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Abstract

We investigate two-party cryptographic protocols, called cheat sensitive protocols,
which guarantee that if one party cheats then the other has good probability of detecting
the mistrustful party. We give quantum protocols for two basic cryptographic primitives:
bit commitment and one-out-of-two oblivious transfer ((f)—OT), and prove that they are
cheat sensitive. For the quantum bit commitment scheme we show that if a cheating gives
¢ advantage i.e. information about the committed bit then the committer can detect the
cheating with a probability 2(c?); If the committer cheats trying to change his mind
during the revealing phase then the probability of detecting the cheating is greater than
some fixed constant A\ > 0. This improves the probabilities of cheating detections shown
by Hardy and Kent [Phys.Rev.Lett.’04], as well as the scheme by Aharonov et al. [Proc.
STOC’00] who presented a protocol that is sensitive against cheating by one party, but not
both parties at the same time. Our cheat sensitive quantum @)—OT protocol guarantees
that if cheating gives any mistrustful party € advantage then the other party can detect
the cheating with a probability Q(g?).

The heart of the both cheat-sensitive protocols is a weakened version of quantum
(3)-OT which we call susceptible quantum (;)-OT. In this version, similarly as in the
standard definition, Alice has initially secret bits ag,a; and Bob has a secret selection
bit 7 and if both parties are honest they solve the (?) -OT problem fulfilling the standard
security requirements. However, if Alice is dishonest and she gains some information
about the secret selection bit then the probability that Bob computes the correct value is
proportionally small. Moreover, if Bob is dishonest and he learns something about both
bits, then he is not able to gain full information about one of them.
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1 Introduction

In bit commitment protocol Bob commits a bit b to Alice in such a way that Alice learns
nothing (in an information theoretic sense) about b during this phase and later on, at the
revealing time, Bob cannot change his mind. It is well known that unconditionally secure
bit commitment is impossible even when the parties use quantum communication protocols
(|10, 11]). Thus, much effort has been focused on schemes using some weakened security
assumptions.

In a weak variant of quantum bit commitment, introduced independently by Aharonov et al. [2]
and Hardy and Kent [8], the protocol should guarantee that if one party cheats then the other
has good probability of detecting the mistrustful party. Speaking more precisely, we require
that if Bob changes his mind during the revealing phase then Alice detects the cheating with
a positive probability (we call this property binding) and if Alice learns information about the
committed bit before the revealing time then Bob discovers the leakage of information with
positive probability (sealing property).

In [8] Hardy and Kent give protocol that is simultaneously sealing and binding and prove
that if Alice (Bob) uses a strategy giving ¢ > 0 advantage then Bob (Alice, resp.) can detect
the cheating with a probability strictly greater then 0. The authors do not analyze, however,
the quantitative dependence of the probability on . In [2] Aharonov et al. present a similar
protocol to that proposed in [8] such that after depositing phase either Alice or Bob challenges
the other party and (1) when Alice asks Bob to reveal b and Bob influences the value with
advantage ¢ then she detects the cheating with probability (¢?) and (2) when Bob challenges
Alice to return the depositing qubit and Alice predicts b with advantage € then Bob detects
the cheating with probability €(c?). Thus the protocol is either binding or sealing, but not
simultaneously both (the authors therefore call the protocol a quantum bit escrow). Aharonov
et al. left open whether simultaneous binding and sealing can be achieved.

In our paper we give the first, up to our knowledge, QBC scheme that is simultaneously
binding and sealing such that if Alice’s cheating gives ¢ advantage then Bob can detect the
cheating with a probability which is Q(e2). If Bob cheats (anyhow) then Alice’s probability
of detecting the cheating is greater than some fixed constant A > 0, i.e. when Bob decides to
set the value b to 0 or to 1 and in the revealing time wants to change his mind then for any
strategy Bob uses the probability that Alice detects this attack is greater than .

In the one-out-of-two oblivious transfer problem (@)—OT, for short) Alice has initially two
secret bits ag, a; and Bob has a secret selection bit ¢. The aim of a (f)—OT protocol is disclosing
the selected bit a; to Bob, in such a way that Bob gains no further information about the
other bit and Alice learns nothing at all. The problem has been proposed by Even et al. [7], as
a generalization of Rabin’s notion for oblivious transfer [12]. Oblivious transfer is a primitive
of central importance particularly in secure two-party and multi-party computations. It is
well known ([9, 4]) that @)—OT can be used as a basic component to construct protocols
solving more sophisticated tasks of secure computations such as two-party oblivious circuit
evaluation. Several secure OT protocols has been proposed in the literature [3, 5, 6] however,
even in quantum world, there exists no unconditionally secure protocol for @)—OT (see e.g.
[11]). In our paper we construct an @)—OT scheme such that if one party cheats then the
other has good probability of detecting the cheater.

The core of the both cheat-sensitive protocols is a version of quantum (f)—OT which we call
susceptible quantum @)—OT. Similarly as in the standard definition, in a susceptible (%)—
OT protocol Alice has initially secret bits ag,a; and Bob has a secret selection bit ¢ and if



both parties are honest! they solve the (f)—OT problem fulfilling the standard requirements.
However if Alice is dishonest and she gains some information about the secret selection bit then
the probability that Bob computes the correct value is proportionally decreased. Moreover,
if Bob is dishonest he can learn about both bits, but if he does so then he is not able to gain
full information about one of them.

In the paper we present a susceptible (%)—OT protocol which, speaking informally (precise
definitions will be given in Section 3), fulfills the following properties.

e If both Alice having initially bits ag, a; and Bob having bit ¢ are honest then Bob learns
the selected bit a;, but he gains no further information about the other bit and Alice
learns nothing.

e If Bob is honest and has a bit ¢ and Alice learns ¢ with advantage e then for all
ap, a1 € {0,1} the probability that Bob computes the correct value a;, when the protocol
completes, is at most 1 — Q(e?).

e If Alice is honest and has bits ag, a; then for every i € {0, 1} it is true that if Bob can
predict the value a1_; with advantage € then the probability that Bob learns correctly
a; is at most 1 — Q(e?).

The protocol can be used e.g. by the mistrustful parties for which computing the correct result
of (f)—OT is much more preferential than gaining addition information. In this paper we show,
however, an application of the protocol for parties who may be not interested in computing
the correct value at all. A key property of the protocol, which will be used for detecting a
cheating, is that when the protocol is finished then the probability that a dishonest party
constructs input values which are consistent with the result and the given input of the other
party is proportionally small. Let us consider the following bit commitment protocol, where
v := OT((ag,a1),7) means, for short, that Alice having initially ag,a; and Bob knowing 4
perform the susceptible (f)—OT protocol and when the protocol completes Bob knows the
result v.

Protocol 1 (Cheat Sensitive QBC) B commits bit b;
e Depositing Phase
1. A chooses randomly bits ag, a1, a2,as; B chooses randomly bits b and c;
2. A and B compute
vo := OT((ag, a1),b); v1 := OT((ag,a3),b) if ¢ =0 or
,b

: b
vo := OT((ap,a1),b); v1:= OT((az,as),b) if c=1.
3. B reveals c.

¢ Revealing Phase B reveals b;
o Binding test: B sends to A vi_.; A rejects when vi_. # OT((ag_gc,agg_Qc),?).
o Sealing test: A sends to B agc,as.+1; B rejects when v. # OT((age, aze4+1),b).
One of the main results of this paper says that using our susceptible (f)—OT protocol, the bit
commitment protocol above fulfills simultaneously the binding and sealing property.

As a second application we give a cheat sensitive protocol for the (%)—OT function:

Protocol 2 (Cheat Sensitive QOT) Input A: mg,m;€{0,1}, B: b€ {0,1}; Result B: my,.

1. Quantum Phase A chooses randomly bits ag, a1 and B chooses randomly bit i; then
A and B compute v := OT ((ag,a1),1);

!We say that a party is honest if it never deviates from the given protocol.



