Electronic Collogquium on Computational Complexity, Report No. 82 (2006)

Polynomial-Time Maximisation Classes: Syntactic Hierarchy

P. Manyem
Centre for Informatics and Applied Optimisation,
School of IT and Mathematical Sciences,
University of Ballarat,
Mount Helen, VIC 3350, Australia.
mailto: pmanyem@staff.ballarat.edu.au

Abstract

In Descriptive Complexity, there is a vast amount of literature on decision problems,
and their classes such as P, NP, L and NL. However, research on the descriptive
complexity of optimisation problems has been limited. In a previous paper [Man], we
characterised the optimisation versions of P via expressions in second order logic, using
universal Horn formulae with successor relations. In this paper, we study the syntactic
hierarchy within the class of polynomially bound maximisation problems. We extend
the result in the previous paper by showing that the class of polynomially-bound NP
(not just P) maximisation problems can be expressed in second-order logic using Horn
formulae with successor relations. Finally, we provide an application — we show that
the Bin Packing problem with online LIB constraints can be approximated to within a
©(logn) bound, by providing a syntactic characterisation for this problem.

1 Introduction

Descriptive Complexity (DC) began with Fagin’s 1974 theorem [Fag74], which captures the
class NP as the set of properties that can be represented in existential second order logic.
Approximation complexity measures how well an NP-hard optimisation problem can be ap-
proximated, or how far is the value of a (possible) heuristic solution from that of an optimal
solution. This paper attempts to connect the two complexity measures.

A few previous attempts to characterise approximation classes in terms of logic (DC) are:
Papadimitriou and Yannakakis in 1991 [PY91], Panconesi and Ranjan in 1993 [PR93], Kolaitis
and Thakur in 1994 and 1995 [KT94, KT95], Khanna et al in 1998 [KMSV98], and Manyem
[Man].

In [KT94, PR93, PY91], the authors characterise approximation hardness in terms of quan-
tifier complexity — the number and types of quantifiers that appear at the beginning of a

second-order formula in prenex normal form (PNF). For a formula in PNF, all quantifiers
appear at the beginning, followed by a quantifier-free formula.

1.1 Contributions

In a previous paper [Man|, we presented

(a) a logical representation of a subclass of P/ — P’

is the class of optimisation problems

ISSN 1433-8092

o vocabulary

A a structure defined over o (captures an instance of an optimi-
sation problem)

7 a quantifier-free first order formula, and a conjunction of Horn
clauses at the same time. (Recall that a Horn clause contains
at most one positive literal.)

x an m—tuple of first order variables

S a sequence of second-order variables (predicate symbols)
(captures a solution to the optimisation problem)

P computational class of decision problems, decidable in polyno-
mial time by a deterministic Turing machine

P’ class of optimisation problems corresponding to P

(also called P—optimisation problems)
Q Q' C P/, and Q' only contains polynomially bound optimisation
problems (see Definition 1)

N class of optimisation problems whose decision versions are in
NP

N’ N’ C N, and N’ only contains polynomially bound optimisation
problems

ESO | Existential Second Order Logic
PNF | Prenex Normal Form

Table 1: Notation

that can be solved to optimality within polynomial time!. The class of decision problems

corresponding to P’ is P. The syntactic characterisation of P is given below in Theorem 1,
due to Gridel [E. 91].

(b) The particular subclass Q' (of P’) that we focus on includes only polynomially bound
optimisation problems, defined below in Definition 1. We provided syntactic characterisations
for both maximisation and minimisation problems in Q’.

(c) gave examples of characterisations (MAXFLOWpp for maximisation and SHORTEST
PATHpp minimisation),

(d) showed that MAXFLOW pp is complete for the maximisation subclass of Q/,

(e) presented characterisations for maximisation problems in P’ (defined in Table 1 — prob-
lems not necessarily polynomially bound), as well as an example for a problem in this class
(MAXIMUM MATCHING). This is a considerable departure from the treatment in [Zim98].

1.2 Notation and Definitions

All notation is defined in Table 1, as a one-stop reference point. For the same reason, all
definitions are provided below in this section.

!Strictly speaking, in Turing machine terminology, P’ is the set of languages where, if an instance I of
an optimisation problem P € P’ is encoded as an input string = in some alphabet ¥, a deterministic Turing
machine will compute the optimal solution (which is again a string) within ©(|z|¥) steps, where k is some
constant and |z| is the length of the input string.

Definition 1. An optimisation problem Q' is said to be polynomially bound if the value of
an optimal solution to every instance I of Q' is bound by a polynomial in the size of I. In
other words, there exists a polynomial p such that

opte (I) < p(|1)), (1)
for every instance I of Q'. The class of all such problems is Q'.

