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Abstract

A dimension extractor is an algorithm designed to increase the effective dimen-
sion – i.e., the computational information density – of an infinite sequence. A
constructive dimension extractor is exhibited by showing that every sequence of
positive constructive dimension is Turing equivalent to a sequence of constructive
strong dimension arbitrarily close to 1. Similar results are shown for computable di-
mension and truth-table equivalence, and for pispace dimension and pispace Turing
equivalence, where pispace represents Lutz’s hierarchy of super-polynomial space
bounds. Thus, with respect to constructive, computable, and pispace information
density, any sequence in which almost every prefix has information density bounded

away from zero can be used to compute a sequence in which infinitely many pre-
fixes have information density that is nearly maximal. In the constructive dimension
case, the reduction is uniform with respect to the input sequence: a single oracle
Turing machine, taking as input a rational upper bound on the dimension of the
input sequence, works for every input sequence of positive constructive dimension.

As an application, the resource-bounded extractors are used to characterize the
computable dimension of individual sequences in terms of compression via truth-
table reductions and to characterize the pispace dimension of individual sequences
in terms of compression via pispace-bounded Turing reductions, in analogy to pre-
vious known results connecting effective dimensions to compression with effective
reductions.
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1 Introduction

An extractor is an algorithm used to transform a source of weak randomness into a source
of stronger randomness. Extractors are motivated in part by the abundance of weak
random sources in nature – for instance, electrical noise from Zener diodes – and the need
for uniform (i.e., strong) random sources in probabilistic algorithms. Von Neumann’s
[von63] coin flip technique is the simplest and most famous extractor: a biased coin may
be used to simulate an unbiased coin by always flipping the coin twice, ignoring the
combinations HH and TT, and interpreting HT to mean H and TH to mean T.

In computational complexity, a extractor is a function, computable in some resource
bound such as polynomial time, taking as input a string drawn from a probability dis-
tribution X on {0, 1}n with min-entropy at least k, and a much smaller string, called
the seed, drawn from a truly uniform distribution. The extractor’s output is “close” to
uniformly distributed, but much larger than the seed. The min-entropy of X is defined
minx∈{0,1}n log Pr[x = X]−1; it is the Shannon self-information [Sha48] of the string with
the highest probability in {0, 1}n. If k is strictly between 0 and n, X may be thought
of as “partially random”; n bits drawn from X have k bits of randomness. The goal of
an extractor is to transform X into a distribution that is closer to “fully random”, i.e.,
to output m bits that have close to m bits of randomness. See [Sha02] for a survey of
extractors in computational complexity.

For algorithmic purposes, a deterministic infinite sequence that appears random to
any algorithm often works just as well as a truly random source. The complexity class
BPP, defined by Gill [Gil77] to be those languages decidable by a randomized polynomial
time algorithm with probability of correctness at least 2/3, is generally regarded as the set
of decision problems feasibly decidable by a randomized algorithm. Bennett [Ben88] has
demonstrated that, given access to any oracle sequence that is algorithmically random in
the sense of Martin-Löf [Mar66], every language in BPP can be decided deterministically
in polynomial time. Book, Lutz and Wagner [BLW94] have shown a wealth of similar
characterizations of BPP and other randomized complexity classes in terms of oracle
access to Martin-Löf random sequences. Lutz [Lut93], using the techniques of resource-
bounded measure [Lut92], improved the result of Bennett by showing that all of BPP can
be decided in polynomial time relative to any pspace-random oracle, which is a sequence
that appears random to any polynomial-space-bounded algorithm.

Lutz refined the theory of resource-bounded measure by introducing effective dimen-
sion [Lut03a, Lut03b], an effectivization of classical Hausdorff dimension [Hau19, Fal03];
Athreya, Hitchcock, Lutz, and Mayordomo [AHLM] defined effective strong dimension,
an effectivization of packing dimension [Tri82, Sul84, Fal03], showing it to be an exact
dual of Hausdorff dimension. Given a resource bound ∆ (such as computable, polynomial
time, polynomial space, etc.), any sequence that is ∆-random has ∆-dimension 1, whereas
a ∆-non-random sequence may have ∆-dimension anywhere in the interval [0,1], quanti-
fying how close the sequence is to being ∆-random. Gu and Lutz [GL05] improved Lutz’s
above-mentioned pspace-random oracle result by showing that all of BPP is polynomial
time decidable relative to any oracle sequence with positive pspace-dimension. There-
fore, for certain applications, if a sequence has positive dimension, it contains sufficient
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randomness to act as a truly random source. This highlights the parallels between the
theory of effective dimension and randomness extractors. A non-random sequence with
positive dimension may be considered “weakly random”: the first n bits of a sequence with
Hausdorff and packing ∆-dimension equal to α contain about αn bits of ∆-randomness.

A well-studied effective dimension is constructive dimension [Lut03b], which has a
simple characterization shown by Mayordomo [May02]. The (constructive) dimension of

a sequence S is dim(S) = lim infn→∞
K(S�n)

n
, and the (constructive) strong dimension of S

is Dim(S) = lim supn→∞
K(S�n)

n
, where K(S � n) is the Kolmogorov complexity of the nth

prefix of S (see [LV97]). Any Martin-Löf random sequence has constructive dimension
1, though the converse does not hold. Reimann [Rei04] and Terwijn asked the question,
given any sequence S such that dim(S) > 0, does oracle access to S allow us to compute
a Martin-Löf random sequence? Miller and Nies [MN05] posed the related questions,
does oracle access to S allow us to compute a sequence of constructive dimension 1, or
arbitrarily close to 1, or strictly greater than dim(S)? Viewing dimension as a quantifica-
tion of the amount of randomness contained in a sequence, a computation increasing the
dimension of a sequence performs the same function as the extractors mentioned earlier:
the computation transforms a partially random source into a more random source.

The questions raised by Reimann, Terwijn, Miller, and Nies remain elusive, but we
show that constructive dimension can be extracted in a weaker sense. We demonstrate
that, for every ε > 0 and every sequence S such that dim(S) > 0, there is a sequence
P , Turing equivalent to S, such that Dim(P ) ≥ 1 − ε. Recalling the characterizations
of dim and Dim above, this means that every sequence in which almost every prefix has
randomness bounded away from zero can be used to compute a sequence that has infinitely
many prefixes with nearly maximal randomness. In fact, there is a single oracle Turing
machine that accomplishes this extraction, taking a rational β > dim(S) as an input
parameter, where β − dim(S) ≤ ε · dim(S)/3 guarantees that Dim(P ) ≥ 1− ε. Moreover,
the extractor uses close to an optimal number of bits of the input sequence to compute
the output sequence.

