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Abstract

NP-complete problems cannot have efficient algorithms unless P = NP. Due to their impor-

tance in practice, however, it is useful to improve the known exponential-time algorithms for

NP-complete problems. We survey some of the recent results on such improved exponential-time

algorithms for the NP-complete problems satisfiability, graph colorability, and the domatic num-

ber problem. The deterministic time bounds are compared with the corresponding time bounds

of randomized algorithms, which often run faster but only at the cost of having a certain error

probability.

Key words: Exact computation, exponential-time algorithms, deterministic

algorithms, randomized algorithms

1 Introduction

The design and analysis of algorithms is the core of computer science. Unfortunately, many problems
that are important in practice are intractable—they currently do not have efficient (i.e., polynomial-
time) algorithms. Among these problems, the NP-complete problems are particularly prominent:
Unless P = NP, no NP-complete problem is in P. Here, P is the class of problems solvable in
deterministic polynomial time, and NP contains all problems solvable in nondeterministic polynomial
time.

The theory of NP-completeness was pioneered by Cook [Coo71], Karp [Kar72], and Levin [Lev73],
see Garey and Johnson [GJ79] for an excellent guide to the theory of NP-completeness. To compare
the complexity of two given problems, A and B, the polynomial-time many-one reducibility (≤p

m)
is used: A≤p

m B if and only if there is a polynomial-time computable function f such that x ∈ A
if and only if f(x) ∈ B. A set B is NP-hard if and only if every NP set A ≤p

m-reduces to B. If B
is NP-hard and contained in NP, then B is said to be NP-complete. In this sense, NP-complete
problems are the hardest problems in NP.

Plenty of problems have been shown NP-complete. In order to cope with the intractability of
NP-complete problems in practice, various approaches have been proposed, among them parame-
terized complexity, approximation, and randomization. In this paper, we survey the recent progress
on improving the known exact algorithms for such hard problems, both deterministic and random-
ized ones. Since these are exponential-time algorithms, there is some constant c > 1 such that
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the algorithm runs in time Õ(cn) in the worst case, where—as is common for exponential-time
algorithms—the Õ notation is used to neglect polynomial factors: Õ(f(x)) = O(poly(x) · f(x)),
where poly is a fixed polynomial. This definition is reasonable for exponential time. For example,
if n = 10, 000 then the running time of n2 · 1.5n lies between 1.5027n and 1.5028n.

Suppose we want to improve an exponential-time algorithm for some hard problem that runs in
time Õ(cn). Our goal then is to decrease the constant c > 1. For example, if the trivial algorithm run-

ning in time, say, Õ(3n) can be improved to an algorithm running in time Õ
(

(√
3
)n

)

≈ Õ(1.732n),

then this improved algorithm can solve—in the same amount of time—problem instances twice as

large as those solvable by the trivial algorithm, since
(√

3
) 2n

= 3n. This difference can be quite
important in practice.

We present both deterministic and randomized exponential-time algorithms for the NP-complete
problems satisfiability, colorability, and the domatic number problem. While such algorithms for the
first two problems have been intensely investigated since many years, there are rather few results
for the domatic number problem. In each case, we merely give the rough idea of how the algorithms
work. For other recent surveys on this topic, we refer to Schöning [Sch05], Woeginger [Woe03], and
Fomin, Grandoni, and Kratsch [FGK05].

This survey is organized as follows. Section 2 presents exact algorithms for the satisfiability
problem, and in particular for 3-SAT. Section 3 describes recent improvements on solving the graph
colorability problem, again with a special focus on the case of 3-Colorability. The domatic number
problem is dealt with in Section 4, and we again pay particular attention to the special problem 3-DNP.
Finally, Section 5 summarizes the results presented and gives an outlook.

2 Satisfiability

A boolean formula F = F (X, C) in conjunctive normal form (CNF) consists of a set of boolean
variables X = {x1, x2, . . . , xn} and of a set of conjunctions of clauses C = {c1, c2, . . . , cm} over
literals from X . A literal is either a variable xi ∈ X or its negation xi. For a given CNF formula F ,
the satisfiability problem, denoted by SAT, asks whether there exists a truth assignment t : X → {0, 1}
such that every clause of C has at least one satisfied literal, i.e., t maps this literal to the value true

(represented by 1). When the input is restricted to clauses with at most k literals each, this problem
is called k-SAT.

Let t′ be a partial truth assignment of the variables, where not all variables have been mapped to
one of the values 0 or 1. The formula resulting from applying this partial assignment to formula F is
denoted by F|t′ : All clauses of F containing at least one literal satisfied by t′ can already be discarded
and so do not occur in F|t′ , while literals of F set to false by t′ are removed from their clauses in F|t′ .
It is clear that if this procedure produces an empty clause, then the partial assignment t′ cannot
be extended to a satisfying truth assignment of F . On the other hand, if F|t′ is the empty formula,
then every complete extension of t′ satisfies F .

