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Abstract

Ant Colony Optimization (ACO) has become quite popular in re-
cent years. In contrast to many successful applications, the theoretical
foundation of this randomized search heuristic is rather weak. Build-
ing up such a theory is demanded to understand how these heuristics
work as well as to come up with better algorithms for certain problems.
Up to now, only convergence results have been achieved showing that
optimal solutions can be obtained in finite time. We present the first
runtime analysis of an ACO algorithm, which transfers many rigorous
results with respect to the runtime of a simple evolutionary algorithm
to our algorithm. Moreover, we examine the choice of the evaporation
factor, a crucial parameter in ACO algorithms, in detail. By deriving
new lower bounds on the tails of sums of independent Poisson trials,
we determine the effect of the evaporation factor almost completely
and prove a phase transition from exponential to polynomial runtime.

1 Introduction

The analysis of randomized search heuristics with respect to their runtime
is a growing research area where many results have been obtained in recent
years. This class of heuristics contains well-known approaches such as Ran-
domized Local Search (RLS), the Metropolis Algorithm (MA), Simulated
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Annealing (SA), and Evolutionary Algorithms (EAs). Such heuristics are
often applied to problems whose structure is not known or if there are not
enough resources such as time, money, or knowledge to obtain good specific
algorithms. It is widely acknowledged that a solid theoretical foundation for
such heuristics is needed.

Some general results on the runtime of RLS can be found in Papadim-
itriou, Schäffer and Yannakakis (1990). The graph bisection problem has
been subject to analysis of MA (Jerrum and Sorkin, 1998), where MA can
be seen as SA with a fixed temperature. For a long time, it was an open
question whether there is a natural example where SA outperforms MA for
all fixed temperatures. This question has recently been answered positively
by Wegener (2005) for instances of the minimum spanning tree problem.

In this paper, we focus on another kind of randomized search heuristics,
namely Ant Colony Optimization (ACO). Like EAs, these heuristics imi-
tate optimization processes from nature, in this case the search of an ant
colony for a common source of food. Solving problems by ACO techniques
has become quite popular in recent years. Developed by Dorigo, Maniezzo
and Colorni (1991), they have shown to be a powerful heuristic approach to
solve combinatorial optimization problems such as the TSP (see Dorigo and
Stützle, 2004, for an overview on the problems that these heuristics have
been applied to). From a theoretical point of view, there are no results that
provide estimates of the runtime of ACO algorithms. Despite interesting the-
oretical investigations of models and dynamics of ACO algorithms (Dorigo
and Blum, 2005), convergence results are so far the only results related to
their runtimes. Dorigo and Blum (2005) explicitly formulate the open prob-
lem to determine the runtime of ACO algorithms on simple problems in a
similar fashion to what has been done for EAs.

We solve this problem, starting the analysis of ACO algorithms with
respect to their expected runtimes and success probability after a specific
number of steps. RLS, SA, MA, and simple EAs search more or less locally,
and runtime bounds are often obtained by considering the neighborhood
structure of the considered problem. Considering ACO algorithms, this is
different as search points are obtained by random walks of ants on a so-called
construction graph. The traversal of an ant on this graph is determined by
values on the edges which are called pheromone values. Larger pheromone
values correspond to a higher probability of traversing a certain edge, where
the choice of an edge usually fixes a parameter in the current search space.
The pheromone values are updated if a good solution has been constructed
in this random walk. This update depends on the traversal of the ant and
a so-called evaporation factor ρ.
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The choice of ρ seems to be a crucial parameter in an ACO algorithm.
Using a large value of ρ, the last accepted solution changes the pheromone
values by a large amount such that there is a large probability of producing
this solution in the next step. In contrast to this, the use of a small evapora-
tion factor leads to a small effect of the last accepted solution such that an
improvement may be hard to find in the next step. We show that a simple
ACO algorithm behaves for very large values of ρ (namely ρ ≥ 1/3) as the
simplest EA called (1+1) EA. This algorithm has been studied extensively
with respect to its runtime on pseudo-boolean functions f : {0, 1}n → R

(see, e. g. Droste, Jansen and Wegener, 2002) as well as on combinatorial
optimization problems. The list of problems where runtime bounds have
been obtained include some of the best-known polynomially solvable prob-
lems such as maximum matchings (Giel and Wegener, 2003) and minimum
spanning trees (Neumann and Wegener, 2004). It should be clear that we
cannot expect such general heuristics to outperform the best-known algo-
rithms for these mentioned problems. The main aim of such analyses is to
get an understanding how these heuristics work. In the case of NP-hard
problems, one is usually interested in good approximations of optimal so-
lutions. Witt (2005) has presented a worst-case and average-case analysis
of the (1+1) EA for the partition problem, which is one of the first results
on NP-hard problems. All these results immediately transfer to our ACO
algorithm with very large ρ.

