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Abstract

We present a very simple reduction that when given a graph G and an integer k produces
a game that has an evolutionary stable strategy if and only if the maximum clique size of G is
not exactly k. Formally this shows that existence of evolutionary stable strategies is hard for
a complexity class called co − Dp, slightly strengthening (and greatly simplifying) the known
NP-hardness and co-NP-hardness. En route we show that even recognizing an evolutionary
stable strategy is co-NP complete.

1 Introduction

The concept of evolutionary stable strategy (ESS) is a refinement of Nash equilibrium that attempts
capturing the notion that small deviations from it must be strictly inferior to it. The idea is that
such an equilibrium will be “evolutionary stable”, since any small “mutation” will die out. This
concept, introduced in [SP73], has been since heavily used in explaining evolutionary phenomena
– see the classic [Smi82].

Given is a square payoff matrix u, where u(i, j) denotes the “payoff” for type i when facing
type j. We are interested in an ESS in the mixed game, i.e. we will define when a probability
distribution x on the types is an ESS (both the rows and the columns of u are indexed by the
types). For probability distributions x and y on the types, we denote the expected payoff of x
against y by u(x, y) =

∑
i

∑
j xiyju(i, j).

Definition 1 A mixed ESS of the payoff matrix u(·, ·) is probability distribution x such that:

• Symmetric Nash Equilibrium: x is a best response to itself, i.e. for every y, u(x, x) ≥
u(y, x).

• Maynard Smith’s 2nd condition: For every y 6= x such that u(y, x) = u(x, x) we have
that u(y, y) < u(x, y).

Two questions of computational complexity naturally present themselves:

1. What is the computational complexity of recognizing whether a given x is an ESS of a given
matrix u?

2. What is the computational complexity of finding an ESS of a given matrix u, or even of
determining whether u has an ESS?
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Unlike the situation with regular Nash equilibria, an ESS does not exist for every game, nor is
it clear how to efficiently recognize one. Once one observes – as for completeness we spell out in the
appendix – that the quantification over x and y need only be over vectors with rational coefficients
of reasonable size, the definition directly implies that recognizing an ESS is in co − NP , and thus
that finding an ESS is in Σ2 (or, more precisely, reasonable decision variants of finding an ESS are
in Σ2). Etessami and Lochbihler [EL04] studied the second question and showed, surprisingly, that
deciding whether a given matrix u has an ESS is both NP -hard and co − NP -hard. In this paper
we give a very simple and elementary proof of a slightly stronger result, and en-route settle the
first question.

We give a very simple reduction that when given a graph G and an integer k produces a payoff
matrix u that has an ESS if and only if the maximum clique size of G is not exactly k. The problem
of having maximum clique size exactly k is known to be complete for a complexity class called Dp

defined in [PY82], we thus get:

Theorem 1: Existence of a mixed ESS is co − Dp-hard.

As Dp contains both NP and co-NP, hardness for these classes is directly implied. Alternatively,
readers who wish to remain ignorant of the definition of Dp, may directly convince themselves that
the problem of the maximum clique size being exactly k is both NP -hard and co−NP -hard1, and
directly get:

Corollary 1 [EL04]: Existence of a mixed ESS is NP -hard and co − NP -hard.

Our proof also settles the first question:

Theorem 2: Recognizing a mixed ESS is co − NP -complete.

This result may be viewed as somewhat critical of the whole notion of ESS as even recognizing
one can not be done effectively. The main open problem still remains the determination of the
exact complexity of finding an ESS.

2 The reduction

Given a graph G = (V,E), |V | = n, and an integer 1 < k < n, we will build a (n + 1) × (n + 1)
payoff matrix u that will have an ESS if and only if the largest clique size of G, is not exactly k.
u’s rows and columns will be the vertices of V , named 1..n, with an additional row and column
named 0.

• for 1 ≤ i 6= j ≤ n: u(i, j) = 1 if (i, j) ∈ E, and u(i, j) = 0 if (i, j) 6∈ E.

