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Abstract. We focus on the problem of computing an ε-Nash equilibrium of a bimatrix game,
when ε is an absolute constant. We present a simple algorithm for computing a 3

4
-Nash equilib-

rium for any bimatrix game in strongly polynomial time and we next show how to extend this
algorithm so as to obtain a (potentially stronger) parameterized approximation. Namely, we
present an algorithm that computes a 2+λ+ε

4
-Nash equilibrium for any ε, where λ is the min-

imum, among all Nash equilibria, expected payoff of either player. The suggested algorithm
runs in time polynomial in 1

ε
and the number of strategies available to the players.

1 Introduction

Motivation, Framework and Overview. Non-cooperative game theory has been extensively
used in understanding the phenomena observed when decision makers interact. A game
consists of a set of players, and, for each player, a set of strategies available to her as well as
a payoff function mapping each strategy profile (i.e. each combination of strategies, one for
each player) to a real number that captures the preferences of the player over the possible
outcomes of the game. The most important solution concept in non-cooperative game theory
is the notion of Nash equilibrium: it is a strategy profile such that no player would have an
incentive to unilaterally deviate from her strategy, i.e. no player could increase her payoff
by choosing another strategy while the rest of the players persevered their strategies.

Despite of the certain existence of such equilibria, the problem of finding any Nash
equilibrium even for games involving only two players has been recently proved to be com-
putationally difficult. This fact emerged the computation of approximate Nash equilibria,
also referred to as ε-Nash equilibria. An ε-Nash equilibrium is a strategy profile such that
no deviating player could achieve a payoff higher than the one that the specific profile gives
her, plus ε.

In this work, we focus on the problem of approximating Nash equilibria of 2-player
games. We propose simple and efficient algorithms for computing ε-Nash equilibria of such
games, for sufficiently small absolute constants ε.

Previous Work. Nash [6] introduced the concept of Nash equilibria in non-cooperative
games and proved that any game possesses at least one such equilibrium; however, the
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computational complexity of finding a Nash equilibrium used to be a wide open problem
for several years. Recently, Chen and Deng [1] proved that the problem is PPAD-complete
for bimatrix games in which each player has n available pure strategies.

In [5] it was shown that, for any bimatrix game and for any constant ε > 0, there exists
an ε-Nash equilibrium with only logarithmic support (in the number n of available pure
strategies). This result directly yields a quasi-polynomial (nO(lnn)) algorithm for computing
such an approximate equilibrium.

In [2] it was shown that the problem of computing a 1
nΘ(1) -Nash equilibrium is PPAD-

complete, and that bimatrix games are unlikely to have a fully polynomial time approxima-
tion scheme (unless PPAD ⊆ P). However, it was conjectured that it is unlikely that finding
an ε-Nash equilibrium is PPAD-complete when ε is an absolute constant.

Our Results. In this work, we deal with the problem of computing an ε-Nash equilibrium
of a bimatrix game, for some constant ε. We first present a simple algorithm for computing
a 3

4 -Nash equilibrium for any bimatrix game in strongly polynomial time (Lemma 1).
Next we show how to extend this result so as to obtain a parameterized and potentially

stronger approximation. More specifically, we present an algorithm that computes a 2+λ+ε
4 -

Nash equilibrium for any ε, where λ is the minimum, among all Nash equilibria, expected
payoff of either player (Theorem 3). The suggested algorithm runs in time polynomial in 1

ε
and the number of strategies available to the players.

Organization. In Section 2 we present the notation used throughout this paper, together
with the definitions of bimatrix games, Nash equilibria and approximate Nash equilibria,
as well as some previous results on the problem of approximating Nash equilibria.

Our first algorithm for computing a 3
4 -Nash equilibrium is described in Section 3, while in

Section 4 we present an extension of this algorithm that can give a stronger approximation.
We conclude, in Section 5, with a discussion of our results and suggestions for further
research.

2 Background

2.1 Notation

For an integer n, let [n] = {1, 2, . . . , n}. For a n× 1 vector x we denote by x1, x2, . . . xn the
components of x and by xT the transpose of x. For an n ×m matrix A, we denote ai,j the
element in the i-th row and j-th column of A. Let IPn be the set of all probability vectors
in n dimensions, i.e.

IPn ≡

{

x ∈ IRn :
n

∑

i=1

xi = 1 and xi ≥ 0 for all i ∈ [n]

}

.

Denote IRn×m
[0:1] the set of all n × m matrices with real entries between 0 and 1, i.e.