Definition 2. First order logic consists of a vocabulary (alias signature) o, and models
(alias structures) defined on the vocabulary. In its simplest form, a vocabulary consists of
a set of variables, and a set of relation symbols R;j(1 < j < J), each of arity r;. A model
M consists of a universe U whose elements are the values that variables can take — M also
instantiates each relation symbol R; € o with tuples from Ui). For ezample, a model G in
graph theory may have the set of vertices G = {1,2,--- 10} as its universe (assuming that the
graph has 10 vertices), and a single binary relation E where E(i,) is true iff (i,7) is an edge
in the graph G. A model represents an instance of an optimisation problem.

Definition 3. A I1; (1) first order formula in PNF only has universal (existential)
quantifiers, quantified over first order variables.

Definition 4. A formula in existential second-order (ESO) Logic is of the form ¢ =
384, where 1 is a first order formula, and S is a sequence {S1,S2,---,Sp} of relation symbols
not in the vocabulary of 1. The formula ¢ can be written as

¢ =38y =38 --- 3. (2)

In an ESO Horn expression IS, the first order formula v can be written in I form as
P =V Ve - - -Vagn = Vx 1. (3)

where 1 is a conjunction of Horn clauses (n is, of course, quantifier-free), and x; (1 <1 < k)
are first order variables. Each clause in n contains at most one positive occurrence of any of
the second order predicates S; (1 <1i <p).

Definition 5. A Iy (X2) formula in prenex normal form (PNF) can be written as

¢ZV$1"'VIa 32/1"'33/1;7} (¢=3y1"-3bew1---V:Ba 77), (4)

where 1 is quantifier-free, a,b>1, and the x’s and y’s are first-order variables.

The following theorem is due to Gradel [E. 91] — this is the polynomial-time counterpart of
Fagin’s theorem [Fag74] which characterised the class NP:

Theorem 1. For any ESO Horn expression as defined in Definition 8, the corresponding
decision problem is in P.

The converse is also true — if a problem P is in P, then it can be expressed in ESO Horn
form — but only if a successor relation is allowed to be included in the vocabulary of the
first-order formula .

1.3 Background

An example of a syntactic characterisation is the number of alternations of quantifiers at the
front of a logical expression — the complexity class that a problem belongs to, depends on
how many times quantifiers alternate in expressions.

Examples:

1. In the expression for ¢, where ¢; : Jx1IzoTr31), if ¢1 is in PNF, then it has three
existential quantifiers dz1, Jxo, and Jxs. Since there is only one type of quantifier
(existential, or), this expression has no quantifier alternation. The 1) term is the
quantifier-free part of ¢;.

(Such a formula is said to be in ¥; form. The ¥ signifies that the sequence of quantifiers
begins with a set of existentials at the left end.)

2. In ¢o, where ¢o : Fx1IxoTx3VI4VI51, We have one quantifier alternation, when we
move from Jzs (existential) to V4 (universal). There are two universal quantifiers, Vx4
and Vzs. As before, 1) is the quantifier-free part of ¢s.

(Such a formula is said to be in II5 form. The II signifies that the sequence of quantifiers
begins with a set of universals at the left end. The 2 in II, signifies that there are two
uniform sub-sequences of quantifiers, 3x13xo3x3 and Vz4Ves.)

3. In general, a ¥, (II,) formula in PNF form begins with a subsequence of existential
(universal) quantifiers, has n — 1 alternations of quantifiers, followed by a quantifier-free
formula.

2 Polynomially Bound P-Maximisation Problems in Q'

Optimisation problems corresponding to P. We assume that for a maximisation (or a
minimisation) problem @’ in the class Q' (corresponding to the class P of decision problems),
the following can be computed in polynomial time deterministically: (a) The value of the
objective function f(A,S) to a solution S of an instance A, and (b) Whether a solution S is
a feasible solution to an instance A.

For maximisation problems in N’ (see Table 1 for a definition of N’), Kolaitis and Thakur
[KT94] proved the following:

Theorem 2. A mazimisation problem Q € N’ if and only if there exists a Iy first order
formula ¢(w,S) with predicate symbols from the vocabulary o (of ¢) and the sequence S, such
that for every instance A of Q, the optimal solution value is given by

optq(A) = max|{w: (A,S) | ¢(w,S)} | ()

In other words, polynomially bound NP-maximisation problems fall in what is called the MAX
IIy class. In [Man], the author showed a similar result for the polynomial-time counterpart
of N’, that is, maximisation problems in Q':

Theorem 3. Let A be a structure (instance) defined over o. The value of an optimal solution
to an instance A of a mazimisation problem Q' can be represented by

optg (A) = msax\{w : (A,S) E Vx n(w,x,S)}| (6)
if Q' € Q', where x, A, S and n are defined in Table 1.

The proof of Theorem 3 uses Gréadel’s theorem (Theorem 1) as a starting point.