2. Test Phase A chooses randomly bit A_tests and B chooses randomly bit B_tests;
A and B exchange the values A_tests and B_tests: A sends first and B sends next;
Go to the Computation Phase when nobody wants to test i.e. if A_tests = B_tests = 0;
If A_tests = 1 then B sends v,i to A;
If A_tests =0 A B_tests =1 then A sends ag,a1 to B;
If v # OT((ag,a1),i) the parties reject and otherwise go to the Quantum Phase.

3. Computation Phase B sends c:=i®b to A. Then A sends ay ® mc, a1 ® mige to B
and B computes v & a. B mp = my.

We prove that using the susceptible (%)—OT protocol as a black-box, the protocol above has
the following properties: (1) if both Alice and Bob are honest then the protocol fulfills the
standard security requirements for (%)—OT; (2) if Alice learns b with advantage € then Bob
detects cheating with probability Q(¢?), and (3) if Bob learns about mq, m; with advantages
€0, €1, resp. then Alice detects cheating with probability Q(¢?), where ¢ = min{eg, e1}.

The paper is organized as follows. In Section 2 some basic quantum preliminaries are given.
In Section 3 we define formally properties of a susceptible @)—OT protocol and prove that the
given scheme fulfills the properties. Section 4 gives formal definition of binding and sealing and
proves that Protocol 1 is simultaneously binding and sealing. In Section 5 we will introduce
the notion of cheat sensitive QOT and analyze Protocol 2.

2 Preliminaries

The model of two-party computation we use in this paper is essentially the same as defined
in [2]. We assume that the reader is already familiar with basics of quantum cryptography
(see [2] for an exemplary summary of results that will be used in the following).

Let |0),]1) be an encoding of classical bits in our computational (perpendicular) basis. Let
|0x) = %(|0> — 1)), [1x) = %(|0> + |1)) be an encoding of classical bits in diagonal basis.
By R., a € {0, %, 1}, we denote the unitary operation of rotation by an angle of a-7/2. More

formally:
R, = < cos(a - §) sin(a- ) >

—sin(a- §) cos(a- 3)

We should note that this operation allows us to exchange between the bit encoding in per-
pendicular and in diagonal basis. Moreover, by applying R; we can flip the value of the bit
encoded in any of those two bases.

For a mixed quantum state p and a measurement O on p, let p© denote the classical dis-
tribution on the possible results obtained by measuring p according to O, i.e. p© is some
distribution p1,...,p; where p; denotes the probability that we get result . We use Li-norm
to measure distance between two probability distributions p = (p1,...,p:) and ¢ = (q1,...,q)
over the same domain: |p — q|; = 3 St i — il

Let [|A]]; = tr(V ATA), where tr(A) denotes trace of matrix A. A fundamental theorem gives
us a bound on Lj-norm for the probability distributions on the measurement results:

Theorem 1 (see [1]) Let py, p1 be two density matrices on the same Hilbert space H. Then
for any generalized measurement O [p§ — p¥|1 < %HPO — p1llt- This bound is tight and the

orthogonal measurement O that projects a state on the eigenvectors of pg — p1 achieves it.

A well-known result states that if |¢1), |¢2) are pure states, then || |¢1) (1] — |p2){(d2] ||+ =
1 — [(¢r]d2)[*.



Lemma 1 Suppose Bob has a bit b s.t. Pr[b = 0] = 1/2 and let Alice generate a state with
two quantum registers. Assume she sends the second register to Bob, then Bob depending
on b makes some transformation on his part and sends the result back to Alice. Denote
by po density matriz of the resulting state for b = 0 and by p1 density matrix of the state
for b = 1. Then for any measurement O Alice makes and a value v Alice learns we have

o_ O
Pryc onylv =10 < 1/2+ oAl

The proof of this lemma follows by some straight forward calculations and will be skipped
in this extended abstract. We will use some obvious variations of this lemma to bound the
advantage of Alice resp. Bob in what will follow.

3 Susceptible Oblivious Transfer

In this section we give the formal definition of the susceptible (%)—OT protocol and then
present a protocol for this problem?.

Definition 1 We say that a two-party quantum protocol between Alice and Bob is a (0,¢)-
susceptible (?)—OT protocol if the following requirements hold.

o If both Alice depositing initially bits ag,ay and Bob having bit i are honest then Bob

learns the selected bit a; but in such a way that he gains no further information about

the other bit and Alice learns nothing.

e Whenever Bob is honest and has a selection bit i, with Pr[i = 0] = 1/2, then for every
strategy used by Alice, every value i’ Alice learns about i and for any value o' Bob learns
at the end of the computation it holds that for all ag,a; € {0,1}

1f PrieR{O’l}[i' = Z] 2 1/2 + 5 then PriGR{O,l}[a, = (li] S 1—e¢.

e Whenever Alice is honest and deposits bits ag, aq, with Pr[a; = 0] = 1/2, then for every
strategy used by Bob, all values ay,a} Bob learns about ag,ay, resp. it holds that for all
i € {0,1} if Prog qcpo13la)_s = a1—i] > 1/2+0 then Prog o cpq013]a; = ai] <1 —¢.

Protocol 3 (Susceptible QOT) Input A : ag,a; € {0,1}, B : i € {0,1}; Output B : a;.
1. A chooses randomly o € {0,4} and h €g {0,1} and sends to B:
Ru,la1 & h) ® Rylap & h)
2. B receives |®1) @ |®g), chooses randomly  €r {0,1} and sends Rg|®;) back to A.
3. A receives |®), computes R, ®), measures the state in computational basis obtaining the
result n and sends m =n @ h to B.
4. B receives m and computes a; = m & .

Here, as usually, ® denotes xor. To see that this protocol computes (%)—OT correctly if both
parties are honest we remind that the operator R, Rz commutes with R, ! (this is not true
in general, although it is true in 2D) and that Rg is (up to a phase) a NOT-gate conditioned
on B. We will now focus on the question whether Protocol 3 still retains security if we use it
against malicious parties. The following theorem follows from Lemma 2 and 3 which will be
proven in the remaining part of this section:

Theorem 2 Protocol 3 is (O(¥e), e)-susceptible (%)—OT protocol.

2The requirements of the susceptible oblivious transfer given in Definition 1 may seem to contradict each
other if one follows the Lo and Chau’s argument not carefully enough [10]. For additional remarks see Section A
in the Appendix.



3.1 Malicious Alice

Lemma 2 Let Alice and Bob perform Protocol 3 and assume Bob is honest and deposits a
bit i, with Pr[i = 0] = 1/2. Then for every strategy used by Alice, every value i’ Alice learns
about i and for any value o’ Bob learns at the end of the computation it holds that for all
ag, a1 € {0,1} if Pric ro1y[a’ = ai] > 1 — ¢ then Pric o3[ =] < 1/2 4+ 16,/c.

