Yi−1=yi−1] < αi ∈ R
+,

for any (y1, . . . , yi−1) ∈ Supp(Y1, . . . , Yi−1). Then,

E

[
∏̀

i=1

Yi

]
<
∏̀

i=1

αi.

Proof of claim. Note that

E[Y1 · · · Y`] = E[Y1 · · · Y`−1] · E
(y1,...,y`−1)←(Y1,...,Y`−1)

[
E[Y`|Y1=y1,...,Y`−1=y`−1

]
]

< E[Y1 · · · Y`−1] · α`,

and the claim follows by induction on `. �

36

As noted above, it is always the case that E [Xi] < 32, regardless of the instantiation of previous
Xj ’s, for j < i. Note that Claim 7.8 also applies to computing the expectation of

∏
i∈J Xi, for any

subset J ⊂ [m], since any subset of the Xi’s (preserving the right order) satisfy the condition of
claim.

Once the m commitments R1[i] are complete, we can define a random variable A = A(U) that
denotes the set of values a = (a1, . . . , am)’s for which the sender S∗ produces a valid opening
with respect to B′ in some continuation of the protocol. By the definition of B′, this means that
a = (a1, . . . , am) is valid if at least m− β of those are ai’s correspond to decommitments that are
in B. For those ai’s corresponding to decommitments that are in B, the number of possible values
that ai can take on is Xi(U). And for those ai’s correspond to decommitments that are not in
B, we can only bound the number of possible values that ai can take on by 2k (since ai is a k-bit
string).

E
U

[|A(U)|] ≤ E
U




∑

J⊆[m],|J |≥m−β

∏

i∈J

Xi(U)
∏

i/∈J

2k




=
∑

J⊆[m],|J |≥m−β

E
U

[
∏

i∈J

Xi(U)
∏

i/∈J

2k

]

<
∑

J⊆[m],|J |≥m−β

∏

i∈J

32 ·
∏

i/∈J

2k (by Claim 7.8))

≤ 2m · 32m−β · (2k)β (because 32 < 2k)

≤ 2(β+1)(k−1)+6m−k+1

= 2α1−(k−6m−4).

Let random variable T = {(h1, h1(a)) : h1 ∈ H1 ∧ a ∈ A}. Since E[|A|] ≤ 2α1−(k−6m−4) and the
range of h1 ∈ H1 is α1, the expected density of T satisfies E[µ(T)] ≤ E[|A|] · 2−α1 ≤ 2−(k−6m−4),
where the expectation is taken over the coins tosses U = (U1, . . . , Um). Note that T is independent
of the coin tosses of R1

IH in the first phase interactive hashing (though not independent of the coin
tosses of R1).

Finally, we have

E
coins R1

[∣∣openings(S∗,R1)(B′)
∣∣] ≤ E

coins R1
IH,T

[∣∣∣{d(1) : C(1)(d(1)) ∈ T}
∣∣∣
]
,

where in the second expectation, C = output(S∗, R1
IH). By Lemma 6.10,

E
coins R1

IH,T

[∣∣∣{d(1) : C(1)(d(1)) ∈ T}
∣∣∣
]
< 24 + 2k′+1 · E[µ(T)] < 32,

with the last inequality following from k′ < k − 8m− 8.

Property (B.2). We use the same approach as above, except this time, we consider all deter-
ministic S∗, as opposed to only those with the unique binding property. Also we need to fix a
binding transcript τ = (τ1, . . . , τm) ∈ B′. Let J be the set of indices such that τi ∈ B.

37

As done previously, we define S∗[i] and set Xi =
∣∣openings(S∗[i], R2[i])(τi)

∣∣, where S∗[i]. By
our induction hypothesis, for all i ∈ J , we have

E
[
Xi|X1=x1,...,Xi−1=xi−1

]
< 32,

for any (x1, . . . , xi−1) ∈ Supp(X1, . . . ,Xi−1).
Let random variable B denote the denotes the set of values b = (b1, . . . , bm) for which the sender

S∗ produces a valid opening in some continuation of the protocol. Noting that Xi can be as large
as 2k for indices i /∈ J , we have

E [|B|] ≤ E
coins R2[1], . . . , R2[m]

[
∏

i∈J

Xi

∏

i/∈J

2k

]

<
∏

i∈J

32 ·
∏

i/∈J

2k (by Claim 7.8))

≤ 32β+1 · (2k)m−β−1 (because 32 < 2k)

≤ 2(m−β)(k−1)−(k−6m) (because m > 5)

= 2α2−(k−6m−3).

Let random variable T = {(h2, h2(b)) : h2 ∈ H1 ∧ b ∈ B}. Since E[|B|] ≤ 2α2−(k−6m−3) and the
range of h2 ∈ H2 is α2, the expected density of T satisfies E[µ(T)] ≤ E[|B|] · 2−α2 ≤ 2−(k−6m−3),
where the expectation is taken over the coins tosses of R2

1, . . . , R
2
m. Note that T is independent of

the coin tosses of R2
IH in the second phase interactive hashing (though not independent of the coin

tosses of R2). Finally, we have

E
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣] ≤ E

coins R2
IH,T

[∣∣∣{d(2) : C(2)(d(2)) ∈ T}
∣∣∣
]
,

where in the second expectation, C = openings(S∗(T), RIH). By Lemma 6.10,

E
coins R2

IH,T

[∣∣∣{d(2) : C(2)(d(2)) ∈ T}
∣∣∣
]
< 24 + 2k′+1 · E[µ(T)] < 32,

with the last inequality following from k′ < k − 8m− 8. �

Lemma 7.9 (final step binding preservation). For some constant D ∈ N and any integers t ∈
[1, n], β1, . . . , β` ∈ [0,D − 1], and β`+1 ∈ [0, n], letting (S,R) be the final output of Algorithm 7.2
with parameters D, t, and (β1, . . . , β`+1), there exists a binding set B′ such that the following two
conditions hold:

(B.1) For every deterministic sender S∗ with the unique binding property, with proba-
bility 1− 2−Ω(n) over the coin tosses of R1,

∣∣openings(S∗,R1)(B′)
∣∣ ≤ 1.

(B.2) For every τ ∈ B′ and for every deterministic sender S∗, with probability 1−2−Ω(n)

over the coin tosses of R2,
∣∣openings(S∗,R2)(τ)

∣∣ ≤ 1.

38

Proof. From Lemma 7.7, we have scheme (S`, R`) with an associated binding set B satisfying both
conditions (B.1) and (B.2) in Lemma 7.7. Scheme (S,R) = Amplify(S`, R`), and hence we will need
to show that the amplification boosts the binding by making sure both

∣∣openings(S∗,R1)(B)
∣∣ ≤ 1

and
∣∣openings(S∗,R2)(τ)

∣∣ ≤ 1 with probability 1− 2−Ω(n).
Throughout this proof, the value of m will be fixed to n (as in Step 3 of Algorithm 7.2), although

we will keep writing m. We define our new binding set B′ for (S,R) in terms of B as follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1, . . . , τjβ+1
∈ B}.

That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ iff at least β + 1 of τj’s are in B. Conversely, τ ′ /∈ B′ iff
at least m− β of the τj ’s are not in B.

Property (B.1). Using the same analysis and notations as in the proof of Lemma 7.7, we have
that

E
coins R1[1], · · · , R1[m]

[|A|] ≤ 2m · 32m−β · (2k)β ≤ 2βk+6m,

where A is the random variable denoting the set of values a = (a1, . . . , am)’s for which the sender
S∗ produces a valid opening with respect to B′ in some continuation of the protocol.

Since δ = Ω(1) and k` ≥ log n, observe that α1 = b(β + 1
3δn)kc > βk + 8n, for large enough

values of n. Let random variable T = {(h1, h1(a)) : h1 ∈ H1 ∧ a ∈ A}. Since the range of h1 ∈ H1

is {0, 1}α1 , the density of T satisfies

E
coins R1[1], · · · , R1[m]

[µ(T)] ≤ E[|A|] · 2−α1 < 2βk+6m · 2−(βk+8n) = 2−2n,

since m = n. Hence, with probability at least 1− 2−n over the coins tosses of R1[1], . . . , R1[m], we
have that

µ(T) ≤ 2−2n · 2n = 2−n.

By Lemma 4.3, we can conclude that for such a T (with µ(T) ≤ 2−n),

Pr
coins R1

IH

[∣∣∣{d(1) : C(1)(d(1)) ∈ T}
∣∣∣ > 1

]
= 2−Ω(n).

Finally, we have

Pr
coins R1

[∣∣openings(S∗,R1)
∣∣ > 1

]

≤ Pr
coins R1

1, · · · , R1
m

[
µ(T) > 2−n

]
+ Pr

coins R1
IH

[
|{d(1) : C(1)(d(1)) ∈ T}| > 1

∣∣ µ(T) ≤ 2−n
]

= 2−Ω(n).

Property (B.2). Fix any τ ′ ∈ B′. Again, we use the same analysis and notations as in the proof
of Lemma 7.7 to get:

E
coins R2[1], · · · , R2[m]

[|B|] ≤ 32β+1 · (2k)m−β−1 ≤ 2(m−β)k+5m,

where B is the random variable denoting the set of values b = (b1, . . . , bm)’s for which the sender
S∗ produces a valid opening in some continuation of the protocol

39

Since δ = Ω(1) and k ≥ log n, observe that α2 = b(n − β + 1
3δn)kc > (n − β)k + 7n, for large

enough values of n. Let random variable T = {(h2, h2(b)) : h2 ∈ H2 ∧ b ∈ B}. Since the range of
h2 ∈ H2 is {0, 1}α2 , the density of T satisfies

E
coins R2[1], · · · , R2[m]

[µ(T)] ≤ E[|B|] · 2−α2 < 2(m−β)k+5m · 2−((n−β)k+7n) = 2−2n,

since m = n. Hence, with probability at least 1− 2−n over the coins tosses of R2[1], . . . , R2[m], we
have that

µ(T) ≤ 2−2n · 2n = 2−n.

By Lemma 4.3, we can conclude that for such a T (with µ(T) ≤ 2−n),

Pr
coins R2

IH

[∣∣∣{d(2) : C(2)(d(2)) ∈ T}
∣∣∣ > 1

]
= 2−Ω(n).

Finally, we have

Pr
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣ > 1

]

≤ Pr
coins R2

1, · · · , R2
n

[
µ(T) > 2−n

]
+ Pr

coins R2
IH

[
|{d(2) : C(2)(d(2)) ∈ T}|

∣∣ µ(T) ≤ 2−n
]

= 2−Ω(n).

Our proof is complete. �

7.5 One-Way Functions implies Collection of Commitments

In this section, we prove Theorem 3.1, restated in the next theorem.