Deciding whether a boolean formula is satisfiable was the first problem proven to be NP-complete
by Cook [Coo71] and, independently, by Levin [Lev73]. The restricted version k-SAT remains NP-
complete for k ≥ 3, whereas 2-SAT is solvable in polynomial time. The naive algorithm for the
satisfiability problem has a running time of Õ(2n). It looks up every possible truth assignment t
and verifies if t satisfies the boolean formula F . The worst-case time bounds for all exponential-time
algorithms solving SAT in this survey are with respect to the number n of variables. There are only
a few results where the number m of clauses is regarded as the size of the input. For example,
Hirsch [Hir00] obtains a running time of Õ(1.2389m), which was then improved by Yamamoto to
a worst-case bound of Õ(1.2335m) [Yam05]. Yamamoto’s algorithm will be used in Section 4 for
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solving the domatic number problem. For the rest of this section, the restricted version 3-SAT will
be analyzed, and all time bounds mentioned are with respect to the number n of boolean variables.

Starting with a simple idea for solving 3-SAT, one can improve the running time of the trivial
algorithm to Õ(1.9130n). Since each clause has at most three literals, one of the eight partial
assignments of the three boolean variables cannot lead to a satisfied formula. For instance, if the
clause c = (`1, `2, `3) is contained in the formula F , the case `1 = `2 = `3 = 0 can be omitted. This
technique is called “pruning the search tree,” since dead ends of the computation tree are cut off
once they have been detected. Processing the formula F clause by clause, this simple algorithm runs
in time Õ((23 − 1)n/3) = Õ(1.9130n).

Monien and Speckenmeyer were the first to give a better time bound [MS85]. Refining the above
algorithm, they end up with a running time of Õ(1.6181n) for 3-SAT. Most crucially, they notice
that once a clause c = (`1, `2, `3) has been picked from the given formula F , it suffices to branch into
the three cases F|`1=1, F|`1=0,`2=1, and F|`1=`2=0,`3=1. The computation is split into cases having
one, two, or three variable(s) fewer than before, which yields the recursion

T (n) ≤ T (n − 1) + T (n − 2) + T (n − 3).

Here, T (n) is defined as the worst-case running time of the algorithm on an input with n variables left.
Using standard methods, this bound is T (n) = αn, where α = 1.8393 is the largest real root of the
equation α3−α2−α−1 = 0. Monien and Speckenmeyer improve this idea even further by taking into
consideration autark partial assignments, which are partial assignments t′ that satisfy each clause
in which any literal being assigned by t′ occurs. Autarkness can be recognized in polynomial-time,
and for every autark partial assignment of F , the formulas F and F|t′ are equivalent. Hence, either
the algorithm recurses into the (polynomially recognizable) case of autarkness, where at least one
variable is eliminated, or a partial assignment is chosen which decreases the size of one remaining
clause. This analysis leads to a worst-case time bound of Õ(1.6181n).

By a deeper analysis of all the different subcases which can occur when inserting a partial
assignment, the running time has been pushed down even further, see Schiermeyer [Sch92, Sch96b]
and Kullmann [Kul97, Kul99]. In Table 1, these results are listed as well. Instead of analyzing dozens
of subcases to reach better worst-case bounds, other ideas than backtracking will be discussed for
the rest of this section.

Next, an algorithm proposed by Pudlák [Pud98] will be presented. Though it does not outperform
the general backtracking algorithms, the way to search for a valid solution is quite nice. Rather than
splitting the computation paths when assigning a truth value to a certain variable, Pudlák’s idea is to
divide the variable set X into half, and first solve the satisfiability problem for the clauses containing
only variables from one of the two halves. This is a classical divide and conquer approach. Note
that it is not quite obvious how to extend the divide process after the first level.

Let F = F (X, C) be a given boolean formula in 3-CNF. Without loss of generality, assume that
the number n of variables is even. Define X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} to be
the halved variable sets. Let C1 and C2 be subsets of C whose clauses contain only variables from
the sets X1 and X2, respectively. The rest of the clauses, in which variables from both X1 and X2

occur, are put into the set C3. At first, the algorithm solves the two 3-SAT instances F1 = F1(X1, C1)
and F2 = F2(X2, C2), which can be done with the naive algorithm in time Õ(2n/2) = Õ(1.4143n).
Let the set of satisfying truth assignments for F1 and F2 be called S1 and S2, respectively. Both
sets are regarded as lists. If one of them is empty, the algorithm terminates, since then F is also
unsatisfiable. Otherwise, for every s ∈ S1, evaluate each clause c ∈ C3 containing exactly two literals
over X1. Either one literal is true and c evaluates to true, or both literals are false, in which case the
third literal over X2 has to be set to true. The same is done for each partial assignment s ∈ S2. In
the next step, the algorithm tries to find a matching pair, s1 ∈ S1 and s2 ∈ S2, so that both partial
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assignments agree on every variable which has been set so far. Now, the trivial 2n barrier can be
beaten by constructing two separate methods, one of which performs well on partial assignments
with many variables set to truth values, while the other one is relatively fast when truth values have
been assigned to only a few variables. This way Pudlák achieves a running time of Õ(1.8487n),
which of course is not competitive to the 3-SAT algorithms examined so far.

Another drawback of Pudlák’s method is that it is limited to the restricted case 3-SAT; by contrast,
all other SAT-algorithms presented in this survey can be extended to solve the general k-SAT problem.