Proof: Any cheating strategy A of Alice can be described as preparing some state |®) =
Yo (0,132 |z, x), sending the two rightmost qubits to Bob and perform some measurement
{Hy, Hy, Hy, H3} on this what she gets back after Bob’s round, where Hy,H;,Hs, Hs are four
pairwise orthogonal subspaces being a division of whole Hilbert space that comes into play,
such that, for I,k = 0,1, if our measurement indicates the outcome corresponding to Hog1;
then it reflects Alice’s belief that i+ = [ and that the message m = k should be sent to Bob.
Assume now, that ap ® a; = 0. We should note that in this case m ® ag = (. So Alice,
in order to ensure the correct result of the protocol, has to indicate the value of 5. Let
|S) = |voo, 00) + |v11, 11), |A) = |vo1,01) + |v1g, 10). That is, |S) is a part of the state that is
symmetric with respect to qubits being sent to Bob and |A) is the rest being anti-symmetric.
Let p,p be a density matrix of Alice’s system after Bob’s round, corresponding to i = a and
B =b. After some calculations we get:

Poo = Zz:(xl,xz)e{0,1}2 [vp1) (Vg1 |

—HU()00> (1)101’ + ‘0101><0000‘ + ’1)111><’l)010’ + ‘0010> <0111‘
POL = Dae(zr.ma)ef01}2 |VaTT) (VT |

—lv001){v100] — [v100){voo 1| — [v110){vo11| — [vo11){v110|
PLO = Dam(w1,m0)ef01}2 |Va®2) (Va2

+1v000) (vo11] + [v011) (w000 + [v111){v100] + [v100) (V11 1]
P11 = Zx:(xl,xg)e{o,l}z ‘Uxx_2> <'Ux.’1'_2’

—‘Uool><’l)010’ - ‘0010><0001‘ - |’U110><’U101’ - ‘0101><0110‘ .
where Ty means flipping bit z;, i.e. Tr = 1 — x4.
We look first onto possibilities of Alice’s dishonest behaviour. In order to cheat, Alice has to

distinguish between density matrices v; = %PI,O + %pm, where ~; corresponds to ¢ = [. By
examination of the difference of those matrices we get after some calculations that:

1 1 1 1
70 =m = 5[Vs0)(Vall + 5[Val)(Vs0[ - S[Vs1)(VaO| — 5[Va0) (V1|

where V) = |ugo) + |v11) and |Va) = |vig) — |vo1). We can easily adapt Lemma 1 to show
that the advantage  of Alice is at most Z?:o o, where

o = [tr(Hi(vo — ) HD| < Yicqony sltr(H(Vs(G — D) (Vajl + [Vaz) (Vs (i — D) H,)]
< e (O5Vad| - (Vs (1 = 5)|0%)))
< Yicion (O5Vag)]

and |O§> is an orthogonal, normalized projection of |V4j) onto subspace H;. The second
inequality is true because we have tr(H;|Vaj) (| H;") = (Oé-]VAjMw]Oé) for every state [i)).
Let j; be the index for which |(O§-Z|VAjl>| > |<Ol1_jl|VA(1 —ji))]. Clearly, o7 < 2|<O§Z|VAjl>|.
Moreover, we assume that oy + o1 > 09 + o3. If this is not the case we could satisfy this
condition by altering the strategy A of Alice (by appropriate rotation of her basis) in such a
way that the definitions of Hy and Hjo would swap leaving everything else unchanged.



We look now on the probability of obtaining the correct result by Alice. The probability pg
of Alice getting outcome 3 = 0 in case of § = 1 is at least

po > 5(05 100,1]0%) + 5(O9 [p1.1]0Y,) =
$1(09 [voo1) — (O, [vo10) |2 + $(OY [vgo1) — (OF [v100) |
+31(0 [0110) — (OY [vo1 1) [* + 5(OY, [v110) — (O |v101)]? .

So, by inequality |a — b|? + |a — c|> > 1|b — ¢|? we get that

Po > i‘<0§']0’v010> - (O?O”l)100>‘2 + %KO?O‘UMD — <O?O‘0101>’2

= 1O IVA0)? + O3 VA1) > {5t.

Similar calculation of the probability p; of getting outcome 8 = 1 in case of 5 = 0 yields that
the probability of computing wrong result is at least

3
Pr[f 4 §] = Pr[f & m # a;] > %wg +o?) > %(g o).

Hence, the lemma holds for the case ag @ a; = 0.

Since in case of ag @ a; = 1 the reasoning is completely analogous - we exchange only the
roles of |Vg) and |V4) and Alice has to know the value of 5 & ¢ in order to give the correct
answer to Bob, the proof is concluded. |
To see that quadratical bound imposed by the above lemma can be met, consider |®) =
V1 —€|000) + /¢]110). Intuitively, we label the symmetric and anti-symmetric part of |®)
with 0 and 1. Let Hy =|01)(01], H3 = 0. One can easily calculate that

po,0 = (1 —¢)]00)(00] + /(1 —€)(|00)(11] + |11)(00]) + e|11)(11]
p1,0 = (1 —¢€)|00)(00] + |10)(10]|

and therefore ||poo — p1,0llt > V/e(1 —€) — 2e. So, by Theoren 1 there exists a measurement
{Hy, H1} allowing us to distinguish between those two density matrices with /(1 — &) — 2¢
accuracy and moreover Ho, H3 | Hy, Hy since tr(ngo,oH;f) = tr(ngLoH;f) = 0. Now, let
M = {Hy, Hy, Ho, H3} be Alice’s measurement. To cheat, we use the following strategy .4
corresponding to her input ag = a; = 0. Alice sends |®) to Bob, after receiving the qubit
back she applies the measurement M. If the outcome is Hy then she answers ag ® 3 =1 to
Bob and sets i = 0 with probability %, in the other case she sends ag @ = 0 to Bob and
according to the outcome being 0 or 1 she sets i/ =0 (¢/ = 1).

To see that this strategy gives correct result with probability greater than 1 — e we should
note that probability of outcome Hs in case of 3 = 0 is 0 and in case of 3 = 1is 1 —¢.
Therefore, since 8 = 0 with probability %, our advantage in determining the input of Bob is
greater than /& — 3e.

Remark 1 The need for the property provided by Lemma 2 was motivated primary by a
scenario in which, like in private computations, the involved parties try to gain knowledge
about the inputs of the other parties but attempting to compute the correct value. Use of
Protocol 3 for cheat sensitive computations needs, however, a stronger property which says
that for any dishonest Alice if the protocol is finished then she is not able to determine values
ag, a; which are consistent with Bob’s input ¢ and the value a’ he decides at the end of the
protocol. To this aim we will use the following stronger version of the lemma: for i,i', and
a’ as in the lemma it holds that if Pric 1o13[i' = i] > 1/2 + 16\/c then for all values ao,ay
which Alice determine after the protocol is finished it is true that PrieR{Ql}[a’ =q)]<l-—e.

7



To see that the stronger version of Lemma 2 holds, we should note that from the lemma
it follows immediately that for all ag,a; € {0,1} if Pric 1o 13[i" = i > 1/2 + 16y/c then
e < Pric royld’ = a;] <1 —e. In fact, if for any Alice’s strategy Pric, 0,130’ = a;] < ¢ for
some input ag,a; then Alice can modify this strategy for the input ag,a; in such a way that
in the last round she sends to Bob 1 —m instead of m. This leads, however, to a contradiction
since for the modified strategy and the input ag,a; it holds that PrieR{O,l}[a’ =a) >1—e.
Thus assuming Alice’s advantage is greater than 16/ we get that for any value a Alice can
determine, both ¢ < Pric 1013[0’ = @] <1 —¢ and € < Prijc pq013[0' # @] < 1 — ¢ are true.

3.2 Malicious Bob

Now, we analyze Bob’s possibility of cheating.

Lemma 3 Let Alice and Bob perform Protocol 3. Assume Alice is honest and deposits bits
ap, a1, with Prla; = 0] = 1/2. Then for every strategy used by Bob and all values af), o’ which
Bob learns about ag, ay, it holds that: for all i € {0,1}

if Prog arenfony]a; = a;] > 1 —e? then Prog o epfon[al_; = a1—) <1/2+ 16v/2¢.

Proof: Consider some malicious strategy B of Bob. Wlog we may assume that the probability
of a, = ag is greater than the probability of a] = a;. Our aim is to show that

if Pryg aep(o13lap # ao] < e? then Pry 4 e r0130) = a1] <1/2+ 16v/2e.