Theorem 7.10 (Restatement of Theorem 3.1). If one-way functions exist, then on security para-
meter n, we can construct in time poly(n) a collection of public-coin 2-phase commitment schemes
Com1, · · · ,Comm for m = poly(n) such that:

• There exists an index i such that scheme Comi is statistically hiding. (This property holds
regardless of whether the function for which the scheme is based on is one-way or not.)

• For every index j, scheme Comj is
(2
1

)
-computationally binding.

Proof of Theorem 3.1. We apply Algorithm 7.2 to the scheme (S0, R0) based on one-way function.
In doing so, we obtain a collection of commitments by enumerating over all the polynomially many
choices of the integers t ∈ [1, n], β1, . . . , β` ∈ [0,D− 1], and β`+1 ∈ [0, n]. (Note that the number of
choices is n ·D` · (n+ 1) = poly(n), as D is a constant and ` = log n.) By Lemma 7.3, the resulting
commitment schemes Com1, · · · ,Comm all run in probabilistic polynomial time. The hiding and
binding properties are given by Lemmas 7.11 and 7.12 below. �

Lemma 7.11 (statistically hiding). There exists a constant D ∈ N, integers t ∈ [1, n], β1, . . . , β` ∈
[0,D − 1], and β`+1 ∈ [0, n] such that the 2-phase commitment scheme (S,R) produced by Algo-
rithm 7.2 with parameters D, t, and (β1, . . . , β`+1) is statistically hiding in the sense Definition 2.5
(regardless of whether the function f on which the scheme is based on is one-way or not).

40

Proof. We prove by induction on the properties of (Sj, Rj) for j = 0, 1, . . . , `. The induction

hypothesis is that (Sj , Rj) has two associated sets T1,j, T2,j ⊆ {0, 1}nmj
such that for all R∗, the

following holds:

1. T1,j ∪ T2,j = {0, 1}nmj
and µ(T1,j ∩ T2,j) ≥ min{2j/n, 1/2D}.

2. CP1/2(A|V) ≤
√

2−(kj−1), whereA = outputS(S1
c,j(T1,j), R

∗) and V = viewR∗(S1
c,j(T1,j), R

∗).

3. CP1/2(B|W,Λ) ≤
√

2−(kj−1), where B = outputS(S2
c,j(T2,j), R

∗)(Λ) and W =

viewR∗(S2
c,j(T2,j), R

∗)(Λ), and Λ = transcript(S1
j (T2,j), R

∗),

where kj is defined as in Algorithm 7.2.

The base case of j = 0 follows from Lemma 6.11, and Lemma 7.4 proves the induction step.
Finally, observe that µ(T1,` ∩ T2,`) ≥ min{2`/n, 1/(2D)} = Ω(1) since ` = log n. By Lemma 7.5,
there exists two sets T1,`+1 and T2,`+1 such that for all R∗, the following holds:

1. µ(T1,`+1), µ(T2,`+1) > 1− 2−Ω(n).

2. (A,V) is 2−Ω(n)-close to (U1, V), where A = outputS(S
1
c(T1,`+1), R

∗) and V =
viewR∗(S1

c(T1,`+1), R
∗).

3. (B,W,Λ) is 2−Ω(n)-close to (U1,W,Λ), where B = outputS(S
2
c(T2,`+1), R

∗)(Λ) and
W = viewR∗(S2

c(T2,`+1), R
∗)(Λ), and Λ = transcript(S1(T2,`+1), R

∗).

Our proof is complete. �

Lemma 7.12 (1-out-of-2-computationally binding). There exists a constant D ∈ N such that for
all integers t ∈ [1, n], β1, . . . , β` ∈ [0,D − 1], and β`+1 ∈ [0, n], the 2-phase commitment scheme
(S,R) produced by Algorithm 7.2 with parameters D, t, and (β1, . . . , β`+1) is computationally

(2
1

)
-

binding in the sense of Definition 2.6. (Here the function f for which the scheme is based on needs
to be hard to invert.)

Proof. By Lemma 7.9, we have established that the 2-phase commitment scheme (S,R) produced by
Algorithm 7.2 satisfies the first condition of Definition 2.6. In addition, it also satisfies the second
condition for all S∗ with the unique binding property. Stated formally, for every deterministic (and
computationally unbounded) S∗ with the unique binding property,

Pr
[∣∣openings(S∗,R1)

∣∣ ≤ 1
]

= 1− 2−Ω(n), (5)

where the probability is taken over the coins of R1.
Thus, it suffices to prove is that any PPT S∗ breaking the second condition of Definition 2.6 with

probability ε will either (i) yield a PPT Ŝ that violates the computational
(2
1

)
-binding property of

(S0, R0) with probability at least εO(1)/poly(n), or (ii) yield a computationally unbounded Ŝ that
has the unique binding property and succeeds with probability greater than ε/2. In both cases, ε
needs to be negligibly small in order to avoid a contradiction. Without loss of generality, we may
assume adversarial PPT sender S∗ to be deterministic since we can set its coins to maximizes its
success probability.

From now on, let ε be the probability that the deterministic S∗ breaks the second condition of
Definition 2.6 with respect to scheme (S,R). By the way we defined (S,R), it contains polynomially
many executions of (S0, R0). Let N = n ·D` denote such number.

41

Let z denote the transcript of (S∗,R). Contained in z is also a first-phase commitment z[i] for
the i-th execution of R0, denoted R0[i] (for all i = 1, 2, . . . , N). Let ẑ[i] be the partial transcript of
z up to and including the first commit stage of R0[i]. Note that z[i] is a suffix of ẑ[i], and ẑ[i] is a
prefix of z.

For all index i ∈ [N], partial transcripts ẑ[i] ending with the first commit stage of R0[i] and
d ∈ {0, 1}k0 , define

pi,ẑ[i],d = Pr
z←(S∗,R1)

[z contains a valid opening of z[i] to value d |z begins with ẑ[i]] ,

where as usual by a valid opening, we mean that the transcript τ [i] of S∗’s interaction with R0[i]
contains an opening of z[i] to the value d, the first phase of τ [i] is not in the binding set B0, and
R0[i] accepts in both phases of τ [i].

Let K = 2k0 , where k0 is the message length in (S0, R0). We have two cases to consider.

Case 1: There exists an i ∈ [N] such that with probability at least ε
4NK over ẑ[i], there exists

d 6= d′ with both pi,ẑ[i],d, pi,ẑ[i],d′ >
ε

4NK .

In this case, we violate the computational
(
2
1

)
-binding property of (S0, R0) by considering the

following sender Ŝ interacting with R0[i].

1. Select a random i← [N].

2. Run S∗ with R1, simulating all of the messages of R1 internally except for those of
R0[i]. Halting after the first commit stage of R0[i], we obtain a partial transcript
ẑ[i]. From ẑ[i], we get z[i], the first-phase commitment of R0[i].

3. Record the current state ψ of S∗ and R1.

4. Continue the execution of S∗ with R1 from ψ to obtain a decommitment to a value
d in the interaction with R0[i].

5. Repeat Step 4 with independent randomness in continuing the execution of S∗

with R1 to obtain a decommitment to a value d′. (This can be done since R is
public coin, i.e., just sends independent random coins at each round, and S∗ is
deterministic.)

Because our goal was to violate the computational
(2
1

)
-binding property of (S0, R0), we succeed

in the above algorithm if d 6= d′ and decommitments produced are valid. We calculate our success
probability as follows: We guess correct index i ∈ [N] with probability 1/N . Given that we guess the
correct i, we get the desired ẑ[i] with probability at least ε

4NK . Now, when we do two independent
continuations of ẑ[i] we arrive at two different decommitted values with probability greater than
(ε
4NK)2. Consequently, we violate the computational

(
2
1

)
-binding property of (S0, R0) (i.e., win the

game in Condition 2 of Definition 2.6) with probability greater than

1

N
· ε

4NK
·
(ε

4NK

)2
=

1

N
·
(ε

4NK

)3
=
(ε
n

)O(1)
,

since K = 2k0 = 2O(log n) = poly(n) and N = n ·D` = n · O(1)O(log n) = poly(n). This forces ε to
be a negligible function.

42

Case 2. For all i ∈ [N], with probability greater than 1− ε
4NK over ẑ[i], there is at most one d

such that pi,ẑ[i],d >
ε

4NK .
Define d∗(ẑ[i]) to be the value of d that maximizes pi,ẑ[i],d. Taking a union bound over all the

rest of the pi,ẑ[i],d′ <
ε

4NK , we have that

Pr
z←(S∗,R)

[S∗ opens some z[i] to a value other than d∗(ẑ[i])]

≤
N∑

i=1

(
ε

4NK
·K + Pr

ẑ[i]

[
exists more than one d such that pi,ẑ[i],d >

ε

4NK

])

< N ·
(ε

4NK
·K +

ε

4NK

)

<
ε

2
.

Let Ŝ be the adversary that mimics S∗ except that it halts and fails if S∗ attempts to open
some z[i] to a value other than d∗(ẑ[i]), for all i ∈ [N] and all ẑ[i]. By the way we defined Ŝ, the
final outcome of (Ŝ,R1) will only differ with the original final outcome of (S∗,R1) with probability
at most ε/2 over the coin tosses of R1. In addition, Ŝ has the unique binding property. By

Equation (5) above,
∣∣∣openings(Ŝ,R1)

∣∣∣ > 1 occurs with at most negligible probability over the coin

tosses of R1. Hence,
∣∣openings(S∗,R1)

∣∣ > 1 occurs with probability at most neg(n) + ε/2. We
started off assuming that S∗ breaks property (B.1) of scheme (S,R) with probability at least ε, i.e.∣∣openings(S∗,R1)

∣∣ > 1 with probability at least ε. Thus ε ≤ neg(n) + ε/2, which implies. that
ε = neg(n). �

8 Statistical Zero-Knowledge Arguments from 1-out-of-2-Binding

Commitments

In order to prove Theorem 3.2, we provide an overview of our construction of statistical zero-
knowledge arguments for all of NP from 1-out-of-2-binding commitment schemes. Our construction
is identical to that of Nguyen and Vadhan [NV06]. However, the analysis of the soundness property
is more involved since we are considering 1-out-of-2 computationally binding commitments rather
than 1-out-of-2 statistically binding commitments.

8.1 Zero-Knowledge Protocol for Hamiltonicity

It will be convenient to present our protocols based on an abstraction of standard zero-knowledge
proofs for NP-complete problems [GMW91, Blu87]. By repeating the standard zero-knowledge
proof for Hamiltonicity [Blu87] a total of q = O(log n) times in parallel (for n = |x|), we may
assume that every language L ∈ NP has a public-coin zero-knowledge proof (P, V)(x) of the form:

1. P commits to ` bits (b1, b2, · · · , b`), and sends the commitments to V . (In Hamiltonicity,
this is a commitment to the adjacency matrix of permuted graphs)

2. V sends a challenge c← {0, 1}q . (This tells the prover whether to reveal the permutation or
a cycle in the permuted graph in each of the executions)

43

3. P sends a sequence of indices U ∈ [`]q, where U is determined by the challenge, the NP-
witness and the prover’s coin tosses. P opens the commitments to bi for i ∈ U . (U consists
of openings to the entire graph or cycles. By using appropriate ”dummy” commitments, we
can ensure that the subsets of indices are of fixed size u = u(n).)