The last deterministic algorithm for the satisfiability problem discussed here is based on a local
search method introduced by Schöning [Sch99]. Although this approach was originally used to
design a randomized algorithm for the satisfiability problem, the method can be adapted to yield
a deterministic algorithm by a few modifications, i.e., an algorithm that always finds the correct
solution. This derandomization is described in [DGH+02]. The algorithm was slightly improved
in [BK04], which yields the currently best known time bound Õ(1.4726n) for deterministic algorithms
solving 3-SAT.

Suppose the boolean formula F = F (X, C) is given and is satisfied by a truth assignment s.
The local search method works as follows. To eventually reach this satisfying assignment, the local
search method first guesses an initial truth assignment t at random. Define the Hamming distance
d between s and t as the number of bits in which they differ. If t itself is a satisfying assignment,
the algorithm outputs that F is satisfiable. Otherwise, F is not satisfied by t, therefore in at
least one clause ci = (`i1, `i2, `i3) of C, all three literals are set to false by t. By recursing into
the three subcases where the value of exactly one literal of ci is flipped, the Hamming distance
to the satisfying assignment s has been decreased by one for at least one branch of the recursion
tree. If the Hamming distance between the initial assignment t and the satisfying assignment was
d, this method would find s in time Õ(3d). Starting from the two assignments 0n and 1n, the
algorithm is within Hamming distance of at most n/2 of a possible satisfying truth assignment, so
this simple deterministic procedure already has a worst-case running time of Õ(3n/2) = Õ(1.7321n).
Dantsin et. al [DGH+02] further refined this idea by computing a suitable covering code, which is
a set of initial assignments that, given an optimally chosen Hamming distance d, will reach every
possible satisfying assignment s ∈ {0, 1}n through the local search method. Deeper analysis of the
number of starting assignments and the Hamming distance led to the currently best worst-case time
bound of Õ(1.4726n) for 3-SAT by Brueggemann and Kern [BK04].

Turning to randomized algorithms for 3-SAT, two basic probabilistic methods will be sketched.
The first concept is based on a method by Paturi, Pudlák, and Zane [PPZ97]. Their simple algorithm
first guesses a permutation π on the set {1, 2, . . . , n}. Then, a random value from {0, 1} is assigned
to each bit of xπ(x), and the formula is simplified by omitting clauses that contain satisfied literals
and by dropping false literals, just as with evaluating partial assignments. At the end of the for-loop,
the algorithm either ends up with an empty formula, in which case a satisfying truth assignment has
been found, or it runs across an empty clause, which means that the formula is unsatisfiable, or the
wrong random choices have been made. The error rate in the second case is at most 1/2 for each
variable guess. Thus, the probability p to succeed in one cycle sums up to p ≥ (1/2)n if formula F
is satisfiable. Standard calculations show that repeating this process r times, where r ≥ ln(1 + ε)/p,
leads to an error rate below ε. Not considering the simplifications during the probabilistic moves,
this approach results in a running time of poly(n)/(1/2)n ∈ Õ(2n). Note that this time bound is
not better than the trivial 3-SAT bound. However, the expected running time can be considerably
improved by checking whether there exists a unit clause c = (xi) or c = (xi) before each step i of the
computation. In this case, the value of the variable xi can be set to true or false, respectively, in a
(correct) deterministic way, assuming that all the previous choices were correct. Paturi, Pudlák, and
Zane [PPZ97] show that this boosts the success probability of one turn to p ≥ (1/2)(2n/3), leading
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Source Type Bound

trivial algorithm deterministic & randomized 2n

simple backtracking deterministic 1.9130n

Pudlák [Pud98] deterministic 1.8487n

Monien and Speckenmeyer [MS85] deterministic 1.6181n

Schiermeyer [Sch96b] deterministic 1.4970n

Kullmann [Kul99] deterministic 1.4963n

Dantsin et al. [DGH+02] deterministic 1.4802n

Brueggemann and Kern [BK04] deterministic 1.4726n

Paturi, Pudlák, and Zane [PPZ97] randomized 1.5875n

Paturi et al. [PPSZ05] randomized 1.3632n

Schöning [Sch99] randomized 1.3334n

Hofmeister et al. [HSSW02] randomized 1.3302n

Baumer and Schuler [BS03] randomized 1.3290n

Iwama and Tamaki [IT04] randomized 1.3238n

Rolf [Rol05] randomized 1.3222n

Table 1: Worst-case time bounds for 3-SAT

to a random algorithm of complexity poly(n) · 22n/3 ∈ Õ(1.5875n) for 3-SAT.
In a follow-up paper, Paturi, Pudlák, Saks, and Zane [PPSZ05] improve this bound even further

to Õ(1.3632n). The clauses of the formula F can be preprocessed before each random step, making
the occurance of unit clauses, and therefore deterministic choices, much more likely. The decreased
rate of possible wrong guesses then straightforwardly leads to a smaller number r of repetitions
needed in the algorithm.

