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Abstract

This paper describes the Lempel-Ziv dimension (Hausdorff like di-
mension inspired in the LZ78 parsing), its fundamental properties and
relation with Hausdorff dimension. It is shown that in the case of
individual infinite sequences, the Lempel-Ziv dimension matches with
the asymptotical Lempel-Ziv compression ratio. This fact is used to
describe results on Lempel-Ziv compression in terms of dimension of
complexity classes and vice versa.

1 Introduction

Lutz [9] developed effective dimension (a Hausdorff like dimension) to quan-
titatively analyze the structure of complexity classes. Later, other authors
have developed dimensions such as constructive or finite-state dimension and
have found new connections with information theory. In particular, the mo-
tivation of this paper is the relation between dimension and compression. In
this context, it was shown that polynomial-time and finite-state dimension
can be characterized by the best compression ratio of polynomial-time and
finite-state compressors respectively [8, 4]. As consequence, some results on
dimension of complexity classes can be interpreted as compressibility results.

This paper focusses on the relation between dimension and the Lempel-
Ziv compressor (LZ78) [12, 11]. This compression algorithm is probably the
most widely studied of the universal compressors (compressors that do not
depend on the distribution of the sequence source). Previous results have
shown that polynomial-time and finite-state dimension are respectively a
lower and upper bound of the asymptotical Lempel-Ziv compression ratio
[8, 4]. However, by defining a dimension that matches the Lempel-Ziv com-
pression ratio, results on Lempel-Ziv compression could be directly used
to determine the dimension of some complexity classes. Alternatively, re-
searchers in the compression domain have pointed out that it would be in-
teresting to define a Hausdorff like dimension inspired in the LZ78 parsing,
and to see in which cases this dimension would match with the Hausdorff
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dimension. This is because it is expected that dimension would allow to
deal with open problems related with Lempel-Ziv compression.

This paper describes the Lempel-Ziv dimension (Hausdorff like dimen-
sion inspired in the LZ78 parsing), its fundamental properties and relation
with Hausdorff dimension. This dimension is naturally included in the ex-
isting hierarchy of dimensions defined until now. Furthermore, in the case
of individual sequences, the Lempel-Ziv dimension matches with the as-
ymptotical Lempel-Ziv compression ratio. This result is used to show some
applications on dimension of complexity classes. Finally, results on dimen-
sion and ergodic theory are used to partially solve the open question raised
by Lutz and others [6, 7] on the one-bit catastrophe in the LZ78 compressor.

This paper is distributed as follows. Section 2 outlines the preliminaries
on the Lempel-Ziv compressor, measure, entropy and dimension. Section 3
describes the polynomial-time and finite-state dimension and some results
related with compression. Section 4 develops the Lempel-Ziv dimension and
fundamental properties. Section 5 describes results on Lempel-Ziv compres-
sion in terms of results on dimension of complexity classes and vice versa
(in particular the one-bit catastrophe in the LZ78 compressor).

2 Preliminaries

Let a string be a finite and binary sequence w ∈ {0, 1}∗. Let |w| denote
the length of a string and λ the empty string. The Cantor space C is the
set of all infinite binary sequences. Let x[i . . . j] for 0 ≤ i ≤ j denote the
i-th through the j-th bits of x, where x ∈ {0, 1}∗ ∪ C. Let wx denote the
concatenation of the string w and the string or sequence x. Let w v x

denote that w is a prefix of x.
Let a parsing of a string w ∈ {0, 1}∗ be a partition of w into phrases

w1, w2, . . . , wn such that w1w2 . . . wn = w. Let a distinct parsing of a string
w ∈ {0, 1}∗ be a parsing of w such that no phrase, except possibly the last
phrase, is the same as an earlier phrase. Let a valid distinct parsing of a
string w ∈ {0, 1}∗ be a distinct parsing of w such that if wi is a phrase in the
string w, then every prefix of wi appears before wi in the distinct parsing.
Note that each string w has an unique valid distinct parsing.

The LZ78 compression algorithm encodes a given string with its valid
distinct parsing. This is done by replacing each phrase with a code word
representing a pointer and a bit. The pointer indicates the longest proper
prefix of the phrase and the bit is the last bit of the phrase. Together, they
completely specify the phrase being encoded. The output of the compression
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algorithm on the string w is denoted LZ(w). (See [11, 12] for more details).

2.1 Probability measures on C and entropy

Let Cw be the cylinder generated by a string w ∈ {0, 1}∗, given by Cw =
{S ∈ C | w v S}. Let F be the σ-algebra generated from the cylinder sets
of C. Let ν : F → [0, 1] be a countable additive, nonnegative measure with
total mass 1. Then, the triple (C,F , ν) is known as a probability space and
ν is a probability measure on C.

A measure ν is stationary if ν(T−1X) = ν(X) for all X ∈ F , where T is
the left-shift on C (i.e. for b ∈ {0, 1} and S ∈ C, T (bS) := S). A measure
ν is ergodic if any T -invariant set X (any set such that T−1X = X) has
ν(X) = 0 or ν(X) = 1.