4. V checks that “U and (bi)i∈U are valid with respect to the challenge c” and that the opened
commitments are valid. (The verifier will check that either these values correspond to the
adjacency matrix of a permuted graph or that they correspond to a Hamiltonian cycle.)

This proof system has perfect completeness and soundness 2−q = 1/poly(n) if the commitment
scheme used is perfectly binding. More generally, we can say that if x ∈ ΠN , then with probability
1 − 1/poly(n), either the verifier rejects or the prover breaks one of the commitments. If the
commitment scheme used is statistically hiding, the protocol is statistical zero knowledge.

Let us abstract the properties of the generic protocol (P, V) once the commitments have been
removed.

Lemma 8.1 (cf. [NV06]). For every language L ∈ NP and every s(n) = 1/poly(n), there are four
polynomial-time algorithms P, V , U and Sim and functions `(n) = poly(n), q(n) = O(log(n)), u(n) =
poly(n) such that

• P takes as input an instance x, an NP-witness w, and a sequence of coin tosses rp and
outputs a `-tuple (b1, · · · , b`).

• U takes as input an instance x, an NP -witness w, a sequence of coin tosses rp, and a challenge
c ∈ {0, 1}q and outputs a sequence of indices U ∈ [`]q.

• V takes as input an instance x, a challenge c ∈ {0, 1}q , a sequence of indices U ∈ [`]q, and a
sequence of bits (bi)i∈U and outputs a decision ∈ {accept, reject}.

• Sim takes as input an instance x, a challenge c ∈ {0, 1}q and a sequence of coin tosses rS
and outputs a sequence of indices U ∈ [`]q and a sequence of bits (bi)i∈U .

Perfect completeness If x ∈ L, then with probability 1 over rp and c
R← {0, 1}q it holds that V

accepts
(
x, c, U(x,w, rp, c), P (x,w; rp)|U(x,rp,c)

)
.

Soundness If x 6∈ L, then for every (b1, · · · , b`), with probability at most s(n) over c
R← {0, 1}q ,

there exists a sequence U such that V accepts (x, c, U, (bi)i∈U).

Zero-knowledge There exists a PPT Sim such that for every x ∈ L, and every c ∈ {0, 1}q
the distributions Sim(x, c) and (U(x, rp, c), P (x,w; rp)|U) (taken over the choice of rp) are
identical.

8.2 Zero-Knowledge Arguments from a Single of 1-out-of-2-Binding Commit-

ment

As a warm-up to the construction of zero-knowledge arguments based on the collection of commit-
ments given by Theorem 3.1, we will give the construction based on a single

(2
1

)
-binding commitment

scheme.

44

Theorem 8.2. Let L ∈ NP and (S,R) be a 2-phase commitment scheme on security parameter
1n. There exists an interactive protocol (P ′, V ′) such that:

• If x ∈ L and (S,R) is statistically hiding, then (P ′, V ′) is statistical zero-knowledge

• If x 6∈ L and (S,R) is 1-out-of-2 computationally binding, then (P ′, V ′) is computationally
sound with soundness error s′(|x|) = 1/poly(|x|).

The new protocol (P ′, V ′) will consist of two sequential executions of the generic protocol (P, V).
The prover will use the first phase of (S,R) in the first execution and the second phase of (S,R) in
the second execution. The soundness property will rely on the fact that for each commitment, at
least one phase is binding (though it might be a different phase for each commitment). Intuitively,
this

(2
1

)
-binding property should ensure that the prover cannot cheat in both executions.

However two difficulties arise at this point. First, the prover only opens u first phase commit-
ments in the first execution, whereas we need ` second phase commitments in the second execution.
Secondly, the prover only needs to break one first phase commitment to ruin the soundness property
in the first execution and we cannot guarantee that the corresponding second phase commitment
(known to be binding) will be opened by the prover in the second execution.

In order to manage these difficulties, in the first execution, we make the prover commit to each
bit bi a total of `2 times using the first phase of (S,R). We denote these first phase commitments
zi,j for i ∈ [`] and j ∈ [`2]. Hence the prover opens more than enough first phase commitments in
the first execution so that the corresponding second phase commitments can be used in the second
execution.

The protocol (P ′, V ′) is zero knowledge when x ∈ L because both phases of the commitment
scheme (S,R) are statistically hiding and the generic protocol is zero knowledge when the commit-
ment scheme used is hiding.

Let x 6∈ L. Suppose that in the first execution of (P, V), there exists a first-phase commitment
zi∗,j∗ such that zi∗,j∗ can be opened successfully as both 0 and 1 with first-phase transcripts not in
B (hence the corresponding second phase commitments are not guaranteed to be binding). If this
is the case, we can build an adversary breaking the computational binding property of (S,R) by
guessing which first phase commitment zi,j satisfies this property.

Hence, we can assume that each first-phase commitment zi,j has at most one “proper” de-
commitment value b∗i,j. Let us consider the soundness property for the first execution of (P, V).

Consider the sequence (b∗1, · · · , b∗`) where b∗i is the majority of b∗i,j (over j ∈ [`2]). By soundness
of the generic protocol, the verifier would reject if the prover opens consistently with (b∗1, · · · , b∗`).
Thus there must be an index i∗ such that the prover opens inconsistently with bi∗ , i.e. at least
half of the commitments {zi∗,1, · · · , zi∗,`2} are not opened properly and the second phases of these
commitments will be statistically binding.

Before the second execution starts, the verifier chooses a random correspondence between the
first phase commitments opened in the first execution and the second phase commitments to be
used in the second execution. This random “shuffling” guarantees that if the prover cheats in the
first execution by opening at least half of the commitments {zi∗,1, · · · , zi∗,`2} improperly, then with
high probability every bit b′i committed to in the second execution of (P, V) will have at least one
binding second phase commitment. Then, by soundness of the generic protocol, the verifier rejects
in the second execution.

45

The details of the construction and proof of Theorem 8.2 follow.

Zero-knowledge protocol from a single 1-out-of-2 computationally binding commitment

First execution of (P, V): P ′ and V ′ simulate a first execution of the generic protocol (P, V)(x)
with soundness parameter s(n) = 1/4n using the first commitment phase and first reveal
phase of (S,R).

1. The prover generates a sequence (b1, · · · , b`) as in the generic protocol.

2. For each i ∈ {1, · · · , `}, the prover commits to bi a total of `2 times by running the
first commitment phase. We refer to these commitments to bi as a ”block” Bi =
{zi,1, · · · , zi,`2}, that is zi,j = (S1

c (bi; ri,j), R
1
c where the ri,j are uniform and independent

coin tosses for S1
c .

3. V ′ sends a first challenge c ∈ {0, 1}q as in the generic protocol.

4. P ′ computes a sequence of indices U ∈ [`]q corresponding to the challenge c as in the
generic protocol.

5. For each index i ∈ U , P ′ sends bi and opens the `2 commitments to bi in the block Bi

by running the first reveal phase (S1
r (ri,j), R

1
r)(zi,j , bi) for each j ∈ [`2].

6. V ′ rejects if the verifier V rejects in the generic protocol or if the receiver R1
r rejects in

the reveal phase.

Second execution of (P, V): P ′ and V ′ simulate a second execution of the original protocol
(P, V)(x) using the second commitment phase and second reveal phase of (S,R). To do
so, the verifier will choose a random correspondence between the first phase commitments
opened in the first execution and the second phase commitments to be used in the second
execution.

1. For each i ∈ U , the verifier sends a random bijection φi : {1, · · · , `2} 7→ [`]×[`], j → (p, q)
(This is the correspondence between the first phase commitments already opened and
the second phase commitments to be used).

2. The prover generates a sequence (b′1, · · · , b′`) as in the generic protocol.

3. For each p ∈ {1, · · · , `}, the prover commits to b′p a total of u` times by running the
second commitment phase. More specifically the commitments to b′p are composed of u
blocks of size ` denoted by Bi

p = {zi
p,1, · · · , zi

p,q, · · · , zi
p,`} (for i ∈ U) where

zi
p,q = (S2

c (b′p; ri,(φi)−1(p,q)), R
2
c)(zi,(φi)−1(p,q))

4. V ′ sends a second challenge c′ ∈ {0, 1}q as in the generic protocol.

5. P ′ computes a sequence of indices U ′ ⊆ [`]q corresponding to the challenge c′ as in the
generic protocol.

6. For each p ∈ U ′, P ′ sends b′p and opens the ` commitments to b′p in each block Bi
p (for

each i ∈ U) by running (S2
r (ri,(φi)−1(p,q)), R

2
r)(z

i
p,q, b

′
p) for q ∈ [`].

7. V ′ rejects if the verifier V rejects in the generic protocol or if the receiver R2
r rejects in

the reveal phase.

46

Lemma 8.3 (Soundness property). If (S,R) is computationally 1-out-of-2 binding, then (P ′, V ′)
has soundness error s′(n) = 1/n.

Proof. We write |x| = n. Recall that s(n) = 1/4n is the soundness error of the generic protocol
and we set δ = 1/poly(n) for some polynomial to be determined below.

For each prefix τ of a protocol transcript and each first-phase commitment zi,j in τ that has
completed but has not been opened yet, we define (for b ∈ {0, 1}):

pτ,zi,j ,b = Pr
T

[zi,j is opened to b successfully with a transcript T 6∈ B

∧ corresponding second-phase opened successfully|T begins with τ]

where the probability is over transcripts T of (P ?, V ′).

Case 1: with probability at least δ over T , there exists a prefix τ containing a first-phase
commitment zi∗,j∗ (i∗ ∈ [`], j∗ ∈ [`2]) such that pτ,zi∗,j∗,0 ≥ δ and pτ,zi∗,j∗,1 ≥ δ.

If this is the case, then we will build an adversary S? breaking the computational binding
property of (S,R) by guessing which first phase commitment zi,j satisfies this property and running
two parallel executions of (P ?, V ′) to break the binding property. The PPT adversary S? does as
follows:

1. S? guesses which first-phase commitment zi,j corresponds to the commitment zi∗,j∗ of Case
1. Note that with probability at least δ over transcripts T ← 〈P ?, V ′〉, S?’s guess is successful
with probability at least 1/`3.

2. S? executes the protocol (P ?, V ′) by simulating P ? and V ′ on its own for all but one of the `3

commitment phases and interacts with R in the guessed first phase commitment zi∗,j∗. Hence
S? generates blocks of first phase commitments Bi = {zi,1, · · · , zi,`2 for i ∈ [`], j ∈ [`2]. This
constitutes a prefix τ of a protocol transcript.