IRn×m
[0:1] ≡

{

A ∈ IRn×m : 0 ≤ ai,j ≤ 1 for all i ∈ [n], j ∈ [m]
}

.
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2.2 Bimatrix games

A noncooperative game Γ = 〈N, (Si)i∈N , (ui)i∈N 〉 comprises (i) a finite set of players N , (ii)
a nonempty finite set of pure strategies Si for each player i ∈ N and (iii) a payoff function
ui : ×i∈NSi → IR for each player i ∈ N .

Bimatrix games [3, 4] are a special case of 2-player games (i.e. |N | = 2) such that the
payoff functions can be described by two real n × m matrices A and B, where n = |S1|
and m = |S2|. More specifically, the n rows of A,B represent the pure strategies of the
first player (the row player) and the m columns represent the pure strategies of the second
player (the column player). Then, when the row player chooses strategy i and the column
player chooses strategy j, the former gets payoff ai,j while the latter gets payoff bi,j . Based
on this observation, bimatrix games are denoted by Γ = 〈A,B〉.

A mixed strategy for player i ∈ N is a probability distribution on the set of her pure
strategies Si. In a bimatrix game Γ = 〈A,B〉, a mixed strategy for the row player can be
expressed as a probability vector x ∈ IPn while a mixed strategy for the column player can
be expressed as a probability vector y ∈ IPm. When the row player chooses mixed strategy
x and the column player chooses y, then the players get expected payoffs xT Ay (row player)
and xT By (column player). The support of a mixed strategy is the set of pure strategies
that are assigned non-zero probability.

2.3 Nash equilibria and ε-Nash equilibria

A Nash equilibrium [6] for a game Γ is a combination of (pure or mixed) strategies, one
for each player, such that no player could increase her payoff by unilaterally changing her
strategy. We formally give the definition of a Nash equilibrium and an ε-Nash equilibrium
for a bimatrix game.

Definition 1 (Nash equilibrium). A pair of strategies (x̃, ỹ) is a Nash equilibrium for
the bimatrix game Γ = 〈A,B〉 if

(i) For every (mixed) strategy x of the row player, xT Aỹ ≤ x̃T Aỹ and

(ii) For every (mixed) strategy y of the column player, x̃T By ≤ x̃T Bỹ.

Definition 2 (ε-Nash equilibrium). For any ε > 0 a pair of strategies (x̂, ŷ) is an ε-
Nash equilibrium for the bimatrix game Γ = 〈A,B〉 if

(i) For every (mixed) strategy x of the row player, xT Aŷ ≤ x̂T Aŷ + ε, and

(ii) For every (mixed) strategy y of the column player, x̂T By ≤ x̂T Bŷ + ε.

Positively normalized bimatrix games. As pointed out in [2], since the notion of ε-Nash
equilibria is defined in the additive fashion, it is important to consider bimatrix games with
normalized matrices so as to study their complexity. That is, the absolute value of each
entry in the matrices is bounded, for example by 1. [5] also used a similar normalization,
which we adopt in this paper and describe it below.
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Consider the n × m bimatrix game Γ = 〈A,B〉 and let c, d be two arbitrary positive
real constants. Suppose that (x̃, ỹ) is a Nash equilibrium for Γ and (x̂, ŷ) is an ε-Nash
equilibrium for Γ . Let x and y be any strategy of the row and column player respectively.
Now consider the game Γ ′ = 〈cA, dB〉. Then it holds that

xT (cA)ỹ = cxT Aỹ ≤ cx̃Aỹ = x̃T (cA)ỹ

and, similarly,
x̃T (dB)y ≤ x̃T (dB)ỹ .

Moreover,
xT (cA)ŷ ≤ x̂T (cA)ŷ + cε

and
x̂T (dB)y ≤ x̂T (dB)ŷ + dε .

Hence Γ and Γ ′ have precisely the same set of Nash equilibria; furthermore, any ε-Nash
equilibrium for Γ is a `ε-Nash equilibrium for Γ ′ (where ` = max{c, d}) and vice versa.

Now let C be an n×m matrix such that, for all (columns) j ∈ [m], ci,j = cj ∈ IR for all
i ∈ [n]. Similarly, let D be an n × m matrix such that, for all (rows) i ∈ [m], di,j = di ∈ IR
for all j ∈ [m]. Note that, for every pair x ∈ IPn and y ∈ IPm,

xT Cy =
m

∑

j=1

n
∑

i=1

ci,jxiyj =
m

∑

j=1

yj

n
∑

i=1

cjxi =
m

∑

j=1

cjyj

and

xT Dy =
n

∑

i=1

m
∑

j=1

di,jxiyj =
n

∑

i=1

xi

m
∑

j=1

diyj =
n

∑

i=1

dixi .