The second probabilistic approach is called randomized walk, and it is closely related to the
deterministic local search method presented above. The idea is due to Schöning [Sch99]. Just as
with local search, the random walk algorithm starts with an initial random assignment t ∈ {0, 1}n

for the formula F = F (X, C). If t does not satisfy F , an unsatisfied clause c = (`1, `2, `3) is chosen,
but instead of splitting into the three subcases by setting exactly one literal of c to true, the variable
to be flipped is chosen at random. If after 3n bit flips no satisfying truth assignment has been
found, the process is restarted with another random initial assignment t′. In order to determine
the number r of repetitions needed, the error rate for each loop has to be bounded. Since the
probabilistic algorithm can make errors only if the given formula F is satisfiable, suppose that F is
satisfiable via some assignment s. The probability that the Hamming distance between s and the
initial guess t ∈ {0, 1}n is d equals

(

n
d

)

· 2−n. As each clause consists of three literals, the probability
of decreasing the Hamming distance with a bit flip is at least 1/3, whereas an increase can be as likely
as 2/3. Still, if the initial guess is close to the satisfying assignment s, there is a high probability that
the algorithm will find s. The bit flipping continues for 3n steps, so that some wrong decisions when
picking a literal can be compensated for later. The success rate for each random walk can be shown
to be (3/4)n, so after r = (4/3)n iterations the overall error rate is negligibly small. The result is a
probabilistic algorithm running in time Õ(1.3334n). Actually, Papadimitriou first used this random
walk method to construct a probabilistic algorithm solving 2-SAT in time O(n2) [Pap91]. Since the
formula in 2-CNF has at most two literals in each clause, the error rate of the random choice can
be bounded by 1/2.

Turning back to the NP-complete problem 3-SAT, the above bound was improved to Õ(1.3302n)
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by a clever idea of Hofmeister et al. [HSSW02]. Before taking the initial guess, they collect a set
of m variable-disjoint clauses. Depending on the number m, the algorithm splits into two cases. On
the one hand, if m is very small, each of the 7m potential partial truth assignments t are tested,1

leaving a formula F|t in 2-CNF, which can be solved in polynomial time. On the other hand, if m
exceeds a certain ratio (namely, m ≥ 0.1469n), all variables are set at random as before, with the
difference that the probability distribution is now depending on the input formula. Each set of three
variables contained in one of the m clauses c collected in the first step is now set to specific values
as follows: either exactly one, or two, or three literals are set to true, with the best probabilities
for each of these three cases yet to be determined. The partial assignment that leaves c unsatisfied
is not considered, which increases the probability to find a satisfying assignment. Note that the
number of biased random choices increases proportional to m, since only variables not contained in
one of the m clauses are set to true or false with probabilty exactly 1/2. Altogether, the algorithm
reaches a worst-case time bound of Õ(1.3302n).

Iwama and Tamaki [IT04] proposed a clever combination of the algorithms of Schöning [Sch99]
and Paturi et al. [PPSZ05] to obtain a worst-case time bound of Õ(1.3238n). Their algorithm was
further improved by Rolf [Rol05], whose algorithm with a time bound of Õ(1.3222n) is the current
champion of the probabilistic methods to solve 3-SAT. Table 1 compares the worst-case running
times of the presented deterministic and probabilistic algorithms solving 3-SAT.

3 Colorability

A graph is a pair G = (V, E) and consists of a set of vertices V = {v1, v2, . . . , vn} and a set of
edges E = {{vi, vj} | 1 ≤ i < j ≤ n}, each edge connecting two vertices. Two connected vertices are
called adjacent. A mapping f from V to the set {1, 2, . . . , k} is called a k-coloring of G. A coloring is
said to be legal if and only if no two adjacent vertices are mapped to the same color. The minimum
number k such that G has a legal k-coloring is called the chromatic number of G and is denoted
by χ(G). One may look at a coloring f : V → {1, . . . , k} of graph G as a partition of the vertex set V
into k disjoint sets V1, . . . , Vk, where each set represents a color class Vi = {v ∈ V | f(v) = i}. In
the case of a legal coloring, each set of the partition must be an independent set, i.e., must contain
only nonadjacent vertices. Given a graph G, the general colorability problem asks to determine the
value of χ(G). The set k-Colorability contains all graphs G with χ(G) ≤ k. A graph G can be
legally colored with two colors if and only if it is bipartite, thus 2-Colorability is in P. It is known
that k-Colorability is NP-complete for all k ≥ 3, see [Kar72].

The first nontrivial exact exponential-time algorithm for the colorability problem is based on
dynamic programming and is due to Lawler [Law76]. The idea comes from a simple observation.
A maximal independent set is an independent set that is no proper subset of another independent
set. Among all the legal colorings f of G that are minimal (that is, f maps to exactly χ(G) colors),
at least one has to contain such a maximal independent set. To see this, take one of the minimal
colorings and one specific independent set U of the partition, which is mapped to color i. If U itself
is not maximal, there exists a set U ′ with U ⊂ U ′ and U ′ is a maximal independent set. Change f
to f ′ by assigning to each vertex in U ′ the color i. Then f ′ is a legal coloring with χ(G) colors
containing a maximal independent set.