Unfortunately, our technique probably cannot be used to show that Turing reductions
are able to increase constructive dimension in addition to constructive strong dimension
(i.e., to show that almost every prefix of the output sequence has high Kolmogorov com-
plexity). Nies and Reimann [NR06] have shown that constructive dimension cannot be
extracted with weak truth-table reductions: for every rational α, there is a sequence S
such that dim(S) = α, and every sequence P that is weak truth-table reducible to S
satisfies dim(P ) ≤ α. Since the Turing reduction in our proof is also a weak truth-table
reduction, it is unlikely that our technique is easily modified to show that dim(P ) ≥ 1−ε.

Buhrman, Fortnow, Newman, and Vereshchagin [BFNV05] and Fortnow, Hitchcock,
Pavan, Vinodchandran, and Wang [FHP+06] have demonstrated related constructions for
extracting Kolmogorov complexity from finite strings. Buhrman et al. show that there
is an efficient algorithm, taking as input any non-random string, that outputs a small
list of strings of the same length as the input string, where at least one output string
is guaranteed to have higher Kolmogorov complexity than the input. Note that given
x ∈ {0, 1}∗ and K(x), a random string containing exactly the amount of algorithmic
information in x may be extracted from x: namely, the shortest program for x. The
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value K(x) – requiring at most log |x| bits to represent – may be considered “advice” bits
that help the algorithm extract randomness from x. Fortnow et al. improve upon this
observation by showing that there is an efficient algorithm such that, for any 0 < α < β <
1, if the input string x has Kolmogorov complexity at least α|x|, then, given a constant
(with respect to α and β) number of advice bits, the output string y (with |y| = Ω(|x|)) will
have Kolmogorov complexity at least β|y|. The advice bits are a necessity; Vereshchagin
and Vyugin [VV02] have shown that there is no uniform algorithm capable of extracting
Kolmogorov complexity from finite strings.

We also construct extractors for ∆-dimension in a similar fashion to constructive
dimension, where ∆ represents either the class comp of computable functions or, for
each i ∈ N, any of the classes pispace of pispace-computable functions. The pispace
hierarchy was defined by Lutz [Lut92] as a hierarchy of classes of functions computable
in super-polynomial, but sub-exponential, space. For instance, p1space is simply pspace,
the class of functions computable in space nk for some constant k, and p2space is the
class of functions computable in space n(log n)k

. For every ε > 0 and every sequence S
such that dim∆(S) > 0, there is a sequence P , ∆-Turing equivalent to S, such that
Dim∆(P ) ≥ 1 − ε. (Precise definitions of the ∆ bounds follow in section 2.3.) The
only difference from the constructive dimension result is that a different oracle Turing
machine is required for each sequence S. For both the constructive dimension and ∆-
dimension extractors, the intuition behind the proof is the same. The extractor acts
as a compressor that compresses the input sequence close to its optimal compression
ratio under the resource bound ∆, which is precisely the ∆-dimension of the sequence.
It is well-known [LV97] that the shortest program to produce a finite string must itself
be incompressible (i.e., have maximal Kolmogorov complexity). Similarly, Mayordomo’s
Kolmogorov complexity characterization of constructive dimension and Hitchcock’s ∆-
bounded Kolmogorov complexity characterization of ∆-dimension [Hit03] are invoked to
show that an almost optimally compressed representation of a sequence must itself be
infinitely often nearly incompressible and thus have strong dimension close to 1.

As an application of the extractors, we use the ∆-dimension extractors to show a new
characterization of ∆-dimension: the ∆-dimension of a sequence is the optimal compres-
sion ratio achievable on the sequence with a ∆-bounded Turing reduction. In the case
of ∆ = comp, a ∆-bounded Turing reduction is exactly a truth-table reduction [Soa87].
Thus, the computable dimension of a sequence is the optimal compression ratio achievable
on it with truth-table reductions, and the pispace dimension of a sequence is the optimal
compression ratio achievable on it with Turing reductions computable in pispace.

In each case, the extractor is no more powerful than the resource bound defining the
dimension. This is necessary to make the results non-trivial. For instance, without access
to any oracle sequence, but given exponential space, a program can diagonalize against
all pspace-bounded martingales to compute a pspace-random sequence. An extractor is
interesting only when it has no more computational power than the class of algorithms it
is trying to fool: all the randomness present in the output sequence must originate from
the input sequence, and the extractor merely acts as a filter that distills the randomness
out from the redundancy.
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2 Preliminaries

We refer the reader to [LV97] for an introduction to Kolmogorov complexity and algorith-
mic information theory, [Soa87] for an introduction to computability theory, and [Pap94]
for an introduction to computational complexity theory.

2.1 Notation

All logarithms are base 2. We write R, Q, Q2, Z, and N for the set of all reals, rationals,
dyadic rationals, integers, and non-negative integers, respectively. For all A ⊆ R, A+

denotes A∩ (0,∞). {0, 1}∗ denotes the set of all finite, binary strings. For all x ∈ {0, 1}∗,
|x| denotes the length of x. λ denotes the empty string. Let σ0, σ1, σ2, . . . ∈ {0, 1}

∗ denote
the standard enumeration of binary strings σ0 = λ, σ1 = 0, σ2 = 1, σ3 = 00, . . .. For
k ∈ N, {0, 1}k denotes the set of all strings x ∈ {0, 1}∗ such that |x| = k. C = {0, 1}∞

denotes the Cantor space, the set of all infinite, binary sequences. For x ∈ {0, 1}∗ and
y ∈ {0, 1}∗ ∪C, xy denotes the concatenation of x and y, x v y denotes that x is a prefix
of y; i.e., there exists u ∈ {0, 1}∗ ∪ C such that xu = y, and x < y denotes that x v y
and x 6= y. For S ∈ {0, 1}∗ ∪C and i, j ∈ N, S[i] denotes the ith bit of S, with S[0] being
the leftmost bit, S[i . . j] denotes the substring consisting of the ith through jth bits of S
(inclusive), with S[i . . j] = λ if i > j, and S � i denotes S[0 . . i − 1]. A language is a
subset of {0, 1}∗, and we identify a language L ⊆ {0, 1}∗ with its characteristic sequence
χL ∈ C, where the nth bit of χL is 1 if and only if σn ∈ L, writing L � i to denote χL � i.