Notes. Theorem 3 does NOT provide a polynomial-time algorithm to obtain an optimal
solution — the maximum in (6) is taken over ALL solutions S, which could be exponential
in number. Though the number of solution values is at most |A|™, which is polynomial in
the size of the instance, the number of solutions need not be. Examining each solution value
between 1 and |A|® does not guarantee finding a solution in polynomial time?.

2.1 Applying Gradel’s Theorem to NP-Maximisation Problems

It is possible to express the optimal values for polynomially bound NP-maximisation problems
using ESO Horn expressions where the first order vocabulary includes a successor relation
(which imposes a linear order on the universe). The proof presented here is due to Radhakr-
ishnan [Rad05].

Let @ be an NP-maximisation problem. The maximum solution value for an instance I to @
is given by
gQ(I) :m,la‘fo(IaT)a (7)

where we maximise over all solutions 7' to I. We assume the following here:

e If T' is not a feasible solution to I, then fo(I,T) = 0.
o fo(I,T) > 0 for all feasible I.

e fo(I,T) is a function computable in time polynomial in ||I|| + ||T'|| (the size of I + the
size of T').

Given an NP-maximisation problem @, an instance I of @), and a relation W defined on the
universe A of I, a decision problem Rg corresponding to @ would be the following:

Ro(I,W): Does @ possess a feasible solution T" such that (8)
fo(I,T) > |W| (the cardinality of W) ?

Clearly, R(I, W) € NP. However, if solution T is given, then the following decision problem
RQ e P,

RQULT,W) : Ts fo(I,T) > W] ? 9)
since the Turing Machine deciding Rg no longer needs to guess 7" — it only needs to check

the condition (as to whether fg(I,T) > |W|) and return a yes/no answer, which can be done
deterministically in polynomial time, since Rg € NP.

2The difficulty arises in “inverse mapping” solution values to solutions.

According to Grédel, the decision problem Rg(I,T,W) can be represented in ESO Logic,
where the first order part is represented by a conjunction of Horn clauses and a successor
relation is included in the first-order vocabulary. That is, if a given instance (I,7,W) is a
yes instance to Rq(I,T,W), then

(I, T,W) |= 38 Vx 5(x,S, I, T, W). (10)
Hence, applying Theorem 3 to (10), we can say that

Theorem 4. The maximum value for the NP-mazimisation problem Q) can be expressed as

go(I) = mj@fo(I,T) = SI%%%HW (I, T,W,S) EVx n(x,S, I, T, W) A W(w)}|. (11)

A similar result can also be proven for NP-minimisation problems.

2.2 Example: Polynomially Bound Maximum Flow (Unit Capacities)

In [Man], we showed the following three properties:

(a) MAXFLOWpgp. The MAXFLOW problem with unit capacities can be expressed in
ESO, in II; form. Given a source s and a sink ¢, and a network G containing directed
edges, we want to find the maximum flow that can be sent through the network from s to ¢.
Essentially we seek the maximum number of edge-disjoint paths from s to ¢. This problem is
polynomially bound.

In most such expressions, there are two types of conditions to be expressed: (1) Global
conditions (those that apply over all w tuples), and (2) Local conditions (the ones that are
specific to a given w). The first (second) set of conditions correspond to constraints (objective
function) in a classical mathematical programming framework.

(b) The MAXFLOW pp problem is complete for the class of polynomially bound maximisation
problems — an instance I of a general problem @’ in this class can be reduced (in polynomial
time) to an instance Z of MAXFLOW pp.

(c) The property, that an edge belongs at most one edge-disjoint s — ¢ path in a solution, (and
hence the MAXFLOW pp problem) can be expressed with a II; formula, but not with a 3
formula.

2.3 A Problem in MAXp3, ?

Within the class Q' (see Table 1), let us define the class MAXp¥; (MAXpII;) as the class of
polynomially bound maximisation problems that can be expressed by a £y (II;) formula.

Kolaitis and Thakur showed that MAX3SAT is in MAX ypXg (defined similar to MAX p¥),
a subset of N’. On the other hand, MAX2SAT is not known to be polynomially solvable
[H§7], though the decision version, as to whether all clauses are satisfiable, is well-known
to be in P [GJ79]. Results similar to MAX2SAT for both the maximisation and decision
versions are also known for HORNSAT (where every clause is required to be a Horn clause)
[KKM94].

Towards the goal of obtaining a hierarchy within the polynomially bound P-maximisation
class, we need to exhibit a problem in MAXpY,. However, we have been unable to find
a “genuine” maximisation problem in this category so far, except for “trivial” optimisation

problems such as MAX1SAT (MAX-one-SAT) defined below.
Definition 6. MAX1SAT.

Given. A set of clauses ¢;, 1 <1 < n. Fach clause ¢; is either a Boolean variable x; or its
negation —x;. (Either ¢; = x; or ¢; = —x;.)
Problem. Assign truth values to the x;’s such that the number of satisfied clauses is mazximised.

