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Abstract

We prove that any AC
0 circuit augmented with ε log2

n MODm gates and with a MAJORITY

gate at the output, require size n
Ω(log n) to compute MODl, when l has a prime factor not dividing

m and ε is sufficiently small. We also obtain that the MOD2 function is hard on the average for

AC
0 circuits of size n

ε log n augmented with ε log2
n MODm gates, for every odd integer m and any

sufficiently small ε. As a consequence, for every odd integer m, we obtain a pseudorandom generator,

based on the MOD2 function, for circuits of size S containing ε log S MODm gates.

Our results are based on recent bounds of exponential sums that were previously introduced for

proving lower bounds for MAJ ◦MODm ◦ANDd circuits.

1 Introduction

One of the most important challenges in circuit complexity is to prove lower bounds for circuits containing
MODm gates for a fixed integer m. Indeed the circuit class ACC0, consisting of constant depth circuits
(AC0 circuits) augmented with MODm gates is the smallest natural circuit class, for which we have no
nontrivial lower bounds. In the special case when the modulus m is a prime power, exponential lower
bounds holds for computing MAJORITY, and if l has a prime divisor not dividing m also for computing
MODl, as proved by Razborov [16] and Smolensky [17]. It is however unclear if the techniques used for
proving these lower bounds can be extended to the case when m is not a prime power.

One possible direction for approaching lower bounds for ACC0 is to prove lower bounds for AC0

circuits augmented with few MODm gates. For circuits with MOD2 gates, this approach was in fact
already taken by H̊astad in his thesis [14], although his results were soon overshadowed by the results of
Razborov and Smolensky. To be more precise, H̊astad proved that constant depth circuits augmented

with ε log
3
2 n MOD2 gates require size 2Ω(log

3
2 n) to compute MAJORITY, for any sufficiently small ε.

His techniques can in fact be generalized to prove that when m is a prime power, constant depth circuits
augmented with nε MODm gates require exponential size to compute MAJORITY, for any sufficiently
small ε, but like the lower bounds of Razborov and Smolensky it does not directly extend to the case
when m is not a prime power.

This same approach has also been successfully applied to the circuit class TC0, consisting of constant
depth circuits augmented with MAJORITY gates, in a series of papers [1, 6, 5, 3]. In particular must
constant depth circuits augmented with nε MAJORITY gates be of exponential size to compute the
MODm function for any constant m and any sufficiently small ε.

Recently the approach has also been successfully applied to circuits augmented with few SYM gates
(i.e. gates computing arbitrary symmetric functions). This class of circuits generalize each of the above
classes of circuits since both MODm and MAJORITY are symmetric functions. In [8] it was proved
that constant depth circuits augmented with ε log2 n SYM gates require size nΩ(log n) to compute a
certain (complicated) function in ACC0. This function is based on the so-called generalized inner
product function and the circuit lower bound rely on a lower bound on the distributional multi party
communication complexity for this function [2].

The lower bound for circuit with few SYM gates is currently also the best known lower bound for
circuits with few MODm gates. However it is also interesting to obtain such bounds for computing simpler
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functions such as MAJORITY and MODl for the following reasons. First of all because we believe that
such lower bounds holds even without restrictions on the number of MODm gates. Secondly, because it
is conceivably that better lower bounds can be obtained by techniques that do not rely on multi party
communication complexity, but instead take advantage of the fact that the circuits only contain MODm

gates rather than more powerful gates such as SYM gates. Such lower bounds was also obtained in [8],
although they are weaker than the lower bounds given for circuits with SYM gates. Specifically, let m

be a positive integer with r ≥ 2 distinct prime factors. Then constant depth circuits augmented with s

MODm gates must have size nΩ( 1
s
log

1
r−1 n) to compute MAJORITY or MODl, if l has a prime factor not

dividing m.
Here we obtain improved lower bounds for computing the MODl functions, matching the strongest

lower bounds known for circuits with few SYM gates. Additionally our lower bound holds even if we
allow a MAJORITY gate at the output.

