
Speeding up Evolutionary Algorithms by

Restricted Mutation Operators

Benjamin Doerr∗, Nils Hebbinghaus† Frank Neumann‡

May 16, 2006

Abstract

We investigate the effect of restricting the mutation operator in

evolutionary algorithms with respect to the runtime behavior. Con-

sidering the Eulerian cycle problem we present runtime bounds on evo-

lutionary algorithms with a restricted operator that are much smaller

than the best upper bounds for the general case. In our analysis it

turns out that a plateau which has to be coped with for both algo-

rithms changes its structure in a way that allows the algorithms to

obtain an improvement much faster. In addition, we present a lower

bound for the general case which shows that the restricted operator

speeds up computation by at least a linear factor.

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics, that have
shown to be very successful in solving problems from combinatorial optimiza-
tion as well as producing good solutions in real world applications. Especially
in the case of real world applications often little is known about the structure
of the problem and a standard evolutionary approach achieves good results.

In the case of combinatorial optimization problems frequently much more
is known about the structure of a considered problem and EAs that are de-
signed for the considered problem achieve better results than a standard

∗Max–Planck–Institut für Informatik, Saarbrücken, Germany.
†Max–Planck–Institut für Informatik, Saarbrücken, Germany.
‡Institut für Informatik und Praktische Mathematik, Kiel, Germany.

1

Electronic Colloquium on Computational Complexity, Report No. 83 (2006)

ISSN 1433-8092

evolutionary approach. Raidl et al. [9] have recently shown that NP-hard
spanning tree problems can be solved much easier by using a mutation oper-
ator that chooses edges with a small weight much more often for inclusion in
a mutation step than heavier edges. They have shown that minimum span-
ning trees can be computed by an evolutionary algorithm within a runtime
bound that is of the same magnitude as the best deterministic algorithms
such as Kruskal and Prim for the mentioned problem. This result also shows
that a sophisticated mutation operator can speed up computations drasti-
cally compared with a standard evolutionary approach analyzed by Neumann
and Wegener [8].

In this paper, we consider a restricted mutation operator for the Eule-
rian cycle problem and examine the effect of the restriction on the runtime
of the algorithms. The analysis of EAs with respect to their runtime be-
havior has become very popular in recent years. Starting with results on
the optimization of pseudo boolean objective functions a lot of results have
been obtained by now. First results consider the behavior of this class of
randomized search heuristics on special functions that explain the behavior
of evolutionary algorithms in different situations. One important issue is to
analyze how evolutionary algorithms can cope with plateaus. Plateaus are
regions in a search space where all search points have the same fitness. If
such a plateau is large the search process frequently becomes difficult. Note
that the number of different fitness values is often polynomial bounded in
the input size whereas the number of search points is exponential. Then a
pigeon hole argument implies that many search points have the same fitness.
Plateaus have been for the first time examined by Jansen and Wegener [3]
with respect to their impact on the runtime of an EA. They have investigated
the effect of the structure of a plateau with respect to the runtime behavior
of a simple evolutionary algorithm.

Since 2002 a lot of results concerning the runtime behavior of EAs on
combinatorial optimization problems have been obtained. There are re-
sults on some of the best-known polynomial solvable problems such as sort-
ing and shortest path (Scharnow, Tinnefeld, and Wegener [10]), maximum
matchings (Giel and Wegener [1]), and minimum spanning trees (Neumann
and Wegener [8]). In the case of NP-hard problems the first results have
been achieved for the multi-objective minimum spanning tree problem (Neu-
mann [6]) and a scheduling problem on two identical machines (Witt [11]).