2.2 Kolmogorov Complexity and Coding

Fix a self-delimiting universal Turing machine U . Let w ∈ {0, 1}∗. The Kolmogorov
complexity of w is

K(w) = min
π∈{0,1}∗

{ |π| | U(π) = w} .

The quantity K(w)
|w|

is called the Kolmogorov rate of w. Given a bound t : N → N, the
t-time-bounded Kolmogorov complexity of w is

Kt(w) = min
π∈{0,1}∗

{ |π| | U(π) = w in at most t(|w|) time} ,

and the t-space-bounded Kolmogorov complexity of w is

KSt(w) = min
π∈{0,1}∗

{ |π| | U(π) = w in at most t(|w|) space} .

Fact 2.1. For all w ∈ {0, 1}∗ and t : N→ N, K(w) ≤ KSt(w) ≤ Kt(w).

For all q ∈ Q, let K(q) = K(b(q)), Kt(q) = Kt(b(q)) and KSt(q) = KSt(b(q)), where
b(q) ∈ {0, 1}∗ is some standard binary representation of the rational q with a numerator,
denominator, and sign bit.
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For all w ∈ {0, 1}∗, let e0(w) = 0|w|1w. Define the self-delimiting encoding function
enc : {0, 1}∗ → {0, 1}∗ for all w ∈ {0, 1}∗ by

enc(w) = e0

(
σ|w|

)
w.

For all n ∈ N, let enc(n) = enc(σn). Strings encoded by enc and valid programs for U are
self-delimiting. They can be prepended to arbitrary strings and uniquely decoded.

Observation 2.2. For all w, x ∈ {0, 1}∗, |enc(w)| ≤ |w|+2 log |w|+3, and for all n ∈ N,
enc(n) ≤ log n + 2 log log n + 3.

2.3 Space Bounds, Reductions, and Compression

The following explanation of growth rates and function classes is taken nearly verbatim
from [Lut92].

For each i ∈ N, define a class Gi of growth rates as follows.

G0 = { f : N→ N | (∃k ∈ N)(∀∞n ∈ N) f(n) ≤ kn }

Gi+1 = 2Gi(log n) =
{

f : N→ N
∣∣ (∃g ∈ Gi)(∀

∞n ∈ N) f(n) ≤ 2g(log n)
}

In this paper, for each i ∈ N, ∆ represents any of the following classes of functions

comp = { f : {0, 1}∗ → {0, 1}∗ | f is computable } ,

pispace = { f : {0, 1}∗ → {0, 1}∗ | f is computable in Gi space } .

For example, p0space is the set of all functions computable in linear space, and p
1
space,

abbreviated pspace, is the set of all functions computable in polynomial space. Given
a class of functions ∆, let sb(∆) ⊆ {f : N → N} denote the class of space bounds for
∆: sb(comp) is the set of all computable functions f : N → N, and, for all i ∈ N,
sb(pispace) = Gi.

If D is a discrete domain, we say a function f : D → R is ∆-computable if there is
a function f̂ : N × D → Q such that |f̂(r, x) − f(x)| ≤ 2−r for all r ∈ N and x ∈ D,

and f̂ ∈ ∆ (with r coded in unary and x and the output coded in binary). We say that
f is exactly ∆-computable if f : D → Q and f ∈ ∆, and we say that f is dyadically
∆-computable if f : D → Q2 and f ∈ ∆.

Let M be a Turing machine and S ∈ C. We say M computes S if, on input n ∈ N,
M outputs the string S � n. We define an oracle Turing machine (OTM ) to be a Turing
machine M that can make constant-time queries to an oracle sequence, and we let OTM
denote the set of all oracle Turing machines. For R ∈ C, we say M operates with oracle
R if, whenever M makes a query to index n ∈ N, the bit R[n] is returned. We write MR

to denote the OTM M with oracle R.
Let S, R ∈ C and M ∈ OTM. We say S is Turing reducible to R via M , and we write

S ≤T R via M , if MR computes S. We say S is Turing reducible to R, and we write
S ≤T R, if there exists M ∈ OTM such that S ≤T R via M . We say S is ∆-Turing
reducible to R via M , and we write S ≤∆

T R via M , if MR computes S, and there is a
function q ∈ sb(∆) such that, for all n ∈ N, M outputs S � n using at most q(n) space.
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We say S is ∆-Turing reducible to R, and we write S ≤∆
T R, if there exists M ∈ OTM

such that S ≤∆
T R via M . We say S is Turing equivalent to R, and we write S ≡T R, if

S ≤T R and R ≤T S, and we say S is ∆-Turing equivalent to R, and we write S ≡∆
T R,

if S ≤∆
T R and R ≤∆

T S.
If ∆ = comp, then a ∆-Turing reduction is nothing more than a truth-table reduction

(see [Soa87]). We write S ≤tt R to denote that S is truth-table reducible to R (i.e., that
S ≤comp

T R). If ∆ = pispace, and we identify a sequence S ∈ C with the language
L ⊆ {0, 1}∗ for which S = χL, then a ∆-Turing reduction is an EiSPACE (see [Lut92])
Turing reduction. Since this paper deals exclusively with sequences, we will use the
convention of calling such a reduction a pispace-Turing reduction, indicating that the
polynomial bound is in terms of the length of the prefix of the characteristic sequence
(the output) and not in terms of the length of the strings in the language (the input).

Let S, R ∈ C and M ∈ OTM such that S ≤T R via M . Define #(MR, S � n) to be
the query usage of MR on S � n, the number of bits of R queried by M when computing
the string S � n. (If we instead define #(MR, S � n) to be the index of the rightmost
bit of R queried by M when computing S � n, all results of the present paper still hold.)
Define

ρ−
M (S, R) = lim inf

n→∞

#(MR, S � n)

n
,

ρ+
M (S, R) = lim sup

n→∞

#(MR, S � n)

n
.

Viewing R as a compressed version of S, ρ−
M (S, R) and ρ+

M(S, R) are respectively the
best- and worst-case compression ratios as M decompresses R into S. Note that 0 ≤
ρ−

M(S, R) ≤ ρ+
M(S, R) ≤ ∞. For S ∈ C, the lower and upper Turing compression ratios

of S are respectively defined

ρ−(S) = min
R∈C

M∈OTM

{
ρ−

M (S, R)
∣∣ S ≤T R via M

}
,

ρ+(S) = min
R∈C

M∈OTM

{
ρ+

M (S, R)
∣∣ S ≤T R via M

}
.