Consider now the game Γ ′′ = 〈C + A,D + B〉. Then

xT (C + A)ỹ = xT Cỹ + xT Aỹ ≤
m

∑

j=1

cj ỹj + x̃T Aỹ = x̃T (C + A)ỹ

and similarly
x̃T (D + B)y ≤ x̃T (D + B)ỹ .

Also, it holds that

xT (C + A)ŷ = xT Cŷ + xT Aŷ ≤
m

∑

j=1

cj ŷj + x̂T Aŷ + ε = x̂T (C + A)ŷ + ε

and similarly
x̂T (D + B)y ≤ x̂T (D + B)ŷ + ε .

Thus Γ and Γ ′′ are equivalent as regards their sets of Nash equilibria, as well as their sets
of ε-Nash equilibria.

This equivalence allows us to focus only on bimatrix games where the payoffs are between
0 and 1, i.e. on games 〈A,B〉 where A,B ∈ IRm×n

[0:1] . Such games are referred to as positively

normalized [2].

4



2.4 Existence and tractability of ε-Nash equilibria

Consider a bimatrix game Γ = 〈A,B〉 and let (x̃, ỹ) be a Nash equilibrium for Γ . Fix a
positive integer k and assume that we form a multiset S1 by sampling k times from the set
of pure strategies of the row player, independently at random according to the distribution
x̃. Similarly, assume we form a multiset S2 by sampling k times from set of pure strategies
of the column player, independently at random according to the distribution ỹ. Let x̂ be the
mixed strategy for the row player that assigns probability 1/k to each member of S1 and
0 to all other pure strategies, and let ŷ be the mixed strategy for the column player that
assigns probability 1/k to each member of S2 and 0 to all other pure strategies. Clearly, if
a pure strategy occurs α times in the multiset, then it is assigned probability α/k. Then x̂
and ŷ are called k-uniform [5] and the following holds:

Theorem 1 ([5]). For any Nash equilibrium (x̃, ỹ) of a positively normalized n×n bimatrix
game and for every ε > 0, there exists, for every k ≥ 12 ln n

ε2 , a pair of k-uniform strategies
x̂, ŷ such that (x̂, ŷ) is an ε-Nash equilibrium.

However,

Theorem 2 ([2]). The problem of computing a 1
nΘ(1) -Nash equilibrium of a positively nor-

malized n × n bimatrix game is PPAD-complete.

Theorem 2 asserts that, unless PPAD ⊆ P, there exists no fully polynomial time approxima-
tion scheme for computing equilibria in bimatrix games. However, this does not rule out the
existence of a polynomial approximation scheme for computing an ε-Nash equilibrium when

ε is an absolute constant, or even when ε = Θ
(

1
poly(ln n)

)

. Furthermore, as observed in [2],

if the problem of finding an ε-Nash equilibrium were PPAD-complete when ε is an absolute
constant, then, due to Theorem 1, all PPAD problems would be solved in quasi-polynomial
time, which is unlikely to be the case.

3 A 3

4
-Nash equilibrium

In this section we present a straightforward method for computing a 3
4 -Nash equilibrium

for any positively normalized bimatrix game.

Lemma 1. Consider any positively normalized n × m bimatrix game Γ = 〈A,B〉 and
let ai1,j1 = maxi,j ai,j and bi2,j2 = maxi,j bi,j. Then the pair of strategies (x̂, ŷ) where
x̂i1 = x̂i2 = ŷj1 = ŷj2 = 1

2 is a 3
4-Nash equilibrium for Γ .

Proof. First observe that

x̂T Aŷ =
n

∑

i=1

m
∑

j=1

x̂iŷjai,j

= x̂i1 ŷj1ai1,j1 + x̂i1 ŷj2ai1,j2 + x̂i2 ŷj1ai2,j1 + x̂j1 ŷj1ai2,j2

=
1

4
(ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2)

≥
1

4
ai1,j1 .
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Similarly,

x̂T Bŷ =
n

∑

i=1

m
∑

j=1

x̂iŷjbi,j

= x̂i1 ŷj1bi1,j1 + x̂i1 ŷj2bi1,j2 + x̂i2 ŷj1bi2,j1 + x̂j1 ŷj1bi2,j2

=
1

4
(bi1,j1 + bi1,j2 + bi2,j1 + bi2,j2)

≥
1

4
bi2,j2 .

Now observe that, for any (mixed) strategies x and y of the row and column player respec-
tively,

xT Aŷ ≤ ai1,j1 and x̂T By ≤ bi2,j2

and recall that ai,j, bi,j ∈ [0, 1] for all i ∈ N , j ∈ M . Hence

xT Aŷ ≤ ai1,j1 =
1

4
ai1,j1 +

3

4
ai1,j1 ≤ x̂T Aŷ +

3

4

and

x̂T By ≤ bi2,j2 =
1

4
bi2,j2 +

3

4
ai2,j2 ≤ x̂T Bŷ +

3

4
.