On one hand, each probability measure ν is identified on C with a func-
tion µ : {0, 1}∗ → [0, 1] defined by µ(w) = ν(Cw). This function µ verifies
the following Kolmogorov’s consistency conditions

(i) µ(λ) = 1.

(ii) µ(w0) + µ(w1) = µ(w) for all w ∈ {0, 1}∗.

On the other hand, by Kolmogorov’s Existence Theorem [1], for each µ :
{0, 1}∗ → [0, 1] satisfying the consistence conditions, there exists a unique
probability measure ν on C such that ν(Cw) = µ(w). Then, for simplicity, a
function µ verifying (i) and (ii) will be referred also as a probability measure
on C.

Let the entropy of an stationary measure µ on C be:

H(µ) = limn
Hn(µ)

n
, where Hn(µ) =

∑

w∈{0,1}n µ(w) log 1
µ(w) .

Theorem 2.1 [3] (Entropy-rate Theorem) Let µ be a stationary ergodic
probability measure on C. Then, it exists a constant h ≥ 0, such that

lim
n

−
1

n
log µ(S[0 . . . n − 1]) = h

almost surely. This constant h is called the entropy rate of µ.

Theorem 2.2 [3] For a stationary measure µ, the entropy H(µ) is always
defined. If µ is a stationary ergodic measure, then the entropy rate h and
the entropy H(µ) are equal.
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2.2 Gales and Hausdorff dimension

Definition. Let s ∈ [0,∞).

1. An s-supergale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) ≥ 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.

2. An s-supergale d succeeds on a sequence S ∈ C if

lim sup
n

d(S[0 . . . n]) = ∞.

3. The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.

In 2003, Lutz [9] proved a characterization of classical Hausdorff dimension
in terms of the s-supergales.

Theorem 2.3 [9] For every X ⊆ C,

dimH(X) = inf{s ∈ [0,∞) | ∃ s-supergale d s.t. X ⊆ S∞[d]}.

3 Polynomial-time dimension, Finite-State

dimension and Lempel-Ziv compression

This section describes the polynomial-time and finite-state dimension and
some results related with compression.

Based in the characterization of classical Hausdorff dimension, Lutz de-
veloped resource-bounded dimension [9] by introducing a resource-bound ∆
and requiring the supergales to be ∆-computable.

dim∆(X) = inf{s ∈ [0,∞) | ∃ ∆-computable s-supergale d s.t. X ⊆ S∞[d]}.

This is the case of polynomial-time dimension that is defined by restrict-
ing attention to polynomial-time s-supergales (see [9] for further details).

Definition. The polynomial-time dimension of X ⊆ C is

dimp(X) = inf{s ∈ [0,∞) | ∃ p-computable s-supergale d s.t. X ⊆ S∞[d]}.

The polynomial-time dimension of a sequence S ∈ C is dimp(S) = dimp({S}).
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Also following this scheme, finite-state dimension is defined by restrict-
ing attention to s-supergales that are specified by finite-state devices (see
[4] for a complete introduction).

Definition. The finite-state dimension of a set X ⊆ C is

dimFS(X) = inf{s ∈ [0,∞) | ∃ finite-state s-supergale d s.t. X ⊆ S∞[d]}.

The finite-state dimension of a sequence S ∈ C is dimFS(S) = dimFS({S}).

The next proposition states that to add a string in the beginning of a
sequence does not change its polynomial-time neither the finite-state dimen-
sion.

Proposition 3.1 For all S ∈ C and w ∈ {0, 1}∗,

1. dimp(wS) = dimp(S).

2. dimFS(wS) = dimFS(S).

The polynomial-time dimension is characterized as the best asymptotic
compression-ratio attained by some special class of polynomial-time com-
pressors. Lempel-Ziv compressor is in this class. Then,

Proposition 3.2 [8] For every S ∈ C,

dimp(S) ≤ lim inf
n

|LZ(S[0 . . . n − 1])|

n
.

In [4] the authors obtained the following compressibility characterization
of finite-state dimension of a sequence,

dimFS(S) = ρFS(S)

where ρFS(S) is the best compression ratio attainable for the infinite se-
quence S by any information lossless finite-state compressor.

On the other side, it’s well known [12, 11] that

lim inf
n

|LZ(S[0 . . . n − 1])|

n
≤ ρFS(S).

Therefore, we can obtain the relationship between finite-state dimension
and Lempel-Ziv compresion.

Proposition 3.3 For every S ∈ C,

lim inf
n

|LZ(S[0 . . . n − 1])|

n
≤ dimFS(S).