After these general results, we consider the effect of the evaporation
factor ρ on the runtime of our ACO algorithm in detail. As proposed in
the open problem stated by Dorigo and Blum (2005), we examine the sim-
plest non-trivial pseudo-boolean function called OneMax and analyze for
the first time for which choices of ρ the runtime with high probability is
upper bounded by a polynomial and for which choices it is exponential.
We observe a phase transition from exponential to small polynomial run-
time when ρ crosses the threshold value 1/n. Larger values of ρ imply that
the expected function value of a new solution is determined by the func-
tion value of the best seen solution. Then an improvement will be achieved
after an expected polynomial number of steps. In the case of smaller ρ,
an improvement does not increase the expected function value sufficiently.
Here exponential lower bounds are obtained by showing that there is a large
gap between the expected value and the best-so-far function value. Both
the proof of the upper and the lower runtime bound contain new analytical
tools to lower bound the tail of a sum of independent trials with different
success probabilities. The new tools may be of independent interest in other
probabilistic analyses.
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In Section 2, we introduce the simple ACO algorithm which we will
consider. We investigate its relation to the (1+1) EA in Section 3 and
transfer the results on this EA to our algorithm. In Section 4, we investigate
the choice of the evaporation factor ρ for the function OneMax in great
detail and finish with some conclusions. Some proofs have been moved to
the appendix.

2 The Algorithm

Gutjahr (2003) has considered a graph-based ant system and investigated
under which conditions such an algorithm converges to an optimal solution.
We consider a simple graph-based ant system metaheuristic that has been
inspired by this algorithm. Such a heuristic produces solutions by random
walks on a construction graph. Let C = (V,E) be the construction graph
with a designated start vertex s and pheromone values τ on the edges.
Starting at s, an ant traverses the construction graph depending on the
pheromone value using Algorithm 1. Assuming that the ant is at vertex v,
the ant moves to a successor w of v, where w is chosen proportionally to the
pheromone values of all non-visited successors of v. The process is iterated
until a situation is reached where all successors of the current vertex v have
been visited.

Algorithm 1 (Construct(C, τ))

1.) v:=s, mark v as visited.

2.) While there is a successor of v in C that has not been visited:

a.) Let Nv be the set of non-visited successors of v and T :=
∑

(v,w)|w∈Nv
τ(v,w).

b.) Choose one successor w of v where the probability of selection of
any fixed u ∈ Nv is τ(v,u)/T .

c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

Based on this construction procedure, solutions of our simple ACO algo-
rithm (see Algorithm 2) called 1-ANT are constructed. In the initialization
step, each edge gets a pheromone value of 1/|E| such that the pheromone
values sum up to 1. After that, an initial solution x∗ is produced by a ran-
dom walk on the construction graph and the pheromone values are updated
with respect to this walk. In each iteration, a new solution x is constructed
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and the pheromone values are updated if this solution is not inferior to the
currently best solution x∗. We formulate our algorithm for maximization
problems although it can be easily adapted to minimization.

Algorithm 2 (1-ANT)

1.) Set τ(u,v) = 1/|E| for all (u, v) ∈ E.

2.) Compute x (and P (x)) using Construct(C, τ).

3.) Update(τ, P (x)) and set x∗ := x.

4.) Compute x (and P (x)) using Construct(C, τ).

5.) If f(x) ≥ f(x∗), Update(τ, P (x)) and set x∗ := x.

6.) Go to 4.).

For theoretical investigations, it is common to have no termination con-
dition in such an algorithm. One is interested in the random optimization
time which equals the number of constructed solutions until the algorithm
has produced an optimal search point. Usually, we try to bound the expected
value of this time.

We take a general view and consider optimization for pseudo-boolean
goal functions f : {0, 1}n → R for n ≥ 3 using the canonical construction
graph in our setting, Cbool = (V,E) (see Figure 1) with s = v0. In the
literature, this graph is also known as Chain (Gutjahr, 2006). Optimizing
bitstrings of length n, the graph has 3n+1 vertices and 4n edges. The deci-
sion whether a bit xi, 1 ≤ i ≤ n, is set to 1 is made at node v3(i−1). In case
that the edge (v3(i−1), v3(i−1)+1) is chosen, xi is set to 1 in the constructed
solution. Otherwise xi = 0 holds. After this decision has been made, there
is only one single edge which can be traversed in the next step. In case that
(v3(i−1), v3(i−1)+1) has been chosen, the next edge is (v3(i−1)+1, v3i), and oth-
erwise the edge (v3(i−1)+2, v3i) will be traversed. Hence, these edges have no
influence on the constructed solution and we can assume τ(v3(i−1),v3(i−1)+1) =
τ(v3(i−1)+1,v3i) and τ(v3(i−1) ,v3(i−1)+2) = τ(v3(i−1)+2,v3i) for 1 ≤ i ≤ n. We

call the edges (v3(i−1), v3(i−1)+1) and (v3(i−1)+1, v3i) 1-edges and the other
edges 0-edges. The edges (v3(i−1), v3(i−1)+1) and (v3(i−1), v3(i−1)+2) as well as
(v3(i−1)+1, v3i) and (v3(i−1)+2, v3i) are called complementary to each other.

The pheromone values are chosen such that at each time
∑

(u,v)∈E τ(u,v) =
1 holds. In addition, it seems to be useful to have bounds on the pheromone
values (see, e. g., Dorigo and Blum, 2005) to ensure that each search point
has a positive probability of being chosen in the next step. We restrict each
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Figure 1: Construction graph for pseudo-boolean optimization

τ(u,v) to the interval
[

1
2n2 , n−1

2n2

]

and ensure
∑

(u,·)∈E τ(u,·) = 1
2n for u = v3i,

0 ≤ i ≤ n − 1, and
∑

(·,v) τ(·,v) = 1
2n for v = v3i, 1 ≤ i ≤ n. This can be

achieved by normalizing the pheromone values after an update and replacing
the current value by 1

2n2 if τ(u,v) < 1
2n2 and by n−1

2n2 if τ(u,v) > n−1
2n2 holds.