Theorem 1 Any MAJ ◦AC0 circuit containing ε log2 n MODm gates computing MODl, where l has a

prime factor not dividing m, must have size at least nΩ(log n) for any sufficiently small ε.

Recently Viola [18] showed that the function used for proving lower bounds for constant depth circuit
with few SYM gates is in fact also hard on the average for the same class of circuits. He could then apply
the Nisan-Wigderson pseudorandom generator construction [15] to obtain a pseudorandom generator
stretching l bits to n = lε log l bits that fools constant depth circuits of size n containing log n SYM gates.

Here we show that for constant depth circuits with few MODm gates for an odd integer m, we can
in a similar way base the Nisan-Wigderson construction on the MOD2 function. Our motivation for
presenting this generator is the same as for our circuit lower bounds. First of all the generator is simpler
to compute. Secondly it is conceivable that better pseudorandom generators can be constructed using
techniques that take advantage of the fact that the circuits only contain MODm gates rather than more
powerful gates such as SYM gates. To be precise we obtain the following average case hardness result.

Theorem 2 For every odd integer m and every h there exists ε > 0 such that for every sufficiently large

n and for every depth h circuit C on n inputs of size nε log n containing ε log2 n MODm gates we have

Pr [C(x) 6= MOD2(x)] ≥ 1

2
− 1

nε log n

Applying the Nisan-Wigderson construction we obtain the following pseudorandom generator.

Theorem 3 For every odd integer m and every h there exists ε > 0 such that for all sufficiently large l

there is a generator G : {0, 1}l → {0, 1}n, where n = lε log l, such that for every depth h circuit C on n

inputs of size n containing log n MODm gates we have

∣

∣

∣

∣

Pr
x∈{0,1}n

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣

∣

∣

∣

≤ 1

n

Furthermore every output bit of G(x) is the MOD2 function taken on a subset of the input bits.

2 Preliminaries

2.1 Exponential sums

Let m, l > 1 and let P by a polynomial of degree d over Zm. The following exponential sum S was
defined by Green [10].

S =
1

2n

∑

x∈{0,1}n

em(P (x))el(a

n
∑

i=1

xi)

where ek(x) denotes e
2πi
k

x. Recently Bourgain [7] and Green et al [11] obtained the following estimate
on the absolute value of the exponential sum S.
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Theorem 4 Assume m and l are relatively prime and 0 < a < l. Then there exists 0 < µd < 1 such

that

|S| < (µd)
n

for all n > 0. Furthermore, for all 0 < ε < 1, there exists c > 0 such that

(µc log n)n < 2−nε

for all sufficiently large n.

2.2 Circuit classes

We consider circuits built from families of unbounded fanin gates. Inputs are allowed to be boolean
variables and their negations as well as the constants 0 and 1. Let x1, . . . , xn be boolean inputs. For a
positive integer m, the MODm function outputs 1 if and only if

∑n
i=1 xi 6≡ 0 (mod m). The MAJORITY

function is 1 if and only if
∑n

i=1 xi ≥ n
2 .

Let AND and OR denote the families of unbounded fanin AND and OR gates. Similarly, let MODm

and MAJ denote the families of MODm, MAJORITY gates. If G is a family of boolean gates and C is
a family of circuits we let G ◦ C denote the class of circuits consisting of a G gate taking circuits from C
as inputs. If we need to specify a specific bound on the fanin of some of the gates, this will be specified
by a subscript.

AC0 is the class of functions computed by constant depth circuits built from AND and OR gates.
ACC0 is the the analogous class of functions computed when we also allow unbounded fanin MODm

gates for constants m, and similarly is TC0 the class of functions computed when we instead allow
unbounded fanin MAJORITY gates.