Thus, the polynomial-time dimension and the finite-state dimension are
respectively a lower and upper bound of the Lempel-Ziv compression-ratio.
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4 Lempel-Ziv dimension

This section develops Lempel-Ziv dimension and its fundamental properties.
Notice that the previous section is a good example of the close relationship
between dimension and compression. The Lempel-Ziv dimension allows to
see the Lempel-Ziv compression under the dimension point of view.

The definition of the Lempel-Ziv dimension is motivated by [10]. In
this paper, the constructive dimension is defined by taking advantage of
the existence of an universal constructive subprobability measure [13]. This
allows us to center the definition in a single family of supergales {d̃s}s≥0,

cdim(X) = inf{s ∈ [0,∞) | X ⊆ S∞[d̃s]}.

The Lempel-Ziv algorithm (LZ78) is universal and asymptotically optimal
for finite-state compressors [11, 12]. Therefore, as in the case of construc-
tive dimension, we can define the Lempel-Ziv dimension in terms of a single
family of supergales, {ds

LZ}s≥0.

Definition. For each s ∈ [0,∞), let the Lempel-Ziv s-supergale ds
LZ be:

ds
LZ(λ) = 1

ds
LZ(w) =











2s|w|

n!
#{i∈{1...n} | uvwi}

n
if w = w1w2 . . . wnu

2s|w|

n! if w = w1w2 . . . wn

where w1, . . . wn are the distinct phrases in the valid distinct parsing of w

and u = wi for some i ∈ {1 . . . n}.

Observation 4.1 For every polynomial-time computable real s, the Lempel-
Ziv s-supergale is polynomial-time computable.

Proposition 4.2 The Lempel-Ziv s-supergale is optimal for the class of
finite-state s-supergales. That is, there exists α > 0 such that for all s ∈
[0,∞) and all d finite-state s-supergale,

ds
LZ(w) ≥ αd(w),

for every w ∈ {0, 1}∗ (long enough).

Observation 4.3 For all s, t ∈ [0,∞) and w ∈ {0, 1}∗,

ds
LZ(w)2−s|w| = dt

LZ(w)2−t|w|.
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Definition. The Lempel-Ziv dimension of X ⊆ C is,

dimLZ(X) = inf{s ∈ [0,∞) | X ⊆ S∞[ds
LZ]}.

The Lempel-Ziv dimension of a sequence S ∈ C is dimLZ(S) = dimLZ({S}).

Observation 4.4 For all X ⊆ Y ⊆ C, dimLZ(X) ≤ dimLZ(Y ).

The following theorem states that the Lempel-Ziv dimension of any set
X ⊆ C is completely determined by the dimension of the individual se-
quences in the set.

Theorem 4.5 For all X ⊆ C,

dimLZ(X) = sup
S∈X

dimLZ(S).

This theorem implies one important property of dimension, its countable
stability.

Corollary 4.6

1. For all sets X, Y ⊆ C,

dimLZ(X ∪ Y ) = max{dimLZ(X), dimLZ(Y )}.

2. Let X1, X2 . . . ⊆ C,

dimLZ(
∞
⋃

i=1

Xi) = sup
i∈N

dimLZ(Xi).

The main theorem of this section gives an exact characterization of the
Lempel-Ziv dimension of an infinite sequence in terms of the asymptotical
compression ratio attained by the Lempel-Ziv algorithm.

Theorem 4.7 Let S ∈ C,

dimLZ(S) = lim inf
n

|LZ(S[0 . . . n − 1])|

n
.

The following result is a consequence of Observation 4.1 and Proposition
4.2. By Theorem 4.7, the second part is a reformulation of Propositions 3.2
and 3.3 in terms of dimension.
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Theorem 4.8 Let X ⊆ C,

dimp(X) ≤ dimLZ(X) ≤ dimFS(X).

In particular, for all S ∈ C,

dimp(S) ≤ dimLZ(S) ≤ dimFS(S).

By Proposition 3.1 and Theorem 4.8 we have the following relationship be-
tween the Lempel-Ziv dimension of S and wS.

Theorem 4.9 Let S ∈ C and w ∈ {0, 1}∗, then

|dimLZ(S) − dimLZ(wS)| ≤ dimFS(S) − dimp(S).

In particular, if dimFS(S) = dimp(S), then for all w ∈ {0, 1}∗,

dimLZ(S) = dimLZ(wS).

A consequence of this Theorem is that for sequences such that the polynomial-
time dimension and finite-state dimension are equal, the one-bit catastrophe
(defined in the next section) is not verified.

Definition. Let the class LZBIT be the set of all sequences S such that for
all w ∈ {0, 1}∗, dimLZ(S) = dimLZ(wS).

We use Lempel-Ziv dimension to endow LZBIT with internal dimension
structure.

Definition. For X ⊆ C, the dimension of X in LZBIT is

dim(X |LZBIT) = dimLZ(X ∩ LZBIT).

5 Applications

In this section we partially solve the open question raised by Jack Lutz and
other authors [6, 7] on the one-bit catastrophe (without the need of studying
the asymptotic valid distinct parsing). We also give some results about the
Lempel-Ziv compressibility of sequences from results in polynomial-time and
finite-state dimension and vice versa.