Depending on whether edge (u, v) is contained in the path P (x) of the ac-
cepted solution x, the pheromone values are updated to τ ′ in the procedure
Update(τ, P (x)) as follows:

τ ′
(u,v) = min

{

(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
,
n − 1

2n2

}

if (u, v) ∈ P (x)

and

τ ′
(u,v) = max

{

(1 − ρ) · τ(u,v)

1 − ρ + 2nρ
,

1

2n2

}

if (u, v) /∈ P (x).

Due to the bounds on the pheromone values, the probability of fixing xi as in
an optimal solution is at least 1/n. Hence, the 1-ANT finds an optimum for
each pseudo-boolean function f regardless of ρ in expected time at most nn.

3 1-ANT and (1+1) EA

We consider the relation between the 1-ANT and a simple evolutionary
algorithm called (1+1) EA, which has extensively been studied with respect
to its runtime distribution. The (1+1) EA starts with a solution x∗ that is
chosen uniformly at random and produces in each iteration a new solution x
from a currently best solution x∗ by flipping each bit of x∗ with probability
1/n. Hence, the probability of producing a certain solution x with Hamming
distance H(x, x∗) to x∗ is (1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗).
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Algorithm 3 ((1+1) EA)

1.) Choose x∗ ∈ {0, 1}n uniformly at random.

2.) Construct x by flipping each bit of x∗ independently with probability
1/n.

3.) Replace x∗ by x if f(x) ≥ f(x∗).

4.) Go to 2.).

In the following, we consider the 1-ANT with values of ρ at least n−2
3n−2 ,

which is for large n approximately 1/3 . In this case, we show that the
1-ANT behaves as the (1+1) EA on each function. This also means that
the 1-ANT has the same expected optimization time as the (1+1) EA on
each function.

Theorem 1 Choosing ρ ≥ (n − 2)/(3n − 2), the 1-ANT has the same run-
time distribution as the (1+1) EA on each function.

Proof: In the initialization step of the (1+1) EA, a bitstring is chosen
uniformly at random, which means that Prob(xi = 1) = Prob(xi = 0) = 1/2
for all i, 1 ≤ i ≤ n. As τ(u,v) = 1/(4n) holds for each edge (u, v) ∈ E, the
probability to choose the edge (v3i, v3i+1) equals the probability of choosing
the edge (v3i, v3i+2) at vertex v3i, 0 ≤ i ≤ n − 1, and is 1/2. Hence, the
1-ANT chooses the first solution uniformly at random from the search space
{0, 1}n as the (1+1) EA.

Assume that the up to now best solution constructed by the 1-ANT is
x∗. This implies that the edges of the construction graph corresponding to
this solution have been updated in the last update operation. Before the
update, the value τ(u,v) of each edge (u, v) ∈ P (x∗) was at least 1

2n2 and the

value τ(u,v) of edges (u, v) 6∈ P (x∗) was at most n−1
2n2 .

We inspect the case of an edge (u, v) ∈ P (x∗) in greater detail and
consider the function

h(ρ) :=
(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
≥

(1 − ρ) · 1
2n2 + ρ

1 − ρ + 2nρ
=

1

2n2
·1 + (2n2 − 1)ρ

1 + (2n − 1)ρ
=: h′(ρ).

For each fixed n ≥ 1, h′(ρ) is a non-decreasing function. Using ρ ≥
(n − 2)/(3n − 2), we get

h(ρ) ≥
1 + (2n2 − 1) n−2

3n−2

2n2 + (4n3 − 2n2) n−2
3n−2

=
2n3 − 4n2 + 2n

4n4 − 4n3
=

n − 1

2n2
.
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Hence, the pheromone value of each edge (u, v) ∈ P (x∗) is n−1
2n2 after the

update. The pheromone value of each edge (u, v) 6∈ P (x∗) is 1
2n2 as the

sum of the pheromone values of two complementary edges is 1
2n . After this

update, the probability to choose in the next solution x the bit xi = x∗
i is

2n(n−1)
2n2 = 1 − 1

n and the probability to choose xi = 1 − x∗
i is 2n

2n2 = 1/n.
Hence the probability to produce a specific solution x that has Hamming
distance H(x, x∗) to x∗ is (1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗) as in the case of
the (1+1) EA. �

4 1-ANT on OneMax

In the following, we inspect the choice of ρ in detail for a simple pseudo-
boolean function called OneMax defined by OneMax(x) =

∑n
i=1 xi. This

is the simplest non-trivial function that can be considered and analyses of
ACO algorithms for such simple functions are explicity demanded by Dorigo
and Blum (2005). Note that due to results on the (1+1) EA by Droste,
Jansen and Wegener (2002), the expected optimization time of the 1-ANT
is O(n log n) on each linear function if ρ ≥ (n − 2)/(3n − 2) holds.