With this in mind, an algorithm calculating the chromatic number can easily be constructed. For
a graph G = (V, E) and any subset V ′ ⊆ V , define the subgraph induced by V ′ by G[V ′] = (V ′, E′)
with E′ = {{u, v} ∈ E | u, v ∈ V ′}. If the chromatic number of all induced subgraphs G[V ′′] for

1For each clause c = (`1, `2, `3), one of the eight partial assignments mapping the literals `1, `2, and `3 to truth
values never leads to a satisfying truth assignment, namely t(`1) = t(`2) = t(`3) = 0.
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every proper subset V ′′ ⊂ V ′ has already been computed, χ(G[V ′]) is determined by the formula

χ(G[V ′]) = 1 + min{χ(G[V ′ − V ′′])},

where the minimum is taken over all V ′′ ⊂ V ′ such that V ′′ is a maximal independent set. The
dynamic programming approach computes the chromatic number of all subsets of V with increasing
cardinality. This way, during each iteration with a subset V ′, all chromatic numbers of G[V ′′]
with V ′′ ⊂ V ′ are already known. The overall running time is

∑n
k=1

(

n
k

)

2k ∈ Õ(3n). Lawler
improves this bound by using two results from graph theory. On the one hand, it is known that
there are at most 3n/3 maximal independent sets for a graph with n vertices, which was proven by
Moon and Moser [MM65]. On the other hand, each of these sets can be generated in time O(n2),
as was shown by Paull and Unger [PU59]. This leads to a worst-case time of

n
∑

k=1

(

n

k

)

k23k/3 ≤ n2(1 + 31/3)n,

which is in Õ(2.4423n). This result on the general colorability problem is further refined by Epp-
stein [Epp03] to Õ(2.4150n).

Now turning to the special case of 3-Colorability, the naive algorithm runs in time Õ(3n). It
cycles through all possible mappings from the n vertices to the three colors and verifies their legality.
This naive approach is already beaten by Lawler’s algorithm for the general colorability problem.
The barrier Õ(2n) is reached by picking a starting vertex v0 ∈ V , assigning it to the first color
set, and processing through the rest of the graph by a simple searching procedure like breadth-first
search. Since every vertex is adjacent to a vertex that has already been mapped to one color, only
two choices are left in each step. Hence, this splitting algorithm runs in time Õ(2n).

Another simple idea improves this bound even further. If V is partitioned into three sets, the

smallest set must have cardinality less than or equal to n/3. There are only
∑n/3

k=1

(

n
k/3

)

such sets.

Listing all of them and checking that they are independent sets can be done in time Õ(1.8899n). If
the first set of the partition is given, say V1, the remaining vertices in V can be legally two-colored
in polynomial time. This task is the same as checking whether the induced subgraph G[V − V1]
is bipartite, i.e., can be partitioned into two independent sets. With the ideas of Lawler, one
can achieve a worst-case bound of Õ(1.4423n) for determining if a given graph G = (V, E) is
legally three-colorable. Instead of looking at every subset, simply list all maximal independent
sets V ′ ⊆ V . Their vertices are mapped to the first color class. The remaining problem is again
solvable in polynomial time. As seen above, the time needed to generate all maximal independent
sets is n2 · 3n/3 ∈ Õ(1.4423n). Schiermeyer further improved this bound [Sch96a]. His method first
chooses some vertex of maximum degree and continues with properly handling the many subcases
that can occur, which requires a rather deep, technical analysis. The worst-case time bound given
in his paper is Õ(1.3977n).

Beigel and Eppstein [BE95] continued the progress of improving the running times of algorithms
solving 3-Colorability with an utterly new approach. Instead of listing all possible independent
sets for the partition and verifying each choice, they look at the coloring problem as a special case of
a constraint satisfaction problem, CSP for short. This problem depends on two parameters, a and b,
and is defined as follows. An (a, b)-CSP instance consists of a set of n variables, each of which can take
on a distinct values, and additionally of m constraints, each involving at most b variables. Such an
instance is solvable if and only if there exists a mapping from the n variables to the a values such that
all constraints are satisfied. For example, the problem (2, 3)-CSP is nothing other than 3-SAT, since
every variable may be set to one of the two values 1 (true) or 0 (false), and every clause represents
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the constraint that not all three literals in the clause are set to false. Similarly, colorability problems
can be viewed as (a, b)-CSP for suitable a and b. For example, 3-Colorability can be regarded as
a special case of (3, 2)-CSP. The vertices of the given graph represent the variables, which can be
mapped to three distinct colors, and every edge induces the constraint that its two vertices cannot
be mapped to the same color.

Beigel and Eppstein state and prove some useful basic properties of (a, b)-CSP. For instance,
there is an easy transformation from every (a, b)-CSP instance to an equivalent (b, a)-CSP instance,
which implies some form of duality. Even more importantly for the colorability problem, they
show how to remove variables from (a, 2)-CSP instances that are restricted to only two of the a
possible values. This result is used in the analysis of the following very simple randomized algorithm
for 3-Colorability: For each vertex v ∈ V , randomly choose one of the three colors to which v
cannot be mapped. With probability at least 2/3, a random choice is correct, so the overall success
probability is (2/3)n. The resulting CSP instance is then equivalent to a 2-SAT formula, which can
be solved in polynomial time. The reciprocal value of the success probability leads to a time bound
of Õ(1.5n) for this randomized algorithm for 3-Colorability. The same bound was achieved by
Schöning [Sch99], who used the local search method described in Section 2 to solve the general
constraint satisfaction problem.