3. S? generates two valid transcripts T, T ′ ← 〈P ?, V ′〉 starting with the prefix τ (this is possible
because V ′ is public-coin). If S?’s guess was successful, then by definition of Case 1, we have:

• the probability that zi∗,j∗ is opened to 0 successfully with T 6∈ B and the corresponding
second phase commitment is opened successfully is ≥ δ.

• the probability that zi∗,j∗ is opened to 1 successfully with T ′ 6∈ B and the corresponding
second phase commitment is opened successfully is ≥ δ.

If we take δ = 1/poly(n), then the adversary S? breaks the computational binding property of

(S,R) with probability at least
(

δ
`

)3
= 1/poly(n) which is nonnegligible. We have reached a con-

tradiction hence Case 1 does not occur.

Case 2: with probability at least 1 − δ over T , it holds that for every prefix τ of T and for
every first phase commitment zi,j in τ , there is at most one value b?i,j ∈ {0, 1} such that pτ,zi,j ,b?

i,j
≥ δ.

We say that zi,j is opened properly if zi,j is opened to the value b?i,j specified above.
Let x 6∈ L and assume that the verifier V ′ accepts in the interaction (P ?, V ′)(x) with probability

η. By definition of Case 2, with probability at least 1− δ over the transcripts of Steps 1 and 2 of

47

the first execution of (P, V), each zi,j has at most one proper decommitment value b?i,j. Consider

the sequence (b?1, · · · , b?`) where b?i is the majority of b?i,j (over j ∈ [`2]). By soundness of the generic
protocol, the verifier accepts with probability at most s(n) if the prover opens consistently with
(b?1, · · · , b?`). Thus, except with probability s(n), there must be an index i? such that the prover
opens inconsistently with b?i? , i.e. at least half of the first phase commitments in the block Bi? are
not opened properly. Since pτ,zi,j ,b?

i,j
< δ, with probability at least 1− δ, each corresponding second

phase will be statistically binding or it will not be opened successfully.
Let p ∈ [`]. We will upper bound the probability that the block Bi?

p has no binding second

phase commitment. Recall that the block Bi?
p contains ` second phase commitments and these are a

random `-subset of Bi? over the verifier’s choice of φi? . The probability that all of the corresponding

first phase commitments were opened properly is at most
(`2/2

`

)
/
(`2

`

)
≤ 2−` = neg(n). Hence the

probability that the block Bi?
p contains no binding second phase commitment is at most neg(n)+δ ·`

(without loss of generality, we will ignore the probability that the block Bi?
p contains no binding

second phase but the prover fails to complete the second reveal phase since it would only increase
the soundness error). By a union bound, the probability that there exists an index p ∈ [`] such
that the block Bi?

p has no binding second phase commitment is at most δ · `2 + neg(n).
In case every bit b′p in the second execution is statistically binding, then by soundness of the

generic protocol V ′ accepts in the second execution with probability at most s(n).

Pr[V ′ accepts in both executions]

≤ Pr
T

[∃i, j, zi,j has more than one proper decommitment value]

+ Pr[V ′ accepts in 1st execution AND every zi,j is opened properly]

+ Pr[some zi,j opened improperly AND ∃p ∈ [`] such that b′p is not binding]

+ Pr[V ′ accepts in 2nd execution AND ∀p ∈ [`], b′p is binding]

≤ δ + s(n) + (δ`2 + neg(n)) + s(n) = δ + 2s(n) + δ`2 + neg(n) <
1

n

for δ = 1
4n(`2+1)

. �

Lemma 8.4 (Zero knowledge property). If x ∈ L and (S,R) is statistically hiding, then Protocol 8.2
is statistical zero knowledge.

Proof. Let x ∈ L and w be a corresponding NP-witness. The interaction (P ′, V ′) consists of two
sequential executions of the generic protocol (P, V) such that the two executions are related by a
collection of bijections {φi}i∈U .

The interaction (P ′(w), V ′)(x) produces a distribution of the form

((S1
c (P 1(x,w; r1p)), R

1
c), c, P

1(x,w; r1p)|U1(x,w,rp,c),

{φi}, (S2
c (P 2(x,w; r2p)), R2

c), c
′, P 2(x,w; r2p)|U2(x,w,r2

p,c′))

where:

• P i(x,w; ri
p) corresponds to the `-tuple (b1, · · · , b`) output by the prover P in the ith execution

of the generic protocol (for i ∈ {1, 2}).

48

• (Si
c(P

i(x,w; ri
p)), R

i
c) corresponds to ith phase commitments to the values P i(x,w; rp)

• c, c′ denote the challenges sent by the possibly cheating verifier V ? (that depend on the
previous messages of the generic protocol).

To simulate the verifier’s view in the protocol (P ′, V ?) (even if V ? does not follow the prescribed
protocol), the simulator will randomly guess which first challenge c the cheating verifier will select
and later check that the guess was successful by running V ?; if the guess was not successful, the
simulator will try again. Intuitively, with polynomially many trials, the simulator will succeed in
guessing the verifier’s first challenge c and in simulating the verifier’s view of the first execution.
The simulator will then proceed to the second execution by randomly guessing which second chal-
lenge c′ the cheating verifier will select.

Simulator Sim for (P ′, V ′)

Inputs: an instance x and a cheating verifier algorithm V ? (deterministic wlog)

First execution of the generic protocol 1. Uniformly select a challenge c← {0, 1}q

2. Run the simulator Sim for the generic protocol on input (x, c) to obtain a sequence of
indices U ∈ [`]q and commit to a sequence of bits (b1, · · · , b`) where bi is determined by
the challenge c if i ∈ U , 0 if i 6∈ U .

3. Run the first commitment phase of (S,R) to obtain the blocks {Bi} that are first phase
commitments to the values (bi)i∈[`]

4. Run V ?({Bi}) to determine which challenge c? would be sent if it had received the above
first-phase commitments

5. If c? 6= c, go back to the beginning of the first execution (for up to n · 2q = poly(n)
trials). Otherwise, set τ = ({Bi}i∈[`], c, (bi)i∈U).

Second execution of the generic protocol 1. Run V ?(τ) to determine which bijections {φi}
to use for the second phase commitments.

2. Uniformly select a challenge c′ ← {0, 1}q

3. Run the simulator Sim for the generic protocol on input (x, c′) to obtain a sequence of
indices U ′ ∈ [`]q and commit to a sequence of bits (b′1, · · · , b′`) where b′i is determined by
the challenge c′ if p ∈ U ′, 0 if p 6∈ U ′.

4. Run the second commitment phase of (S,R) to obtain the blocks {Bi
p} that are second

phase commitments to the values (b′p)p∈[`]
5. Run V ?(τ, {Bi

p}) to determine which challenge c? would be sent if it had received the
above second-phase commitments

6. If c? 6= c′, go back to the beginning of the second execution (for up to n · 2q trials).
Otherwise, output (τ, {φi}, {Bi

p}i∈U,p∈[`], c
′, (b′p)p∈U ′).

Since the challenges c, c′ are taken from {0, 1}q where q = O(log |x|) and the only information
the verifier has about c, c′ when computing its challenges are the statistically hiding commitments
in {Bi}, {Bi

p}, the simulator will guess each challenge successfully with noticeable probability 1/2q−
neg(n) = 1/poly(n). Thus, polynomially many trials will yield successful guesses c and c′ with all
but negligible probability.

49

By a hybrid argument, the distribution output by the simulator conditioned on successful guesses
c and c′ is statistically indistinguishable from the distribution output in a real interaction (P ′, V ′)(x)
since the commitments are statistically hiding in both phases.

�

8.3 Zero-Knowledge Arguments from a Collection of 1-out-of-2-Binding Com-

mitments

We will now show how to construct a zero-knowledge argument based on a collection of commit-
ments.

Theorem 8.5. Let L ∈ NP and Com1, · · · ,Comt be 2-phase commitment schemes (where Comj =
(Sj , Rj)) on security parameter 1n. There exists an interactive protocol (P ′, V ′) such that:

• If x ∈ L and one of the commitments Com1, · · · ,Comt is statistically hiding, then (P ′, V ′) is
statistical zero-knowledge

• If x 6∈ L and all commitments Com1, · · · ,Comt are 1-out-of-2 computationally binding, then
(P ′, V ′) is computationally sound with soundness error s′(|x|) = 1/poly(|x|).

The new protocol (P ′, V ′) will consist of (t + 1) sequential executions of the generic protocol
(P, V). In order to preserve the zero-knowledge property of the generic protocol, we need the
prover’s commitments in each execution to be statistically hiding. Since we are only guaranteed to
have at least one statistically hiding commitment among Com1, · · · ,Comt (when x ∈ L), we will
use a secret sharing scheme for each bit that the prover must commit to in the generic protocol.
Each bit bi will be shared using t random values and the prover will commit to the jth share of bi
using Comj . This will ensure that each unopened bit bi is hidden from the verifier and thus that
the protocol is zero-knowledge.

The soundness property will be proven by showing that the prover’s commitments are binding
in at least one of the executions. Similarly to the warm-up case, in each execution of (P, V), for
every j ∈ [t], the prover commits to the jth share multiple times using both the first and the second
phases of Comj . For every j ∈ [t], the verifier chooses a random correspondence between the first
phase commitments using Comj opened in the rth execution (r ∈ {1, · · · , t + 1}) and the second
phase commitments using Comj in the remaining (t−r+1) executions. This random “shuffling” of
the commitments using Comj guarantees that if in the rth execution, the prover cheats by opening
inconsistently and breaking some first phase commitments using Comj , then with high probability,
for each of the remaining (t−r+1) executions, for every i ∈ [`], the jth share of bi will have at least
one binding second-phase commitment. Hence every bit bi committed to in the (t+ 1)st execution
will be binding and by soundness of the generic protocol the verifier rejects in the (t+1)st execution
(if it hasn’t rejected in an earlier execution).

The details of the construction and proof of Theorem 8.5 follow. Similarly to the warm-up
case of a single 1-out-of-2 computationally binding commitment, we will establish the soundness
property by analyzing all first phase commitments (of the first t executions of the generic protocol)
at once.

50

Zero-knowledge protocol from a collection of 1-out-of-2 computationally binding com-
mitments

First execution of the generic protocol (P, V): P ′ and V ′ simulate a first execution of the
generic protocol (P, V)(x) with soundness parameter s(n) = 1

3n(t+1) using the first commitment
phase and first reveal phase of each commitment scheme.

1. The prover generates a sequence (b11, · · · , b1`) as in the original protocol.

2. For each i1 ∈ [`], the prover first computes shares of b1i1 , i.e. chooses random bits b1i1,1, · · · , b1i1,t

such that b1i1 = b1i1,1 ⊕ · · · ⊕ b1i1,j ⊕ · · · ⊕ b1i1,t.