For the Eulerian Cycle problem Neumann [7] has shown that a simple EA
produces a Eulerian cycle of a Eulerian graph in expected number of O(m5)

2

steps if a jump operator is used for mutation. In contrast to this the expected
optimization time gets exponential if the mutation operator is changed to ex-
change operations. This is one of the first results on the runtime behavior
of evolutionary algorithms that deal with the important representation of
permutations. This kind of representation is important for many important
NP-hard combinatorial optimization problems such as the traveling sales-
man problem (see e.g. Michalewicz and Fogel [5] for different evolutionary
approaches to solve this problem) or a wide class of scheduling problems (see
e.g. Mattfeld and Bierwirth [4]). The analysis of Neumann [7] shows that
jumps lead for his model to a plateau of constant fitness that can be left in
a polynomial number of steps. Whereas in the case of exchange operations
this plateau changes to local optima with a large inferior neighborhood.

The aim of this paper is to show that a restricted jump operator can
speed up computations of an evolutionary algorithms. EAs often do steps
that only waste time. This is the price a general search heuristic usually pays
in contrast to a specialized algorithm. Restricting the mutation operator to
the considered problem can shorten the time until a desired step occurs. In
addition such a restriction can change the behavior of an EA on a plateau.
We will show that a restricted version of the jump operator leads to an EA
that computes a Eulerian cycle of an Eulerian graph in an expected number
of O(m3) steps. In addition we present an example graph which shows that
our analysis is tight.

After having motivated our work, we introduce the model of the Eulerian
cycle that will be analyzed in Section 2. In Section 3 we introduce restricted
version of simple evolutionary algorithms that will be analyzed with respect
to their runtime behavior. To show the advantages of these restriction we
give lower bounds on the corresponding more general algorithms in Section 4
and present a runtime analysis of the restricted algorithms in Section 5. We
finish with some conclusions.

2 Preliminaries

The Eulerian cycle problem can be seen as the first problem in graph the-
ory. Proposed by Euler in 1736 as the famous Seven Bridges problem, its
generalization can be described as follows and is known as the Eulerian cycle
problem.

Given an undirected connected graph G = (V, E) on n vertices and m

3

edges, compute a cycle such that every edge is used exactly once. Euler
proved that such a tour exists if and only if the degree of each vertex is even.
Graphs that contain a Eulerian cycle are called Eulerian. In the remainder
of this paper we assume that all graphs are Eulerian.

For every n ∈ N let us define [n] := {k ∈ N : 1 ≤ k ≤ n}. We define the
search space

Sm := {π : [m] → E | π is a bijection}.

Sm contains all permutations of the edges of G. Thus, a search point
π ∈ Sm corresponds to an order of the edges of G. Looking at the edges
π(1), π(2), . . . , π(m) we can determine a longest path p = π(1)π(2) . . . π(l)
for an appropriate l ≤ m such that it holds π(i)∩π(i+1) 6= ∅ for all i ∈ [l−1]
and π(l)∩π(l+1) = ∅. If l = m the permutation π corresponds to a Eulerian
tour. We formalize this in the following fitness function. For convenience we
set π(m+1) = ∅ and choose π(0) as a fixed one-element subset of π(1)\π(2).
Define:

path(π) := 1 + max{k ∈ [m] | ∀i ∈ [k] : π(i) ⊆ π(i − 1) ∪ π(i + 1)}.

In the rest of this paper the path π(1)π(2) . . . π(path(π)) will be named
by p.

The fitness function describes the processing order to use the edges for a
tour starting with the edge on position 1. Another advantage of this fitness
function is that it can be easily evaluated. If the resulting path is short most
of the edges in the permutation do not have to be considered.

For the Eulerian cycle problem algorithms have been designed that com-
pute a Eulerian cycle in linear time. To analyze randomized search heuristics
we use the knowledge that has been put into these algorithms. The following
algorithm proposed by Hierholzer [2] computes an Eulerian cycle of a given
Eulerian graph G and contains ideas which will be later used in the analysis
of our algorithms.

4

Algorithm 1 (Eulerian Cycle).