To improve the above time bound of this simple probabilistic method, the following idea is used
in [BE95]. Suppose there is a constraint involving two variables (in this case vertices), v1 and v2, such
that both cannot share some value a ∈ {1, 2, 3}. Now restrict the color choices for the vertices v1

and v2 to one of the four cases where one color is eliminated for each vertex, such that exactly one

vertex is allowed to be colored with b or c ∈ {1, 2, 3}, where b 6= a 6= c. It can be verified that this
random choice is correct in half of the cases that can occur. For example, if one of the vertices,
say v1, needs to be mapped to color a, in two of the four cases color a was not eliminated for the
correct vertex v1. And as another example, if a must not be used in the coloring of v1 and v2, in
half of the four cases the right color was kept as a choice. This way two vertices can be removed in
one step by the simplifying process mentioned above, even though the error rate increases from 1/3
to 1/2. Still, the overall success rate is (1/2)n/2, and so the randomized algorithm needs to be
repeated only Õ(2n/2) times to reach a negligibly small error rate. This leads to a running time
of Õ(1.4143n).

This local elimination of colors for some set of vertices can be used to yield a deterministic
algorithm for 3-Colorability, which has an even better running time than the probabilistic methods
described so far. Suppose the (3, 2)-CSP instance contains a variable v which, associated with a
value a ∈ {1, 2, 3}, is involved in constraints with many other variables. The computation handles
the following two cases sequentially: first, v is mapped to a; second, v is restricted to the other two
values remaining. This is a deterministic algorithm, since both cases will be handled eventually. In
the first case, many variables are restricted to two values because they were contained in constraints
including v and a. Remember that in (3, 2)-CSP, constraints consist of at most two variables. When
restricted to two values, the variables can be eliminated by the standard deterministic procedure
described in [BE95]. In the other case, only v can be removed from the instance, but this is balanced
by the first branch, which reduces the CSP considerably. For the (3, 2)-CSP instance corresponding
to a 3-Colorability graph, the number of constraints is bounded by the degrees of the vertices.
Vertices of degree two or less do not have to be considered in the case of 3-Colorability, and the
recursion T (n) ≤ T (n−4)+T (n−1) is obtained, which gives a worst-case time bound of Õ(1.3803n)
for the algorithm. This bound was also reached for the general (3, 2)-CSP, though the case analysis
which leads to the same recursion as above is much more sophisticated.

An improvement to Õ(1.3446n) is achieved by yet another idea of the same authors [BE95]: Pick
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Source Type Bound

trivial algorithm deterministic & randomized 3n

simple BFS deterministic 2n

Lawler [Law76] deterministic 1.4422n

Schiermeyer [Sch96a] deterministic 1.3977n

Beigel and Eppstein [BE95] deterministic 1.3446n

Eppstein [Epp01] deterministic 1.3289n

Schöning [Sch99] randomized 1.5n

Beigel and Eppstein [BE05] randomized 1.4143n

Table 2: Worst-case time bounds for 3-Colorability

a small set of vertices V ′ ⊂ V such that most of the graph is covered by the open neighborhood

N(V ′) = {v ∈ V − V ′ | ∃w ∈ V ′ with {v, w} ∈ E}

of V ′. Now, all the 3|V
′| possible colorings for the vertices in V ′ are tested. For each mapping,

every vertex v ∈ N(V ′) is restricted to at most two colors, so they can be eliminated again by the
standard procedure. The remaining (3, 2)-CSP instance containing only vertices in V − (V ′ ∪N(V ′))
is then solved with the algorithm described in the preceding paragraph.

Introducing an idea that has later been dubbed “measure and conquer,” Eppstein [Epp01] im-
proved the running time even further to Õ(1.3289n). This new technique will be discussed in
Section 4 for the domatic number problem. Eppstein’s bound is currently the best known result for
recognizing if a given graph is colorable with three colors.

Table 2 lists all results for the 3-Colorability problem presented here. Interestingly, the ran-
domized methods developed so far have worse running times than the best deterministic ones. This
might be explained by the fact that the randomized algorithms for 3-Colorability are all very
simple up to date, whereas the deterministic methods to color a graph with three colors have been
studied and refined for quite a long time. Another reason for the rather sparse number of randomized
algorithms for 3-Colorability might be that all random approaches solve the general constraint
satisfaction problem, but colorability is actually only a special case of a CSP. The field of randomized
coloring algorithms remains a promising research area for future work.

4 Domatic Number Problem

Let G = (V, E) be a given graph. A subset D ⊆ V of the vertex set is called a dominating set of G
if and only if every vertex u ∈ V −D is adjacent to at least one vertex v ∈ D. The domatic number

of G, which is defined as the maximum number of disjoint dominating sets, is denoted by δ(G). The
(search version of the) domatic number problem asks to determine the domatic number of G. In
other words, G is to be partitioned into as many sets as possible that each are dominating. Defining
the decision version of this problem, let k-DNP denote the set of graphs with δ(G) ≥ k. Note that for
each k ≥ 3, k-DNP is NP-complete, see Garey and Johnson [GJ79]. We here restrict our attention
to 3-DNP.