We prepare ourselves by considering the effects of pheromone updates
for a solution x∗ in greater detail. Let τ(e) and τ ′(e) be the pheromone
values on edge e before resp. after the update. If e ∈ P (x∗), τ ′(e) ≥ τ(e)
and τ ′(e) ≤ τ(e) otherwise. The amount by which the pheromone value is
increased on a 1-edge equals the amount the pheromone value is decreased
on the complementary 0-edge. However, the change of a pheromone value
depends on the previous value on the edge. In the following lemma, we
bound the relative change of pheromone values. We call an edge saturated
iff its pheromone value is either 1

2n2 or n−1
2n2 .

Lemma 2 Let e1 and e2 be two edges of Cbool and let τ1 resp. τ2 be their
current pheromone values in the 1-ANT. Let τ ′

1 resp. τ ′
2 be their updated

pheromone values for the next accepted solution x. If e1, e2 ∈ P (x∗) and
none of the edges is saturated before or after the update, then |(τ ′

1 − τ1) −
(τ ′

2 − τ2)| ≤ ρ|τ1 − τ2|.
Proof: W. l. o. g., τ2 ≥ τ1. Since e1, e2 ∈ P (x∗) and no edge is saturated,

τ ′
1 =

(1 − ρ)τ1 + ρ

1 − ρ + 2nρ
and τ ′

2 =
(1 − ρ)τ2 + ρ

1 − ρ + 2nρ
.

This implies

(τ ′
1 − τ1) − (τ ′

2 − τ2) =
ρ − τ12nρ − (ρ − τ22nρ)

1 − ρ + 2nρ
≥ 0.
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Second, since the denominator is at least 1, we obtain

τ ′
1 − τ ′

2 ≤ ρ(τ2 − τ1) + (τ1 − τ2) ⇒ (τ ′
1 − τ1) − (τ ′

2 − τ2) ≤ ρ|τ1 − τ2|.

Taking the absolute value of (τ ′
1 − τ1) − (τ ′

2 − τ2), the claim follows. �

In the following, we will figure out which values of ρ lead to efficient
runtimes of the 1-ANT and which do not. Intuitively, 1/n is a threshold
value for ρ since the denominator 1 − ρ + 2nρ of the normalization factor
diverges for ρ = ω(1/n) and is 1 − ρ − o(1) for ρ = o(1/n). We will make
precise that there is a phase transition in the behavior of the 1-ANT on
OneMax when ρ is asymptotically smaller resp. larger than 1/n.

4.1 Exponential Lower Bounds

Choosing ρ = 0, the pheromone value on each edge is 1/(4n) at each time
step. This implies that the expected optimization time of the 1-ANT on
OneMax is 2n as each solution is chosen uniformly at random from {0, 1}n.
In the following, we show that the optimization time with overwhelming
proability still is exponential if ρ is convergent to 0 only polynomially fast.

Assume that the currently best solution x∗ has value k. Then the fol-
lowing lemma gives a lower bound on the probability of overshooting k by
a certain amount in the next accepted step.

Lemma 3 Let X1, . . . ,Xn ∈ {0, 1} be independent Poisson trials with suc-
cess probabilities pi, 1 ≤ i ≤ n. Let X := X1 + · · · + Xn, µ := E(X) =
p1 + · · · + pn and σ :=

√

Var(X). For any 0 ≤ k ≤ n − σ, let γk =
max{2, (k − µ)/σ}. If σ → ∞ then Prob(X ≥ k + σ/γk | X ≥ k) = Ω(1).

Proof: Since the Xi are bounded and σ diverges, Lindeberg’s generaliza-
tion of the Central Limit Theorem (Feller, 1971, Chapter VIII.4) holds s. t.
the distribution of X converges to a Normal distribution with expectation µ
and variance σ2. We use approximations of the Normal distribution (with
the common notion Φ(x) for its cumulative distribution function) and dis-
tinguish two cases.

If 2 maximizes γk, we even show p̃k := Prob(X ≥ k + σ/γk) = Ω(1). Let
d̃k := (k + σ/γk − µ)/σ be the normalized deviation from the expectation.
Since by our assumptions (k−µ)/σ ≤ 2, we obtain d̃k = O(1). The Central
Limit Theorem implies p̃k = (1 ± o(1))(1 − Φ(d̃k)) = Ω(1).

Now let γk > 2. Let pk := Prob(X ≥ k), dk := (k−µ)/σ, and let p̃k and
d̃k as above. By our assumptions, 2 ≤ dk ≤ d̃k ≤ dk + 1/dk. We have to
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bound p̃k/pk from below. We reuse the Central Limit Theorem and employ
the inequalities

(

1

x
− 1

x3

)

· 1√
2π

· e−x2/2 < 1 − Φ(x) <
1

x
· 1√

2π
· e−x2/2

(see Feller, 1968, Chapter VII.1). Hence,

p̃k

pk
≥ 1 − o(1)

1 + o(1)
·
(

dk

d̃k

− dk

(d̃k)3

)

· e−(1/2)((d̃k)2−(dk)2).

The first fraction and the ()-term are Ω(1). Finally, the e-term is Ω(1) since
(d̃k)2 − (dk)

2 ≤ (dk + 1/dk)2 − (dk)
2 ≤ 2 + 1/(dk)2 ≤ 3. �

Using this lemma, we are able to prove an exponential lower bound on
the runtime of the 1-ANT on OneMax. In order to show that the success
probability in an exponential number of steps is still exponentially small, we
assume that ρ = O(n−1−ε) for some constant ε > 0.