1. Find a cycle C in G

2. Delete the edges of C from G

3. If G is not empty go to step 1.

4. Construct the Eulerian cycle from the cycles produced in step 1.

Neumann [7] has shown that simple randomized search heuristics are
able to compute a Eulerian cycle of a Eulerian graph in expected polynomial
time if a mutation operator is used that uses jump operators. The expected
optimization change drastically, i.e. from polynomial to exponential, if one
chooses exchange operations instead of jumps.

3 Randomized local search and the (1+1) EA

Randomized local search (RLS) and the (1+1) EA are perhaps the simplest
randomized search heuristics that can be considered. They work on a popu-
lation of size 1 and only use mutation to produce one single new individual
in each generation. We consider variants of RLS and the (1+1) EA that are
similar to the ones discussed by Neumann [7] for the Eulerian cycle problem.
The difference is that the algorithms considered here work with a more re-
stricted mutation operator. EAs often waste time by doing many steps that
are not accepted. Our aim is to show that such a restriction of the muta-
tion operator can speed up computations and to show how the structure of a
combinatorial optimization problem can change from the EAs point of view
because of such a restriction. The algorithms considered use a restricted
jump operator for mutation. Jump operators have also been discussed by
Scharnow, Tinnefeld, and Wegener [10] for the sorting problem. In the case
of restricted jumps a jump operation jump(i) executed on a permutation
π produces a new permutation π′ by putting the element on position i at
position 1 and shifting the remaining elements to the right. This restricted
operator differs from the general jump operator that chooses two positions
i and j in the permutation and puts the element at position i at position j
while shifting the elements between into the appropriate direction. For RLS
in one mutation step exactly one jump operation is executed. The executed
jump is chosen according to the uniform distribution. We can describe the

5

restricted version of RLS as follows.

Algorithm 2 (Randomized Local Search (restricted) (RLSr)).

1. Choose π ∈ Sm uniformly at random.

2. Choose i ∈ [m] uniformly at random and define π′ by jumping the
element at position i to position 1 and shifting the elements between
position 1 and position i one position to the right.

3. Replace π by π′ if path(π′) ≥ path(π).

4. Repeat Steps 2 and 3 forever.

Evolutionary algorithms use a mutation operator where more than one
operation is possible in a mutation step. The (1+1) EA using the encoding of
permutations is adopted from the well-known (1+1) ES (evolution strategy)
and differs from RLS by the chosen mutation operator.

Algorithm 3 (Mutation operator of (1+1) EAr).

2’) Define π′ in the following way. Choose s according to a Poisson distri-
bution with parameter λ = 1 and perform sequentially s + 1 restricted
jump operations to produce π′ from π.

In applications, we need a stopping criterion. For theoretical investiga-
tions it is a common use to investigate the number of fitness evaluations until
an optimal solution has been achieved. This is called the runtime of the al-
gorithm. Often the expectation of this value is considered which is called the
expected optimization time of the considered algorithms.

The algorithms introduced here will be compared with variants called RLS
and (1+1) EA that use the general jump operator. RLS and (1+1) EA have
already been analyzed with respect to their runtime behavior on the Eulerian
cycle problem. We will compare the results obtained for these algorithms
with our results on the restricted versions.

6

4 A lower bound for RLS and the (1+1) EA

We consider RLS and the (1+1) EA with the general mutation operator in
this section. Neumann [7] has proven that both algorithms need in expecta-
tion at most O(m5) steps until they compute a Eulerian cycle of a Eulerian
graph. We now show that both algorithms need at least Ω(m4) steps to find
a Eulerian cycle.

Without loss of generality, let m be a multiple of 8. Consider the example
graph Gm given in Figure 1, which consists of two cycles of length m/2 that
are share exactly one vertex vk.

C ′

vk

C

Figure 1: Instance Gm: Two cycles of length m/2 sharing one vertex

Theorem 1. The expected optimization time of RLS and the (1+1) EA on
the graph Gm is lower bounded by Ω(m4).