Although the domatic number problem is important for various practical applications (for exam-
ple, for the task of distributing resources in a network), there exist only very few exact exponential-
time algorithms for 3-DNP in the literature. It is not quite obvious why other interesting NP-complete
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graph problems—such as 3-Colorability—have been studied much more intensely up to date. One
reason for this might be that the domatic number problem seemingly is more difficult to handle than
the colorability problem, in the sense that “dominance” is a global property, whereas “independence”
(and thus “colorability”) has a local character. To wit, checking if a given set S is independent can
be achieved by looking at its neighborhood, N(S). In contrast, verifying that S is a dominating set
is possible only when taking a look at the whole graph G. This difficulty can also be seen when
transforming the domatic number problem into a constraint satisfaction problem: The question of
whether a graph is colorable with k colors can be translated into a (3, 2)-CSP instance, as seen in
Section 3, but k-DNP can be generalized only to a (3, d)-CSP instance, where d is the maximum degree
of the graph G. For each vertex v ∈ V , there are k constraints representing the condition that at
least one of the vertices in N [v], the closed neighborhood of v, needs to be part of one of the k
dominating sets.

As noted in [RR05], Lawler’s algorithm [Law76] for the colorability problem can be adapted to
find the domatic number of a graph G in time Õ(3n). This observation straightforwardly leads to
an Õ(3n) algorithm for k-DNP (and, in particular, for 3-DNP). While the bound for 3-Colorability
could be improved by using results from graph theory, no similarly useful theorems helping to
improve the worst-case bound for determining the domatic number are known until today.

The first algorithm breaking the trivial 3n barrier is due to Riege and Rothe [RR05]. Their
backtracking algorithm successively assigns the vertices in V to the three potential dominating sets
in some kind of greedy manner, seeking to find vertices that seem to be most helpful in finding the
three dominating sets. Those are usually the vertices of large degree, since they can dominate a
larger part of the graph. It can be shown that this recursive procedure has a worst-case running
time of Õ(2.9416n), which is only slightly better than the trivial time bound.

A new approach is used by Fomin et al. [FGPS05]. Their “measure and conquer” technique is
based on Eppstein’s observation that improvements on the worst-case running time of an algorithm
can be made by a more careful analysis of the backtracking procedures [Epp04]. Standard worst-
case analysis often uses a too rough measurement when calculating the recurrences modeling the
recursion. The common size for a problem instance is the number of variables (for satisfiability) or
the number of vertices (for domatic number or colorability). This sometimes does not reflect the
actual progress of the algorithm when processing different choices in the recursive branching. For
example, mapping variables that very often occur in many clauses of a SAT instance to a specific
value might have a greater impact than assigning a value to a less frequent variable. A finer analysis
can be made by putting different weights to the variables, depending on the impact they have
when being processed by the algorithm. This technique of further bounding the number of leaves
in the computation tree can drastically improve the worst-case running time of one and the same
algorithm. The optimum weights yielding the minimum upper bound of the backtracking algorithm
can be found efficiently by Eppstein’s quasiconvex programming method [Epp04].

Fomin et al. [FGPS05] use this approach to obtain an algorithm that lists all minimal dominating
sets of a graph G with n vertices in time Õ(1.7697n). They then use this result to design an
algorithm for computing the domatic number of G in the following way. As was the case with
maximal independent sets in minimal colorings of a graph, note that at least one of the partitions
of G into the maximum number of dominating sets contains a minimal dominating set. With the
same idea that Lawler used to compute the chromatic number of G, one can dynamically construct
the domatic numbers of induced subgraphs, using

δ(G[V ′]) = max{δ(G[V ′ − D]) + 1},

where the maximum is taken over all minimal dominating sets D ⊆ V ′ of G. Via Eppstein’s numerical
procedure [Epp04], one can optimize the parameters of the occurring recurrences and reach a worst-
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Source Type Bound

trivial algorithm det. & rand. 3n

Riege and Rothe [RR05] deterministic 2.9416n

Fomin et al. [FGPS05] deterministic 2.8805n

Riege, Rothe, Spakowski, Yamamoto [RRSY06] deterministic 2.6949n

Table 3: Deterministic worst-case time bounds for 3-DNP

case time of Õ(2.8805n) to obtain the domatic number of the given graph G. Once δ(G) is known,
membership in 3-DNP is easily determined.

The worst-case bound of several simple algorithms for NP-hard problems could be improved
significantly at the cost of having to deal with a more complex recursive analysis. Fomin, Grandoni,
and Kratsch recently published a survey of the “measure and conquer” method [FGK05], and they
also discuss lower bounds for exact exponential-time algorithms. Knowing the lower bound for
a specific algorithm gives an indication of how far away from the best bound possible a proven
worst-case upper bound might be.

The currently best worst-case time of an algorithm to determine if a given graph G can be
partitioned into three dominating sets is due to Riege, Rothe, Spakowski, and Yamamoto [RRSY06].
Their procedure first lists all minimal dominating sets of G, which is possible in time Õ(1.7697n)
as shown by Fomin et al. [FGPS05]. For each such set D, it remains to find two other dominating
sets. This problem can be transformed to a special case of the satisfiability problem. For each
vertex v ∈ V , create a clause containing every vertex in the closed neighborhood N [v] which is not
already contained in D. Then, try to solve this SAT instance in the not-all-equal sense, meaning that
at least one, but not all of the literals in each clause must be set to true. By doubling the number
of clauses, this not-all-equal SAT instance can be translated to a regular SAT formula, which is then
solved in time Õ(1.234m) with Yamamoto’s algorithm [Yam05]. Here, m is the number of clauses.
Since in this case m equals 2n, where n is the number of vertices in graph G, the overall time-bound
is Õ(1.7697n · 1.2342n) = Õ(2.6949n).