Theorem 4 Let ρ = O(n−1−ε) for some constant ε > 0. Then the optimiza-

tion time of the 1-ANT on OneMax is 2Ω(nε/3) with probability 1 − 2−Ω(nε/3).

Proof: The main idea is to keep track of the so-called 1-potential, defined
as the sum of pheromone values on 1-edges. Note that the 1-potential mul-
tiplied by n equals the expected OneMax-value of the next constructed
solution x. If the 1-potential is bounded above by 1/2 + O(1/

√
n), Cher-

noff bounds yield that the probability of OneMax(x) ≥ n/2 + n1/2+ε/3 is

bounded above by 2−Ω(nε/3). We will show that with overwhelming proba-
bility, the 1-potential is bounded as suggested as long as the OneMax-value
of the so far best solution is bounded above by n/2 + n1/2+ε/3.

Starting with initialization, we consider a phase of length s := b2cnε/3c
for some constant c to be chosen later and show that the success probability
in the phase is 2−Ω(nε/3). A main task is to bound the number of successful
steps of the phase, i. e., of steps where the new solution is accepted and a
pheromone update occurs. In a success with OneMax-value n/2 + i, n+ 2i
pheromone values on 1-edges are increased and n−2i are decreased. Suppose
all pheromone values are 1/(4n) ± o(1/n) in the phase. Then Lemma 2
yields that the 1-potential is changed by at most 4i(1 ± o(1))ρ due to the
considered success. Hence, if the best solution always had OneMax-value
at most n/2 + n1/2+ε/3, the total change of the 1-potential due to at most
O(n2ε/3) successes would be at most

O(n2ε/3) · 4n1/2+ε/3 · (1 ± o(1))ρ = O(n1/2+ε) · O(1/n1+ε) = O(1/n1/2)
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by our assumption on ρ. This would prove the theorem since the initial
1-potential is 1/2.

Under the assumption on the pheromone values, we want to show that
with probability 1 − 2−Ω(nε/3), at most c′n2ε/3 successes occur in the phase,
where c′ is an appropriate constant. We already know that then the proba-
bility of a success with value at least n/2 + n1/2+ε/3 is 2−Ω(nε/3) in each step

of the phase. If c is chosen small enough, this probability is 2−Ω(nε/3) for
the whole phase. Moreover, the initial value is at least n/2 − n1/2+ε/3 with

probability 1 − 2−Ω(nε/3).
Let the so far best value be k. We apply Lemma 3 with respect to

the expected OneMax-value µ of the next constructed solution. Note that
k − µ = O(n1/2+ε/3) holds at each time step we consider. Moreover, pi =
1/2±o(1) is assumed to hold for all bits, implying σ = Θ(n1/2). Hence, with
probability Ω(1) the next success leads to a value at least k + Ω(n1/2−ε/3).

Using Chernoff bounds, with probability 1 − 2−Ω(nε/3), c′n2ε/3 successes in-
crease the OneMax-value by at least c′′n1/2+ε/3, where c′′ is an appropriate
constant.

We still have to show the statement on the pheromone values. This is
not too difficult for our choice of ρ if the number of successes is bounded by
O(n2ε/3). Then the total change of pheromone on any fixed edge is bounded
above by

ρ · O(n2ε/3) = O(n−1−ε) · O(n2ε/3) = o(1/n)

with probability 1− 2−Ω(nε/3). Since the number of edges is bounded by 4n,
this holds also for all edges together. Since the sum of all failure probabilities
is 2−Ω(nε/3), this completes the proof. �

4.2 Polynomial Upper Bounds

In the following, we consider for which values of ρ the optimization time
of the 1-ANT on OneMax with high probability is still polynomial. We
will show that the function value of the last accepted solution determines
the expected value of the next solution almost exactly if ρ = Ω(n−1+ε),
ε > 0 an arbitrary constant. To determine the expected time to reach an
improvement, we give a lower bound on the probability of overshooting the
expected value by at least a small amount.

Lemma 5 Let X1, . . . ,Xk ∈ {0, 1}, k ≤ n, be independent Poisson trials
with success probabilities pi ∈ [1/n, 1−1/n], 1 ≤ i ≤ k. Let X := X1 + · · ·+
Xk and µ := E(X) = p1 + · · ·+ pk. If µ ≤ k − 1 then Prob(X ≥ µ + 1/2) =
Ω(1/n).
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Proof: It follows from the work by Hoeffding (1956) that Prob(X ≥ µ+1/2)
is minimized if the pi take on at most 3 different values, only one of which
is distinct from 1/n and 1 − 1/n. (See Lemma 10 in Appendix A.1.)

Let k` be the number of pi that are 1/n, kh be the number that are 1−1/n
and ka be the number that take a different value a, 1/n < a < 1− 1/n. Let
the random variables belonging to each of the three sets be called `-variables,
h-variables and a-variables, respectively. Let X`, Xh and Xa be the sums of
the variables from these sets, i. e., X = X` + Xh + Xa, and let µ` = k`/n,
µh = kh(1 − 1/n) and µa = kaa be the corresponding expectations. In the
following arguments we also cover the case that up to two sets are empty.