Strategy B can be think of as a two step process. First a unitary transformation U is acting on
|®ag.a1.h) = |V) @ Ralar & h) ® Rylag & h), where v is an ancillary state. Next the last qubit
of U(|®ag.a,.n)) is sent to Alice?, she performs step 3 on these qubit and sends the classical bit
m back to Bob. Upon receiving m, Bob executes the second part of his attack: he performs
some arbitrary measurement {Hy, H1, Ho, H3}, where Hy (H;) corresponds to Bob’s belief
that ap = 0,a7 = 0 (resp. ag = 0,a; = 1) and Hy (H3) corresponds to ap = 1 and a3 = 0
(resp. ap = 1 and a; = 1). In other words, outcome corresponding to Hoyy) implies af = !
and a} = k.

The unitary transformation U can be described by a set of vectors {Vkl’j } such that U(|v) ®
11,79)) = |Vol’j> ®)0) + |Vll’j> ®|1). Or alternatively in diagonal basis, by a set of vectors {Wlij}
such that U(Jv) ® |Ix,jx)) = [Wg”7) @ [0x) + [W17) @ [14).

We present now, an intuitive, brief summary of the proof. Informally, we can think of U as
about some kind of disturbance of the qubit R,|ap & h) being sent back to Alice. First, we
will show that in order to cheat Bob’s U has to accumulate after Step 2, till the end of the
protocol, some information about the value of ag@® h hidden in this qubit. On the other hand,
to get the proper result i.e. the value of ag, this qubit’s actual information about encoded
value has to be disturbed at the smallest possible degree. That implies for Bob a necessity
of some sort of cloning that qubit, which turns out to impose the desired bounds on possible
cheating. We show this by first reducing the task of cloning to one where no additional hint in
the form of R,|a; @ h) is provided and then an analysis of this simplified process. Therefore,
the proof indicates that the hardness of cheating the protocol is contained in the necessity
of cloning, which gives us a sort of quantitative non-cloning theorem. Although, it seems to

3Note that this does not restrict Bob’s power. Particularly, when Bob tries to make a measurement in the
first step then using standard techniques we can move this measurement to the second step.
“We can assume wlog that the last qubit is sent since U is arbitrary.



concern only our particular implementation of the protocol, we believe that this scenario is
useful enough to be of independent interests.

We analyze first Bob’s information gain about a;. Wlog we may assume that Bob can distin-
guish better between two values of a; if ag = 0. That is

Pry cp{013[0) = ailag = 0] > Pry c013[a) = a1lag = 1].

Let now p; 1. ; be a density matrix of the system before Bob’s final measurement, corresponding
toa=7j- %, h =k, a; =1 and ag = 0. The advantage 0 of Bob in this case (i.e. J such that
Prla} = a1 | ap = 0] = 1/2+ J) can be estimated by Lemma 1 by Bob’s ability to distinguish
between the following density matrices:

1(p0,0,0 + p1,00+ po10+ p1,10)  (case ap =0), and
1
1

(poo,1 + pro1 +poia+pi11) (case ap =1).

Using the triangle inequality we get that for the measurement O performed by Bob

1. o o o o o o o o
d < g(’ﬂo,o,o —poaalt+1pT0 = Pioalt + 10610 = Pooalt + 1100 — P1al1)- (1)

Each component corresponds to different values of o and h @ ay. And each component is
symmetric to the other in such a way that there exists a straight-forward local transformation
for Bob (i.e. appropriate rotation of the computational basis on one or both qubits) which
transform any of above components onto another. So, we can assume wlog that the advantage
in distinguishing between pp o0 and po,1,1 6o = ’Pf)?o,o — Pf)?l,l’l is the maximum component
in the right-hand side of the inequality (1) and therefore we have § < 2dy. Let, for short,
Yo = po,0,0 and 1 = po,1,1- One can easily calculate that

Y = [0)0] @ Ve HVE"| + 1) (1] @ [V) (1™ (2)
yo= 100 @ VPNV + 1) (1] @ Vg (. (3)

As we can see to each value of m in above density matrices corresponds a pair of vectors which
are critical for Bob’s cheating. I.e. the better they can be distinguishable by his measurement
the greater is his advantage. But, as we will see later, this fact introduces perturbation of the
indication of the value of ag.

First, we take a look on the measurements Hj, H; performed by Bob. Let us define o2,,4,
for p,m € {0,1} as follows

0 0 0(1— 0(1— :
[ex (L, 0V ) 0V P [ ) — e (HLy [0V Py OV P HD)| i m =0,
02m+p =
0 0 0(1— 0(1— .
[or (L |1V, ) IV [ ) — te(H 1V, ) (v P )| i m = 1.
Let for m = 0, po € {0,1} be such that o,, > 01_p, and similarly, for m = 1 let p; € {0,1}
be such that 21, > 094 (1—p,).- Then we get

NS =2 = XL, [tr(HmoH])) — tr(Hyy HY)|
< 20py + Oopy) + S tr(Hiyo HY) — tr(Hyy HY)-

We should see first that the second term in the above sum corresponds to advantage in
distinguishing between two values of a; by measurement Hs, H3 in case of ag = 0. But those
subspaces reflect Bob’s belief that ag = 1. Therefore, we have that

3
> ler(HyyoHY) — tr(Hiyi HY)| < Prog g, e oyl # aolao = 0].
t=2



So, we can neglect this term because it is of the order of the square of the advantage (if not
then our lemma would be proved). Hence we get: %0 < Opy + O24p; -

Now, we define projection O,, as follows. For m = 0 let Oy be the normalized orthogonal
projection of |0V,y?°) onto the subspace H,, if

0(1— 0(1—
6 (Hpo[OV,270) OV | HY ) > tr(Hpo [0V, XE70y (01,20 70) it .

Po

0(1 po)>

0p1 >

Otherwise, let Oy be the normalized orthogonal projection of |0V onto Hy,. Analo-

gously, we define O; as a normalized orthogonal projection of |1V}
if

onto the subspace H,,

tr(Hp, 1), ) (U2, [HY) > tr(Hyy |1V (1P 1)

0(1—p1)>

else O is a normalized orthogonal projection of |1V}, onto H,,. Hence we get

Opo < [OV100) 2 = OV P00, 024 < 1A O = [(1VE7PD|O) ).

We would like now to investigate the probability of obtaining the correct result. Recall that
Pr[ay = 0] = % We should first note that the density matrices corresponding to initial config-
uration of the second qubit Ry |a; @ h) is now exactly £|0)(0| + 3|1)(1| even if we know h and
a. So, from the point of view of the protocol those two configurations are indistinguishable.
Therefore, we can substitute the second qubit from the initial configuration with a random bit
r encoded in perpendicular basis and the probability of obtaining proper result is unchanged.
We analyze the probability of computing the correct result in case of r = 0. Note, that the

vectors {VkO’J }k,; still describe U, but vectors {W,Sj };w are different, defined by U acting now

on initial configuration [v) ® |0) ® Ra|j), with & = 4. We investigate the correspondence

between {V, 07 ,j and the new vectors. For j = 0 we have:

U(jv00x)) = —5U(|v00) = [v01)) = —=(V°[0) + V(1) — Vi[0) — Vi [1))
= (7 =V =V + VPH)I0x) + (V5 + V0 = Vg = VP [10)).

Similarly, for 7 = 1 we have:

U(001x)) = 5U(000) + [o01)) = L (V0[0) + V1) + V20) + V2]1))
= (Vg =V + VP = V0x) + (V7 + VP + V5" + VP1)[1))).-

Thus, let us denote these vectors by

~ 1 ~ 1

WO = SO0+ V) — (VL + V), W = (V0 — V) — (1 — V),

—~ 1 ~ 1

W= SO0 = VO + (= V), T = (V2 + V) + (9 + 17,
In order to obtain the correct result Bob has to distinguish between the density matrices
corresponding to two values of ag. In particular, he has to distinguish between density matrices

Y6, 74 corresponding to two possible values of ay knowing that m = 0. These density matrices
are:

1 — —
W = 700F@ (VgNVE"] + V)V + W) (W + (W) (Wi, (4)

1 — —
vio= Z100f@ (Vg HVe" + V)V (W) (W't + W) (W), (5)

10



Now, the probability of failure i.e. the probability that in case of m = 0 Bob’s measurement
indicates that ag = 0 if in fact it is ag = 1, is at least

1 — _
tr(Hp, i Hi) > tr(|00)(Ool)) = Z(\(0V001!00>\2+\(0V100\00>!2+!<0Wo°1\Oo>!2+!<0Wf)°\Oo>!2)-
But since the fact that

—~ 1 ~ 1
W= (V0 = VO + (P = V), T = S(0 = V) — (1 = 13,

and the parallelogram law (|a + b|> + |a — b|> = 2|a|? + 2|b|?), we have that this probability is
at least

LOOWEYO0) % + [(0W[0g)]2) > 1{0ViP|0p) — (0V21Op) 2
> L (0V]00)] — [(0V2H00) )2 (J{0Vi]| Op) | + [{0VHO)])?