The one-bit catastrophe conjecture says that the compression ratio of an
infinite sequence can change substantially when we add an initial bit on the
sequence. In terms of dimension the conjecture reads as: S ∈ C verifies the
one-bit catastrophe iff dimLZ(S) 6= dimLZ(bS) for some b ∈ {0, 1}. Let us
illustrate this conjecture with the following example.
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Example 5.1 Let S = 101100111000 . . . 1n0n . . . ∈ C that is clearly highly
compressed by Lempel-Ziv algorithm. Let t(w) be the number of phrases
in the valid distinct parsing of w ∈ {0, 1}∗. Let w1 = S[0 . . . 29], w2 =
S[0 . . . 109] and w3 = S[0 . . . 239]. Then,

t(w1) = 10 ⇒ |LZ(w1)| = 35 t(1w1) = 13 ⇒ |LZ(1w1)| = 53
t(w2) = 20 ⇒ |LZ(w2)| = 101 t(1w2) = 29 ⇒ |LZ(1w2)| = 146
t(w3) = 30 ⇒ |LZ(w3)| = 151 t(1w3) = 45 ⇒ |LZ(1w3)| = 271

In the case of S it seems that the longer the prefixes are, the better they are
compressed. However, in the case of the prefixes of 1S, it seems that LZ78
does not compress anything.

With results derived in this section, we will show that both sequences are
asymptotically highly compressible and do not verify the one-bit catastrophe.

5.1 Stochastic sequences and ergodic measures

In this subsection we present classes of stochastic sequences that do not ver-
ify the one-bit catastrophe with probability 1 and determine its Hausdorff,
polynomial-time and Lempel-Ziv dimension.

Definition. Let S ∈ C and m ∈ N. Let the relative probability for each
w ∈ {0, 1}m and each n ≥ m be

pm(w|S[0 . . . n − 1]) =
#{0 ≤ i ≤ n + m | S[i . . . i + m − 1] = w}

n − m + 1
.

The limiting relative probability is defined as

pm(w|S) = lim
n

pm(w|S[0 . . . n − 1]),

provided the limit exists.

Definition. A sequence S ∈ C is stochastic if pm(w|S) exists for any
m ∈ N and any w ∈ {0, 1}m. Let S ⊆ C denote the set of all stochastic
sequences.

Every stochastic sequence S ∈ S induces a unique stationary measure
on C, µS : {0, 1}∗ → [0, 1] such that µS(w) = p|w|(w|S). (See [1]).

Definition. Let µ be a stationary measure. The set of frequency typi-
cal sequences of µ is:

T (µ) = {S ∈ S | µS = µ}.
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Observation 5.2 Let S ∈ S and w ∈ {0, 1}∗, then wS ∈ S and wS ∈
T (µS).

The next results will be useful to determine the Lempel-Ziv dimension
of frequency typical sequences of a stationary ergodic measure.

Theorem 5.3 (LZ78 Universality Theorem) Let µ be a stationary ergodic
measure on C with entropy rate h and S ∈ T (µ) then,

lim
n

|LZ(S[0 . . . n − 1])|

n
= h almost surely.

From [2] we have the following result.

Proposition 5.4 Let µ be a stationary ergodic measure with entropy rate
h. For all S ∈ T (µ),

dimFS(S) = h.

Theorem 5.5 [5] Let µ be a stationary ergodic measure with entropy rate
h. The Hausdorff dimension of the set of frequency typical sequences of µ is
h. That is,

dimH(T (µ)) = h.

Corollary 5.6 Let µ be a stationary ergodic measure with entropy rate h,
then

1. dimp(T (µ)) = dimLZ(T (µ)) = h.

2. dim(T (µ) |LZBIT)) = h.

3. If S ∈ T (µ), then dimLZ(S) = h almost surely.

4. If S ∈ T (µ), then S ∈ LZBIT almost surely.

This corollary states that: (i) almost all frequency typical sequences of a
stationary ergodic measure have Lempel-Ziv compression ratio equal to the
entropy rate; (ii) the compression ratio of all of them is always less than h;
and (iii) almost all of them do not verify the one-bit catastrophe.

We use next the last Corollary in a particular class of measures, which
includes the uniform measure.

Definition. Let α ∈ [0, 1]. The α-coin-toss probability measure on C is

µα(w) = (1 − α)#(0,w)α#(1,w),
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where #(b, w) is the number of times that the bit b appears in the string w.
In other words, µα(w) is the probability that S ∈ Cw when S ∈ C is chosen
according to a random experiment in which the ith bit of S is decided by
tossing a 0/1-valued coin whose probability of 1 is α.

Proposition 5.7 Let α ∈ [0, 1] and let H be the binary entropy function
H : [0, 1] → [0, 1] defined by

H(α) = α log
1

α
+ (1 − α) log

1

1 − α
.