Syntactic Characterisation. An instance A of the problem consists of a universe A = {z1,
Z2, -+, Tn} (the n variables, corresponding to the n clauses). A first-order unary relation P
is defined on each z; — P(z;) is true if clause ¢; = z; and false if ¢; = —z;. A second-order
unary relation S is defined such that S(z;) holds iff variable z; is assigned to be true. The
objective is to maximise the number of clauses w such that

optyraxisar(A) = méax|{w 1 (A,S) E P(w) & S(w)}, (12)

the obvious optimal solution value being n.

We conjecture that as long as a successor relationship or a linear ordering on the universe of
a structure is necessary, a problem cannot be expressed in MAX p¥ (since this will require a
IT; expression). We next show that the LINEAR EQUALITIES (LE) problem is in MAXp¥;.

2.4 Linear Equalities or LE (a problem in MAXpX,)

Given. A set of linear equalities of the form

n
Z a;jrj =¢;, 1<1i<m, orsimply Bz =c, (13)
i=1

a finite structure A, with a finite contiguous subset of the natural numbers (N = {0, 1, ---}) as
the universe, and with relations PLU S(a, b, ¢) (which holds iff a + b = ¢), and MU LT (a, b, c)
(which holds iff @ x b = ¢). The matrix B is of size m X n.

Problem. Determine the maximum number of solutions to the given set of linear equalities.

If

(i) m=n=2,

(ii) the determinant of B is not equal to zero; that is, aj,1a22 — a12a2,1 # 0, and

(iii) ¢1 # 0 and ¢p # 0,

then the system has a unique solution. Let this simpler system consist of the two equalities
a171 +b1z2 = ¢1 and a1 + bozy = co (if we define the simpler notation a11 = a1, a12 = by,
ag,l = ay, and ag,z = bz).

The optimal solution value (which equals one) can be expressed as

optrp(A) = max[{(z1,22) : (A,8) F 3y1 - -yaz1z2 @}, (14)

where
® = MULT(a1,2z1,y1) N MULT (b1, z2,y2)A

MULT (a2, 71,y3) AN MULT (b2, T2, ya) A

PLUS(y1,y2,c1) AN PLUS(ys3,y4,c2)A (15)
[Cl 7é O] A [C2 7é 0]/\

MULT(al, bz, Z1) A MULT(GQ, bl, 22) A [21 7é 252].

The above expression for the optimal value can easily be extended to general (but finite)
values of m and n. Even if conditions (ii) and (iii) do not hold, and the number of solutions
to the linear system is more than one and finite, we can still obtain a ¥; expression for ®.

Clearly, LINEAR EQUALITIES cannot be expressed in ¥y form — the PLUS and MULT
relations need an existential quantifier, without which the expression ® would no longer be
independent of the size of an instance. Hence, MAXpXy C MAXpX,.

2.5 Hierarchy Within Maximisation

From Section 2.2, we know that MAXFLOW pp cannot be expressed in Horn ¥; form, hence
MAXpX; € MAXpII;. The fact that MAXpX; C MAXpII; is clear from Theorem 3. We
state a strict hierarchy within the polynomially bound maximisation class (since it is clear
from the arguments above):

Lemma 5. The MAXpYy (MAXpX) class is strictly contained within the MAXp¥,
(M AXpIL,) class. That is, MAXpIly C MAXp¥, C MAXpIL;.

From Section 2.2, we know that MAXFLOW ppg serves as a complete problem for the MAX pIT;
class. It would be desirable to obtain a complete problem for the MAXpYy and MAXpX,
classes. An interesting observation is that the decision version of the weighted MAXFLOW

problem (where arc capacity can be any non-negative integer) is complete for the class P
[GHR95, Imm?99].

3 Bounds Using Descriptive Complexity

In this section, we show that the OLIBP (online uniform sized bin packing with LIB con-
straints) can be approximated to within a ©(logn) bound, where n is the input size, using
techniques from Descriptive Complexity (DC). Item sizes are discrete (for example, in steps
of 0.05). Depending on the syntactic characterisation, it is possible to determine how hard it
is to approximate a problem.

Problem Statement: Online LIB Variable-Sized Bin Packing (OLIBP). Given an
infinite supply of variable sized bins, and a list of n items. The ‘" item has a size a; from the
set of sizes {t1,---,tx}, where 0 < ¢; <ty < --- <ty = 1. Each item should be placed in a bin
assigned to it (on top of items previously placed in that bin) as soon as it arrives. This placement
cannot be changed later. In addition, the following LIB? constraint should be obeyed for any used
bin:

[i is below j in a used bin] = [a; > q;]. (16)

3LIB stands for longest item at the bottom.

A feasible solution is one where the sum of the item sizes in each used bin is at most equal to the
bin size. The available bin sizes consist of a finite set B = {s;: 1 <j < K}, 55 <8541, 1 <
j < K — 1. The bin sizes are normalised, that is, sk (the largest bin size) is equal to one. The
smallest bin size s1 is greater than zero. The goal is to find a feasible solution that minimises the
sum of the size of used bins.