0.2
> 35 ([(0VF°00) > — [{0V"!|O0) [*)? = 53

Similarly we analyze density matrices 7(, 7{ corresponding to two possible values of ay know-
ing that m = 1. These density matrices are equal to resp. +; and ~(, after changing |0)(0| to
[1)(1|. Now, by repeating completely analogous estimation of failure’s probability with usage

—~ — 2
of vectors [VP), [V20), [WI9) and |[WPL), we get that this probability is at least 02;2” L. There-

fore, since the vectors involved in imposing failure in both cases are distinct, we conclude that

02 +02
Pro, e pfo13lah # aolr = 0] > o720

. Hence we have

1 1
Prg cqq013[ag # ao] = §Pra1€R{0,1}2[a6 Zé aolr = 0] 4+ 5Prq, ¢ ng0,13[ag 7# aolr = 1]
Tpo 024 52
> 5 2 1w

and the lemma, is proved.

Finally, it is worth mentioning that the value of m doesn’t need to be correlated in any way
with value of a;. That is, Bob by using entanglement (for instance, straightforward use of Bell
states) can make the value of m independent of a; and still acquire perfect knowledge about
a;. He uses simple error-correction to know whether m = a; or m = 1 —a;. His problems with
determining whether flip has occurred, start only when he wants additionally to accumulate
some information about the value of a; @ h. |
To see that this quadratical bound can be achieved consider the following cheating strategy.
Let U* be such that U*(Jv) ® |,7)) = |v;) ® |I,4). So, |le’]> = |vj) ® |l) and |V1l_]]> = 0.
Moreover, let (vp|v1) = v/1 —e. As we can see, usage of U* accumulates some information
about value of j = ag@®h by marking it with two non-parallel (therefore possible to distinguish)
vectors in Bob’s system. We do now the following. We use U* on |v) ® Ry |a1 @ h)® Ry |ag © h)
and send the last qubit to Alice. When we get the message m which is exactly ag with
probability® of order 1 — ¢, we make an optimal measurement to distinguish between vy and
v1. By Theorem 1 this optimal measurement has advantage of order \/z. So, after getting the
outcome j', we know that Pr[j’ = ag @ h] > 1 +Q(,/€) and we can simply compute the value
of ' = m@®j'. Having such knowledge about the value of ' we can distinguish between values
of a; encoded in the second qubit R,|a; & h) with the advantage proportional to Q(y/).

5This can be easily computed - the perturbation arises when o = %
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4 Cheat Sensitive Quantum Bit Commitment

We recall first a formal definition of the binding and sealing property of a quantum bit
commitment. We follow here the definition by Aharonov et al. [2]. Let us start with the
binding property. Assume Alice follows the bit commitment protocol and Bob is arbitrarily.
During the depositing phase Bob and Alice compute in some rounds a super-position |¢)45)
with two quantum registers: one kept by Bob and one by Alice. After a communication
phase Bob either uses a strategy trying to convince Alice to 0 or a strategy to convince
Alice to 1. Depending on the results of the computations Alice decides to one of the values
va € {0,1,err}; In case v4 = err, she rejects the protocol. Let p; be the probability that
Alice decides v4 = i, and pe, be the probability that Alice decides v4 = err, when Bob uses
strategy 0. Analogously, denote the probabilities g, q1, gerr for Bob’s strategy 1. A protocol
is (9, €)-binding if whenever Alice is honest, for any Bob’s strategy it is true: if peyy, Gerr < €
then |po — qol, [p1 — 1| < 4.

Now, a bit commitment protocol is (9, €)-sealing, if whenever Bob is honest and deposits a
bit b s.t. Pr[b = 0] = 1/2 then for any Alice’s strategy and a value b’ Alice learns, it holds
that: if Pryc, (01}[Bob detects error] < e then Pryc, o 13[0' = b] < 1/2 4 6. The probability
is taken over b chosen uniformly from {0, 1} and the protocol.

Theorem 3 Using Protocol 3 as a black-box for computing OT, Protocol 1 is (164/c,¢)-
sealing. Moreover, there erists a constant A > 0 such that for all strategies Bob uses it
holds max{perr, Gerr} > A, where perr (qerr) denotes the probability that Alice decides error
when Bob uses strategy for 0 (1 resp.). So, whenever Bob wants to cheat then it will be detected
by Alice with constant probability.

Proof: ~ We will show first the sealing property. Thus, assume Bob is honest and Alice
performing Protocol 1 uses an arbitrary strategy to gain knowledge about . Denote the
strategy by BC. Let vg,v; be the values Bob computes in the Depositing Phase. Moreover
let ag,a; denote bits which Alice determines and sends to Bob in the Revealing Phase. Then

Pr[Bob detects error] = Prlvg # aj A c = 0] + Pr[v1 # a; A c = 1] (6)

where the probability is taken over b, 5, ¢ chosen uniformly and over the Protocol 1 when Alice
uses strategy BC.

Now let us consider, for a moment, that Alice and Bob compute the OT function using
Protocol 3. We assume Bob is honest and has initially a bit . Consider the following Alice’s
strategy to gain knowledge about ¢, which we will denote as O7 (see Figure 4).

At the beginning Alice chooses randomly bits b and ¢é. If ¢ = 0 then using strategy BC Alice
first performs the execution of the OT protocol with Bob on input ¢ and next she performs
the second execution of the protocol for OT with an artificial party C, where C simulates an
honest Bob on input b. Otherwise i.e. if ¢ = 1, we switch the order of the both execution, i.e.
Alice performs first the protocol for OT with C' and next executes the OT protocol with Bob
on input 7.

Let v be the value which Bob determines in this scenario and let i’ be the value Alice learns
about i. We should note that strategies O7 and BC are equivalent in the following sense:
Assume Bob’s input is ¢, Alice uses strategy O7 performing Protocol 3, and let pZOT denote a
density matrix of a mixed state in Alice’s hands when the protocol is finished. Similarly, for
Bob’s input b and assuming that Alice uses strategy BC executing Protocol 1, let p?c denote
a density matrix of a mixed state in Alice’s hands when Bob has revealed b in the Revealing

12



Alice Bob Alice draws bit: b
¢

draws bit: ¢ draws bit: ¢

,,,,, fesl o fe=l -
_._OT-Protocol _ [ oninput: b <___OT-Protocol _ > oninput: b
- Bob _

OT—Protocol on input: b OT—Protocol on input: b
,,,,, fe=0 =0 -

<. OT-Protocol | oninput: b <. OT-Protocol > oninput: b

(a) (b)

Figure 1: (a) Alice’s strategy BC when performing Protocol 1 after the binding test but before
the sealing test; (b) Alice’s strategy O7 for Protocol 3 on Bob’s input i = b.
Assuming that Pr[b = 0] = 1/2, if pgc denotes the state of Alice’s system at the end of

scenario (a) and if p?T is the state of Alice’s system at the end of scenario (b) then pgc = pgT

Phase. Then we have p§7T = pEC and p¢7 = pF¢. Assume Bob performs Protocol 3 on input
i = b. Hence we get that for the values ag, a; which Alice determines in the Revealing Phase
of Protocol 1 it holds that

Pror[v # a;] = Prlvg # a; Ac= 0]+ Prlvy # a; Ac= 1],

where the left-hand side probability is taken over Protocol 3 with Alice’s strategy O7 and
the probabilities on the right-hand sides are taken over Protocol 1 with Alice’s strategy BC.
Note that the left-hand side probability does not concern an event that the computed value
v is (not) correct for some given Alice and Bob’s inputs. Using strategy O7 on the inputs,
Alice may be not interested in computing the correct value at all. The left-hand side gives
the probability that if Protocol 3 with Alice’s strategy O7 is finished then the particular
values ag, a1 are not consistent with Bob’s input and the value v he decides at the end of the
protocol. Thus from (6) we obtain that: Pror[v # q;] = Pr[Bob detects error|.