3. For every i1 ∈ [`], j ∈ [t], the prover commits to the share b1i1,j a total of (t`2) times by

running the first commitment phase of Comj . We refer to these commitments to b1i1,j as a

”block” B1
i1,j = {z1

i1,j,1, · · · , z1
i1,j,t`2}, that is z1

i1,j,k = ((Sj)
1
c(b

1
i1,j; r

1
i1,j,k), Rj

1
c) where the r1i1,j,k

are uniform and independent coin tosses for (Sj)
1
c .

4. V ′ sends a first challenge c1 ∈ {0, 1}q as in the generic protocol.

5. P ′ computes a sequence of indices U1 ∈ [`]q corresponding to the challenge c1 as in the generic
protocol.

6. For each index i1 ∈ U1, for each commitment scheme Comj, P
′ sends b1i1,j and opens

the t`2 commitments in the block B1
i1,j by running the first reveal phase of Comj , i.e.

((Sj)
1
r(r

1
i1,j,k), (Rj)

1
r)(z

1
i1,j,k, b

1
i1,j) for k ∈ [t`2].

7. For every i1 ∈ U1, V ′ computes the bit b1i1 = b1i1,1 ⊕ · · · ⊕ b1i1,j ⊕ · · · ⊕ b1i1,t and rejects if the
verifier rejects in the generic protocol.

Second execution of the generic protocol (P, V):

1. The prover generates a sequence (b21, · · · , b2`) as in the original protocol.

2. For each i2 ∈ [`], the prover first computes shares of b2i2 , i.e. chooses random bits b2i2,1, · · · , b2i2,t

such that b2i2 = b2i2,1 ⊕ · · · ⊕ b2i2,j ⊕ · · · ⊕ b2i2,t.

3. For every i1 ∈ U1, every j ∈ [t], the verifier sends a random bijection φ1
i1,j : {1, · · · , t`2} 7→

{2, · · · , t+ 1} × [`]× [`]. In other words, the verifier gives a correspondence between the first
phase commitments that were opened in the first execution and the second phase commit-
ments to be used in the subsequent executions 2, · · · , t+1. The block B1

i1,j of size t`2 is divided

into subblocks of size `, one subblock for each subsequent pth execution (for p ∈ {2, · · · , t+1})
and for each shared bit bpip (for ip ∈ [`]).

4. For every i2 ∈ [`], every j ∈ [t], the prover commits to the share b2i2,j a total of (u`+(t−1)`2)
times:

51

• u` commitments are obtained as follows: for each i1 ∈ U1, we take the first phase
commitments in B1

i1,j corresponding to (φ1
i1,j)

−1({2} × {i2} × [`]) and run the second

commitment phase of Comj . We refer to these second phase commitments to b2i2,j as a

block C2
i2,j.

• (t − 1)`2 commitments are obtained by running the first commitment phase of Comj .
We refer to these first phase commitments as a block B2

i2,j.

5. V ′ sends a challenge c2 ∈ {0, 1}q as in the generic protocol.

6. The prover computes a sequence of indices U2 ∈ [`]q corresponding to the challenge c2 as in
the generic protocol.

7. For each index i2 ∈ U2, for each commitment scheme Comj, P
′ sends b2i2,j and opens the

commitments to the share b2i2,j as follows:

• the prover opens the u` commitments in the block C2
i2,j by running the second reveal

phase of Comj

• the prover opens the (t−1)`2 commitments in the block B2
i2,j by running the first reveal

phase of Comj

8. For every i2 ∈ U2, V ′ computes the bit b2i2 = b2i2,1 ⊕ · · · ⊕ b2i2,j ⊕ · · · ⊕ b2i2,t and rejects if the
verifier rejects in the generic protocol.

rth execution of (P, V) for r ∈ {3, · · · , t+ 1}:

1. The prover generates a sequence (br1, · · · , br`) as in the original protocol.

2. For each ir ∈ [`], the prover first computes shares of brir , i.e. chooses random bits brir ,1, · · · , brir ,t

such that brir = brir ,1 ⊕ · · · ⊕ brir ,j ⊕ · · · ⊕ brir ,t.

3. For every ir−1 ∈ U r−1, every j ∈ [t], the verifier sends a random bijection φr−1
ir−1,j

: {1, · · · , (t+
1−r)`2} 7→ {r, · · · , t+1}×[`]×[`]. In other words, the verifier gives a correspondence between
the first phase commitments that were opened in the (r−1)th execution and the second phase
commitments to be used in the subsequent executions r, · · · , t + 1. The block Br−1

ir−1,j
of size

(t − (r − 1))`2 is divided into subblocks of size `, one block for each pth execution (for
p ∈ {r, · · · , t+ 1}) and for each shared bit bpip (for ip ∈ [`]).

4. For every ir ∈ [`], every j ∈ [t], the prover commits to the share brir ,j a total of ((r − 1)u` +

(t− r + 1)`2) times:

• (r−1)u` commitments are obtained as follows. For every m ∈ {1, · · · , r−1}, every im ∈
Um, we take the commitments in Bm

im,j corresponding to (φm
im,j)

−1({r} × {ir} × [`]) and
run the second commitment phase of Comj. We refer to these second phase commitments
to brir ,j as a block Cr

ir,j .

• (t−r+1)`2 commitments are obtained by running the first commitment phase of Comj .
We refer to these first phase commitments as a block Br

ir ,j.

52

5. V ′ sends a challenge cr ∈ {0, 1}q as in the generic protocol.

6. The prover computes a sequence of indices U r ∈ [`]q corresponding to the challenge cr as in
the generic protocol.

7. For each index ir ∈ U r, for each commitment scheme Comj , P
′ sends brir ,j and opens the

commitments to the share brir,j as follows:

• the prover opens the (r − 1)u` commitments in the block Cr
ir ,j by running the second

reveal phase of Comj

• the prover opens the (t − r + 1)`2 commitments in the block Br
ir ,j by running the first

reveal phase of Comj

8. For every ir ∈ U r, V ′ computes the bit brir = dr
ir ,1 ⊕ · · · ⊕ brir ,j ⊕ · · · ⊕ brir ,t and rejects if the

verifier rejects in the generic protocol.

V ′ accepts in the execution (P ′, V ′)(x) if and only if V ′ accepts in all (t + 1) executions of
(P, V).

We will analyze all first phase commitments (of the t first executions of the generic protocol)
at once and consider two cases:

Case 1: If there exists a first phase commitment zr
i,j,k in round r using Comj that the cheating

prover P ? can open in two different ways, then we will build an adversary breaking the
computational binding property of Comj by guessing which first phase commitment zr

i,j,k

satisfies this property.

Case 2: If for every first phase commitment zr
i,j,k, the cheating prover P ? has low success proba-

bility in opening zr
i,j,k in two different ways then there exists a “proper” opening value bri,j,k

that zr
i,j,k should be opened to. Then the analysis proceeds similarly to the case of 1-out-of-2

statistically binding commitments.

Lemma 8.6 (Soundness property). If all commitments Com1, · · · ,Comt are 1-out-of-2 computa-
tionally binding, then (P ′, V ′) is sound with soundness error s′(n) = 1/n.

Proof Sketch. We write |x| = n. Recall that s(n) = 1
3n(t+1) is the soundness error of the generic

protocol and we set δ = 1/poly(n) (or some polynomial to be determined below. Each first phase
commitment used in the (P ′, V ′) protocol will be denoted zr

i,j,k where r ∈ [t+1] denotes the round,
i denotes that the commitment is to the share of bit bi in the generic protocol, j is the commitment
scheme used and k is the index of the commitment within the block Br

i,k.

For each prefix τ of a protocol transcript and each first-phase commitment zr
i,j,k in τ that has

completed but has not been opened yet, we can define (for b ∈ {0, 1}):

pτ,zr
i,j,k,b = Pr

T
[zr

i,j,k is opened successfully to b with T 6∈ Bj

∧ corresponding second-phase opened successfully|T begins with τ]

where the probability is taken over transcripts T of (P ?, V ′).

53

Case 1: with probability at least δ over T , there exists a prefix τ containing a first-phase
commitment zr∗i∗,j∗,k∗ such that pτ,zr∗i∗,j∗,k∗,0 ≥ δ and pτ,zr∗i∗,j∗,k∗,1 ≥ δ.

If this is the case, then we will build an adversary S? breaking the computational binding
property of Comj∗ by guessing which first phase commitment zr∗i∗,j∗,k∗ satisfies this property and
running two executions of (P ?, V ′) to break the binding property. The PPT adversary S? does as
follows:

1. S? will guess which round r, which commitment scheme Comj and which first-phase com-
mitment zr

i,j,k corresponds to the commitment zr∗
i∗,j∗,k∗ of Case 1. Note that with probability

at least δ over transcripts T ← 〈P ?, V ′〉, S?’s guess is successful with probability at least
1/(t · ` · t · t`2) = (1/t`)3.

2. S? executes the protocol (P ?, V ′) by simulating P ? and V ′ on its own for all but one of the
first commitment phases and interacts with R in the guessed first phase commitment zr∗

i∗,j∗,k∗.
This constitutes a prefix τ of a protocol transcript.

3. S? generates two valid transcripts T, T ′ ← 〈P ?, V ′〉 starting with the prefix τ . If S?’s guess
was successful, then by definition of Case 1, we have:

• the probability that zr∗
i∗,j∗,k∗ is opened to 0 successfully with T 6∈ Bj∗ and the correspond-

ing second phase commitment is opened successfully is at least δ.

• the probability that zr∗
i∗,j∗,k∗ is opened to 1 successfully with T 6∈ Bj∗ and the correspond-

ing second phase commitment is opened successfully is at least δ.

If we take δ = 1/poly(n), then the adversary S? breaks the computational binding property of
Comj∗ with probability at least δ3 · (1/t`)3 = 1/poly(n) which is nonnegligible. We have reached a
contradiction hence Case 1 does not occur.

Case 2: with probability at least 1 − δ over T , it holds that for every prefix τ of T and for
every first phase commitment zr

i,j,k in τ , there is at most one value (bri,j,k)
? ∈ {0, 1} such that

pτ,zr
i,j,k

,(br
i,j,k

)? ≥ δ.

We say that zr
i,j,k is opened properly if zr

i,j,k is opened to the value (bri,j,k)
? specified above.

Let x 6∈ L and assume that the verifier V ′ accepts in the interaction (P ?, V ′)(x) with probability
s′(n). By definition of Case 2, with probability 1− δ over T , each z1

i,j,k has at most one proper de-

commitment value (b1i,j,k)
?. Consider the sequence (b1?

1,1, · · · , b1?
`,1, · · · , b1?

1,j , · · · , b1?
`,j , · · · , b1?

1,t, · · · , b1?
`,t)

where b1?
i,j is the majority (over k ∈ [t`2]) of (b1i,j,k)

?. By soundness of the generic protocol, the verifier

would reject with probability 1−s(n) if the prover opens consistently with (b1?
1,1, · · · , b1?