It was shown in [Dot06] that the above minima exist. Note that 0 ≤ ρ−
T(S) ≤ ρ+

T(S) ≤ 1.
The lower and upper ∆-Turing compression ratios of S are respectively defined

ρ−
∆(S) = inf

R∈C
M∈OTM

{
ρ−

M (S, R)
∣∣ S ≤∆

T R via M
}

,

ρ−
∆(S) = inf

R∈C
M∈OTM

{
ρ+

M (S, R)
∣∣ S ≤∆

T R via M
}

.

Recall that a ≤comp
T -reduction is simply a truth-table reduction. Therefore, for all S ∈ C,

the lower and upper truth-table compression ratios of S are respectively defined

ρ−
tt(S) = ρ−

comp(S) = inf
R∈C

M∈OTM

{
ρ−

M (S, R)
∣∣ S ≤tt R via M

}
,

ρ+
tt(S) = ρ+

comp(S) = inf
R∈C

M∈OTM

{
ρ+

M (S, R)
∣∣ S ≤tt R via M

}
.
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2.4 Effective Dimension

See [Lut03a, Lut03b] for an introduction to the theory of effective dimension.
We use Mayordomo’s characterization [May02] of the constructive dimensions of se-

quences. For all S ∈ C, the (constructive) dimension and the (constructive) strong
dimension of S are respectively defined

dim(S) = lim inf
n→∞

K(S � n)

n
, and Dim(S) = lim sup

n→∞

K(S � n)

n
.

Other equivalent definitions exist, in terms of martingales [Lut03b] and Turing reduction
compression [Dot06], but we use only Mayordomo’s characterization in the present paper.

Resource-bounded dimension was first defined in [Lut03a]. It is based on martingales,
which are strategies for betting on bits of an infinite sequence.

1. An s-gale is a function d : {0, 1}∗ → [0,∞) such that, for all w ∈ {0, 1}∗,

d(w) = 2−s[d(w0) + d(w1)].

2. A martingale is a 1-gale.

Intuitively, a martingale is a strategy for gambling in the following game. The gambler
starts with some initial amount of capital (money) d(λ), and it reads an infinite sequence
S of bits. d(w) represents the capital the gambler has after reading the prefix w < S.
Based on w, the gambler bets some fraction of its capital that the next bit will be 0 and the
remainder of its capital that the next bit will be 1. The capital bet on the bit that appears
next is doubled, and the remaining capital is lost. The condition d(w) = d(w0)+d(w1)

2

ensures fairness: the martingale’s expected capital after seeing the next bit, given that it
has already seen the string w, is equal to its current capital. The fairness condition and
an easy induction lead to the following observation.

Observation 2.3. Let k ∈ N and let d : {0, 1}∗→ [0,∞) be a martingale. Then

∑

u∈{0,1}k

d(u) = 2kd(λ).

An s-gale is a martingale in which the capital bet on the bit that occurred is multiplied
by 2s, as opposed to simply 2, after each bit. The parameter s may be regarded as the
unfairness of the betting environment ; the lower the value of s, the faster money is taken
away from the gambler. Let d : {0, 1}∗ → [0,∞) be a martingale and let s ∈ [0,∞).
Define the s-gale induced by d, denoted d(s), for all w ∈ {0, 1}∗ by

d(s)(w) = 2(s−1)|w|d(w).

If a gambler’s martingale is given by d, then, for all s ∈ [0,∞), its s-gale is d(s).
The following theorem, due to Lutz, establishes an upper bound on the number of

strings on which an s-gale can perform well.
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Theorem 2.4. [Lut03a] Let d be an s-gale. Then for all w ∈ {0, 1}∗, k ∈ N, and α ∈ R+,

there are fewer than 2k

α
strings u ∈ {0, 1}k for which

max
vvu

{
2(1−s)|v|d(wv)

}
≥ αd(w).

Corollary 2.5. Let d be a martingale. Then for all l ∈ R, w ∈ {0, 1}∗, k ∈ N, and

α ∈ R+, there are fewer than 2l

α
strings u ∈ {0, 1}k for which

d(wu) ≥ α2k−ld(w).

Let S ∈ C, s ∈ [0,∞), and let d : {0, 1}∗ → [0,∞) be an s-gale. d succeeds on S, and
we write S ∈ S∞[d], if

lim sup
n→∞

d(S � n) =∞.

d strongly succeeds on S, and we write S ∈ S∞
str[d], if

lim inf
n→∞

d(S � n) =∞.

The following lemma follows easily from the proof of the Exact Computation Lemma
of [Lut03a].

Lemma 2.6. [Lut03a] If d is a ∆-computable s-gale and 2s is a dyadic rational, then

there is a dyadically ∆-computable s-gale d̃ such that S∞[d] ⊆ S∞[d̃] and S∞
str[d] ⊆ S∞

str[d̃].

Let G
(s)
∆ denote the set of all ∆-computable s-gales. For all S ∈ C, the ∆-dimension

and the ∆-strong dimension of S are respectively defined

dim∆(S) = inf
{

s ∈ [0,∞)
∣∣∣
(
∃d ∈ G

(s)
∆

)
S ∈ S∞[d]

}
,

and
Dim∆(S) = inf

{
s ∈ [0,∞)

∣∣∣
(
∃d ∈ G

(s)
∆

)
S ∈ S∞

str[d]
}

.

The following alternate characterization of the ∆-dimensions is due to Hitchcock [Hit03].

Theorem 2.7. [Hit03] For all S ∈ C,

dim∆(S) = inf
p∈sb(∆)

lim inf
n→∞

KSp(S � n)

n
,

and

Dim∆(S) = inf
p∈sb(∆)

lim sup
n→∞

KSp(S � n)

n
.