Proof. Let us consider the situation for RLS where |p| ≥ 3 for the first time.
With probability 1−o(1) all edges of p belong to only one of the two cycles of
Gm. W. l. o. g. we may assume that p is contained in C. The first possibility
that an edge of the other cycle C ′ can be integrated in the path p is given
if vk is the first vertex of p. Before one of the edges of C ′ adjacent to vk is
integrated in p, p cannot contain any other edge of C ′. But with probability
1/3 (under the condition that the first small path is contained in C), the two
edges of C adjacent to vk are integrated in p before one of the two edges of
C ′ adjacent with vk is contained in p. If this is the case, there is a moment
where the current path p is the cycle C. The expected time until C has been
produced is upper bound by O(m3) as the path has to be lengthened at most
m/2 times and the expected waiting time for such a mutation step is O(m2).
Thus, with probability 1/3−o(1) there is a moment where p is one of the two
cycles (w. l. o. g. C), and until that moment no edge of C ′ was contained in p.
Let us denote the first vertex of the path p as x0 and the other vertices of C

7

clockwise as x1, x2, . . . , xm

2
−1. We do this modulo m/2, in particular, by the

vertex xm

2
we mean the vertex x0. Let d ∈ {0, 1, . . . , m

2
− 1} be chosen such

that xd = vk. By the symmetry of C and since the cycle C ′ can be ignored
until this moment, with probability at least a half, d ∈ {m

8
, m

8
+ 1, . . . , 3m

8
}

and thus, the distance (measured in the number of edges) of x0 to vk is at
least m/8. But for the next improvement of RLS vk has to be the first vertex
of p. Therefore, we are interested in the expected number of accepted steps
until the first vertex of p is xd = vk.

Claim 1. The expected number of accepted steps until xd is the first vertex
of the path p is d(m

2
− d).

Proof. Let tk be the expected number of accepted steps until the first vertex
of p is xk for the first time (after p has become the cycle C) for all 0 ≤ k ≤
m
2
−1. Clearly, t0 = 0. Because of the symmetry of C, tk is also the expected

number of accepted steps until the first vertex is x0 for the first time, starting
at the vertex xk. Then, in the first step the first vertex of p changes from xk

to the adjacent vertices xk−1 or xk+1 each with probability 1/2. Thus,

tk = 1 + 1
2
tk−1 + 1

2
tk+1

holds for all 0 ≤ k ≤ m
2
− 1. Note, that the vertices are named modulo

m/2 and therefore tm

2
= t0 = 0. This is a linear system of equations with

t0, t1, . . . , tm

2
−1 as variables. It is easy to see that this is a regular linear system

of equations. Thus, it has a unique solution. One verifies that tk = k(m
2
− k)

for all 0 ≤ k ≤ m
2
− 1 solves this linear system of equations.

Since with probability at least a half d ∈ {m
8
, m

8
+1, . . . , 3m

8
}, the expected

number of accepted steps until xd = vk is the first vertex in the path p is at
least of order Ω(m2).

The (1+1) EA has the possibility of executing more than one jump op-
eration in a mutation step. We estimate the probability that the (1+1) EA
accepts a mutation step with r ≥ 2 jump operations that are relevant for
the fitness function. There may be additional jump operations in the part
of π not belonging to the path p that do not effect the fitness function. The
probability that at least r jump operations are performed in a mutation step
is at most e times the probability that exactly r jump operations are per-
formed. Thus, this probability is bounded by 1

(r−1)!
. In order to be accepted

at least half of the r edges have to jump into the path p. The probability for
a single jump into respectively out of the path p to be accepted is of order

8

O(1
m2) respectively O(1

m
). And the r relevant jumps can be executed in r!

different orders. Thus, the probability that r relevant jumps are accepted

in a mutation step is of order O
(

r!