`,1, · · · , b1?
1,t, · · · , b1?

`,t).

Thus except with probability s(n), there must be an index i1? ∈ U1 and an index j? ∈ [t] such
that the prover opens inconsistently with b1?

i1?,j?, i.e. at least half of the commitments in the block

B1
i1?,j? are not opened properly. Without loss of generality, we may assume that these first phase

commitments use Com1, i.e. j? = 1. Recall that each of the corresponding second phase commit-
ments will be statistically binding with probability at least 1− δ.

Let us consider the second phase commitments using Com1 in the subsequent executions
2, · · · , (t + 1). For the pth execution (p ∈ {2, · · · , t + 1}) and for the shared bit bpip (ip ∈ [`]),

54

the probability that the ` first phase commitments of B1
i?1,1 corresponding to Cp

ip,1 were opened

properly is at most (1/2)` = neg(n). Hence the probability that the block Cp
ip,1 contains no binding

second phase commitment is at most neg(n) + δ`. By a union bound, the probability that there
exists some execution p and some shared bit bpip for which the block Cp

ip,1 contains no binding

(second phase) commitment is at most δ`2t + neg(n). This implies that with probability at least
1−(δ+s(n)+δ`2t+neg(n)), any shared bit committed to using Com1 in the executions 2, · · · , t+1
can be opened in at most one way.

By a similar reasoning, assume that the schemes Com1, · · · ,Comr−1 are binding in the rth
execution. By definition of Case 2, each first phase commitment zr

i,j,k in the block Br
i,j has at most

one proper decommitment value (bri,j,k)
? . Consider the sequence (br?

1,1, · · · , br?
` , · · · , br?

1,j, · · · , br?
`,t)

where br?
i,j is the majority (over k ∈ [(t − r)`2]) of (bri,j,k)

?. By soundness of the generic pro-
tocol, the verifier would reject with probability 1 − s(n) if the prover opens consistently with
(br?

1,1, · · · , br?
` , · · · , br?

1,j , · · · , br?
`,t). Thus there must be an index ir? and an index j? such that the

prover opens inconsistently with br?
ir?,j?, i.e. at least half of the commitments in the block Br

ir?,j?

are not opened properly. We know that j? 6∈ {1, · · · , r − 1} since we have assumed the blocks Cr
i,j

for j ∈ {1, · · · , r − 1} contain a binding commitment. Hence j? ∈ {r, · · · , t} and without loss of
generality, we may assume that these first phase commitments use Comr, i.e. j? = r. Recall that
each of the second phase commitments will be statistically binding with probability at least 1− δ.

By reasoning similarly to above, the probability that there exists p ∈ {r + 1, · · · , t+ 1} and a
shared bit bpip such that the block Cp

ip,r contains no binding second phase commitment is at most

δ`2t+neg(n). Hence with probability at least 1−(δ+s(n)+δ`2t+neg(n)), any shared bit committed
to using Comr in the executions r + 1, · · · , t+ 1 can be opened in at most one way.

Pr[V ′ accepts in all (t+ 1) executions]

≤ Pr
T

[∃r, i, j, k zr
i,j,k has more than one proper decommitment value]

+ Pr[∃r ∈ [t], V ′ accepts rth execution AND ∀i, j, k, zr
i,j,k is opened properly]

+ Pr[some zr
i,j,k opened improperly AND ∃p ∈ {2, · · · , t+ 1}, j ∈ [t]

such that Cp
ip,j has no binding commitment]

+ Pr[V ′ accepts in (t+ 1)th execution AND ∀i, j, Ct+1
i,j has a binding commitment]

≤ δ + t · s(n) + t · (δ`2t) + ε+ neg(n)

≤ δ + (t+ 1)s(n) + t2δ`2 + neg(n) < 1/n

if we take δ = 1
3n(t2`2+1)

. �

Lemma 8.7 (Zero-knowledge property). If x ∈ L and one of the commitments Com1, · · · ,Comt

is statistically hiding, then (P ′, V ′) is statistical zero knowledge.

Proof Sketch. Recall that each bit bi in each execution of the generic protocol is shared using t
random values bi,1, · · · , bi,t such that bi =

⊕
j bi,j and the prover commits to the jth share of bi

using one of the phases of Comj.

55

If at least one of the commitment schemes used is statistically (resp. computationally) hid-
ing, then the secret sharing scheme ensures that each bit bi committed to in the generic pro-
tocol is hidden. Given a bit σ, we can define a new 2-phase commitment scheme Com(σ) =
(C1(σ1), C2(σ2), · · · , Ct(σt)) where σ =

⊕
i σi and the commitment scheme Cj consists of both first

phase commitments using Comj and second phase commitments (coming from different first phase
transcripts) using Comj. If one of the commitments Com1, · · · ,Comt, say Comj is statistically
hiding, then Com is statistically hiding since the commitments in the jth block are always hiding.
We can then apply a reasoning identical to that in the case of a single 1-out-of-2 binding scheme,
except that the simulator will need to simulate (t+ 1) sequential executions of the generic protocol
as opposed to 2 executions (the simulator will guess the challenge for the ith execution successfully
with all but exponentially small probability with polynomially many trials and once the guess for
the ith execution is successful, the simulator goes on to guess the challenge for the (i + 1) execu-
tion). �

Acknowledgements

We thank Oded Goldreich, Alex Healy, Rafail Ostrovsky and Omer Reingold for helpful discussions.

56

References

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences, 42(3):327–345, 1991.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by
public discussion. SIAM Journal on Computing, 17(2):210–229, 1988. Special issue on
cryptography.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCY91] Gilles Brassard, Claude Crépeau, and Moti Yung. Constant-round perfect zero-
knowledge computationally convincing protocols. Theoretical Computer Science, 84(1,
Algorithms Automat. Complexity Games):23–52, 1991. 16th International Colloquium
on Automata, Languages, and Programming (Stresa, 1989).

[Bel02] Mihir Bellare. A note on negligible functions. J. Cryptology, 15(4):271–284, 2002.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, pages 374–383, 1997.

[BKK90] Joan Boyar, S. A. Kurtz, and Mark W. Krentel. A discrete logarithm implementation
of perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings
of the International Congress of Mathematicians, (Berkeley, California, 1986), pages
1444–1451. American Mathematical Society, 1987.

[BLV04] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-black-box zero
knowledge. Technical Report TR04–083, Electronic Colloquium on Computational
Complexity, September 2004. Extended abstract in FOCS ‘04.

[Dam87] Ivan Damg̊ard. Collision free hash functions and public key signature schemes. In
EUROCRYPT, pages 203–216, 1987.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions in Information Theory, 22(6):644–654, 1976.

[Din06] Irit Dinur. The PCP theorem via gap amplification. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, 2006.

[DPP98] Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical secrecy and
multibit commitments. IEEE Transactions on Information Theory, 44(3):1143–1151,
1998.

57

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in Computing
Research: Randomness and Computation, 5:327–343, 1989.

[GGL98] Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computation in
the full information model. SIAM Journal on Computing, 27(2):506–544, 1998.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, 1986.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge.
Journal of Cryptology, 6(1):21–53, 1993.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[HHK+05] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commitment.
In Proceedings of the 24th Annual International Conference on the Theory and Appli-
cation of Cryptographic Techniques (EUROCRYPT ’05), pages 58–77, 2005.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In FOCS30, pages 230–235, 1989.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 12–24, 1989.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pages 44–61, 1989.

58

[KSS00] Jeff Kahn, Michael Saks, and Cliff Smyth. A dual version of Reimer’s inequality and
a proof of Rudich’s conjecture. In 15th Annual IEEE Conference on Computational
Complexity (Florence, 2000), pages 98–103. IEEE Computer Soc., Los Alamitos, CA,
2000.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-
knowledge arguments for NP using any one-way permutation. Journal of Cryptology,
11(2):87–108, 1998. Preliminary version in CRYPTO ’92.

[NV06] Minh-Huyen Nguyen and Salil Vadhan. Zero knowledge with efficient provers. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, pages 33–43, 1989.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the 6th Annual Structure in Complexity Theory
Conference, pages 133–138, 1991.

[OVY93] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Fair games against an
all-powerful adversary. AMS DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 155–169, 1993.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Proceedings of the 2nd Israel Symposium on Theory of Computing
Systems, pages 3–17, 1993.

[Rei05] Omer Reingold. Undirected ST-connectivity in log-space. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pages 376–385, 2005.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
387–394, 1990.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-Way Functions. PhD
thesis, U.C. Berkeley, 1988.

[Sha49] Claude Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):656–715, 1949.

[Sim98] Daniel Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Proceedings of the 17th Annual International Con-
ference on the Theory and Application of Cryptographic Techniques (EUROCRYPT
’98), pages 334–345, 1998.

[Vad99] Salil Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, August 1999.

59

A Proofs of Collision Probability Lemmas

We prove the lemmas presented in Section 6.1.

Lemma A.1 (Restatement of Lemma 6.3). For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) =

m∏

i=1

CP1/2(Xi|Yi).

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent from
the other tuples.

Proof of Lemma 6.3. Since the Xi’s are independent, for all y1, . . . , ym, we have

CP((X1, . . . ,Xm)|Y1=y1,...,Ym=ym) =

m∏

i=1

CP(Xi|Yi=yi
).

This gives us

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym))

= E
(y1,...,ym)←(Y1,...,Ym)

[
CP1/2((X1, . . . ,Xm)|Y1=y1,...,Ym=ym)

]

= E
(y1,...,ym)←(Y1,...,Ym)

[
m∏

i=1

CP1/2(Xi|Yi=yi
)

]
(by independence of Xi’s given Y1, . . . , Ym)

=
m∏

i=1

E
yi←Yi

[
CP1/2(Xi|Yi=yi

)
]

(by independence of Yi’s)

=

m∏

i=1

CP1/2(Xi|Yi).

�

Lemma A.2 (Restatement of Lemma 6.4). Suppose random variables (X1, Y1), . . . , (Xm, Ym) sat-
isfy the following conditions for some values of α1, . . . , αm ∈ R

+ and all i = 1, 2, . . . ,m:

1. For any given (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αi.

2. For any given (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), even if we condition on Y1 = y1, . . . , Yi = yi,
the i+ 1 random variables X1,X2, . . . ,Xi, Yi+1 are independent.

Then,

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi.