If there is a martingale d that succeeds on a sequence S ∈ C, then d makes arbitrarily
high capital on S. Using a standard technique (see [MM04]), one may construct from d a
martingale d′ that strongly succeeds on S. This is done by maintaining a “side account”
of capital that is not used to bet: i.e., the capital in that account is always allocated
equally between 0 and 1 when betting. Whenever d makes strictly more than $1, $1 is
moved into the side account. Since d succeeds on S, it will eventually make more than
$1 in the main account again, and so infinitely often, the side account will grow by $1,
whence d′ strongly succeeds on S. It is clear that if d is ∆-computable, then d′ is also
∆-computable.
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Observation 2.8. Let S ∈ C such that there is a ∆-computable martingale that succeeds
on S. Then there is a ∆-computable martingale that strongly succeeds on S.

Let r, t ∈ [0,∞) and S ∈ C. Note that if d1 and d2 are martingales such that d
(t)
1

succeeds on S and d
(r)
2 strongly succeeds on S, then d1 and d2 can be combined into a

single martingale d that simulates d1 and d2 in separate “accounts”. Furthermore, if d1

and d2 are both ∆-computable, then d is also ∆-computable. This leads to the following
observation.

Observation 2.9. Let S ∈ C, t > dim∆(S), and r > Dim∆(S). Then there is a ∆-
computable martingale d such that d(t) succeeds on S and d(r) strongly succeeds on S.

The next theorem is due to Ryabko, though it has been re-phrased from his original
formulation.

Theorem 2.10. [Rya84, Rya86] There exist OTMs Me and Md, with Me taking a single
input β ∈ Q, with the property that, for every S ∈ C and every rational β > dim(S),
there exists P ∈ C such that P ≤T S via Me(β), S ≤T P via Md, and ρ−

Md
(S, P ) < β.

3 Dimension Extractors

This section explores three effective dimensions in which effective reducibilities may be
used to extract effective strong dimension: constructive dimension, extracted with Turing
reductions, computable dimension, extracted with truth-table reductions, and pispace-
dimension, extracted with pispace-bounded Turing reductions.

3.1 Constructive Dimension Extractors

The next theorem states that any sequence in which almost every prefix has Kolmogorov
rate bounded away from zero can be used to compute a sequence with infinitely many
prefixes of nearly maximal Kolmogorov rate. Furthermore, this can be done with a single
OTM taking a rational upper bound on the dimension of the input sequence.

Theorem 3.1. There exist Ne, Nd ∈ OTM, with Ne taking β ∈ Q as input, such that, for
all S ∈ C such that dim(S) > 0, and all ε > 0 such that 0 < β − dim(S) ≤ ε · dim(S)/3,
there exists P ∈ C such that P ≤T S via Ne(β), S ≤T P via Nd, and Dim(P ) ≥ 1− ε.

The statement of Theorem 3.1 is complicated by the rational input β required to make
the OTM Ne uniform over all sequences. The following corollary states simply that Turing
reductions can extract strong dimension from positive dimension.

Corollary 3.2. For each S ∈ C such that dim(S) > 0, and each ε > 0, there exists
P ∈ C such that P ≡T S and Dim(P ) ≥ 1− ε.

10



Proof of Theorem 3.1. Let S, β, and ε be as in the statement of the theorem, and define
δ = β−dim(S) > 0. Let Me, Md ∈ OTM be as in Theorem 2.10, so that MS

e (β) computes
P , MP

d computes S, and, letting pi = #(MP
d , S � i) for all i ∈ N,

lim inf
i→∞

pi

i
< β =⇒ (∃∞i ∈ N) lim inf

n→∞

K(S � n)

n
>

pi

i
− δ

=⇒ (∃∞n ∈ N) K(S � n) > pn − δn. (3.1)

Since δ ≤ ε · dim(S)/3 < ε · dim(S)/2,

(∀∞n ∈ N) K(S � n) >
2

ε
δn. (3.2)

Ryabko’s construction of Md is such that entire prefixes of the oracle sequence are queried
at once: whenever the bit at index i ∈ N is queried, all bits j < i are also queried.
Thus, a program M simulating Md with the first pn bits of P can calculate S � n, and
M can be encoded in |enc(P � pn)| + O(1) bits. Thus there is a constant c such that
K(S � n) ≤ pn + 2 log pn + c, which together with (3.2) implies that

(∀∞n ∈ N) δn <
ε

2
(pn + 2 log pn + c). (3.3)

Combining (3.1) and (3.3),

(∃∞n ∈ N) K(S � n) > pn −
ε

2
(pn + 2 log pn + c) . (3.4)

If the OTMs Ne(β) and Nd simulate Me(β) and Md, respectively, then Ne(β) and Nd

testify that P ≡T S. It remains to show that Dim(P ) ≥ 1 − ε. Suppose for the sake of
contradiction that Dim(P ) < 1− ε. Then it would be the case that

(∀∞m ∈ N) K(P � m) < m− εm. (3.5)

Since dim(S) > 0, S is uncomputable, and therefore pn grows unboundedly with n. A
program that produces P � pn can be used in conjunction with Md to produce S � n.
Therefore, for a suitable constant c′ ≈ |Md|,

(∀∞n ∈ N) K(S � n) ≤ K(P � pn) + c′

< pn − εpn + c′

< pn −
ε

2
(pn + 2 log pn + c) . (3.6)

But (3.6) contradicts (3.4). Hence, Dim(P ) ≥ 1− ε.

3.2 Resource-bounded Dimension Extractors

We show that an analog of Corollary 3.2 holds for ∆-dimension. Many of the techniques
in this section are resource-bounded analogs of the techniques of [Dot06], although each
the techniques of that paper require at least minor adaptation for use in the current paper.

The following technical lemma is needed later in the section to facilitate the economical
computation and storage of rational approximations of the values of a martingale.

11



Lemma 3.3. Let a ∈ R+ be fixed, and, for all i ∈ N, let ri ∈ [1, a2i2]. Then for each
i ∈ N, there exists ci ∈ Q+

2 such that ri

(
1− 1

i2

)
≤ ci ≤ ri and KO(i2)(ci) = O(log i).

Furthermore, if a, ri ∈ Q+
2 , then ci can be computed from i, a, and ri in O(i2) time.

Proof. We prove the cases ri ≥ i2 and 1 ≤ ri < i2 separately. Suppose ri ≥ i2. In this
case we will choose ci to be an integer. Set k ∈ Z+ such that 2k−1 < i2 ≤ 2k. Since
ri ≥ i2 > 2k−1, dlog rie > k − 1.