Now, assume that when Alice is using strategy BC Bob detects in the sealing test an error
with probability at most . Hence, Pror[v # a;] < ¢ and using Lemma 2, or speaking more
precisely its stronger version as stated in Remark 1, we get Pror[l = b < 1/2+ 164/, where
V' is the value Alice learns about b. Thus, for any value i which Alice learns about b when
performing Protocol 1 it holds that

Pr[b) = b < 1/2 4 161/, (7)

where the probability is taken over Protocol 1 when strategy BC is used. Hence, Alice’s
advantage about b is at most 164/e. Note, however, that our aim is to show a bound on
Alice’s advantage about b and not about the value b. In fact, performing Protocol 1 Alice
may be not interested in learning the value b at all. One of the key properties of Protocol 1
is that Alice’s maximum advantage about b is closely related to the maximum advantage she
can get about b. Particularly, the maximum advantage about b when ¢ = 1 is the same as the
maximum advantage about b in case ¢ = 0. Analogously, Alice can learn b when ¢ = 0 with
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the same advantage as she can learn bifc=1. Speaking formally, the following property
holds.

Let p;, be a density matrix of Alice’s part of the system corresponding to ¢ =z and b =y
when Step 2 is finished, but before Bob reveals c in Step 3. Similarly let p,, be Alice’s part
of the system at this point corresponding to ¢ = = and b= y. Then for all y € {0, 1} we have
POy = ﬁl,y and Ply = ﬁO,y-

Now assume that when the Depositing Phase is finished Alice makes measurements to learn
value b: she uses O’ when ¢ = 0 and O” if ¢ = 1. Let I/ denote the value Alice learns about b
when measurement O’ is used and let b” be the value Alice learns about b when she uses O”.
Then by Lemma 1 we can bound the probability that Alice learns bit b correctly as follows:

Ol_ O/ OII_ O//
Prlt) =bAc=0]+Prlp’ =bAc=1] < 1/24 Loophul | Pocrah
_ Po—pEals | 1680 ~A8 s
= 1/2 Aol | WooZfuh

Thus, using measurements O’ and O” Alice can learn the correct value b with advantage at
Nold _ ~O! AO"_ ol

most 12Lo 4p1’1‘1 + P60 4p0'1 " Since this bound is tight, by (7) we get that it is at most 16,/

what completes the proof for the sealing property.

In case of binding, we first notice that the following claim is true.

Claim 1 Assume Alice and Bob perform sequentially two executions of Protocol 8. Suppose
Alice chooses randomly bits ag, a1, a2,as and performs honestly both the first execution with
input ag, a1 and the second execution with input ao,as. Then for every strategy S used by Bob
and all values af), ay, ab, al which Bob learns about ag, a1, az, ag, resp., it holds that

for alli € {0,1} if Pr[a} =a;] > 1—¢&? then Prla}_, = a1_;] <1/2 +16V2¢, and
for all j € {0,1} if Prlay, ; = agyj] > 1 —¢€® then Prlas ; = az_;] <1/2+ 16V/2¢,

where the probabilities are taken over ag, a1, az,as chosen uniformly from {0,1} and the above
scheme.

Proof: To show that the claim holds, we construct two strategies By and By for Bob perform-
ing Protocol 3 with Alice on input mg, m;. In both strategies Bob initially chooses random
bits g, 71 and then uses strategy B as follows: In By he executes B performing first the exe-
cution of the Protocol 3 with Alice on input mg, m; and then the second (artificial) execution
of the OT protocol with his subprocess C that simulates an honest Alice on input rg,r1. In
B1 Bob follows B performing first the execution of the Protocol 3 with C' on input rg, 7, and
next the execution with Alice on input mg, mq.

Let m(,, m} be the values which Bob learns about mg, m; using strategy By and let m(, m/
denote the values which Bob learns about mg, m using strategy B;. Then for all 7 € {0, 1} we
have Prg,[m] = m;| = Prla} = a;] and similarly for all j € {0,1} it holds Prg, [m] = m;] =
Prlaj, ;= as+j], where the left-hand side probabilities are taken over strategy By, resp. By and
the right-hand side corresponds to strategy B. To see this, note that when the computations
are finished, density matrices of quantum states in Bob’s hands for strategy B on ag,a; and
for strategy By on mg = ag, m1 = a; are equal to each other and that an analogous property
holds for B and By. Thus, using Lemma 3 for strategy By and next for strategy B; we get
the claim. |
So, let ay), al, ab, a% be the values which Bob learns about Alice’s input ag, a1, a2, a3 performing
Protocol 1 and assume Bob has revealed value ¢ and b. Let ¢ := 2 —2¢. Then by the claim we
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have that for all i € {0,1} if Pr[a),; = as4;] > 1—&? then Prla),,_; = apy1-i] < 1/2+16V/2¢.
Thus by examination of the above bounds it follows that for some constant A > 0

max{Pr(a, # as], Prlaj, | # asrs1]} > M.

This completes the proof of binding property since, using the notation given in the definition
of this property, we have pe,, = Prla, # a¢], po = Prla; = a], and p; = 0. Similarly
Qerr = PI‘[CLZ_,’_l 7é af—i—l]a qo = Oa and q1 = Pr[az_;,_l = af—i—l]-

5 Computing Oblivious Transfer Cheat Sensitively

In this section we give the formal definition of the cheat sensitive (f)—OT computation.

Definition 2 In a cheat sensitive (%)—OT quantum protocol Alice and Bob communicate with
each other and finally Alice decides on a value vy € {correct, error} and Bob decides on vp €
{0,1,error}. We say that the protocol is (9,¢)-cheat sensitive if at the end of the computation
the following requirements hold.

o If both Alice depositing initially bits ag,a1 and Bob having bit i are honest then Bob
learns® the selected bit a; in such a way that he gains no further information about the
other bit and Alice decides on the value v4 = correct and learns nothing else.

e Whenever Bob is honest and has a selection bit i, with Pr[i = 0] = 1/2, then for every
strategy used by Alice and every value i Alice learns about i it holds that

if Pric o131’ =14 > 1/2+0 then Pric, 0,13[Bob decides vp = error] > .

e Whenever Alice is honest and deposits bits ag,a1, with Prla; = 0] = 1/2, then for
every strategy used by Bob, all values ajy,a) Bob learns about ag,ay it holds that if
Pryy.arcnfo13[(ag, ay) = (ag,a1)] > 1/2+0 then Prog o c 10,13 [Alice decides va = error] >
E.

Remark 2 In the previous version of this paper we have used the following alternative defini-
tion of sensitiveness with respect to a malicious Bob: Whenever Alice is honest and deposits
bits ag, a1, with Pr[a; = 0] = 1/2, then for every strategy used by Bob, all values aj,, a] Bob
learns about ag, a1, resp., with advantages Pry, o, ¢,f0,11[0; = ai] = 1/2 + §; it holds that if
min{do, 61} > ¢ and max{dp,d1} > 1/2 — §/2 then Pry; 4 c,10,13[Alice decides va = error] >
€. It seems, however, that Definition 2 determines sensitiveness with respect to a cheat-
ing Bob in more natural and elegant way. Moreover, note that if min{dy,d1} > ¢ and
max{dp, 01} > 1/2 — 6/2 then we get:

Pr[(ag,a}) = (ap,a1)] = 1—Prlag # ao V@) # a1]
> 1 —Prlag # ag] — Prla} # a1] > 1/2+6/2.