60

Proof of Lemma 6.4. By induction, it suffices to prove

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) ≤ αm · CP1/2 ((X1, . . . ,Xm−1)|(Y1, . . . , Ym−1)), (6)

and then by iteratively expanding CP1/2 ((X1, . . . ,Xm−1)|(Y1, . . . , Ym−1)) in terms of αj ’s, we get
our result. To simplify notation, we writeX ′m = Xm|Y1=y1,...,Ym−1=ym−1 and Y ′m = Ym|Y1=y1,...,Ym−1=ym−1

when y1, . . . , ym−1 are clear from context. We prove (6) as follows:

CP1/2((X1, . . . ,Xm)|(Y1, . . . , Ym)) (7)

= E
(y1,...,ym)←(Y1,...,Ym)

[
CP1/2((X1, . . . ,Xm)|Y1=y1,...,Ym=ym)

]
(8)

= E
(y1,...,ym−1)←(Y1,...,Ym−1)

[
E

ym←Y ′

m

[
CP1/2((X1, . . . ,Xm)|Y1=y1,...,Ym=ym)

]]
(9)

= E
(y1,...,ym−1)

[
E

ym←Y ′

m

[
CP1/2((X1, . . . ,Xm−1)|Y1=y1,...,Ym=ym) · CP1/2(Xm|Y1=y1,...,Ym=ym)

]]
(10)

= E
(y1,...,ym−1)

[
CP1/2((X1, . . . ,Xm−1)|Y1=y1,...,Ym−1=ym−1) · E

ym←Y ′

m

[
CP1/2(Xm|Y1=y1,...,Ym=ym)

]]

(11)

= E
(y1,...,ym−1)

[
CP1/2((X1, . . . ,Xm−1)|Y1=y1,...,Ym−1=ym−1) · CP1/2(X ′m|Y ′m)

]
(12)

≤ αm · E
(Y1,...,Ym−1)

[
CP1/2((X1, . . . ,Xm−1)|Y1=y1,...,Ym−1=ym−1)

]
(13)

≤ αm · CP1/2 ((X1, . . . ,Xm−1)|(Y1, . . . , Ym−1)) (14)

Equation (10) follows because X1, . . . ,Xm conditioned on Y1 = y1, . . . , Ym = ym are indepen-
dent. Equation (11) follows because X1, . . . ,Xm−1, Ym conditioned on Y1 = y1, . . . , Ym−1 = ym−1

are also are independent. Finally, Equation (13) follows from the assumption that CP1/2(X ′m|Y ′m) =
CP1/2(Xm|Y1=y1,...,Ym−1=ym−1 | Ym|Y1=y1,...,Ym−1=ym−1) ≤ αm. �

Lemma A.3 (Restatement of Lemma 6.5). Let (X,Y) be any (possibly correlated) pair of random
variables, and let H ← H be chosen randomly (and independently from (X,Y)) from a family of
pairwise-independent hash functions with a range of {0, 1}α. Then,

CP1/2((H,H(X))|Y) ≤ CP1/2(H) · (CP1/2(X|Y) +
√

2−α).

61

Proof of Lemma 6.5.

CP1/2(H,H(X)|Y)

= E
y←Y

[
CP1/2(H,H(X)|Y =y)

]

= E
y←Y

[
CP1/2(H,H(X)|Y =y)

]

≤ E
y←Y

[
CP1/2(H) ·

√
CP(X|Y =y) + 2−α

]
(since CP(H,H(Z)) ≤ CP(H) · (CP(Z) + 2−α))

≤ E
y←Y

[
CP1/2(H) ·

(
CP1/2(X|Y =y) +

√
2−α

)]

= CP1/2(H) ·
((

E
y←Y

[
CP1/2(X|Y =y)

])
+
√

2−α

)

= CP1/2(H) · (CP1/2(X|Y) +
√

2−α),

hence our result. �

Corollary A.4 (Restatement of Corollary 6.6). Let (X,Y) be any (possibly correlated) pair of
random variables, and let H ← H be chosen randomly (and independently from (X,Y)) from a
family of pairwise-independent hash functions with a range of {0, 1}α. Suppose the hash functions

from H are represented by (q − α)-bit strings and CP1/2(X|Y) ≤
√

2−(α+3). Then,

CP1/2((H,H(X))|Y) ≤
√

2−(q−1).

Proof of Corollary 6.6. Since |h| = q − α, we have CP(H) = 2−(q−α). Therefore, by Lemma 6.5,

CP1/2(H,H(X)|Y) ≤ CP1/2(H) · (CP1/2(X|Y) +
√

2−α)

≤
√

2−(q−α) ·
(√

2−α

8
+
√

2−α

)

<
√

2−(q−α) ·
(√

2−α ·
√

2
)

=
√

2−(q−1).

�

Lemma A.5 (Restatement of Lemma 6.7). For any triple of (possibly correlated) random variables
X, Y and Z,

CP1/2(X|Y) ≤ CP1/2(X|(Y,Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y).

62

Proof of Lemma 6.7. For the upper bound,

CP1/2(X|(Y,Z)) = E
(y,z)←(Y,Z)

[
CP1/2(X|(Y,Z)=(y,z))

]

= E
y←Y

[
∑

z

Pr[Z = z|Y = y] · CP1/2(X|(Y,Z)=(y,z))

]

≤ E
y←Y


√|Supp(Z)| ·

√∑

z

(Pr [Z = z|Y = y])2 · CP(X|(Y,Z)=(y,z))




(by Cauchy-Schwartz)

=
∑

y

Pr [Y = y] ·
√
|Supp(Z)| · CP1/2(X|Y =y)

=
√
|Supp(Z)| · E

y←Y

[
CP1/2(X|Y =y)

]

=
√
|Supp(Z)| · CP1/2(X|Y).

For the lower bound, consider the following: For each y ∈ Supp(Y) and z ∈ Supp(Z), let vy,z

be the vector (Pr[X = x ∧ Z = z|Y = y])x∈Supp(X). Then,

CP1/2(X|Y =y) =

∥∥∥∥∥
∑

z

vy,z

∥∥∥∥∥
2

≤
∑

z

‖vy,z‖2 (triangle inequality)

= CP1/2 ((X|Y =y) | (Z|Y =y)) .

Taking expectations over Y for both sides yield our result. �

Lemma A.6 (Restatement of Lemma 6.8). Let H = {h : {0, 1}n → {0, 1}α} be a family of pairwise-
independent hash functions, and let q − α be the description of length of each element in H. If
CP(X) ≤ ε2 · 2−α, then ∆((H,H(X)), Uq) ≤ ε.

63

Proof of Lemma 6.8. Let D = 2q−α and L = 2α. We bound the statistical distance of (H,H(X))
from uniform as follows:

∆((H,H(X)), Uq) =
1

2
|(H,H(X)) − Uq|1

≤
√
DL

2
‖(H,H(X)) − Uq‖2

≤
√
DL

2
·
√

CP(H,H(X)) − 2−q

≤
√
DL

2
·
√

1

D

(
CP(X) +

1

L

)
+

1

DL

=

√
CP(X) · L

2

≤ ε

2
≤ ε.

�

B Proofs of NOVY IH Hiding and Binding Properties

In order to prove Theorem 4.4, we need to show that the Interactive Hashing Scheme (SIH, RIH),
namely Protocol 4.5, satisfies the hiding and binding properties of Definition 4.2. The correctness
of Protocol 4.5 is easy to see. The hiding and binding properties are captured by Lemmas B.1 and
B.2, respectively.

B.1 Hiding Property

Lemma B.1 (perfect hiding). Protocol 4.5 is perfectly hiding in the sense of the Definition 4.2.

The proofs presented in this section and the next are very similar in nature to those in [NOVY98],
with additional analysis needed to handle interactive hashing for multiple outputs.

Proof. The view of any R∗ will be the hash functions h0, h1, · · · , hq−k−1 together with S’s respond
c0, c1, . . . , cq−k−1. Given these values, we show that there are 2q−k possible y’s that would make
S(y) respond to c0, c1, . . . , cq−k−1 (given queries h0, h1, · · · , hq−k−1 from R∗).

Consider the matrixH = (h0, h1, · · · , hq−k−1) whose rows are the hi’s, vector c = (c0, c1, . . . , cq−k−1),
and the equation Hy = c. Since hi is of the form 0i1{0, 1}q−i−1, the first q − k columns of the
matrix are linearly independent. Hence, any setting of the last k bits of y will fully determine the
first q − k bits of it. These are the 2q−k strings y that satisfy Hy = c. �

B.2 Binding Property

Lemma B.2 (computational binding). Protocol 4.5 is computationally binding in the sense of the
Definition 4.2.

64

We prove Lemma B.2 by providing an algorithm A that finds a valid witness (according to
relation W) for a random string y ← {0, 1}q with nonnegligible probability. Before describing A,
we provide the following definitions.

Definitions. In the enumerated definitions below, hi is of the form 0i1{0, 1}q−i−1, and hi(y) =
〈hi, y〉. Without loss of generality, we can assume that S∗ is deterministic because every probabilistic
S∗ can be converted to a (nonuniform) deterministic one with the same success probability and
running time by fixing its random coins to maximize its success probability.

1. For 0 ≤ i < q, let Hi denote the set of hash functions of the form 0i1{0, 1}q−i−1, i.e.,
Hi = {0i1w : w ∈ {0, 1}q−i−1}.

2. A node N at level i is defined by a series of hash functions (h0, h1, . . . , hi−1), where each
hj ∈ Hj. (Since S∗ is deterministic, this determines c0, . . . , ci−1 where cj = S∗(h0, . . . , hj).)
Let Li denote the set of nodes at level i.

3. The set of compatible hash functions at node N ∈ Li is denoted as

Comp(N, y) = {hi ∈ Hi : S∗(N,hi) = hi(y)},

where S∗(N,hi), with N = (h0, . . . , hi−1), denotes S∗(h0, . . . , hi).

4. A string y is γ-balanced at N ∈ Li if

1− γ
2
≤ Comp(N, y)

|Hi|
≤ 1 + γ

2
.

A string y is γ-fully-balanced at N ∈ Li if it is γ-balanced at all its parental nodes. That
is, letting N = (h0, . . . , hi−1), y is required to be γ-balanced at all N0 = (h0), N1 =
(h0, h1), . . . , N = Ni−1 = (h0, . . . , hi−1).

5. A string y is said to be compatible with a node N = (h0, . . . , hi−1) if hj(y) = S∗(h1, . . . , hj)
for all 0 ≤ j < i. Let U(N) denote the set of compatible y’s with node N . Note that for
every N ∈ Li, we have |U(N)| = 2q−i.

6. Let B(N) and F (N) denote the set of γ-balanced strings and γ-fully-balanced strings at
node N respectively. Moreover, let G(N) = U(N) \ F (N) be the set of strings that are not
fully-balanced. Note that for every node N , we have F (N) ⊆ B(N) ⊆ U(N).

7. At every node N ∈ Lq−k, we can assume WLOG that S∗(N) outputs a pair of strings (x0, z0)
and (x1, z1), but it is not necessarily the case that any of xb ∈WC(zb).

Description of the witness finding algorithm. Algorithm A: On input y ∈ {0, 1}q , 1q, 1k and
ε, do the following.