Let ci ∈ Z+ be the integer whose binary representation is x0dlog rie−k, where x ∈ {0, 1}k

is the first k bits of bric. Since ci shares its first k bits with ri,

ri − ci ≤ 2dlog rie−k − 1 ≤
ri + 2

2k
− 1 ≤

ri

i2
,

so ri ≥ ci ≥ ri

(
1− 1

i2

)
. ci can be fully described by the first k bits of ri, along with the

binary representation of the number dlog rie − k of 0’s that follow. Thus, describing ci

requires no more than k + log(dlog rie − k) ≤ log i2 + 1 + log log a + log i2 = O(log i) bits.
Now suppose that 1 ≤ ri < i2. We let ci approximate ri by the binary integer bric,

plus a finite prefix of the bits to the right of ri’s decimal point in binary form. If x.S is
the binary representation of ri, where x ∈ {0, 1}∗ and S ∈ C, let ci ∈ Z+ be represented
by x.y, where y v S.

Since ri < i2, |x| ≤ log i2 = O(log i). We need ri − ci ≤ ri/i
2. Since ri − ci ≤ 2−|y|, it

suffices to choose y v S such that 2−|y| ≤ ri/i
2, or |y| ≥ log(i2/ri). Let |y| = dlog(i2/ri)e =

O(log i), since ri ≥ 1. Thus |x|+ |y| = O(log i), so describing ci requires O(log i) bits.
It is easy to verify that both programs for computing ci require O(i2) time. Let π(ci)

be such a program. If ri is given as a dyadic rational input, π(ci) is simply constructed
from initial bits of ri in either case. It follows that in the first case, π(ci) can be created
in O(i2) time, since log ri ≤ i2 + log a, and the first case uses only the integral part of ri.
In the second case, we have already shown that the integral part x of ci and the fractional
part y of ci each constitute O(log i) bits of r. Therefore, in the second case, π(ci) can be
created in O(log i) time.

An OTM that computes a sequence S, together with a finite prefix of the oracle that
it queries, is a program to produce a prefix of S. Thus, the query usage of a space-
bounded OTM on that prefix of S cannot be far below the space-bounded Kolmogorov
complexity of the prefix of S. This is formalized in the following lemma, which bounds
the compression ratio below by dimension.

Lemma 3.4. For all S ∈ C, ρ−
∆(S) ≥ dim∆(S), and ρ+

∆(S) ≥ Dim∆(S).

Proof. Let S, P ∈ C, and let M ∈ OTM such that S ≤∆
T P via M . For P = S, S ≤∆

T P
via the trivial “bit-copier” OTM that always queries exactly n bits of P to compute n
bits of S, so we may assume that for all but finitely many n ∈ N, #(MP , S � n) ≤ n.
Thus, since M has available at least a linear amount of space, we may assume that each
bit of P is queried at most once and cached, and that subsequent queries are retrieved
from the cache.

Let πM be a self-delimiting program for M , so that, for all x ∈ {0, 1}∗, U(πMx) =
M(x). Let pn ∈ {0, 1}

#(MP ,S�n) be the oracle bits of P queried by M on input n, in the

12



order in which they are queried. Recall the self-delimiting encoding function enc. For
each n ∈ N, let πn = πM ′πMenc(n)enc(pn), where πM ′ is a self-delimiting program that
simulates M , encoded by πM , on input n, encoded by enc(n), with oracle P , encoded by
enc(pn). When M makes its ith query to a bit of P , the bit of pn[i] is returned. Since M
queries each bit of P at most once, the bit from pn will be correct, no matter what index
was queried by M , since the bits of pn are arranged in the order in which M makes its
queries.

Then U(πn) = S � n, so if there exists s ∈ sb(∆) such that M uses at most s(n)
space on input n, there exists q ∈ sb(∆) such that, for all n ∈ N, KSq(S � n) ≤ |πn|. By
Theorem 2.7,

dim∆(S)

= inf
q∈sb(∆)

lim inf
n→∞

KSq(S � n)

n

≤ lim inf
n→∞

|πM ′πMenc(n)enc(pn)|

n

≤ lim inf
n→∞

|πM ′πM |+ log n + 2 log log n + #(MP , S � n) + 2 log #(MP , S � n) + 6

n

= lim inf
n→∞

#(MP , S � n)

n
= ρ−

M (S, R),

whence dim(S) ≤ ρ−
∆(S). Similarly, Dim(S) ≤ ρ+

∆(S).

For t ∈ R, c ∈ Q, s ∈ {0, 1}∗, k ∈ N, and d : {0, 1}∗ → [0,∞) a t-gale, define

A
(k)
d,c,s =

{
u ∈ {0, 1}k

∣∣ d(su) ≥ c
}

(3.7)

to be the set of all length-k extensions of s on which d makes at least c capital. The
following lemma shows that |A

(k)
d,c,s| is small on average if d makes a lot of capital on a

sequence beginning with prefix s, if c is close to the capital that d has after reading k bits
beyond s.

Lemma 3.5. Let S ∈ C, r ≥ t > 0, and let d be a martingale such that d(t) succeeds on
S and d(r) strongly succeeds on S. Write S = s0s1s2 . . ., where, for all i ∈ N, ki = |si|,
and ni = |s0 . . . si|. Let ci ∈ R satisfy d(S � ni)g(i) ≤ ci ≤ d(S � ni), where g(i) ∈ (0, 1)
satisfies −

∑i

j=2 log g(j) = o(ni). Then

lim sup
i→∞

∑i

j=0 log
∣∣∣A(kj)

d,cj ,S�nj−1

∣∣∣
ni

≤ r, (3.8)

and, if ki = o(ni), then

lim inf
i→∞

∑i

j=0 log
∣∣∣A(kj)

d,cj ,S�nj−1

∣∣∣
ni

≤ t, (3.9)
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Proof. We show that (3.9) holds, since the proof of (3.8) is similar. Let t′ > t, and,

for all i ∈ N, let Ai = A
(ki)
d,ci,S�ni−1

. It suffices to show that, for infinitely many i ∈ N,∑i

j=0 log |Aj| ≤ t′ni. Since d(t) succeeds on S, for infinitely many n ∈ N,

d(S � n) ≥ 2(1−t)nd(λ). (3.10)

A martingale can at most double its capital after every bit, and each index n with ni ≤
n < ni+1 is at most ki bits beyond ni. It follows that for infinitely many i ∈ N,

d(S � ni) ≥ 2(1−t)ni−kid(λ). (3.11)

For all i ∈ N, set li ∈ R such that d(S � ni) = 2ki−lid(S � ni−1). By induction on i,

d(S � ni) = d(λ)
i∏

j=0

2kj−lj . (3.12)

Then, by equations (3.11) and (3.12), and the fact that
∑i

j=0 ki = ni, for infinitely many
i ∈ N,

i∏

j=0

2kj−lj ≥ 2(1−t)ni−ki =⇒
i∑

j=0

(kj − lj) ≥ (1− t)ni − ki

=⇒

i∑

j=0

lj ≤ tni + ki.