Then, µα is a stationary ergodic measure with entropy rate H(α).

Definition. A sequence S ∈ C is normal (S ∈ NORMAL) if S ∈ T (µ
1

2 ).
That is, S is normal if every string w ∈ {0, 1}∗ has asymptotic frequency
2−|w| in S.

Theorem 5.8 Let α ∈ [0, 1].

1. dimH(T (µα)) = dimp(T (µα)) = dimLZ(T (µα)) = H(α).

2. dim(T (µα) |LZBIT) = H(α).

3. For S ∈ T (µ), dimLZ(S) = H(α) almost surely.

4. For S ∈ T (µ), S ∈ LZBIT almost surely.

In particular,

1. dimH(NORMAL) = dimp(NORMAL) = dimLZ(NORMAL) = 1

2. dim(NORMAL |LZBIT) = 1.

3. For S ∈ NORMAL, dimLZ(S) = 1 almost surely.

4. For S ∈ NORMAL, S ∈LZBIT almost surely.

In [7] it is proved that sequences with Lempel-Ziv dimension 1 (that is,
sequences that Lempel-Ziv algorithm does not compress) are in NORMAL.
However, it is also showed that the converse does not hold. Notice that here
we show that almost all normal sequences have dimLZ(S) = 1 and do not
verify the one-bit catastrophe.

Since the binary entropy function is surjective on [0,1], then we have
that there exist sequences with Lempel-Ziv compression ratio η (for any
η ∈ [0, 1]) that don’t verify the one-bit catastrophe:

Corollary 5.9 For all η ∈ [0, 1] there exist sequences S ∈ LZBIT with
dimLZ(S) = η.
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5.2 Highly LZ compressible sequences.

Definition. An infinite sequence S ∈ C is highly LZ compressible if

lim inf
n

|LZ(S[0 . . . n − 1])|

n
= 0

That is, in terms of Lempel-Ziv dimension, dimLZ(S) = 0.

Definition. Let S ∈ C and m ∈ Z+,

1. The factor set Fm(S) is the set of all finite strings of length m that
appear in S.

2. The factor complexity function, pS : N → N, counts the number of
factors of each m, that is pS(m) = |Fm(S)|.

In [2] it is proved that finite-state dimension of sequences with pS(m) =
2o(m) are equal to zero. Then we have the following theorem.

Theorem 5.10 Every S ∈ C with pS(m) = 2o(m) is highly LZ compressible
and S ∈ LZBIT.

In particular, by using this result on example 5.1, sequence S is highly
compressible and S ∈ LZBIT since S satisfies pS(m) = m(m + 1).

Other applications of this Theorem are,

Corollary 5.11

1. If S is the binary expansion of a rational number, S is highly LZ
compressible and S ∈ LZBIT.

2. Sturmian sequences, Morphic sequences, Automatic sequences are highly
LZ compressible and are in LZBIT (See [2]).

3. Every S ∈ REG is highly LZ compressible and S ∈ LZBIT.

References

[1] P. Billingsley. Probability and Measure. John Wiley & Sons, Inc., New
York, N.Y., 1979.

[2] J. M. Hitchcock C. Bourke and N. V.Vinodchandran. Entropy rates
and finite-state dimension. Theoretical Computer Science, 349, 2004.

12



[3] T.M. Cover and J.A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., New York, N.Y., 1991.

[4] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state
dimension. Theoretical Computer Science, 310:1–33, 2004.

[5] K. Hojo, B. Ryabko, and J. Suzuki. Performance of data compres-
sion in terms of hausdorff dimension. TIEICE: IEICE Transactions
on Communications/Electronics/ Information and Systems, 310:1761–
1764, 2001.

[6] P.C. Shields L.A. Pierce II. Sequences incompressible by SLZ (LZW)
yet fully compressible by ULZ. Numbers, Information and Complexity,
Kluwer Academic Publishers, pages 385–390, 2000.

[7] J. I. Lathrop and M. J. Strauss. A universal upper bound on the perfor-
mance of the Lempel-Ziv algorithm on maliciously-constructed data. In
B. Carpentieri, editor, Compression and Complexity of Sequences ’97,
pages 123–135. IEEE Computer Society Press, 1998.
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Appendix

Proof of Proposition 4.2. We will need the following results and def-
initions in our proof.

Definition. A finite-state compressor (FSC) is a 4-tuple C = (Q, δ, ν, q0)
where

· Q is a nonempty, finite set of states.

· δ : Q × {0, 1}∗ → Q is the transition function.

· ν : Q × {0, 1} → {0, 1}∗ is the output function.

· q0 is the initial state.