1. Set parameters γ = 1/q, β = log(1/ε) + 2 log(q) + 4 log(1/γ) + 4, and α = q − β − k.

2. Repeat the following for i = 1, . . . , α− 1:

65

When A is at node N ∈ Li, explore along a random hi ← Comp(N, y) to get to a
new node N ′ = (N,hi) ∈ Li+1. (This can be done efficiently by choosing a random
hi ←Hi and querying S∗ to make sure that hi ∈ Comp(N, y), and repeat up to 8q
times if not. If after 8q repetitive tries and fail to encounter any hi ∈ Comp(N, y),
then output fail.)

3. At node N ∈ Lα, choose random hα ← Hα, . . . , hα+β−1 ← Hα+β−1, to arrive at node Ñ =

(N,hα, hα+1, . . . , hα+β−1) ∈ Lα+β. (Note that q − k = α+ β, and hence Ñ ∈ Lα+β = Lq−k.)

4. Query S∗(Ñ) to get (x0, z0) and (x1, z1). If either of C(zb) = y, then output xb. Else, output
fail.

It is clear that the above algorithm runs in polynomial time (with oracle queries to S∗). All
we need to show is that it succeeds with nonnegligible property, and we prove that property in the
following claims.

Claim B.3. For every node N ∈ Li, the set of unbalanced strings, U(N) \B(N) ≤ 2/γ2.

Proof of claim. Let X ⊆ U(N) be a set of size 2d, for some value of d. We also interpret
X as a distribution that puts equal weights on each of its 2d elements.

Let Hi be the set of hash functions after node N of the form 0i1{0, 1}q−i−1. Observe
that for every x 6= x′, Prhi←Hi

[hi(x) = hi(x
′)] ≤ 1/2. Also, note that hi requires exactly

q − i− 1 bits to describe.
Computing the collision probabilities (using the notation Hi to denote a random

hash function from that family), we get

Col((Hi,Hi(X))) ≤ Col(Hi)(Col(X) + Pr[Hi(X) = Hi(X
′) : X 6= X ′])

≤ Col(Hi) · (1/2d + 1/2)

= 2−(q−i−1)(1/2d + 1/2), whereas

Col((Hi, U1)) = Col(Hi) · 1/2
= 2−(q−i−1) · (1/2).

Therefore,

∆((Hi,Hi(X)), (Hi, U1)) = 1/2 |(Hi,Hi(X)) − (Hi, U1)|1
≤ 1/2 ·

√
2q−i−1

√
Col((Hi,Hi(X))) − Col((Hi, U1))

≤ 1/2
√

1/2d

= 2−d/2−1.

Setting d = 2 log(1/γ), we get that ∆((Hi,Hi(X)), (Hi, U1)) ≤ γ/2. Next, assume
for sake of contradiction that U(N) \ B(N) > 2d+1 = 2/γ2. Then we will have a set
M ⊆ U(N) \ B(N) of size greater then 2d with elements that are unbalanced in one
direction (i.e. all > 1/2+γ, or all < 1/2−γ). But this contradicts the assumption that
∆((Hi,Hi(T)), (Hi, U1)) ≤ γ/2 (since |T | > 2d). �

The next claim follows by a union bound on the unbalanced elements.

66

Claim B.4. For every node N ∈ Li, the set of strings that are not fully balanced, G(N) = U(N) \
F (N) ≤ 2i/γ2. In particular, for γ = 1/q, |F (N)| ≥ |U(N)| /2 for i ≤ q − 4 log q.

Claim B.5. For every node N ∈ Lα, the fraction of children nodes Nα+β with greater than one
element from G(N) is at most ε/4.

Proof of claim. Consider any fixed node N ∈ Lα. The number of non-fully-balanced
(aka bad) elements in that node is G(N). Hence, the number of pairs of these bad
elements is at most |G(N)|2. Since for each x 6= y ∈ U(N), Pr[hi(x) = hi(y)] ≤ 1/2
for all α ≤ i < α + β, the fraction of children nodes N ′ ∈ Lα+β with greater than one
element from G(N) is at most |G(N)|2 /2β .

Since β = log(1/ε) + 2 log(q) + 4 log(1/γ) + 4, we can bound |G(N)|2 /2β as follows:

|G(N)|2 · 2−β ≤ (2αγ−2)22−β

≤ 4q2γ−42−β

< ε/4.

The result follows. �

A node N ∈ Lα+β = Lq−k is witness revealing if both of S∗(N)’s outputs, namely (x0, z0) and
(x1, z1), satisfy C(zb) ∈ U(N) and xb ∈WC(zb), for b ∈ {0, 1}. A node N ∈ Lα is said to be good if
greater than ε/2 of its children at level q − k are witness revealing.

Claim B.6. The fraction of good nodes at level α is at least ε/2.

Proof of claim. By the assumption that

Pr[x0 ∈WC(z0)∧x1 ∈WC(z1) : C = (S∗, R)(1q , 1k); ((x0, z0), (x1, z1)) = outputS∗(S∗, R)] > ε,

we know that at least ε fraction of all the nodes at level q− k are nonbinding. And, by
a Markov bound, we have that ε/2 fraction of nodes at level α are good. �

Claim B.7. For any fixed N ∈ Lα and y′ ∈ F (N), we have

1

2q−α
· 1

(1 + γ)α
· 1

|Lα|
≤ Pr[A reaches N ∧ y = y′] ≤ 1

2q−α
· 1

(1− γ)α ·
1

|Lα|
,

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

Proof of claim. Let N = (h0, h2, . . . , hα−1), and for 1 ≤ j ≤ α, define Nj =
(h0, . . . , hj−1). To get the upper bound,

Pr[A reaches N ∧ y = y′] = Pr[y = y′] · Pr[A reaches N]

= 2−q
α−1∏

j=0

1

Comp(Nj, y)

≤ 2−q
α−1∏

j=0

2

1− γ ·
1

|Hj|

=
1

2q−α
· 1

(1− γ)α ·
1

|Lα|
.

67

To get the lower bound, we use very similar techniques.

Pr[A reaches N ∧ y = y′] = 2−q
α−1∏

j=0

1

Comp(Nj , y)

≥ 2−q
α−1∏

j=0

2

1 + γ
· 1

|Hj|

=
1

2q−α
· 1

(1 + γ)α
· 1

|Lα|
.

Our result follows. �

Claim B.8.
Pr[The node N reached by A is good ∧ y ∈ F (N)] ≥ ε

4(1 + γ)α
.

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

Proof of claim. Let N ∈ Lα be any good node at level α. Then,

Pr[A reaches N ∧ y ∈ F (N)] =
∑

y′∈F (N)

Pr[A reaches N ∧ y = y′]

≥
∑

y′∈F (N)

1

|Lα|
· 1

2q−α
· 1

(1 + γ)α

=
|F (N)|
2q−α

· 1

|Lα|
· 1

(1 + γ)α

=
|F (N)|
|U(N)| ·

1

|Lα|
· 1

(1 + γ)α

≥ 1

2
· 1

|Lα|
· 1

(1 + γ)α
,

with the last inequality following from the fact that |F (N)| / |U(N)| ≥ 1/2, noting
α ≤ q − 3 log q (refer to Claim B.4).

There are |Lα| nodes at level α, and at least ε/2 fraction of them are good. Hence,
we multiply the above probability by (ε/2) |Lα| to get our stated result. �

Claim B.9. In any good node N ∈ Lα, the fraction of nonbinding children of N at level α+β that
has one or less image in G(N) is at least ε/4.

Proof of claim. The fraction of nonbinding children is greater than ε/2, and by
Claim B.5, the fraction of children nodes of N with greater than one element from
G(N) is at most ε/4. �

Claim B.10. For any fixed N ∈ Lα and y′ ∈ F (N), we have

Pr[y = y′|A reaches N ∧ y ∈ F (N)] ≥ 1

|F (N)|

(
1− γ
1 + γ

)α

,

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

68

Proof of claim. For any fixed N ∈ Lα and y′ ∈ F (N),

Pr[y = y′|A reaches N ∧ y ∈ F (N)] =
Pr[A reaches N ∧ y = y′]

Pr[A reaches N ∧ y ∈ F (N)]
.

For the numerator, by Claim B.7,

Pr[A reaches N ∧ y = y′] ≥ 1

|Lα|
· 1

2q−α
· 1

(1 + γ)α
.

For the denominator, also using Claim B.7,

Pr[A reaches N ∧ y ∈ F (N)] =
∑

y′∈F (N)

Pr[A reaches N ∧ y = y′]

≤
∑

y′∈F (N)

1

|Lα|
· 1

2q−α
· 1

(1− γ)α

= |F (N)| · 1

|Lα|
· 1

2q−α
· 1

(1− γ)α .

Combining the two, we have our result. �

We have now reached our final claim to complete the proof of the binding theorem.

Claim B.11.

Pr
y←{0,1}q

[A(y) ∈ Ry] > c · (ε3q−62−k)− exp(q), for some constant c > 0.

Proof of claim. Note how A operates. On input y, it follows a random compatible
(with y) hash functions hi out of node N ∈ Li, for 1 ≤ i < α, and then takes random
hi’s (not necessarily compatible with y) when α ≤ i < α+ β. (For now, we can ignore
failure to obtain compatible hash functions.)

Our algorithm A will find a valid witness for y if the following conditions happen.

1. Algorithm A reaches a good node N ∈ Lα such that y ∈ F (N). By Claim B.8,
this happens with probability at least ε/(4(1 + γ)α).

2. Algorithm A reaches a witness revealing child with at most one element in G(N).
Given that (1) occurs, by Claim B.9, this happens with probability at least ε/4.

In this case, S∗ will output (x0, z0) and (x1, z1), such that at least one (xb, zb) will
be such that xb ∈WC(zb) and C(zb) ∈ U(N) \G(N) = F (N). Let y′ = C(zb).

3. The string y = y′ = C(zb). If this happens, then A will output xb ∈ Ry, a valid
witness for y. By Claim B.10, we have that

Pr[y = y′|A reaches N ∧ y′ ∈ F (N)] ≥ 1

|F (N)|

(
1− γ
1 + γ

)α

.

69

Combining all the probabilities, we have

Pr
y←{0,1}q

[A(y) ∈ Ry] ≥
ε

4(1 + γ)α
· ε
4
· 1

|F (N)|

(
1− γ
1 + γ

)α

≥ 1

2β+k
· ε

2

32
·
(

1− γ
(1 + γ)2

)q

.

With settings of γ = 1/q and β = log(1/ε) + 2 log(q) + 4 log(1/γ)) + 4, we have
the probability of finding a witness to be greater than c · (ε3q−62−k), for some constant
c ≥ 0.

Finally, we need to account for the case when we fail to find compatible hash func-
tions hi out of node N ∈ Li, for 1 ≤ i < α. However, because our analysis has only
focused on fully balanced y, and we repeat 8q times to find a compatible hash, the
probability of failure is exponentially small. Therefore, the overall success probability
is greater than c · (ε3q−62−k)− exp(q). �

70

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