Thus, the current definition is stronger (modulo a small constant factor) than the previous
one.

5Speaking formally, we assume Bob learns a; with probability 1.
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Theorem 4 Using Protocol 3 as a black-box for computing OT, Protocol 2 is (16+/¢,¢)-cheat
sensitive.

Proof:  Note first that if both Alice and Bob are honest then the Computation Phase is
performed with probability 1 after constant expected number of Quantum Phases and Alice
and Bob compute @)—OT fulfilling the standard security requirements.

Now assume Bob is honest and has a selection bit b with Pr[b = 0] = 1/2 and Alice performing
Protocol 2 uses an arbitrary strategy to gain knowledge about b. Denote Alice’s strategy as
OT. Let p;; be a density matrix of a mixed state in Alice’s hands when the Quantum Phase
of the ¢-th iteration is completed, for some ¢ > 1, and (a) performing the protocol Alice has
used strategy O7 and (b) during the ¢-th iteration Bob has chosen bit .

Next consider, for a moment, that Alice and Bob perform the susceptible @)—OT Protocol 3
and define for a dishonest Alice the following strategy O7: Initially, Alice chooses randomly
bits 41, %92,...,7,—1 and then she performs ¢ — 1 executions of the Protocol 3 with an artificial
party C, such that for k =1,2,...,¢—1, C simulates the k-th execution with an honest Bob
on input 7;. Next Alice executes Protocol 3 with Bob on input i. Let p,; be Alice’s part of
the state when the computation is finished, Alice has used strategy O7,, and Bob’s input bit
is ¢. Then we have that for every i € {0,1}

Pei = Pei- (8)

Moreover, using Remark 1 we get that for the probabilities taken over Protocol 3 and strategy
O7; it holds
2
if Proz,[i' = 4] > 1/2 + 6 then Prog,[v # a;] > 2, (9)

for all values ag, a; which Alice determines after the protocol is finished. Here, i’ denotes the
value Alice learn about ¢ and v is the value computed by Bob.

Now we come back to Protocol 2. Assume that Pr[Alice learns b correctly] > 1/2 4+ 164/¢,
where the probability is taken over the protocol and strategy O7. Denote by iy, the bit
Bob chooses initially in the ¢-th iteration. Analogously, let ¢, and v, refer to bits involved
during the /-th iteration, i.e. let ¢, denote the bit send by Bob to Alice and let v, be the
value computed by the party performing the cheating test during this iteration. Moreover,
let A_tests, and B_tests; be value chosen during the /-th iteration and let b} be the value
Alice learns about b when the /-th iteration is completed and the parties decide to execute
the Computation Phase (i.e. when A_tests;, = B_tests; = 0). Then we have

Pr[Alice learns b correctly] = >, po-Pr[b, =b | A_tests, = B_tests; = (]
= Yepe-(1/2+0) > 1/2+16V5,

where p, = Pr[A_tests; = B_tests; = 0] denotes the probability that during the ¢-th
iteration both values A_tests and B_tests are equal to 0, i.e. the probability that nobody
wants to test during this iteration. Moreover the value d, stands for Alice’s advantage to
learn b correctly in the Computation Phase executed after ¢ iterations. Note that the last
inequality above implies that >, ps-d; > 164/c. A very important feature of the protocol is
that if g, denotes the probability Pr[A_tests; = 0 AB_tests, = 1] then ¢y = py.

Denote by i), = b, @ ¢;. Hence the probabilities Pr[b; = b | A_tests, = B_tests; = 0]
and Pr[i, = i, | A_tests, = B_testsy = 0] are equal to each other. Now, our aim is to
give a relationship between this probability and the probability that Alice learns Bob’s input
correctly when performing Protocol 3 with strategy O7,. So, assume Alice and Bob execute
Protocol 3 and Alice uses strategy O7;. Moreover, assume that when the protocol is finished,
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Alice still simulates strategy O7 to gain knowledge about Bob’s input bit i = 4,. Hence by
the property (8) we get that

Prog,[i' =i] = Prlby =b| A_testsy =B_tests; =0] = 1/2+ 6,

2
and using (9) we can conclude that Proz,[v # a;] > ;—5;36 for all values ag,a; which Alice
determines. Thus, particularly for ap = aso and a1 = a1, where ag,as1 denote the values
decided by Alice in the Test Phase during the /-th iteration of Protocol 2, it holds

52
PrOTg [U 7é a@,i] > ﬁu

too. Hence, using again the property (8) we obtain that
2
Prlv; # ag;, | A_testsy = 0 AB_tests; = 1] = Prog,[v # ag;,] > %,

and finally we can estimate the probability that Bob detects an error as follows:

Pr[Bob detects error] = >, q;-Prlvs # as;, | A_tests; = 0 AB_tests, = 1]

v

5
> Pt 35
> (X pe-60)? > e

The last but one inequality is obtained using Jensen’s inequality”. This completes the proof
that the protocol is (164/¢, £)-cheat sensitive according to Alice.
Now assume Alice is honest and Bob using an arbitrary strategy tries to gain knowledge
about Alice’s input bits mg, m; when performing Protocol 2. Denote Bob’s strategy as OT
and assume that Alice’s input bits mg,m; are chosen independently and uniformly. Let
Pt,ap,a; D€ a density matrix of Bob’s part of the state when the Quantum Phase of the (-th
iteration is completed and (a) during the ¢-th iteration Alice has chosen ag,a; € {0,1}, and
(b) performing the protocol Bob has used strategy O7 .
Similarly as in the previous case consider, for a moment, that Alice and Bob perform the
susceptible @)—OT Protocol 3. For a dishonest Bob we define the following strategy O7y:
Initially, Bob chooses randomly bits ai,9,a1,1,a20,a21,...,a¢—1,0,a¢—1,1. Then he performs
¢ — 1 executions of the Protocol 3 with an artificial party C, such that for k =1,2,...,/—1,
C simulates the k-th execution with an honest Alice on input ay,ax,1. Assume Alice and
Bob execute Protocol 3. Let p; 4,4, be Bob’s part of the state when the computation is
finished, Bob has used strategy O7;, and Alice’s input bit is ag, a1. Then we have that for all
ap, a1 € {0, 1}

Pe,ag,a1 = Pliag,as- (10)

We use next the following modification of Lemma 3: If Alice and Bob perform Protocol 3 and
the honest Alice deposits bits ag,a; then for every strategy used by Bob, for all values af), a}
which Bob learns about ag,a; and for any value i’ which Bob determines when the protocol
is completed it holds that:

if Prao,a1€R{0,1}[a;’ =ay]>1-— 52 then Prao,mER{OJ}[a/l—i’ =a_#] <1/2+ 16/26.