The online condition essentially reduces to the following Online Constraint: In a used bin, if

item i is below item j, then % should have arrived prior to j in the input list L, that is,

[i is below j in a used bin] = [i < j]. (17)

In a uniform-sized bin packing problem, s; = sg = 1, that is, all bins are of unit size.

The approximation complexity of a problem P is usually measured by the approximation ratio
that a heuristic H for P can guarantee, over all instances of P. The approximation ratio
Ry (I) obtained by H for a given instance I of P is given by

value obtained by H on I
Ry(I) = Y

1
value of an optimal solution for T (18)

3.1 Bin Packing is Polynomially Bound

We now show that the variable size bin packing problem, online or offline, with or without
the LIB constraint, is polynomially bound.

Optimal solution opt(I) for an instance I. An upper bound on the sum of the sizes of
bins used, occurs when each item is placed in its own bin. For an instance I (a list L with n
items, and a collection of item sizes),

opt(1) <3 il 19)
=1

Note that [a;]s is a certain bin size* in B. Suppose we call this bin size as 6; to denote
that this bin holds item %, and hence 6; € B. Since 8; < 1, the representation of 6; in a
Turing machine (TM) in binary form will require [1 + log(1/6;)] bits. The reason is, for a
number z € (0, 1], the lower the number, the more bits are required to represent it — it needs
log(1/z) bits, plus an additional bit to denote that z < 1 (otherwise the log(1/z) bits will be
interpreted as representing z1).

Thus for the n items in total, the number of bits required to represent this in binary form in
a Turing machine will be

n

Z [1 + log -‘ = Xn; [log -‘ (20)

=1

Size of an instance I. To represent an instance of variable-size bin packing, we need to
represent the n item sizes and K bin sizes. Note that all these entities are at most equal to
one. As per the argument above, each item size a; needs [1+log(1/a;)] bits to be represented

“[a;]s is the bin size in B that is closest to a; and at least as much as a;. For example, if a; = 0.7 and B
={0.2, 0.4, 0.6, 0.8, 1.0}, then [a;]s = 0.8.

in binary, and each bin size s; € B needs [1+1log(1/s;)] bits. Thus the number of bits needed
to represent an instance of our problem will be

i[l%—loga%-‘-i-Z’rl—l-log -‘—TL—FK—FZ[log Lri[bg w (21)

=1 j=1 =1 j=1

Now compare (20) and (21). For each i € [1,n], 0 < a; < 6;. Thus

{logoli-‘ [log -‘ = Z{log Z-‘ Zn:[log -‘ (22)

=1

From this, it follows that in binary form, the optimal solution value is less than the size of
the instance — and hence

Lemma 6. The optimal solution value is less than a polynomial in the size of the instance
I. Or,
opt(I) < |I] < p(|1]) (23)

for the variable size bin packing problem, online or offline, with or without the LIB constraint.

Hence the proof of the polynomial bound.

3.2 Previous Work

Optimisation problems can be classified in three different ways: syntactic classes, computa-
tional classes, and approximation classes.

Problems in a certain syntactic class share a common property of logical expressibility — for
example, the ability to express the first order part in PNF as a Yo formula.

Problems in a certain approxzimation class share a property in terms of how well solutions can
be approximated by polynomial-time heuristics — for example, the APX class of optimisation
problems where it is possible to obtain a solution whose value is guaranteed to be within a
constant factor of an optimal solution value (using polynomial time heuristics).

Problems in a certain computation class share a property in terms of how fast an exact
solution can be obtained, or how fast a solution with a certain approximation guarantee can
be obtained — for example, the class of optimisation problems that have polynomial time
algorithms which return an optimal solution in linear time.

Problems in a certain syntactic class & and a certain computational class C can overlap.
In certain cases, the overlap is exact, as in the case of the computational class NP which
is precisely the syntactic class of problems expressible in second-order existential logic, also
known as ESO [Fag74].

Similarly, the syntactic class MAXSNP (maximisation problems that can be defined by for-
mulae with a quantifier-free first order part) contains exactly those problems that can be
approximated to within a constant factor of the optimal value using polynomial time heuris-
tics [KMSV98].

10

Next, we consider how to express optimisation problems syntactically. Consider these exam-
ples of polynomially bound problems:

(1) Minimising the number of edges (SHORTEST PATH problem with unit weight edges):
Each edge in the shortest path is a 2-tuple. Thus we minimise the number of 2-tuples that
obey a certain condition (that is, being on a path from origin to destination).

(2) Maximising the number of vertices that form a complete subgraph (MAX CLIQUE):
Each vertex in a solution (the clique) is a unary tuple (single vertex). Thus we maximise the
number of unary tuples that form a clique.