It always holds that Xh = kh ≥ µh with probability (1− 1/n)kh = Ω(1).
We distinguish several cases according to the variables from the other two
sets. Since by assumption µ ≤ k − 1, the simple case ka = k` = 0 is only
possible if k = n since otherwise µ = k − k/n > k − 1. In this simple case,
however, X = n = µ + 1 holds with probability Ω(1). In the following, we
therefore assume that ka > 0 or k` > 0 (or both). First we concentrate
on the most complicated case that k` 6= 0 6= ka, implying µ` 6= 0 6= µa. If
0 < µ` ≤ 1/4 and 0 < µa ≤ 1/4, we exploit that X` ≥ 1 with probability
at least 1/n. Hence Xh + X` ≥ kh + 1 ≥ µh + (µ` + 3/4) ≥ µ + 1/2 with
probability Ω(1/n).

Now let µa > 1/4 and 0 < µ` ≤ 1/4. We distinguish four cases depending
on ka, µa and σa =

√

kaa(1 − a). In all cases, we exploit that X` ≥ 1 ≥
µ` + 3/4 with probability Ω(1/n).

Case 1: ka = O(1). Since µa ≥ 1/4, a = Ω(1). Hence, we have
Xa = ka ≥ µa with probability Ω(1), implying X = Xh + Xa + X` ≥
µh + µa + µ` + 3/4 = µ + 3/4 with probability Ω(1/n).

Case 2: ka → ∞ and µa = O(1). Hence, Xa can be approximated by
means of the Poisson distribution with parameter µa, implying Xa ≥ µa

with probability at least (1− o(1)) · e−µa(µa)
dµae/(dµae)! = Ω(1). Hence, we

conclude as in Case 1 that X ≥ µ + 3/4 with probability Ω(1/n).
Case 3: µa → ∞ (implying ka → ∞) and σa → ∞. Using the Central

Limit Theorem (Feller, 1968), we approximate Xa by a Normal distribution,
implying Xa ≥ µa with probability Ω(1). We go on as in Case 1.

Case 4: µa → ∞ and σa = O(1). Since σ2
a = µa(1 − a) = O(1) implies

a ≥ 1/2−o(1), we obtain 1−a = O(1/µa) = O(1/ka). Hence, Xa = ka ≥ µa

with probability at least (1 − O(1/ka))
ka = Ω(1). We go on as in Case 1.

The case that 0 < µa ≤ 1/4 and µ` > 1/4 can be handled by an analogous
case distinction according to k` and µ`. Here some cases are even impossible.

We still have to study the situation that µa > 1/4 and µ` > 1/4. Then
we examine to which of the four cases the a-variables and `-variables belong.
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If both lead to one of the Cases 1 or 4, we even obtain X = k ≥ µ + 1 with
probability Ω(1). Otherwise, at least one of the two sets of variables leads
to Case 2 or 3. W. l. o. g., let this be the a-variables. Then ka → ∞ and
ka − µa → ∞ and both the approximation by the Poisson and the Normal
distribution can be adapted in a straightforward manner to show that even
Xa ≥ µa + 1/2 still holds with probability Ω(1).

Finally, we have to consider the case that k` = 0 6= ka or ka = 0 6= k`.
It suffices to study the case ka 6= 0 = k`. Considering the above four cases
and the extra case µa ≤ 1/4, the lemma follows by the same arguments as
before. �

Theorem 6 Choosing ρ = Ω(n−1+ε), ε > 0 a constant, the optimization

time of the 1-ANT on OneMax is O(n2) with probability 1 − 2−Ω(nε/2).

Proof: We assume ρ ≤ 1/2 since the result follows from Theorem 1 oth-
erwise. In contrast to previous definitions, an edge is called saturated if
its pheromone value is n−1

2n2 and called unsaturated otherwise. Let x∗ be
a newly accepted solution and denote by S the set of saturated 1-edges
and by U the set of unsaturated 1-edges after the pheromone update. Let
k = OneMax(x∗) and decompose k according to k = ks + ku, where ks

denotes the number of ones in x∗ whose corresponding 1-edges belong to S
and ku to the number of ones in x∗ whose 1-edges belong to U . The proba-
bility that the edges of S contribute at least ks to the next (not necessarily
accepted) solution x is at least (1 − 1/n)ks = Ω(1).

Consider the 1-potential (i. e., the sum of pheromone values) P ∗ of all
edges of U before x∗ updates the pheromone values. Let µ∗ = P ∗n be the
expected OneMax-value w. r. t. these edges before the update. Depending
on P ∗ and ku, we compute P (ρ), their 1-potential after the update:

P (ρ) =
(1 − ρ)P ∗ + 2kuρ

(1 − ρ) + 2nρ
.

We denote by µ = P (ρ) · n the expected OneMax-value w. r. t. the
edges of U after the update has occured. Under certain assumptions, we
will prove that with probability 1 − 2−Ω(nε), µ + 1/2 > ku. Since ku is
an integer, Lemma 5 shows that the probability of producing in the next
solution x at least dµ+1/2e ≥ ku +1 ones by the U -edges is at least Ω(1/n).
Consider the difference

µ − ku ≥ (1 − ρ)P ∗ + 2kuρ

(1 − ρ) + 2nρ
· n − ku =

(µ∗ − ku)(1 − ρ)

(1 − ρ) + 2nρ
.