For q ∈ Q and w ∈ {0, 1}∗, we define the output from state q on input w to
be the string ν(q, w) defined by recursion

ν(q, λ) = λ

ν(q, wb) = ν(q, w)ν(δ∗(q, w), b)

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Here δ∗ : Q × {0, 1}∗ → Q is defined by
the recursion

δ∗(q, λ) = q

δ∗(q, wb) = δ(δ∗(q, w), b)

for all q ∈ Q, w ∈ {0, 1}∗ and b ∈ {0, 1}; we write δ(w) for δ∗(q0, w). We then
define the output of C on input w ∈ {0, 1}∗ to be the string C(w) = ν(q0, w).

Definition. An FSC C = (Q, δ, ν, q0) is information-lossless (IL) if the func-
tion

{0, 1}∗ → {0, 1}∗ × Q

w 7→ (C(w), δ(w))

is one-to-one. An information-lossless finite-state compressor (ILFSC) is an
FSC that is IL.

Definition. A finite state gambler (FSG) is a tuple G = (Q, δ, β, q0) where

· Q is nonempty, finite set of states.
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· δ : Q × {0, 1} → Q is the transition function.

· β : Q × {0, 1} → Q ∩ [0, 1] is the betting function, which satisfies

β(q, 0) + β(q, 1) = 1

for all q ∈ Q.

· q0 is the initial state.

We extend δ to the transition function δ : {0, 1}∗ → Q that is defined as
before.

Definition. Let G = (Q, δ, β, q0) be a finite-state gambler, the martingale of
G is the function dG : {0, 1}∗ → [0,∞) defined by the recursion

dG(λ) = 1

dG(wb) = 2dG(w)[(1 − b)(1 − β(δ(w))) + bβ(δ(w))]

for all w ∈ {0, 1}∗ and b ∈ {0, 1}.

Definition. For s ∈ [0,∞) a finite-state s-gale d is an s-gale for which
there exists an FSG G such that d = 2(s−1)|w|dG(w).

Lemma. Let G = (Q, δ, β, q0) be a nonvanishing 1-account finite-state gam-
bler (FSG). Then, for every w ∈ {0, 1}∗ with w0 . . . wn−1 its valid distinct
parsing, there exists C = C(w, G) = (Q′, δ′, ν ′, q′0) ILFSC such that

|C(w)| ≤ n + |w| − log dG(w)

Proof. Let ki = |wi| and k = max{ki | 1 ≤ i ≤ n}. Let qi = δ(w0 . . . wi) and
Gi = (Q, δ, β, qi). Define pi : {0, 1}ki → [0, 1] by

pi(u) = 2−kidGi
(u).

Since dGi
is a martingale with dGi

(λ) = 1, each of the functions pi is a
positive probability measure on {0, 1}ki .

For each qi ∈ Q let Si : {0, 1}ki → {0, 1}∗ be the Shannon code (see [3])
given by the probability measure pi. Then,

Si(u) = dlog
1

pi(u)
e.

For all u ∈ {0, 1}ki and i ∈ {0, . . . n − 1}. We define the FSC C =
(Q′, δ′, ν ′, q′0) whose components are as follows.

15



(i) Q′ = Q × {0, 1, . . . n} × {0, 1}<k.

(ii) For all (q, m, u) ∈ Q′ and b ∈ {0, 1},

δ′((q, m, u), b) =

{

(q, m, ub) if |u| < km+1 − 1
(δ(q, ub), m + 1, λ) if |u| = km+1 − 1

(iii) For all (q, m, u) ∈ Q′ and b ∈ {0, 1},

ν ′((q, m, u), b) =

{

λ if |u| < km+1 − 1
Si(ub) if |u| = km+1 − 1

(iv) q′0 = (q0, 0, λ).

Since Si is a uniquely decodable code, its easy to see that the FSC C is IL.
Now, C(w) = S0(w0) . . .Sn−1(wn−1) and then

|C(w)| =
n−1
∑

i=0

|Si(wi)| =
n−1
∑

i=0

⌈

log
1

pi(wi)

⌉

≤
n−1
∑

i=0

(

1 + log
2|wi|

dGi

)

= n + |w| − log dG(w).

�

Let d be a finite-state s-gale, by definition there exists a nonvanishing 1-
account finite-state gambler (FSG) G such that d(w) = 2(s−1)|w|dG(w). By
the previous lemma, for each w there exists C = C(w, G) ILFSC such that

d(w) ≤ 2s|w|+n−|C(w)|

So, it’s suffices to prove that for all w ∈ {0, 1}∗ there exists α > 0 (not
depending on w) such that for all C = C(w, G),

α2s|w|+n−|C(w)| ≤ dLZ(w)

Let w such that w1, w2 . . . wn is the valid distinct parsing of w. Then

dLZ(w) ≥ 2s|w|

n! · 1
n
. By the following formula

log n! = n log n − n + O(log n),

we only need to show that

α2n−|C(w)| ≤ 2−n log n−O(log n)

16



It is known [12] that

|C(w)| ≥ (n + ξ2) log
n + ξ2

4ξ2
+ 2ξ2

where |Q′| = ξ. And there exists α > 0 such that for n ∈ N long enough we
have that

α2
−(n+ξ2) log n+ξ2

4ξ2
−2ξ2

≤ 2−n log n−O(log n)

Then, for w long enough, we have that dLZ is optimal in the class of
finite-state s-gales.