(3) Maximising the number of satisfiable clauses (MAX3SAT): each clause that is true is a
3-tuple. We maximise the number of 3-tuples that obey the condition that the 3-tuple be a
disjunction of literals, at least one of which is true.

Motivated by such observations as above, Papadimitriou and Yannakakis [PY91] proposed
the class MAXNP of maximisation problems whose optimal values can be defined as

opte(A) = max|[{w: (A,S) = ¢} = max[{w: (A, S) = 3y ¥ (w,y,S)}|. (24)

where y = (y1,%2,"*",¥q), W = (w1,ws, -, wg), ¥ is a quantifier-free formula, and S is
defined in Definition 4. They showed that every problem that can be characterised in this
manner is in APX (defined earlier in this subsection).

On the other hand, there are also negative results about certain syntactic classes. For the
class MAXSNP (which differs from MAXNP in that the first order part is free of all quanti-
fiers), Arora and Safra [ALM 98] showed that no (maximisation) problem in this class has a
polynomial time approximation scheme unless P=NP.

For our purposes, we will use a 1995 result from Kolaitis and Thakur [KT95]. A few definitions
first.

Definition 7. [KT95] For each n > 1, let MINFIL,, (F means feasible) be the class of min-
imisation problems @, whose optimal values on finite structures A over a vocabulary o are
defined as

optg(A)

min|[{w : (A, 8) = ¢(w, S)}|, if IS > (w, A, 8) |5 $(w,)
= |A|™, otherwise, (25)
where ¢() is a I, first order sentence, m is the arity of w, and A is the universe of structure

A. A sentence is a formula that has no free variables.

The MINFX,, class of problems is defined similarly, except that in this case, ¢() is a L, first
order sentence.

MINF*IL, (MINF*Y,,) is similar to the MINFIL,, (MINFX,,) class except that each occurence
of each of the predicates S; € S (1 <i < p) in $(w,S) is positive®.

MINF*TL, (k) is similar to MINF*TIL,,, except that the second-order predicate (see Def. 4)
whose cardinality we wish to minimise appears at most k times in each clause of ¢.

SExample: In the expression S; (1, z2)V ~S2(x3, x4, xs), the predicate S; appears positively and S» occurs
negatively.

11

3.3 Syntactic Expression for Uniform Size Bin Packing

In this subsection, we provide an expression for the optimal solution value for the online
USBP (uniform size bin packing) problem with LIB constraints, using second order Logic —
and thus show that this problem is in the MINFTII, class. All bins are of unit size.

3.3.1 Variables and Universes

There are two distinct types of entities: index numbers (for items and bins), and sizes (for
items). It is convenient to use Two Sorted Logic, implying there will be two universes in our
structure A representing an instance of bin packing — one for the index numbers of items
and bins (Uy), and one for item sizes (Uy).

Assume that n bins, numbered 1 to n, are available. The objective is to choose the least
number of bins from the set {7 | 1 <4 <n}. (The maximum number of bins we will ever need
is n.)

Uy could simply be a subset of the Natural numbers N. Thus

Unv ={0,1,2,3,---n}, where n is the number of items in the input list L.

Ur = {a1,a2, -+ ,an} (the given item sizes).

From a (sufficiently large) variable list V, we need (first order) predicate symbols to decide
which universe a variable x belongs to. We shall describe these and other predicates next.

3.3.2 First Order Predicates and Functions

First order (FO) predicates describe properties of an instance (which is represented by a
structure A) of an optimisation problem. FO predicate symbols are part of the FO vocabulary
o. We will use the following FO predicates:

C(z): True iff variable z assumes a value from Uy.
PLUS(x1,x2,z3): As defined in Section 2.4.

In addition, we need a unary function size to map item numbers to their sizes.

3.3.3 Second Order Predicates

We will use the following second-order (SO) predicates — these are not part of the vocabulary
0. From an optimisation viewpoint, SO predicates are necessary to describe solutions to a
problem instance, not instances themselves.

BELOW (z,y): True iff item z is below item y in a bin.
IN(z,y): True iff item z is placed in bin y.
S(w): True iff bin w (1 < w < n) is used.

We want to minimise the number of bins used. Each bin can be represented by a unary tuple
w, hence we will minimise the number of such tuples.

12

3.3.4 Constraints

We are now ready to describe expressions for the problem constraints. All expressions below
are sentences, that is, expressions with no free variables.

(a) If two items z and y are placed such that z is below y, then they should be in the same
bin (and that bin should be used), z should have arrived before y, and z should be at least
as long as y:

¢ =VaVy BELOW (z,y) — Jw S(w) AIN(z,w) ANIN(y,w) A (z <y)
A size(z) > size(y) A C(z) A C(y) A C(w).

The above can be rewritten without the implication® as

¢1 = VzVy Jw 71, where,

ABOVE(z,y) V [C(z) AC(y) A C(w)A

S(w) NIN(z,w) NIN(y,w) A (z <y) A size(z) > size(y)],
ABOVE(z,y) = -~BELOW (z,y).