(r−1)!m2·
r

2 m
r

2

)

= O(rm−
3r

2). Hence, with

probability 1−o(1) there is no mutation consisting of more than two relevant
jump operations within O(m4) steps. Since there is no possibility that edges
of p – except for the two edges at the beginning and the end of p – can be
replaced by other edges through mutations with at most two relevant jump
operations, the only difference between RLS and the (1+1) EA is, that the
(1+1) EA can operate up to a factor of two faster.

Thus, RLS and the (1+1) EA need in expectation at least Ω(m2) ac-
cepted mutation steps. Moreover, the expected waiting time of RLS and
the (1+1) EA until such a mutation is accepted is Ω(m2). Hence, both al-
gorithms need Ω(m4) steps to produce an optimal solution for the example
graph Gm.

5 Analysis of the restricted operator

The analysis in the previous section has shown that there are situations where
RLS and the (1+1) EA need an expected number of Ω(m4) steps to reach an
improvement. We will investigate the corresponding algorithms RLSr and the
(1+1) EAr that work with the restricted mutation operator and show that
in each situation an improvement is found in an expected number of O(m2)
steps. One reason for this improvement is that the plateau that has to be
coped with changes its structure such that an inprovement is easier to obtain.
On the other hand the expected waiting time for an accepted offspring can
be reduced by a factor of m using the restricted mutation operator. This
leads to an expected optimization time for RLSr and the (1+1) EAr which
is upper bound by O(m3). Additionally, we show that there are graphs for
which RLSr and the (1+1) EAr need in expectation a runtime of the same
magnitude with probability close to 1.

Theorem 2. The expected time until RLSr and the (1+1) EAr have com-
puted a Eulerian cycle is bounded by O(m3).

Proof. We distinguish two cases. In the first case the current path is not
a cycle. Then there exists at least one edge that can jump to position 1
and lengthen the path. In the case that p represents a cycle C which is
not a Eulerian cycle, the complement GC of C in G is a subgraph whose

9

components are all Eulerian. Let d′(v) denote the degree of v in GC for every
vertex v that is in the cycle C and in the subgraph GC For all vertices that
are in the cycle C but not in the subgraph GC we set d′(v) := 0. Since G is
Eulerian, GC has at least one vertex in common with C. Thus, there is at
least one vertex v in C with d′(v) ≥ 2. Let l be the length of the path p and
let ei(p), 1 ≤ i ≤ l, denote the ith edge of p. We call v1(p) := e1(p) \ e2(p)
the starting point of the path p. If d′(v1(p)) = 0, the only accepted jump is
jump(l). But after at most l−1 such jumps d′(v1(p)) ≥ 2. In such a situation
there are d′(v1(p))+1 accepted jumps. Besides jump(l), all d′(v1(p)) edges of
GC containing v1(p) can jump to the first position of p (shifting all the edges
of p by one). Consequently, the probability that the path is lengthened

is d′(v1(p))
d′(v1(p))+1

≥ 2
3
. Hence, the expected number of jumps until the path is

improved is at most 3
2
l ≤ 3

2
m. Since in average at least every mth jump is

accepted, this implies an expected time for an improvement of O(m2). The
number of improvements is at most m − 1, which completes the proof.

To prove a matching lower bound, we consider the graph G′ consisting
of m/4 cycles Ci, 0 ≤ i ≤ m/4 − 1 of length 4. Ci consists of the vertices
v3i, v3i+1, v3i+2, v3(i+1) and the edges {v3i, v3i+1}, {v3i, v3i+2}, {v3i+1, v3(i+1)} and
{v3i+2, v3(i+1)}. The number of vertices in G′ is 3m/4 + 1. Note that cycle
Ci, 0 ≤ i ≤ m/4 − 2, and Ci+1 intersect in v3(i+1).

. . .v0

v1

v2

v3

v4

v5

v6

v3(m/4−1)+1

v3m/4v3(m/4−1)

v3(m/4−1)+2

Figure 2: Example graph G′

Theorem 3. With probability 1−o(1), RLSr and the (1+1) EAr need Ω(m3)
steps to find a Eulerian cycle in G′.