Proof of Theorem 4.5. Let X ⊆ C and let s′ = supS∈X dimLZ(S). It is
clear by Observation 4.4 that dimLZ(X) ≥ s′.

To see that dimLZ(X) ≤ s′, let s be a real number such that s > s′, it
sufficies to show that dimLZ(X) ≤ s.

Since s > s′, for each S ∈ X, ds
LZ succeeds on S and this proves that

dimLZ(X) ≤ s.

Proof of Theorem 4.7. We first prove the following lemma.

Lemma. Let S ∈ C,

dimLZ(S) = inf{s ∈ [0,∞) | lim sup
n

ds
LZ(S[0 . . . n − 1]) > 1}.

Proof. By definition of dimLZ we have

dimLZ(S) ≥ inf{s ∈ [0,∞) | lim sup
n

ds
LZ(S[0 . . . n − 1]) > 1}.

To see the other inequality, let

s′ = inf{s ∈ [0,∞) | lim sup
n

ds
LZ(S[0 . . . n − 1]) > 1}

and let t′ > t > s′. Then by Observation 4.3,

lim sup
n

dt′

LZ(S[0 . . . n − 1]) = lim sup
n

2(t′−t)ndt
LZ(S[0 . . . n − 1]) = ∞

�

To prove that dimLZ(S) ≥ lim infn
|LZ(S[0...n−1])|

n
, let s ≥ dimLZ(S). By

the previous lemma,

lim sup
n

ds
LZ(S[0 . . . n − 1]) > 1

17



and there exist infinitely many n ∈ N such that ds
LZ(S[0 . . . n−1]) > 1. That

is,

∃∞n
2sn

z(S[0 . . . n − 1])!
·

ρ(S, n)

z(S[0 . . . n − 1])
> 1 (1)

where z(S[0 . . . n − 1]) denotes the number of different phrases in the valid
distinct parsing of S[0 . . . n − 1] and ρ(S, n) is the number of phrases in
S[0 . . . n − 1] such that are extensions of the last phrase.

From (1), there exist infinitely many n ∈ N such that

s >
log(z(S[0 . . . n − 1])(z(S[0 . . . n − 1]))!) − log(ρ(S, n))

n

≥

∑z(S[0...n−1])
k=1 log k

n
−

log(ρ(S, n))

n

Since ρ(S, n) ≤ n, taking n’s large enough, there exist infinitely many n ∈ N

such that

s >

∑z(S[0...n−1])
k=1 log k

n
. (2)

It is known [3] the following bound on the number of phrases t(n) in a
distinct parsing of a binary sequence of length n:

t(n) ≤
n

(1 − εn) log n
(3)

where εn → 0 as n → ∞.

Then, by (2) and (3)

s > lim inf
n

∑z(S[0...n−1])
k=1 log k

n
=

lim inf
n

∑z(S[0...n−1])
k=1 dlog ke + z(S[0 . . . n − 1])

n
=

lim inf
n

|LZ(S[0 . . . n − 1])|

n

which prove the inequality

dimLZ(S) ≥ lim inf
n

|LZ(S[0 . . . n − 1])|

n

To see the other inequality, let s > lim infn
|LZ(S[0...n−1])|

n
. In the same

manner that before, we can see that there exist infinitely many n ∈ N such
that
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s >
log(z(S[0 . . . n − 1])!) − log(ρ(S, n))

n

From this,

lim sup
n

ds
LZ(S[0 . . . n − 1]) ≥

lim inf
n

ds
LZ(S[0 . . . n − 1]) ≥

lim inf
n

2sn

z(S[0 . . . n − 1])!
ρ(S, n) > 1

and s ≤ dimLZ(S), which proves the theorem.

Proof of Theorem 4.9. Let S ∈ C and w ∈ {0, 1}∗.
If dimLZ(S) = dimLZ(wS) the proof is obvious.
If dimLZ(S) > dimLZ(wS) then by Theorem 4.8 and Proposition 3.1

dimLZ(S) − dimLZ(wS) ≤ dimFS(S) − dimp(wS)

= dimFS(S) − dimp(S).

If dimLZ(wS) > dimLZ(S) similarly,

dimLZ(S) − dimLZ(wS) ≤ dimFS(wS) − dimp(S)

= dimFS(S) − dimp(S).

Proof of Theorem 5.3. Let µ be a stationary ergodic measure on C with
entropy rate h and S ∈ T (µ). In [12] it is proved that

lim sup
n

|LZ(S[0 . . . n − 1])|

n
≤ h

almost surely. To see the other inequality, let

An = {w ∈ {0, 1}n | |LZ(w)| ≤ − log µ(w) − log n}.