Recall that ci ≥ d(S � ni)g(i) = g(i)2ki−lid(S � ni−1). By Corollary 2.5 (take k = ki, l =
li, α = 1− 1

i2
, w = S � ni−1) and the definition of li, it follows that |Ai| ≤ 2li/g(i), and so

log |Ai| ≤ li − log g(i). Let c0,1 = log |A0|+ log |A1| − l0 − l1. Then

i∑

j=0

log |Aj | ≤

i∑

j=0

lj −

i∑

j=2

log g(i) + c0,1

≤ tni + ki −
i∑

j=2

log g(i) + c0,1

= t′ni + (t− t′)ni + ki −
i∑

j=2

log g(i) + c0,1. (3.13)

t < t′, ki = o(ni), and
∑i

j=2 log g(i) = o(ni), so for infinitely many i,
∑i

j=0 log |Aj| ≤ t′ni.
The proof of (3.8) is similar, replacing “for infinitely many i” conditions with “for all

but finitely many i.” The only difference is that (3.10) holds for all but finitely many n,
and so there is no need to derive (3.11). Consequently, the term ki does not appear on
the right-hand side of (3.13), and so the condition ki = o(ni) is not necessary to show
that (3.8) holds.
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Let t ∈ R, c ∈ Q, s ∈ {0, 1}∗, k ∈ N, and let d : {0, 1}∗ → [0,∞) be a t-gale. If d is

exactly ∆-computable and u ∈ A
(k)
d,c,s, then the following procedure computes the index of

u in a lexicographical ordering of A
(k)
d,c,s.

ind
(k)
d,c,s

(
u ∈ {0, 1}k

)

1 i′ ← 0
2 for each u′ ∈ {0, 1}k in lexicographical order
3 do if d(su′) ≥ c
4 then if u′ = u
5 then output i′ and exit
6 else i′ ← i′ + 1

If u 6∈ A
(k)
d,c,s, ind

(k)
d,c,s(u) is undefined. Note that ind

(k)
d,c,s(u) ≤

∣∣∣A(k)
d,c,s

∣∣∣ when it is defined.

The computation of str
(k)
d,c,s : N→ {0, 1}k, the inverse of ind

(k)
d,c,s, is similar:

str
(k)
d,c,s (i ∈ N)

1 i′ ← 0
2 for each u′ ∈ {0, 1}k in lexicographical order
3 do if d(su′) ≥ c
4 then if i′ = i
5 then output u′ and exit
6 else i′ ← i′ + 1

Both ind
(k)
d,c,s and str

(k)
d,c,s are uniformly ∆-computable for all d, c, s, and k, in the sense

that each may be implemented by a single ∆-bounded Turing machine taking d, c, s, and
k as auxiliary input, provided d is exactly ∆-computable.

The following theorem was shown in [Dot06].

Theorem 3.6. [Dot06] There is an OTM M such that, for all S ∈ C, there is a sequence
R ∈ C such that

1. S ≤T R via M .

2. ρ−
M(S, R) = dim(S).

3. ρ+
M(S, R) = Dim(S).

The following theorem, a ∆-bounded analog of Theorem 3.6, is used to construct
∆-dimension extractors and to give a new characterization of ∆-dimension.

Theorem 3.7. For all S ∈ C and δ > 0, there is a sequence P ∈ C and an OTM M
such that

1. S ≡∆
T P , with S ≤∆

T P via M .

2. ρ−
M(S, P ) ≤ dim∆(S) + δ.

3. ρ+
M(S, P ) ≤ Dim∆(S) + δ.
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Proof. If dim∆(S) = 1, then the trivial “bit-copier” OTM M suffices to compute P = S,
where ρ−

M(S, P ) = ρ+
M(S, P ) = dim∆(S) = Dim∆(S) = 1, so assume that dim∆(S) < 1.

Write S = s0s1s2 . . ., where, for all i ∈ N, ki = |si| = i, and ni = |s0 . . . si| =∑i

j=0 ki = i(i+1)
2

. Let t, r ∈ Q2 such that dim∆(S) < t ≤ dim∆(S) + δ and Dim∆(S) <
r ≤ Dim∆(S) + δ. Then by Observation 2.9, there is a ∆-computable martingale d such
that d(t) succeeds on S and d(r) strongly succeeds on S. By Observation 2.8, dim∆(S) < 1
implies that we may assume that d strongly succeeds on S. By Lemma 2.6, we may
assume that d is dyadically ∆-computable.

By Observation 2.3, d(S � ni) ≤ 2nid(λ) ≤ 2i2d(λ) for i ≥ 3. Since d strongly succeeds
on S, for all but finitely many i, d(S � ni) ≥ 1. For all i ∈ N, choose ci ∈ Q+ for i, a,
and r as in Lemma 3.3 (taking a = d(λ) and ri = d(S � ni)), and let π(ci) represent a

program testifying that KSO(i2)(ci) ≤ O(log i), which can be computed from i, d(λ), and
d(S � ni) in O(i2) time.

Let P = p0p1p2 . . . , where, for all i ∈ N,

pi = enc
(
ind

(ki)
d,ci,S�ni−1

(si)
)

π(ci).

Because str
(ki)
d,ci,S�ni−1

is an inverse of ind
(ki)
d,ci,S�ni−1

, we can write each si as

si = str
(ki)
d,ci,S�ni−1

(
ind

(ki)
d,ci,S�ni−1

(si)
)

.