2.3 Discriminator lemma

Let C be a circuit taking n inputs and f a boolean function on n variables. Let A ⊆ f−1(1) and
B ⊆ f−1(0). We say that C is an ε-discriminator for f with respect to A and B if

Pr[C(x) = 1|x ∈ A] − Pr[C(x) = 1|x ∈ B] ≥ ε

The so-called discriminator lemma by Hajnal et al [12], states that if a circuit with a MAJORITY gate at
the output computes a boolean function f , then one of the inputs to the output gate is an ε-discriminator
for f .

Lemma 5 Let f be a boolean function computed by a circuit C with a MAJORITY gate as the output

gate, and let C1, . . . , Cs be the subcircuits of C whose output gates are the inputs to the output of C. Let

A ⊆ f−1(1) and B ⊆ f−1(0) be arbitrary. Then for some i, Ci is an 1
s
-discriminator for f with respect

to A and B.

2.4 The switching lemma

A restriction on a set V of boolean variables is a map ρ : V → {0, 1, ?}. It acts on a boolean function
f in the variables V , creating a new boolean function fρ on the set of variables for which ρ(x) = ?,
obtained by substituting ρ(x) for x ∈ V whenever ρ(x) 6= ?. The variables x for which ρ(x) = ? are
called free. Let Rl

n denote the set of all restriction ρ leaving l of n variables free.
A decision tree is a binary tree, where the internal nodes are labeled by variables and leafs are labeled

by either 0 or 1. On a given input x, its value is the value of the leaf reached by starting at the root, and
at any internal node labeled by xi proceeding to the left child if xi = 0 and to the right child otherwise.
We will use the following version of H̊astads Switching Lemma due to Beame [4].

Lemma 6 Let f be a DNF formula in n variables with terms of length at most r. Let l = pn and pick

ρ uniformly at random from Rl
n. Then the probability that fρ does not have a decision tree of depth at

most d is less than (7pr)d.
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The advantage of using Beame’s switching lemma is that it directly gives us a decision tree. If we
convert a decision tree into a DNF, we in fact obtain a disjoint DNF, i.e. a DNF where all terms are
mutually contradictory. We can then view it as a sum of terms, instead as an OR of AND’s, and this
will allow us to absorb the sum into MODm and MAJORITY gates.

Proposition 7 Let h be any integer and let c > 0. Then there exists ε > 0 with the following property.

Let C be a AC0 circuit of depth h and size S = nε log n. Choose a restriction ρ ∈ R
√

n
n at random. Then

with probability at least 1 − n−Ω(log n), after applying the restriction ρ, every function computed at any

gate of C has a decision tree of depth at most d = c log n.

Proof We view ρ as a composition of several restrictions ρ1, . . . , ρh, where ρi ∈ Rni
ni−1

and ni =

n
(

n
1
2h

)−i

. Assume that after having applied the first i − 1 restrictions, that all functions computed by

gates at level i−1 of C are computed by decision trees of depth at most d. They are then also computed
by DNF’s with terms of size at most d. Now, assuming without loss of generality that the gates at level
i are OR gates, the functions computed by these gates are also computed by DNF’s with terms of size
of most d. By Lemma 6, the probability that the function computed by such an OR gate can not be
computed by a decision tree of depth at most d after applying ρi is then at most

(

7
mi

mi−1
d

)d

=
(

7n− 1
2h c logn

)c log n

= n−Ω(log n)

Since we have at most this probability of error at each of the nε log n gates of C, the result follows for ε

sufficiently small. �

3 Circuit lower bounds

Theorem 8 Let C be a ANDt ◦ MODm ◦ ANDd circuit and let l be relatively prime to m. Then

|∆| ≤ 2t(µd)
n

where

∆ = Pr

[

C(x) = 1 ∧
n
∑

i=1

≡ 1 (mod l)

]

− Pr

[

C(x) = 1 ∧
n
∑

i=1

≡ 0 (mod l)

]

and µd is given by Theorem 4.