• for 1 ≤ i ≤ n: u(i, i) = 1/2.

• for 1 ≤ i ≤ n: u(0, i) = u(i, 0) = a = 1 − 1/(2k).

1co−NP -hardness is easy by simply adding a k-clique to a “at-most-k-clique” problem instance. For NP -hardness,
it turns out that the standard reduction of max-clique from 3-SAT also implies this since in it (k+1)-cliques can never
occur anyway. (Each of the m clauses of the 3−CNF is converted to 7 vertices – one for each satisfying assignment of
the clause – and “compatible” clauses are connected by an edge. An m-clique corresponds to a satisfying assignment,
and no (m + 1)-cliques are possible since vertices within a single clause are never inter-connected.)
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In the rest of the paper, x (and y) will always be probability distributions on {0...n}, i.e. vectors
of length n + 1, with xi ≥ 0 for all 0 ≤ i ≤ n and

∑
i xi = 1.

Before we proceed with the proof, we will require a slight variant of a lemma of Motzkin and
Straus, whose original version was used also in [EL04]:

Lemma 1 (Essentially [MS65]2): For every x, with x0 = 0, u(x, x) ≤ 1 − 1/(2k′), where k′ is the
size of the maximum clique in G. Equality is achieved if and only if x is uniform over a k′-clique.

For completeness we give the simple proof.
Proof: Simple calculations will reveal that 1−1/(2k′) is indeed achieved for a uniform distribution
on a k′-clique. We can prove the lemma by induction on the number of non-edges between vertices
in the support of x. The base of the induction is when the support of x is a k′′-clique (k′′ ≤ k′), and
then u(x, x) = 1 −

∑
i x

2
i /2 ≤ 1 − 1/(2k′′) ≤ 1− 1/(2k′), with equality holding only if x is uniform

over a k′-clique. (The inequality is since for x with ||x||1 = 1, the value of ||x||2 is minimized exactly
when all components are equal.)

For the induction step consider two vertices i1, i2 in the support of x with (i1, i2) 6∈ E. Denote
p =

∑
(j,i1)∈E xj and q =

∑
(j,i2)∈E xj, and without loss of generality assume p ≥ q. We can now

define a new vector x′ by moving all the probability from i2 to i1 (i.e. x′

i1
= xi1 + xi2 and x′

i2
= 0,

and other indices unchanged.) Note that i2 is no longer in the support of x′ and thus the induction
hypothesis applies to it. It may be easily verified that u(x′, x′) = u(x, x)+xi2(p−q)+xi1xi2 > u(x, x)
and this completes the induction step.

We will now prove the properties of the reduction:

Claim 1 If C is a maximal clique of G of size k′ > k, and x is the uniform distribution on C,
then x is an ESS.

Proof: Notice that u(x, x) = 1 − 1/(2k′), however, u(0, x) = a < u(x, x), and that since C is
maximal, for every i 6∈ C, u(i, x) ≤ 1 − 1/k′ < u(x, x). Thus x is best response to itself, and
all best responses y must be supported on C. We now need to verify the second condition for
y 6= x’s that are supported on C. But for such y, using the lemma, u(y, y) < 1 − 1/(2k′) while
u(x, y) = 1 − 1/(2k′).

Claim 2 If G contains no clique of size k then the pure strategy 0 is an ESS.

Proof: The first condition is trivial since for every i, u(i, 0) = a = u(0, 0). For the second condition,
it suffices to verify that for every y which is not the pure 0 strategy, u(y, y) < u(0, y).

We first note that wlog we can assume that y0 = 0. Denote y∗ to be the vector y with the
0’th coordinate zeroed, renormalized. I.e. for i 6= 0, y∗i = yi/(1 − y0). We have that u(y, y) =
(2y0 − y2

0)a + (1 − y0)
2u(y∗, y∗), and u(0, y) = a, thus the second condition holds for y iff it holds

for y∗, hence we can assume wlog that y0 = 0.
Now we apply the lemma, and since G has no cliques of size k, u(y, y) ≤ 1 − 1/2(k − 1) < a =

u(0, y).