13



We exploit that ρ ≤ 1/2, implying 1 − ρ ≥ 0. Hence, if µ∗ − ku ≥ 0 then
µ ≥ ku > ku − 1/2 anyway. Assuming µ∗ − ku < 0, we can lower bound
the (negative) last fraction by (µ∗ − ku)/(2nρ). Hence, if we can prove that
ku − µ∗ < nρ, we obtain µ > ku − 1/2 as desired. We will bound the
probability of a large deviation ku − µ∗ keeping track of the variance of the
random number of ones on the U -edges. Let v∗ be the variance before the
pheromone values have been updated with respect to x∗ and denote by v the
variance after the update. If v∗ ≤ (nρ)3/2, then a Chernoff-Hoeffding-type
bound (Theorem 3.44 in Scheideler, 2000) yields

Prob(ku − µ∗ ≥ nρ) ≤ e
− (nρ)2

2v∗(1+nρ/(3v∗)) = 2−Ω(
√

nρ) = 2−Ω(nε/2).

However, we cannot show that v∗ ≤ (nρ)3/2 is likely for all points of time.
Therefore, we will prove v ≥ v∗/(4nρ) for any time step. This will show
that v is large enough to compensate a large ku − µ∗ in the following step
(constructing x).

Suppose v∗ > (nρ)3/2. Then v∗ ≥ √
v∗nρ, and by the above bound,

Prob(ku − µ∗ ≥
√

v∗nρ) ≤ e
− (

√
v∗nρ)2

2v∗+2
√

v∗nρ/3 ≤ e
− v∗nρ

2v∗+2v∗/3 = 2−Ω(nε).

Hence, with probability 1−2−Ω(nε), (ku−µ∗)/(2nρ) ≤
√

v∗/(2nρ), implying
µ ≥ ku −

√

v∗/(2nρ). Due to the assumptions v∗ > (nρ)3/2, v ≥ v∗/(4nρ)
and nρ = Ω(nε), it follows that v → ∞. Hence, we can apply Lindeberg’s
generalization of the Central Limit Theorem for the number of ones on U .
The probability of producing at least ku + 1 ones on these edges is bounded
below by the probability of producing at least 1 + µ +

√

v∗/(2nρ) ones on
these edges. By the Central Limit Theorem, this has probability Ω(1) since√

v ≥
√

v∗/(2nρ).
We still have to show that v ≥ v∗/(4nρ). It is sufficient to show a

statement on the success probability for each edge (u, v) of the construction

graph. Consider the expression τ ′
(u,v) ≥ (1−ρ)τ(u,v)

1−ρ+2nρ . The last fraction is at

least
τ(u,v)

4nρ since ρ ≤ 1/2.
The S-edges contribute with probability Ω(1) at least ks to the next

solution, and (if no failure of probability 2−Ω(nε/2) occurs) with probability
Ω(1/n), the U -edges contribute at least ku + 1. At most n − 1 improve-
ments suffice, and, by Chernoff bounds, cn2 steps contain at least n − 1
improvements with probability 1 − 2−Ω(n) for an appropriate constant c.
Since ρ ≤ 1/2, ε ≤ 1 must hold. Hence, the sum of all failure probabilities

in O(n2) steps is 2−Ω(nε/2). �
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Conclusions

For the first time, bounds on the runtime of a simple ACO algorithm have
been obtained. Choosing a large evaporation factor, it behaves like the
(1+1) EA and all results on this algorithm transfer directly to our ACO
algorithm. In addition, we have inspected the effect of the evaporation
factor in detail for the function OneMax and figured out the border be-
tween a polynomial and an exponential optimization time almost completely.
Thereby, we have developed new techniques for the analysis of randomized
search heuristics.
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A Appendix

A.1 Hoeffding Lemma

In this section, we repeat Hoeffding’s technique, leading to Lemma 10. Note
that the following statements constitute only minor modifications of the first
pages in Hoeffding (1956).

The expected value of a function g(S) is

f(p) = E(g(S)) =

n
∑

k=0

g(k)Ank(p), (1)

where p = (p1, . . . , pn) and the probability Ank of S = k is given by

Ank(p) =
∑

(i1,...,in)∈{0,1}n,
i1+···+in=k

n
∏

j=1

p
ij
j (1 − pj)

1−ij , k = 0, 1 . . . , n.

The function f(p) is symmetric in the components of p and linear in each
component. Any function with these two properties can be represented
in form (1). We consider the problem of finding the maximum and the
minimum of f(p) in the section D of the hyperplane

p1 + p2 + · · · + pn = np (1/n < p < 1 − 1/n).

We denote by pi1,i2,...,im the point in the (n − m)-dimensional space,
which is obtained from p by omitting the coordinates pi1 , pi2 , . . . , pim .

Since f(p) is symmetric, and linear in each component, we can write

f(p) = fn−1,0(p
j) + pjfn−1,1(p

j), j = 1, 2, . . . , n, (2)

where the functions fn−1,0 and fn−1,1 are independent of the index j and
symmetric and linear in the components of pj.