Thus (x̂, ŷ) is a 3
4 -Nash equilibrium for Γ . ut

4 A Parameterized Approximation

We now proceed in extending the technique used in the proof of Lemma 1 so as to obtain
a parameterized, stronger approximation.

Theorem 3. Consider a positively normalized n × m bimatrix game Γ = 〈A,B〉. Let λ∗
1

(λ∗
2) be the minimum, among all Nash equilibria of Γ , expected payoff for the row (column)

player and let λ = min{λ∗
1, λ

∗
2}. Then, for any 0 < ε < 1, there exists a 2+λ+ε

4 -Nash
equilibrium that can be computed in time polynomial in 1

ε , n and m.

Proof. Observe that, for any pair of strategies x,y of the row and column player respectively,
it holds that xT Ay ∈ [0, 1] and xT By ∈ [0, 1]. Given 0 < ε < 1, consider a partition of the
interval [0, 1] into κ = 1

ε subintervals δ1 = [0, ε], δ2 = (ε, 2ε], . . . , δκ = (1 − ε, 1].
Starting from interval δ1, we seek until we find an interval δt = ((t − 1)ε, tε] for which

there exists a probability vector y of the column player such that

m
∑

j=1

ai,jyj ≤ tε ∀i ∈ [n]

m
∑

j=1

yj = 1 .
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We argue that there exists some t for which there exists a feasible solution to the pre-
ceding linear constraints. Indeed, let λ∗

1 be the minimum, over all Nash equilibria, expected
payoff of the row player. Clearly λ∗

1 ∈ δt for some t. Then, the probability vector of the
column player that corresponds to the specific Nash equilibrium satisfies the constraints.

Furthermore, note that, once we find a feasible solution y for an interval δt, then there
exists at least one row r ∈ [n] such that

∑

j ar,jyj > (t−1)ε; otherwise y would be a feasible
solution for the interval δt−1.

In a similar manner, we (independently) seek until we find an interval δs = ((s− 1)ε, sε]
for which there exists a probability vector x of the row player such that

n
∑

i=1

bi,jxi ≤ sε ∀j ∈ [m]

n
∑

i=1

xi = 1 .

Again, there exists some s for which there exists a feasible solution to the preceding
linear constraints: let λ∗

2 be the minimum, over all Nash equilibria, expected payoff of the
column player. Clearly λ∗

2 ∈ δs for some s. Then, the probability vector of the row player
that corresponds to the specific Nash equilibrium satisfies the constraints.

As in the previous case, once we find a feasible solution x for an interval δs, then there
exists at least one column c ∈ [m] such that

∑

i ai,cxi > (s − 1)ε; otherwise x would be a
feasible solution for the interval δs−1.

Suppose now that y and x are the feasible solutions found and consider the pair of
strategies (x̂, ŷ) for the row and column player respectively defined as follows:

x̂i =
xi

2
∀i ∈ [n] − {r}

x̂r =
xr

2
+

1

2

ŷj =
yj

2
∀j ∈ [m] − {c}

ŷc =
yc

2
+

1

2
.

Observe that

x̂T Aŷ =
n

∑

i=1

x̂i

m
∑

j=1

ŷjai,j

=
∑

i6=r

xi

2

∑

j 6=c

yj

2
ai,j +

∑

i6=r

xi

2

(

yc

2
+

1

2

)

ai,c

+

(

xr

2
+

1

2

)

∑

j 6=c

yj

2
ar,j +

(

xr

2
+

1

2

) (

yc

2
+

1

2

)

ar,c

≥
1

4

m
∑

j=1

ar,jyj
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>
(t − 1)ε

4
.

Furthermore, for each row i ∈ [n],

m
∑

j=1

ŷjai,j =
m

∑

j=1

yj

2
ai,j +

1

2
ai,c

≤
tε

2
+

1

2

=
(t − 1)ε

4
+

tε

4
+

ε

4
+

1

2

< x̂T Aŷ +
2 + λ∗

1 + ε

4
.