2In [MS65], the diagonal entries u(i, i) were defined to be 0, and consequently the bound was 1 − 1/k′, and could
be achieved even for distributions whose support was not a clique.
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Claim 3 If the maximum size clique of G is at least k then the pure strategy 0 is not an ESS.

Proof: While the first condition does trivially hold, the second condition fails for y which is
a uniform distribution on a maximum size clique of G of size k′ ≥ k. In this case u(y, y) =
1 − 1/(2k′) ≥ a = u(0, y).

Claim 4 If the maximum size clique of G is at most k then u has no ESS except, perhaps, the
pure 0 strategy.

Proof: Let x which is not the pure strategy 0, satisfy the first condition. As before let x∗ be x
with the 0’th coordinate zeroed and then renormalized. I.e. for i 6= 0, x∗

i = xi/(1 − x0). Now,
u(x, x) = (2x0 − x2

0)a + (1 − x0)
2u(x∗, x∗). Using the lemma we bound u(x∗, x∗) ≤ 1 − 1/(2k) = a

and thus u(x, x) ≤ a. Now the second condition fails for y which is the pure strategy 0, which is
also a best reply to x, but u(y, y) = a = u(x, y).

We can now easily conclude the proofs of the theorems. Claims 1 and 2 show that if the maximal
clique size of G is not exactly k then an ESS exists. Claims 3 and 4 show that if the maximal clique
size of G is exactly k then no ESS exists. This proves theorem 1. Claims 2 and 3 show that the
pure strategy 0 is an ESS if and only if the maximal clique size of G is less than k, this gives
co − NP -hardness and thus theorem 2.
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Appendix: Rationality of x and y

While in the definition of an ESS, an ESS could have irrational coefficients, we show why for any
payoff matrix u with rational coefficients, all coefficients of every ESS are rational numbers, with
size (bit-length of the numerators and denominators) which is polynomially bounded in the size of
the input coefficients. Similarly, we show that the quantification over y in the second condition need

4



only range over y’s with small rational coefficients as a counter example, if it exists, can be found
there. In fact, in both cases we show that the values of x and of y can be determined efficiently
once their support is known – and the solution is obtained by solving a set of linear equations.

Let us first consider choosing x. For x to be a symmetric Nash equilibrium (i.e. to satisfies
the first condition), with support exactly the set S of rows (and columns), it most be a solution
of the linear program that specifies that all pure strategies i ∈ S are best response to x, i.e.
u(i, x) ≥ u(j, x) for every i ∈ S and j (as well as that x is a probability distribution, i.e. xi ≥ 0
and

∑
i xi = 1). If the solution to this LP is unique then it can be found efficiently and is obtained

at a vertex of the polytope and is thus rational. If the solution is not unique, say x 6= y are both
solutions, then x can not be an ESS since the second condition will fail as y is a best response both
to x and to itself.

Now consider the situation that we have rational u and x and need to find a y that is a
counter example to the second condition. If such a y exists then clearly the “worst case” is at the
maximum of u(y, y)−u(x, y) over the y’s that satisfy u(y, x) = u(x, x). Now finding this maximum
is computationally difficult, but once we know the support S of y, it can be done efficiently. First the
support must be a subset of the set of pure best replies to x (this is equivalent to u(y, x) = u(x, x)).
Second, notice that we are looking here for the maximum of a quadratic form. Once the support
is known to be exactly S, it means that it is not obtained at the border (i.e. at locations where
the inequalities of the form yi ≥ 0 for i ∈ S are saturated). Thus the maximum must satisfy the
condition that all partial derivatives (relative to yi for i ∈ S) are zero (the equality

∑
i yi = 1

should first be eliminated by setting yn = 1−
∑

i<n yi). Since the derivatives are linear, this is just
a solution of linear equations.
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