Proof. We call the vertices v3i, 1 ≤ i ≤ m/4− 1, turning points of the graph
G′. As in the proof of Theorem 2, we call v1(p) := e1(p) \ e2(p) the starting
point of the path p, where e1 denotes the first and e2 the second edge of the
path p. At the beginning of RLSr the path p consists of only a few edges.

10

More precisely, the probability that the length of the path is shorter than for
example m/20 is clearly 1 − e−Ω(m). We now show the following claim.

Claim 2. Let the current path p1 at a certain time t1 in RLSr be not a cycle.
And let t2 > t1 be the first time such that the current path p2 is a cycle. Then

|{0 ≤ i ≤ m/4 − 1 : Ci ∩ p1 = ∅ 6= Ci ∩ p2}| ≤
m

40
(1)

with probability 1 − e−Ω(m).

Proof. Assume that (1) does not hold. Then at least m/40 times between t1
and t2 the starting point v1(p) was a turning point. In each of this situations
the probability that the next edge that jumps at the first position of the path
p is in the same cycle Ci as the edge that was in the first position of p before
this jump is 1/3. And with probability 2/3 this two edges are in different
cycles Ci and Ci+1. Since the path p is not closed until the time t2, only up
to two times between t1 and t2 the starting point v1(p) was a turning point
and these two edges were in the same cycle. But at least m/40 times the
starting point v1(p) was a turning point and those two edges were in different
cycles. The probability for this is e−Ω(m) which proves the claim.

With probability 1−e−Ω(m) the path p at the beginning of RLSr is shorter
than m/20. That means, it contains edges of at most m/40 cycles. Using
the claim, we get the following: when the path p is a cycle for the first time,
it contains edges of at most m/40 + m/40 = m/20 cycles with probability
1 − e−Ω(m). Thus, the length of p is bounded by m/5 at this time with
probability 1 − e−Ω(m). Another consequence of the claim is the following:
Let l1 be the length of the current path p at a certain time when p is a
cycle. And let l2 be the length of the current path p at the first time when
the current path is a cycle again after p was not a cycle for a while. Then
l2 − l1 ≤ m/10 with probability 1 − e−Ω(m), since only edges from at most
m/40 cycles Ci can jump into p (with probability 1 − e−Ω(m)).

Therefore with probability 1 − e−Ω(m) there exists a moment when the
current path p is a cycle of length at least m/3 and at most m/3 + m/10 ≤
m/2. Hence, there are at least m/8 cycles left that have to be integrated.
Each time when the starting point v1(p) is a turning point and only one edge
e of the four edges adjacent to v1(p) is contained in p we have the following
situation: the probability that the next edge that jumps at the first position
of p is in the same cycle Ci as the edge e is 1/3. Thus, this will occur in

11

average in 1/3 of the m/8 times. Using Chernoff bounds, with probability
1 − e−Ω(m) this happens at least m/30 times. After such an event, at least
m/6 edges have to jump to the first position of the path p until the starting
point v1(p) of p is a turning point, such that only one of the four edges
adjacent to v1(p) is contained in p. Therefore, with probability 1−e−Ω(m), at
least (m/6)(m/30) = m2/180 edges have to jump at the first position of the
path p until the Eulerian cycle is found by RLSr. Since the maximal degree
of G′ is 4, in average at most 3/m of all jumps is accepted. Thus, using the
Chernoff bounds once more, the number of jumps until RLSr has found a
Eulerian cycle is Ω(m3) with probability 1 − e−Ω(m).