Proof Let C1, . . . , Ct be the subcircuits of C feeding the output. Let P1, . . . , Pt be polynomials over
Zm of degree d such that Ci(x) = 1 if and only if Pi(x) 6≡ 0 (mod m). We can then rewrite the terms of
∆ as exponential sums.

Pr

[

C(x) = 1 ∧
n
∑

i=1

xi ≡ 1 (mod l)

]

=

Pr

[

t
∧

i=1

Pi(x) 6≡ 0 (mod m) ∧
n
∑

i=1

xi ≡ 1 (mod l)

]

=

1

2n

∑

x∈{0,1}n

[

t
∏

i=1

(

1 − 1

m

m−1
∑

bi=0

em(biPi(x))

)

1

l

l−1
∑

a=0

el

(

a

(

n
∑

i=1

xi − 1

))]

=

∑

A⊆[t]

1

l

(−1

m

)|A| m−1
∑

bi1=0

· · ·
m−1
∑

bih
=0

l−1
∑

a=0





1

2n

∑

x∈{0,1}n

em





h
∑

j=1

bij
Pij

(x)



 el

(

a

(

n
∑

i=1

xi − 1

))




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Where, in the sum A = {i1, . . . , ih}. Similarly we obtain

Pr

[

C(x) = 1 ∧
n
∑

i=1

xi ≡ 0 (mod l)

]

=

∑

A⊆[t]

1

l

(−1

m

)|A| m−1
∑

bi1=0

· · ·
m−1
∑

bih
=0

l−1
∑

a=0





1

2n

∑

x∈{0,1}n

em





h
∑

j=1

bij
Pij

(x)



 el

(

a

n
∑

i=1

xi

)





And hence

∆ =
∑

A⊆[t]

1

l

(−1

m

)|A| m−1
∑

bi1=0

· · ·
m−1
∑

bih
=0

l−1
∑

a=0

(el(−a) − 1)





1

2n

∑

x∈{0,1}n

em





h
∑

j=1

bij
Pij

(x)



 el

(

a

n
∑

i=1

xi

)





Since
∑h

j=1 bij
Pij

(x) is a polynomial of degree d, and noting that when a = 0 the term vanishes, we may
bound |∆| using Theorem 4 and the triangle inequality, to obtain

|∆| ≤ 2t(µd)
n

�

Theorem 9 Let C be a MAJ◦ANDt ◦MODm ◦ANDd circuit computing MODl, where l has a prime

factor not dividing m. If d is constant and t = εn for sufficiently small ε the size of C must be 2Ω(n). If

t = nε and d = c log n for sufficiently small ε and c the size of C must be at least 2nΩ(1)

.

Proof We may without loss of generality assume that m and l are relatively prime. Otherwise, let
p be a prime dividing l but not dividing m. Group the input variables into np

l
groups of size l

p
, and

consider only inputs giving the same value to all variables in each of these groups. In this way we obtain
a MAJ ◦ ANDt ◦ MODm ◦ ANDd circuit computing MODp on np

l
inputs.

Let S be the size of C. Then from lemma 5 we have an ANDt ◦ MODm ◦ ANDd circuit C′ of size
S such that

∆ = Pr

[

C′(x) = 1 |
n
∑

i=1

≡ 1 (mod l)

]

− Pr

[

C′(x) = 1 |
n
∑

i=1

≡ 0 (mod l)

]

≥ 1

S

We will rewrite ∆ using the fact [9] that for all integers l and a

∣

∣

∣

∣

∣

Pr

[

n
∑

i=1

xi ≡ a (mod l)

]∣

∣

∣

∣

∣

=
1

l
+ 2−Ω(n)

Thus
∆ ≤ l |∆′| + 2−Ω(n)

where

∆′ = Pr

[

C′(x) = 1 ∧
n
∑

i=1

≡ 1 (mod l)

]

− Pr

[

C′(x) = 1 ∧
n
∑

i=1

≡ 0 (mod l)

]

From Theorem 8 we have
|∆′| ≤ 2t(µd)

n

And thus
1

S
≤ l2t(µd)

n + 2−Ω(n)

from which the result follows using Theorem 4. �

Using the switching lemma we can then obtain the following ’meet-in-the-middle’ [13] lower bound.