Since ind
(ki)
d,ci,S�ni−1

, str
(ki)
d,ci,S�ni−1

and d are all ∆-computable, P ≡∆
T S. Let M be the OTM

such that MP computes S. It suffices to show that ρ−
M(S, P ) ≤ t and ρ+

M (S, P ) ≤ r. Note
that

−
i∑

j=2

log

(
1−

1

j2

)
= −

i∑

j=2

log
(j + 1)(j − 1)

j2

= −
i∑

j=2

(log(j + 1) + log(j − 1)− 2 log j)︸ ︷︷ ︸
telescopes

= − log 1 + log 2 + log i− log(i + 1),

which converges as i→∞, so g(i) = 1− 1
i2

satisfies −
∑i

j=2 log g(j) = o(ni), whence the
conditions of Lemma 3.5 are satisfied. Then

ρ+
M(S, P ) = lim sup

n→∞

#(MP , S � n)

n

= lim sup
i→∞

#(MP , S � ni)

ni

since ki = o(ni)

= lim sup
i→∞

∑i

j=0

∣∣∣enc
(
ind

(kj)
d,cj ,S�nj−1

(sj)
)

π(cj)
∣∣∣

ni

= lim sup
i→∞

∑i

j=0 log ind
(kj)
d,cj ,S�nj−1

(sj)

ni

since |π(ci)| = o(ni)

≤ r. by Lemma 3.5
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Similarly, ρ−
M(S, P ) ≤ t.

The next theorem is a ∆-bounded analog of Corollary 3.2. It states that ∆-strong
dimension may be extracted, using ∆-Turing reductions, from any sequence of positive
∆-dimension. The proof strongly resembles the proof of Theorem 3.1, using Theorem 3.7
in place of Theorem 2.10, and using Theorem 2.7 to replace Kolmogorov complexity with
space-bounded Kolmogorov complexity. Also, the reduction is not uniform: the OTMs
used depend on the sequence used for the extraction.

Theorem 3.8. For each S ∈ C such that dim∆(S) > 0, and each ε > 0, there exists
P ∈ C such that P ≡∆

T S and Dim∆(P ) ≥ 1− ε.

Proof. Let S and ε be as in the statement of the theorem. Let 0 < δ < ε · dim∆(S)/2.
Choose P ∈ C and M ∈ OTM for S and δ as in Theorem 3.7 such that P ≡∆

T S and,
letting pi = #(MP , S � i) for all i ∈ N,

lim inf
i→∞

pi

i
< dim∆(S) + δ

=⇒ inf
q∈sb(∆)

lim inf
n→∞

KSq(S � n)

n
> lim inf

i→∞

pi

i
− δ by Theorem 2.7

=⇒ (∀q ∈ sb(∆)) lim inf
n→∞

KSq(S � n)

n
> lim inf

i→∞

pi

i
− δ

=⇒ (∀q ∈ sb(∆))(∃∞i ∈ N) lim inf
n→∞

KSq(S � n)

n
>

pi

i
− δ

=⇒ (∀q ∈ sb(∆))(∃∞n ∈ N) KSq(S � n) > pn − δn. (3.14)

Since δ < ε · dim∆(S)/2, by Theorem 2.7,

(∀q ∈ sb(∆))(∀∞n ∈ N) KSq(S � n) >
2

ε
δn. (3.15)

Note that the construction of M in the proof of Theorem 3.7 is such that entire prefixes
of the oracle sequence are queried at once: whenever the bit at index i ∈ N is queried,
all bits j < i are also queried. Thus, a program M ′ simulating M with the first pn

bits of P can calculate S � n, and M ′ can be encoded in |enc(P � pn)| + O(1) bits.
Thus there is a constant c and, since M uses ∆ space, there exists t ∈ sb(∆) such that
KSt(S � n) ≤ pn + 2 log pn + c, which together with (3.15) implies that

(∀∞n ∈ N) δn <
ε

2
(pn + 2 log pn + c). (3.16)

Combining (3.14) and (3.16),

(∀q ∈ sb(∆))(∃∞n ∈ N) KSq(S � n) > pn −
ε

2
(pn + 2 log pn + c) . (3.17)

Suppose for the sake of contradiction that Dim∆(P ) < 1 − ε. Then by Theorem 2.7, it
would be the case that

(∃s ∈ sb(∆))(∀∞m ∈ N) KSs(P � m) < m− εm. (3.18)
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Since dim∆(S) > 0, S is not ∆-computable (see [Lut03a], Lemma 4.13), and since S is
∆-computable by M with access to P , pn must grow unboundedly with n. A program that
produces P � pn in s(pn) space can be used in conjunction with M (which uses at most t(n)
space) to produce S � n in at most t(n)+s(pn) space. For the case ∆ = comp, t(n)+s(pn)
is bounded by a computable function of n. By part 3 of Theorem 3.7, pn = O(n), so, for
the case ∆ = pispace, the space bound n 7→ t(n)+ s(pn) is contained in Gi = sb(pispace).
Then for a suitable constant c′ ≈ |Md|,

(∃q ∈ sb(∆))(∀∞n ∈ N) KSq(S � n) ≤ KSs(P � pn) + c′

< pn − εpn + c′

< pn −
ε

2
(pn + 2 log pn + c) . (3.19)

But (3.19) contradicts (3.17). Hence, Dim∆(P ) ≥ 1− ε.

4 Resource-Bounded Dimension Characterizations

The following characterization of the constructive dimensions of individual sequences was
shown in [Dot06].

Theorem 4.1. [Dot06] For all S ∈ C,

dim(S) = ρ−(S), and Dim(S) = ρ+(S).

For the sake of completeness, we note that an analog of Theorem 4.1 has been shown to
hold in the world of finite-state machines. For a sequence S ∈ C, the finite-state dimension
dimFS(S) [DLLM04] of S and the finite-state strong dimension DimFS(S) [AHLM] of S
are each defined in analogy to the ∆-dimensions, using martingales implemented by finite-
state machines. ρ−

FS(S) and ρ+
FS(S) are respectively defined in analogy to ρ−

∆(S) and ρ+
∆(S),

with the ∆-Turing reduction replaced by an information lossless finite-state compressor
[Sha48, Huf59]. The following theorem was shown in [DLLM04] and [AHLM].

Theorem 4.2. [DLLM04, AHLM] For all S ∈ C,

dimFS(S) = ρ−
FS(S), and DimFS(S) = ρ+

FS(S).

Theorem 3.7 and Lemma 3.4 immediately imply the following analog of Theorems 4.1
and 4.2, which similarly characterizes the computable dimensions and pispace dimensions
of individual sequences.

Theorem 4.3. For all i ∈ N and S ∈ C,

dimpispace(S) = ρ−
pispace(S),

Dimpispace(S) = ρ+
pispace(S),

dimcomp(S) = ρ−
tt(S),

Dimcomp(S) = ρ+
tt(S).
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