In contrast to RLSr more than one jump operation per mutation is possi-
ble in the mutation operator of the (1+1) EAr. The probability that a jump
is accepted is at most 3/m in the example graph G′, since the maximum
degree of G′ is 4. Thus, with probability 1− o(1) there is no accepted muta-
tion with more than three jumps within O(m3) steps. Therefore, none of the
circles can be integrated in one mutation with probability 1 − o(1). Hence,
the only difference between RLSr and the (1+1) EAr is that (1+1) EAr is
up to a factor of 3 faster than RLSr. This shows the claim also for the
(1+1) EAr.

6 Conclusions

In the case of combinatorial optimization problems often a lot is known about
the structure of a given problem. This knowledge can lead to more sophis-
ticated evolutionary algorithms. For the Eulerian cycle problem we have
considered the runtime behavior of simple evolutionary algorithms that work
with a restricted mutation operator. We have proven an upper bound of
O(m3) for the expected runtime of these restricted algorithms. This beats
the up to now best upper bound on the more general versions of these algo-
rithms by a factor m2. The lower bound on the algorithms with the restricted
mutation operators shows that there are graphs whose optimization time is
Ω(m3) with probability close to 1. We also have obtained a lower bound of
Ω(m4) for the more general algorithms which strengthens our claim that re-
stricting the mutation operator can help to come up with faster evolutionary
algorithms in some cases.

12

References

[1] O. Giel and I. Wegener. Evolutionary algorithms and the maximum
matching problem. In Proc. of 20th STACS, volume 2607 of Lecture
Notes in Computer Science, pages 415–426, 2003.

[2] C. Hierholzer. Über die Möglichkeit, einen Linienzug ohne Wiederholung
und ohne Unterbrechung zu umfahren. In Math. Ann, volume 6, pages
30–32, 1873.

[3] T. Jansen and I. Wegener. Evolutionary algorithms — how to cope
with plateaus of constant fitness and when to reject strings of the same
fitness. In IEEE Trans. on Evolutionary Computation, volume 5, pages
589–599, 2001.

[4] D. C. Mattfeld and C. Bierwirth. An Efficient Genetic Algorithm for
Job Shop Scheduling with Tardiness Objectives. In European Journal
of Operational Research, volume 155, pages 616–630, 2004.

[5] Z. Michalewicz and D. B. Fogel How to solve it. Springer-Verlag, Berlin,
2004.

[6] F. Neumann. Expected Runtimes of a Simple Evolutionary Algorithm
for the Multi-objective Minimum Spanning Tree Problem. In Yao et al.,
editors,Parallel Problem Solving from Nature - PPSN VIII, volume 3242
of Lecture Notes in Computer Science, pages 80–89, Springer, Berlin,
2004.

[7] F. Neumann. Expected Runtimes of evolutionary algorithms for the
Eulerian cycle problem. In Proc. of the Congress on Evolutionary Com-
putation 2004 (CEC 2004), volume 1, IEEE Press, pages 904–910, 2004.

[8] F. Neumann and I. Wegener. Randomized Local Search, Evolution-
ary Algorithms, and the Minimum Spanning Problem. In Deb et al.,
editors, Genetic and Evolutionary Computation Conference - GECCO
2004, volume 3102 of Lecture Notes in Computer Science, pages 713–
724, Springer, Berlin, 2004.

[9] G. R. Raidl, G. Koller, and B. A. Julstrom. Biased mutation operators
for subgraph-selection problems. In IEEE Transactions on Evolutionary
Computation, 2006 (to appear).

13

[10] J. Scharnow, K. Tinnefeld, and I. Wegener (2002). Fitness landscapes
based on sorting and shortest paths problems. In Proc. of Parallel Prob-
lem Solving from Nature — PPSN VII, volume 2939 of Lecture Notes in
Computer Science, pages 54–63, Springer, Berlin, 2002.

[11] C. Witt (2005). Worst-case and average-case approximations by simple
randomized search heuristics. In Proc. of the 22nd Annual Symposium
on Theoretical Aspects of Computer Science (STACS ’05), volume 3404
of Lecture Notes in Computer Science, pages 44–56, Springer, Berlin,
2005.

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