Theorem 10 Any depth h + 3 MAJ ◦ANDt ◦MODm ◦AC0 circuit computing MODl, where l has a

prime factor not dividing m, must have size at least nΩ(log n), when t = nε for any sufficiently small ε.

5



Proof Assume C is a MAJ ◦ANDt ◦MODm ◦AC0 circuit of depth h + 3 and size nε log n computing
MODl. Given c > 0, we apply Proposition 7 to the circuit consisting of the lowest h levels of C. If ε is
sufficiently small, we thus have a restriction ρ such that after applying ρ, every input of a MODm gate
in C is computed by a decision tree of depth at most d = c log n. Each of these can be rewritten as a
disjoint DNF with terms of size at most d and we can absorb the OR gates of these in the MODm gates,
thus obtaining a MAJ ◦ ANDt ◦ MODm ◦ ANDd circuit of size nε log n computing MODl on at least√

n − l inputs, contradicting Theorem 8. �

Using this theorem we can obtain the same lower bound for circuits with few MODm gates, even
when allowing a MAJORITY gate at the output, i.e. the lower bound stated as Theorem 1.

Proposition 11 Let C be a depth h AC0 circuit of size S containing s MODm gates. Then the function

computed by C is also computed by a depth h + 3 OR2s ◦ ANDO(s) ◦ MODm ◦ AC0 circuit C′ of size

O(2sS), and furthermore, the two top layers of C′ define a disjoint DNF.

Proof Let g1, . . . , gs be the MODm gates of C′ such that there is no path from the output of gi to gj

if j < i. For α ∈ {0, 1}s let Cα
i be the MODm ◦AC0 subcircuit of C with gi as output, where every gj

for j < i is replaced by the constant αj . Similarly, let Cα be the AC0 circuit obtained from C where
every gi is replaced by αi. Note now that ¬Cα

i can be computed by a ANDm−1 ◦MODm ◦AC0 circuit
of size O(S). We can now construct a OR2s ◦AND(m−1)s+1 ◦MODm ◦AC0 circuit C′′ of size O(2sS)
computing the same function as C′ as follows: The output OR gate is fed by AND’s corresponding to
all α ∈ {0, 1}s. The AND gate corresponding to α takes Cα as input, as well as Cα

i if αi = 1 and the
inputs of the output AND gate of the ANDm−1 ◦ MODm ◦AC0 circuit for ¬Cα

i if αi = 0. �

Proof (Theorem 1) Let C be MAJ ◦ AC0 circuit of size S containing s = ε log2 n MODm gates
computing MODl. Using Proposition 11 we may replace each subcircuit feeding the output of C by a
OR2s ◦ANDO(s) ◦MODm ◦AC0 circuit of size O(2sS). Since furthermore the two top layers of these
circuits define disjoint DNF’s we can absorb the OR gates in the top MAJORITY gate, obtaining a
MAJ ◦ ANDO(s) ◦ MODm ◦ AC0 circuit of size O(2sS2) computing MODl. The result then follows
from Theorem 10. �

4 A pseudo-random generator

We have the following corollary to Theorem 8, from which we can obtain Theorem 2 using Proposition 11.

Corollary 12 Let C be an ORs ◦ANDt ◦MODm ◦ANDd circuit, such that the two top layers of the

circuit defines a disjoint DNF, and let l be relatively prime to m. Then

|∆| ≤ s2t(µd)
n

where

∆ = Pr

[

C(x) = 1 ∧
n
∑

i=1

≡ 1 (mod l)

]

− Pr

[

C(x) = 1 ∧
n
∑

i=1

≡ 0 (mod l)

]

and µd is given by Theorem 4.