Table 3 lists all currently known deterministic results for 3-DNP.
Randomized algorithms for 3-DNP have been studied only for input graphs of bounded maximum

degree. Two results have been obtained and are summarized in Table 4 for graphs with maximum
degree ∆(G), 3 ≤ ∆(G) ≤ 7. The performance of these two randomized algorithms is compared to
the following simple deterministic method [RR05]. First, process the graph by breadth-first search.
For each vertex v of the vertex set V , branch into all cases that assign all vertices in the closed
neighborhood N [v] to the three dominating sets, looking only at cases which might lead to a valid
partition. For example, the case of assigning all vertices of N [v] into one set will not be considered.
Here, the number of possible choices increases with the degree of the vertex and hence the running
time depends on the maximum degree of the given graph G.

The first randomized algorithm essentially uses the same method [RR05]. Instead of trying
all valid partitions of the closed neighborhood N [v], pick three vertices in N [v] at random and
assign them to the three different dominating sets. The second random algorithm [RRSY06] uses
the probabilistic method of Schöning [Sch99] to solve constraint satisfaction problems. Note that
an instance of 3-DNP restricted to graphs G with maximum degree d = ∆(G) can be transformed
into a (3, d)-CSP instance. The second randomized procedure performs better than the first one
whenever ∆(G) ≥ 5.
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Source Type ∆(G) = 3 4 5 6 7

Riege, Rothe [RR05] deterministic 2.2894n 2.6591n 2.8252n 2.9058n 2.9473n

Riege, Rothe [RR05] randomized 2n 2.3570n 2.5820n 2.7262n 2.8197n

Riege et al. [RRSY06] randomized 2.2501n 2.4001n 2.5001n 2.5715n 2.6251n

Table 4: Results for 3-DNP on graphs with bounded maximum degree

5 Summary

In this paper, we have surveyed various exact exponential-time algorithms for the NP-complete
problems 3-SAT, 3-Colorability, and 3-DNP, trying to document the progress that has been made
at improving the worst-case time bounds since the first such algorithms appeared in the early
seventies. Additionally, the results are compared to the upper bounds of randomized algorithms
for these problems. In the case of the satisfiability and the domatic number problem, the power
of randomness can significantly reduce the running time of the algorithms, at the cost of making
errors with a certain probability. Using standard probability amplification, this error can be made
negligibly small.

We mention that exact exponential-time algorithms have also been proposed for NP-hard prob-
lems other than those presented here. For example, constraint satisfaction problems were considered
by Kumar [Kum92] and Schöning [Sch99]. One of the most famous examples of an NP-complete set,
the traveling salesperson problem, still withstands all attempts to break the Õ(2n) barrier, which
nonetheless is much better than the trivial method of skimming through all the n!/2 possible tours.
Exact algorithms for the NP-complete independent set problem are already very close to the bar-
rier c = 1 in Õ(cn), which would imply P = NP and so is very unlikely ever to be reached. The
currently best independent set algorithm is due to Robson [Rob01] and achieves c = 1.1889 in the
worst-case (see also [Rob86] for previous results on finding maximum independent sets in a graph).

There are problems which lie between the complexity classes P and NP (assuming P 6= NP) in
the sense that they clearly belong to NP, yet have resisted any attempt to show NP-hardness as
well as any attempt to find a polynomial-time algorithm. Until recently, the question of whether a
given integer is prime was one of those problems. By very clever arguments from number theory,
Agrawal, Kayal, and Saxena found the first deterministic algorithm solving this ancient problem in
polynomial time [AKS04]. Another problem which seems to be neither in P nor NP-complete is the
graph isomorphism problem, GI for short. This problem contains all pairs of isomorphic graphs. Two
graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic if and only if there exists an edge-preserving
permutation π mapping from V1 to V2, which means that {u, v} ∈ E1 if and only if {π(u), π(v)} ∈ E2.
This problem has been intensely studied, see Köbler, Schöning, and Torán [KST93]. Although GI

has not been proven to be NP-hard so far, no efficient algorithm finding an isomorphism between
two given graphs is known. The naive procedure that cycles through all possible permutations runs
in time Õ(n!). To our knowledge, the method of Babai is the only known exact algorithm besides the

trivial one solving the graph isomorphism problem [Bab81]. This algorithm runs in time Õ(en1−c

)
with c = 1/3 + o(1).

In practice, some NP-complete problems turn out to be efficiently solvable on the average.
Average-case complexity deals with this phenomenon, and Levin was one of the first trying to
capture this notion in a mathematical precise way [Lev86]. Given a certain probability distribu-
tion on the inputs, one can define what it means that an algorithm performs well on the average.
One example of an NP-complete problem that is easy to solve on the average is the graph color-
ing problem [Wil84]. However, a lot of problems remain hard to solve even in the average-case
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model. For surveys of average-case complexity, the reader is referred to Wang [Wan97a, Wan97b],
Goldreich [Gol97], and Ben-David et al. [BCGL92].
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