1

(26)

Note that ABOV E(z,y) includes the possibility that and y may be in different bins.
(b) Every item z should be placed in some bin w, and that bin should be used:

¢y =Vz Jw C(z) — C(w) AIN(z,w) A S(w).
Rewrite the above without the implication as

¢2 =Vz Jw 1o, where 7 = -C(z) V [C(w) AIN(z,w) A S(w)]. (27)

Henceforth, we shall omit the C(z) terms from expressions — it should be clear from the
context the variables for which this holds true. Since C(z) is a first-order predicate, it will
not affect the approximability result (which is based on the signs of second-order predicates
only).

3.3.5 Bin Capacity Constraints

The constraints in this subsection enforce the condition that the sum of the sizes of items in
each of the n bins is at most one. Introduce a new set of variables z;, of type ITEM SIZE
and assign values as below. For every item x and every bin u, z., takes the value of either
zero or size(x), the size of item x:

¢3 =V Yu 2z (250 = size(x)) V (2z,u = 0). (28)

If item z is placed in bin u, then assign the size of = to z;,, and zero otherwise. The following
constraint, which expands (28), makes an assignment of size(z) to z;, when z is placed in
u, or an assignment of zero in general:

¢3 =V Vu Jzz, [IN(z,u) A 2gy = size(z)] V [2z,4 = 0]. (29)

%Recall that A —» B is the same as AV B. Furthermore, (A A B) is the same as (—A) V (=B).

13

However, (29) is clearly insufficient. It could assign a zero value to z;, even when z is in wu.
When IN(z,u) is true, only size(x) can be assigned to z;,. This is enforced by constraint
(30), which says that the sum of the sizes of all items in all bins is equal to a certain constant
T, which is derived from the input instance A. Let

Y1 = PLUS(21,1,21,2,21,1) A PLUS(1,1,213,012) A+ A PLUS (01 -2, 21,0, B1)5
P = PLUS(ZQJ, 22,2, (12,1) A PLUS(CYQ,I, 22,3, (12,2) VAXCEREIVA PLUS(OQmﬁQ, 22,5 ,32),

")bn = PLUS(zn,la Zn,2, an,l) A PLUS(an,la 2n,3, an,Z) ARERIAN PLUS(an,ana Zn,ns IBn)a
=P A AP, A(BL <) A A (Bn £1),

T4 = PLUS(,Bl,,BQ,’)’l) A PLUS(’)’l,,B:s,’)’Q) AREEIA PLUS('Yana,BnaT)a

n
where T' = Z size(i) = sum of the sizes of all items in the input list. Then
i=1

Ts = Joq,--Fopp_2 IB1---30n IV IVn—2 BA T4 (30)
Observe that 73 in constraint (30) enforces the bin capacity of one unit for each bin — the

variable §; is the sum of the sizes of items in bin 7. The expression for 74 asserts that the sum
of the sizes of all items in all bins should equal to T. Each ; adds the item sizes in bin i.

Since 13, 74 and 75 make use of the z’s defined in ¢3, we can then expand ¢3 to include 75:
¢3 = Vo Vu Tz, {[IN(z,u) A 2gy = size(x)] V (234 = 0]} A Ts5
= Vo Vu Jzzy Jary---Japp-2 31 3Bn Iy1- - IMm2
[IN(z,u) A zgo = size(z) A3 A T4V [2g0 = 0 A T3 A T4). (31)

In other words,

¢3 = Vo Vu Izzy 3o Fapp—o IB1 -+ 3B, Iyi - Iyp—2 76 V 77, Where
6 = [IN(z,u) A2z, = size(z) A3 A T4] and (32)
T = [2g0 =0AT3 A T4l

Since all constraints should be obeyed for a feasible solution, we have

¢ =d1Aga N3 =
VaVyVu EIwEIzm,uﬂoq,l ce Han,n_g 3B+ 3Bp Iy - IV TI AT A (7'6 \Y 7'7).

Note that the expression ¢ is in IIs form. It is a sentence since all variables are bound.

3.3.6 Optimal Solution Value and DNF

The optimal solution value to an instance A of uniform size bin packing (USBP) is given by

optuspp(A) = min [{w : (A,S) = ¢}| = min[{w : (A,S) = ¢(w, S)}, (34)

14

where w is the operand of S occuring in (26) and (27). The sequence S consists of the three
second-order predicates (S, IN, ABOVE).