Proof Let C1, . . . , Cs be the subcircuits of C feeding the output. Since at most one of these subcircuit
can evaluate to 1 at the same time, we have

∆ =

s
∑

i=1

(

Pr

[

Ci(x) = 1 ∧
n
∑

i=1

≡ 1 (mod l)

]

− Pr

[

Ci(x) = 1 ∧
n
∑

i=1

≡ 0 (mod l)

])

The result then follows from the triangle inequality and Theorem 8. �

Proof (Theorem 2) Let C be depth h AC0 circuit of size S = nε log n containing s = ε log2 n MODm

gates. Using Proposition 11 we then have a depth h + 3 OR2s ◦ ANDO(s) ◦ MODm ◦ AC0 circuit C′

of size O(2sS) = O(n2ε log n) computing the same function as C, and such that the two top layers of C′

defines a disjoint DNF. Given c > 0, we apply Proposition 7 to the circuit consisting of the lowest h
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levels of C′. If ε is sufficiently small, then with probability 1− n−Ω(log n) a random restriction ρ satisfies
that after applying ρ, every input of a MODm gate in C′ is computed by a decision tree of depth at most
d = c log n. Each of these can be rewritten as a disjoint DNF with terms of size at most d and we can
absorb the OR gates of these in the MODm gates, thus obtaining a OR2s ◦ANDO(s) ◦MODm ◦ANDd

circuit of size nO(ε log n) on k =
√

n inputs. Assuming that ρ allows us to make this transformation we
obtain

Pr [Cρ(x) 6= MOD2(x)] = Pr
[

C′
ρ(x) 6= MOD2(x)

]

=

Pr

[

C′
ρ(x) = 0 ∧

k
∑

i=1

xi ≡ 1 (mod 2)

]

+ Pr

[

C′
ρ(x) = 1 ∧

k
∑

i=1

xi ≡ 0 (mod 2)

]

=

1

2
−
(

Pr

[

C′
ρ(x) = 1 ∧

k
∑

i=1

xi ≡ 1 (mod 2)

]

− Pr

[

C′
ρ(x) = 1 ∧

k
∑

i=1

xi ≡ 0 (mod 2)

])

≥

1

2
− 2O(s)(µd)

k ≥ 1

2
− n−Ω(log n)

for c and ε sufficiently small, using Corollary 12. Likewise we obtain

Pr [Cρ(x) 6= ¬MOD2(x)] ≥ 1

2
− n−Ω(log n)

And thus

Pr [Cρ(x) 6= MOD2,ρ(x)] ≥ 1

2
− n−Ω(log n)

Since we can generate a random input to C, by first choosing a restriction ρ at random, and then a
random input to the remaining free variables we finally obtain

Pr [C(x) 6= MOD2(x)] ≥
(

1

2
− n−Ω(log n)

)

(

1 − n−Ω(log n)
)

≥ 1

2
− n−Ω(log n)

�

Proof (Theorem 3) Nisan and Wigderson [15] constructed, from any function f : {0, 1}
√

l
2 → {0, 1}

and parameter n, a generator G : {0, 1}l → {0, 1}n, by using f on n different subsets of the input
variables. The generator thus obtained satisfies the following property. Let C be a circuit such that

∣

∣

∣

∣

Pr
x∈{0,1}n

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣

∣

∣

∣

>
1

n

Then C can be transformed into another circuit C′ such that

Pr [C′(x) = f(x)] >
1

2
+

1

n2

The transformation is done by adding one more more layer of AND or OR gates at the bottom of C and
possibly negating the output, and thereby increasing the size by at most a polynomial in n.

In our case f is the MOD2 function and C would be a depth h circuit of size n = lε log l containing
ε log2 l MODm gates. The circuit C′ constructed above can then be further transformed into a depth
O(h) circuit C′′ of size lO(ε log l) with at most O(ε log2 l) MODm gates such that

Pr [C′′(x) = f(x)] >
1

2
+

1

l2ε log l

thus contradicting Theorem 2 for any sufficiently small ε. �
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