Similarly,

x̂T Bŷ =
m

∑

j=1

ŷj

n
∑

i=1

x̂ibi,j

=
∑

j 6=c

yj

2

∑

i6=r

xi

2
bi,j +

∑

j 6=c

yj

2

(

xr

2
+

1

2

)

br,j

+

(

yc

2
+

1

2

)

∑

i6=r

xi

2
bi,c +

(

yc

2
+

1

2

) (

xr

2
+

1

2

)

br,c

≥
1

4

n
∑

i=1

bi,cxi

>
(s − 1)ε

4

and, for each column j ∈ [m],

n
∑

i=1

x̂ibi,j =
n

∑

i=1

xi

2
bi,j +

1

2
br,j

≤
sε

2
+

1

2

=
(s − 1)ε

4
+

sε

4
+

ε

4
+

1

2

< x̂T Bŷ +
2 + λ∗

2 + ε

4
.

Thus, for any 0 < ε < 1, we can compute a
2+max{λ∗1 ,λ∗2}+ε

4 -Nash equilibrium in polyno-
mial time in 1

ε , n and m. ut

Note that, for any bimatrix game Γ = 〈A,B〉, we can check in polynomial time whether
there exists a Nash equilibrium in which each player chooses with probability 1 one of her
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pure strategies (i.e. a pure Nash equilibrium). If there exists such an equilibrium, then we
can find it in polynomial time and there is no point in searching for ε-Nash equilibria.
On the other hand, if all Nash equilibria are not pure, then the payoff of either player is
strictly less than 1, hence λ = max{λ∗

1, λ
∗
2} < 1. Thus there exists some 0 < ε̄ < 1 such

that 2+λ+ε̄
4 < 3

4 , assuring that the the algorithm described in the above proof can yield a
stronger approximation than the one presented in Section 3.

An Application. The approximation factor achieved by the algorithm we just described
depends on λ∗

1 and λ∗
2. We believe that, in most situations, there exists a Nash equilibrium

such that the payoff of the row player is small, and that there exists a (possibly differ-
ent) Nash equilibrium such that the payoff of the column player is small, and thus the
approximation achieved is close to 1

2 .

As an example, consider the n×n generalized matching pennies game Γ = 〈A,B〉 where
A and B are described as follows:

ai,j =

{

1 if i = j
0 else

bi,j =

{

1 if j = i + 1 or if i = n and j = 1
0 else

.

Observe that the pair of strategies (x̃, ỹ) where x̃i = ỹi = 1
n for all i ∈ [n] is a Nash

equilibrium of the generalized matching pennies game. Indeed, for any x,y ∈ IPn,

xT Aỹ =
1

n2

n
∑

i=1

n
∑

j=1

ai,j =
1

n2
n =

1

n
= x̃T Aỹ

x̃T By =
1

n2

n
∑

i=1

n
∑

j=1

bi,j =
1

n2
n =

1

n
= x̃T Bỹ .

Thus (x̃, ỹ) is a Nash equilibrium4 that gives each player a payoff equal to 1
n . By applying

Theorem 3, we can obtain for each 0 < ε < 1 a 1+1/n+ε
2 -Nash equilibrium. Thus we can

guarantee an approximation factor that tends to 1+ε
2 as n → ∞.

5 Conclusions

In this paper we tried to approximate, within a constant additive factor, the problem of
computing a Nash equilibrium in an arbitrary n × m bimatrix game.

The (additive) approximation parameter achieved by the algorithm described in the
above proof of Theorem 3 depends on λ∗

1 and λ∗
2, i.e. the minimum payoff, over all Nash

equilibria, for the row and column player respectively. Observe that, so long as not all

4 In fact it can be proved that (x̃, ỹ) is the unique Nash equilibrium of the generalized matching pennies
game.
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Nash equilibria of the game give payoffs very close to 1 for either player, the algorithm
gives an approximation very close to 1

2 . In other words, it suffices that there exists a Nash
equilibrium that gives row player a payoff close to 0 and a Nash equilibrium (not necessarily
the same!) that gives column player a payoff close to 0 so that the approximation achieved
can be assured to be close to 1

2 . Furthermore, this is just a sufficient and not a necessary
condition: recall that we only used λ∗

1 and λ∗
2 so as to prove the existence of feasible solutions

to some linear constraints.
Furthermore, for both Lemma 1 and Theorem 3, we used a factor of 1

2 to deal with
the underlying Linear Complementarity Problem. More specifically, we tried to compute
independently for each player a strategy that guarantees her a sufficiently large payoff, and
then we “merged” in an equivalent way the strategies found with the ones needed by the
other player so as to approximate a Nash equilibrium. We observed that, for the specific
algorithms presented in these results, this factor of 1

2 is optimal.
Albeit simple, we believe that the techniques described here are a first step towards

establishing whether there exists any approximation scheme for computing an ε-Nash equi-
librium and that our methods can be extended in order to achieve stronger approximations
to the problem of finding Nash equilibria of bimatrix games.
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