We define the functions fn−k,i by fn,0(p) = f(p) and

fn−k,i(p
1,2,...,k) = fn−k−1,i(p

1,2,...,k+1) + pk+1fn−k−1,i+1(p
1,2,...,k),

i = 0, 1, . . . , k, k = 0, 1, . . . n − 1. (3)

We obtain

f(p) =

m
∑

i=1

Cmi(p1, p2, . . . , pm)fn−m,i(p
1,...,m), m = 1, 2, . . . , n, (4)
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where Cm0, Cm1, . . . , Cm,m are the symmetric sums

Cm0(p1, p2, . . . , pm) = 1 (5)

and

Cmi(p1, p2, . . . , pm)

= (p1p2 · · · pi) + (p1p2 · · · pi−1pi+1) + · · · + (pm−i+1pm−i+2 · · · pm)

for i > 0.

Theorem 7 Let a = (a1, a2, . . . , an) be a point in D at which f(p) attains
its maximum. Then for every two distinct indices i, j, we have

fn−2,2(a
ij) ≤ 0 if ai 6= aj , (6)

fn−2,2(a
ij) = 0 if ai 6= aj, 1/n < ai, aj < 1 − 1/n, (7)

fn−2,2(a
ij) ≥ 0 if 1/n < ai = aj < 1 − 1/n. (8)

Proof: Let a′ denote the point which is obtained from a if ai and aj are
replaced by ai + x and aj − x. The point a′ is in D for all x in the interval
I defined by 1/n ≤ ai + x ≤ 1 − 1/n, 1/n ≤ aj − x ≤ 1 − 1/n. We have

f(a′) = fn−2,0(a
ij) + (ai + aj)fn−2,1(a

ij) + (ai + x)(aj − x)fn−2,2(a
ij).

Hence,
f(a′) − f(a) = x(aj − ai − x)fn−2,2(a

ij). (9)

Since f(a) is a maximum, the right side must be negative or zero for all x
in I. We may assume ai ≤ aj. If ai 6= aj , we can choose x positive and
sufficiently small such that x is in I and (6) holds. If 1/n < ai < 1 − 1/n
and 1/n < aj < 1 − 1/n then the point x = −ai + 1/n is in the interior
of I and (8) must hold. Moreover, if ai 6= aj, together with (6), we obtain
(7). If the maximum is not attained at a′ when x is in I and is different and
sufficiently close to zero, the inequalities (6) and (8) must be strict. �

In general, the maximum or minimum of f(p) can be attained at more
than one point in D. The following theorem gives some information about
the set of points at which an extremum is attained.

Theorem 8 Let a be a point in D at which f(p) attains its maximum or
its minimum. Suppose that a has at least two unequal coordinates which
are distinct from 1/n and 1 − 1/n. Then f(p) attains its maximum (or
minimum) at any point in D which has the same number of 1/n coordinates
and the same number of 1 − 1/n coordinates as a has.
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Proof: Let m = n− r − s be the number of coordinates of a = (a1, . . . , an)
which are distinct from 1/n and 1 − 1/n. We may take a1, . . . , am to be
these coordinates and assume a1 6= a2. We first show

fn−k,i(ak+1, . . . , an) = 0, i = 2, . . . , k. (10)

We prove this equation by induction on k. Due to Theorem 7 this holds for
k = 2. Let

bk = (b1, . . . , bk, ak+1, . . . , an), (11)

where

b1 + · · · + bk = a1 + · · · + ak, 1/n ≤ bi ≤ 1 − 1/n, i = 1, . . . , k. (12)

The point bk is in D. By (4) and the induction hypothesis,

f(bk) = fn−k,0(ak+1, . . . , an) + (a1 + · · · + ak)fn−k,1(ak+1, . . . , an) = f(a).
(13)

Thus, the maximum is attained at every point bk which satisfies (11) and
(12). In particular (12) can be satisfied with b1 6= b2, b1 6= ak+1, b2 6= ak+1,
1/n < bi < 1−1/n, i = 1, . . . , k (since 1/n < aj < 1−1/n for j = 1, . . . ,m).
Under these assumptions, we can apply the induction hypothesis (10) with
a replaced by the point bk, whose first k + 1 coordinates can by suitably
rearranged. Hence,

fn−k,i(b1, ak+2, . . . , an) = 0, fn−k,i(b2, ak+2, . . . , an) = 0, i = 2, . . . k.

Applying (3) to the left sides of these equations, we obtain

fn−k−1,i(ak+2, . . . , an) + bhfn−k−1,i+1(ak+2, . . . , an) = 0,

i = 2, . . . , k, h = 1, 2. (14)

Since b1 6= b2, we find that (10) is satisfied with k replaced by k + 1.
Thus (10) holds for k = 2, . . . ,m. Equation (13) holds for every bm that
satisfies (11) and (12) and f is symmetric which completes the proof. �

Corollary 9 The maximum and minimum of f(p) in D are attained at
points whose coordinates take on at most three different values, only one of
which is distinct from 1/n and 1 − 1/n.

Lemma 10 Let X1, . . . ,Xk ∈ {0, 1}n be independent Poisson trails with
success probabilities pi ∈ [1/n, 1 − 1/n], 1 ≤ i ≤ k. Let X = X1 + · · · + Xk

and µ = p1 + · · · + pk. Then Prob(X ≥ µ + 1/2) is minimized if the pi take
on at most three different values, only one which is distinct from 1/n and
1 − 1/n.
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Proof: Consider (1) and set g(k) = 1 if k ≥ µ+1/2 and g(k) = 0 otherwise.
Hence f(p) computes in this case the probability of obtaining a value at least
µ + 1/2 and we can apply Corollary 9. �
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