The measure of An is

µ(An) =
∑

w∈An

µ(w) ≤ 2− log n
∑

w∈An

2−|LZ(w)| ≤
1

n

where the last inequality it follows from Kraft’s inequality [3]. Then, µ(An)
tends to zero with n and

|LZ(w)| + log n ≥ − log µ(w), (4)
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almost surely.
Let S ∈ T (µ), then by (4)

lim inf
n

|LZ(S[0 . . . n − 1])|

n
≥ lim inf

− log µ(S[0 . . . n − 1])

n
= h

almost surely.

Proof of Proposition 5.4. We will need the following result by [2].

Theorem. For every S ∈ C, dimFS(S) = H(S), where H(S) is the block-
entropy rate of S.

From the definition of block-entropy rate of S (see [2]), if S is an stochastic
sequence then H(S) = H(µS).

Let µ be a stationary ergodic measure with entropy rate h and let S ∈
T (µ). Then,

H(S) = H(µS) = H(µ) = h.

Proof of Proposition 5.5. It is well known that

dimH(X) ≤ dimp(X) ≤ dimFS(X) (5)

Let µ be an ergodic measure with entropy rate h. By Proposition 5.4 and
(5), dimH(X) ≤ h.

We next prove that the other inequality holds. Let ε > 0 and let An be
the typical set with respect µ,

An = {w ∈ {0, 1}n | 2−n(h+ε) ≤ µ(w) ≤ 2−n(h−ε)} (6)

The number of elements in An is at least (1 − ε)2n(h−ε). This follows
from the Entropy-rate Theorem, for any δ > 0, there exists an n0 such that
for all n ≥ n0, we have

µ(An) = µ({w ∈ {0, 1}n | | −
1

n
log µ(w) − h| ≤ ε}) > 1 − δ. (7)

Setting δ = ε we obtain that, for n sufficiently large, µ(An) > 1− ε, so that

1 − ε < µ(An) ≤
∑

w∈An

µ(w)

≤
∑

w∈An

2−n(h−ε) = 2−n(h−ε)|An|
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Hence
|An| ≥ (1 − ε)2n(h−ε) (8)

Let d be an s-supergale that succeeds on T (µ). Without loss of generality
we can assume that d(λ) = 1. Let

Bn = {w ∈ {0, 1}n | d(w) > 1}

Let S ∈ T (µ). By the Entropy-rate Theorem, for n sufficiently large,
S[0 . . . n − 1] ∈ An. Since S ∈ S∞[d], it follows that there exist infinitely
many n ∈ N such that An ⊆ Bn. From this,

1 = d(λ) ≥
∑

w∈Bn

d(w)2−sn

≥
∑

w∈Bn

2−sn

≥
∑

w∈An

2−sn

= |An|2
−sn

Therefore, |An| < 2sn and by (8), 2sn > (1 − ε)2(h−ε)n. Since this holds for
all ε > 0, it follows that dimH(T (µ)) ≥ h.

Proof of Proposition 5.7. Let α ∈ [0, 1]. We first prove that H(µα) =
H(α). Notice that µα can be defined as the product measure based on
µα

1 : {0, 1} → [0, 1] where µα
1 (b) = µα(b). That is,

µα(w) = µα
1 (w[0])µα

1 ([2]) . . . µα
1 (w[n − 1]) (9)

for each n ∈ N and w ∈ {0, 1}n. This it follows immediately from

µα
1 (b) =

{

α if b = 1
1 − α if b = 0

Then we find that

Hn(µα
n) = H1(µ

α
1 ) + H1(µ

α
1 ) . . . + H1(µ

α
1 ) = nH1(µ

α
1 )

and from that

H(µ) = lim
n

nH1(µ
α
1 )

n
= µα(0) log

1

µα(0)
+ µα(1) log

1

µα(1)
= H(α)

21



We let now prove that µα is a stationary ergodic measure. That is, the
measure induced by µα,

να : F → [0, 1]

Cw 7→ µα(w)

is stationary and ergodic.
To see that να is stationary it suffices to prove that for all w ∈ {0, 1}∗

να(T−1Cw) = να(Cw). (10)

This is because F is the σ-algebra generated from {Cw |w ∈ {0, 1}∗}. Notice
that T−1(Cw) = C0w ∪ C1w and (10) is equivalent to

µα(0w) + µα(1w) = µα(w)

that it follows from 9.
We let prove that να is an ergodic measure. Let w ∈ {0, 1}n and u ∈

{0, 1}m, we have that

να(T−N (Cw) ∩ Cu) = να(Cw)να(Cu)

for sufficient large values of N (for example N > m). Then, for all X1, X2 ∈
F we have that

lim
n→∞

να(T−nX1 ∩ X2) = να(X1)ν
α(X2)

This implies ergodicity, for if T−1X = X then we have that να(X) =
να(X ∩ X) = να(X)να(X) and να(X) = 0 or να(X) = 1.
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