The task at hand now is to put expressions ¢; through ¢3 together in DNF (disjunctive
normal form), in place of the CNF (conjunctive normal form) above. For example, the CNF
expression

((11 \Y a2) N (b1 \Y b2) N (C1 V CQ) (35)

can be written in DNF7 as

(a1/\b1/\cl)V(a1/\b1/\CQ)V(al/\bgl\cl)V(al/\bg/\CQ)V---V(ag/\bQ/\CQ). (36)

Given the example in (35-36), it is not difficult to convert ¢ (in CNF) to its DNF ¢'. However,
the crucial point to note is that, during such a conversion, second-order predicates do not
change signs. In particular, the predicate S, whose cardinality we wish to optimise, remains
positive. All three second-order (SO) predicates appear positively in ¢ and ¢'.

The only SO predicate that could possibly appear more than once in a clause of ¢' is S(w)
— however, it appears positively in the clause, as S(w) A S(w), when we seek to “integrate”
71 and 79 — note that S(w) appears in (26) and (27) only. Naturally, S(w) A S(w) can be
reduced to S(w), and hence we can say that this predicate appears only once in each clause
of ¢'.

Thus, this problem falls in the MINF*II,, (1) class defined in Definition 7. We now refer to a
result from [KT95] on problems belonging to this class:

Theorem 7. For an instance A to a problem Q in the class MINF'1Iy(k), an approzimate
solution within cloptg(A)]* log|A| can be guaranteed, where |A| is the size of the universe of
A, and c is a constant. In particular, problems in MINFTII5(1) are log|Al|-approzimable.

Hence we can conclude that

Theorem 8. The uniform size bin packing problem with LIB constraints is approximable
within a ©(logn) factor of the optimal solution value, where n is the number of items in the
input list.

4 Future Research

Most of this paper studies only maximisation problems — research should be carried out for
minimisation problems as well, and the connection between the two (for example, using the
duality concept in mathematical programming). Complete problems should be discovered for
the respective subclasses.

Since the decision version of the weighted MAXFLOW problem (where arc capacity can be
any non-negative integer) is complete for the class P [GHR95, Imm99], the optimisation
version of weighted MAXFLOW is likely to be a complete problem for P/ — this is yet to be
proven.

"If the CNF expression consists of n clauses and the clauses contain I, Iz, ---, I, number of literals
respectively, then the number of clauses in DNF is equal to IIj—;l;.

15

Acknowledgments

We benefited from discussions with the theoretical computer science group at the University
of Leicester (UK), as well as with J. Radhakrishnan and A. Panconesi at TIFR (Mumbai).
The proof in Section 2.1 is due to Radhakrishnan [Rad05]. A preliminary version of the
paper was presented at the annual meeting of the Australian Mathematical Society at Perth
(Western Australia) in September 2005.

References

[ALM+98]

[E. 91]

[Fag74]

[GHRY5]
[GI79]

o

[H97]

[Imm99]

[KKM94]

[KMSV98]

[KT94]

[KT95]

[Man]

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and
Intractability of Approximation Problems. Journal of the ACM, 45(3):501-555,
1998.

E. Gréddel. The expressive power of second order Horn logic. In STACS 1991:
Proceedings of the 8th annual symposium on Theoretical aspects of computer sci-
ence — Lecture Notes in Computer Science 280, pages 466—477. Springer-Verlag,
1991.

R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. Karp, editor, Complezity of Computations, pages 43-73. SIAM-AMS Pro-
ceedings (no.7), 1974.

R. Greenlaw, H. James Hoover, and W.L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman (New York), 1979.

J. Hastad. Some Optimal Inapproximability Results. In ACM-STOC 1997: Pro-
ceedings of the 29th ACM Symposium on the Theory of Computing, pages 1-10,
1997.

Neil Immerman. Descriptive Complezity. Springer-Verlag, 1999.

R. Kohli, R. Krishnamurti, and P. Mirchandani. The Minimum Satisfiability
Problem. SIAM Journal of Discrete Mathematics, 7:275-283, 1994.

S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus com-
putational views of approximability. STAM Journal of Computing, 28(1):164-191,
1998.

P.G. Kolaitis and M.N. Thakur. Logical Definability of NP-Optimisation Prob-
lems. Information and Computation, 115(2):321-353, December 1994.

P.G. Kolaitis and M.N. Thakur. Approximation Properties of NP-Minimisation
Problems. Journal of Computer and System Sciences, 50:391-411, 1995.

P. Manyem. Syntactic Characterisations of Polynomial-Time
Optimisation Classes. Submitted to a journal. Available at:
http://uob-community.ballarat.edu.au/~pmanyem/syntax-one.pdf.

16

[PR93] A. Panconesi and D. Ranjan. Quantifiers and approximation. Theoretical Com-
puter Science, 107:145-163, 1993.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Com-
plexity Classes. Journal of Computer and System Sciences, 43(3):425-440, Decem-
ber 1991.

[Rad05] J. Radhakrishnan. Personal communication, December 2005.

[Zim98] M. Zimand. Weighted NP-Optimisation Problems: Logical Definability and Ap-
proximation Properties. SIAM Journal of Computing, 28(1):36-56, 1998.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de/