Note that, while the implication in Lemma 3 concerns fized values of selection bit, the impli-
cation above involve values which are determined by Bob when the protocol is finished. For

"Note that >, pe may be less than 1. However, p1,p2,ps, ... can be extended to a probability distribution
by defining, for the value o = 0, the probability po =1 — ", pe.
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example, if (a dishonest) Bob chooses initially selection Bit ¢ such that Pr[i = 0] = 1/2 and
then he performs Protocol 3 on the chosen input ¢, then we have that the both probabilities
Proy.arepfo,13[ag = ao] and Pry 4 c n10,13[a] = a1] are equal to 5 $(141/2) = 3/4 but the prob-
ability Pr,, ar€r{0, 13lay, = ay] = 1. Tt is easy to see, that the proof of Lemma 3 works for the
modified version, too. Thus for strategy O7; it holds that

if Prog,[al, = ay] > 1 — 6% then Prog;a)_;, = ay_y] < 1/2 + 16v/26. (11)

Now, come back to Protocol 2 and assume that Pr[Bob learns (mg, m1) correctly] > 1/2 +
16+/e, where the probability is taken over the protocol and strategy O7 . Denote by ag ¢, a1 ¢
the bits Alice chooses initially in the ¢-th iteration. Analogously, let ¢, denote the bit send by
Bob to Alice during the /-th iteration and let zp := ag¢ @ me,, 21 := a1 ® mi_., denote the
bits Alice send to Bob. Moreover, let A_tests, and B_testsy be value chosen during the ¢-th
iteration and let mg’z, m,LZ be the values Bob learns about mg,mq when the /-th iteration is
completed and the parties decide to execute the Computation Phase. Then we have
Pr[Bob learns (mg, m1) correctly)
>0 pe-Pr[(mg g, m) ;) = (mo,m1) | A_tests, = B_tests, = 0
> 1/2+16v/2¢,

where, as in the previous case, p; = Pr[A_testsy, = B_tests; = 0]. Define ¢y = Pr[A_tests, =
1]. Then it holds

q¢e = Pr[A_testsy=0] > Pr[A_tests, =B_tests; =0] = ps.

Next, denote by a; 4 = z0®my, and a; ; = 216Gm)_,,. Since the probabilities Pr[(my ,, m] ,) =
(mo,ml) | A_testsy =B testsz = 0] and Pr((ag ¢, a} ;) = (a0 a1e) | A_tests, = B_tests, =
0] are equal to each other we obtain

Y0 pe- Pr[ako =apo A a’g’1 =ay; | A_tests; =B_tests; =0] > 1/2+ 16/ 2. (12)

Let us consider now the case A_testsy = 1. Let z’} be the value which Bob determines when
the Quantum Phase of the ¢-th iteration is completed and Alice tests Bob. Wlog we assume

Pr[az,i:Z = agq | A_tests, = 1] > Pr[a271_i2 = ag1_i | A_tests, = 1]

and define d; such that Pr(a) iy, = Ge1—i, | A_testsy = 1] = 1/2 + §,. Wlog we can as-
sume that the probability Pr[a;, 1y, = A1 | A_tests, = 1] is not less than Pra), iy =

ag1-y | A_tests, =B_tests, = 0]. Hence using the inequality (12) one can conclude
Y0 e Pr[a’l_iH =ay_y | Atestsy =1] > 1/2+16v/2e.

Thus, we have >, ps- (1/2+4 07) > 1/2 4 16v/2¢ and therefore one can obtain the following
inequality:

S pe- 0 > 16/2e. (13)

Now, by property (10) we get

Profe[a'l_i,e =a_g4] = Pr[a'g’l_ile =ag;q | Atests,=1] = 1/2+4,
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2
and using (11) we can conclude that Progz,[a), # ai] > 561—52. Hence, using again property (10)
we obtain that

52
Pr[aQ% # apy | A_testsy =1] = Prog, [al, # ay] > 5%

and finally we can estimate the probability that Alice detects en error as follows:

Pr[Alice detects error] > 37, qo-Prlay , # agy | A_tests, = 1]
sy ’

57
> 25 Pe- 535
> =50 pe-60)? > e

The last but one inequality follows from Jensen’s inequality. This completes the proof that
the protocol is (161/2¢, €)-cheat sensitive according to Bob. |

6 Concluding Remark

In this paper a weak variant of quantum bit commitment is investigated. We give quantum
bit commitment scheme that is simultaneously binding and sealing and we show that if a
malicious Alice gains some information about the committed bit b then Bob detects this with
a probability Q(e?). When Bob cheats then Alice’s probability of detecting the cheating is
greater than a constant A > 0. Using our bounds we get that the value A = 0.0005, which
is very small from practical point of view (but theoretically optimal). So, an interesting task
would be to improve the constant.

Furthermore, we have shown that bit- (?)—OT can be computed cheat sensitively. An inter-
esting task would be to find a cheat sensitive protocol for string- @)—OT. Unfortunately, our
techniques does not seem to be directly applicable in this case, mainly due to possible bit
correlation in string- (%)—OT. Existence of such cheat sensitive string- @)—OT would also open
the possibility of cheat sensitive computation of an arbitrary function by applying the method
of Kilian [9].
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Appendix

A Additional Remarks Concerning the Definition 1 and the
Protocol 3

The requirements of the susceptible oblivious transfer given in Definition 1 may seem to con-
tradict each other. For example, at first glance it seems that the first and the last requirement
of Definition 1 cannot be achieved simultaneously when honest Alice and dishonest Bob use
Protocol 3. As proposed by a reader of a previous version of this paper, this may be argued
as follows. But, as we will show below, the reasoning is wrong.

(¥) Consider the purified version of Protocol 3, where each player creates a uniform super-
position whenever they are supposed to toss a random coin. Assume that Alice and
Bob run the protocol as follows. Alice is honest and Bob replaces his input ¢ with an
equal superposition of 0 and 1. Now consider the final joint state between Alice and
Bob. Assume that neither party makes any measurement during the protocol, so that
the final state is a pure state. In particular, any coin tosses are simulated by creating
superpositions. Now, from Alice’s point of view, Bob is running the protocol on a ran-
dom input ¢. In the honest case her part of the state is the same, regardless of whether
1 =0 or ¢ =1. So Alice’s part of the state is the same when Bob uses a superposition
of 0 and 1 (Bob’s part of the state may be different). Let ¢); be the state when Bob
runs the protocol with input ¢, and let 1) be the state when he runs it with an equal
superposition of 0 and 1. Hence trp(1;) = trp(¢). So, there is a unitary transformation
U; acting on Bob’s part alone such that (I ® U;)y¥ = ;. So Bob may apply Up, then
figure out bit ag. Since he learns this bit with probability 1, the state is not disturbed.
He can undo his operations and repeat to learn a;.

Now, we explain why the reasoning (*) is wrong. Consider the purified version of Protocol 3.
Then the (pure) state of the whole system after Step 2 looks as follows:

I7)|$0)|00)s0) + |1} [¢1)161)[s1)

where the first two registers are in Alice’s hands and the last two registers in Bob’s hands,
the first register is used to purify Alice’s coin tosses, |¢;)|0;) is the state when Bob runs the
protocol with input ¢ and finally the last register is used by Bob to make the superposition.
Step 3 transforms the state to:

[7)Imo)|6o)|s0) + [r)|m1)|61)]s1) (14)

where m; depends, as in the protocol, on Bob’s input. Now, if Alice would send to Bob the
second register, i.e. the qubit describing m;, then the reasoning above works. But, Alice
sends to Bob the bit: either mg or my, and not a superposition entangled with the rest of the
system. So, in fact, the analysis (*) does not correspond to Protocol 3.

Remark If one wants to move the final measurement to Step 4 using a purification, as is
done in the analysis (*), then one has to ‘put’ the result of Alice’s measurement made in Step
3 into Alice’s part of the pure state (the analysis makes an error overlooking this) i.e. the
system after Step 2 is: |r)|0)|¢0)[00)|s0) + |7)|1)|P1)|61)|s1) and the final state of the system
(before the final measurement) looks as follows:

) [mo)mo)|0o)|so) + |r)|ma)mi)|01)]s1)
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where the first two registers are in Alice’s hands and the rest in Bob’s, and according to the
protocol, R t¢;) = |m; @ h), where m; @ h is just a classical bit that we xor with h at the end
of Step 3. The second register is used to purify the state after the measurement in Step 3 and
it corresponds to the outcome of the measurement. Note that any purification that leads to a
state in which A does not know the result of this measurement means a change of our protocol!
Now, using the notation as in analysis (x), if ¢); is the final state when B runs the protocol
with input 4, and v the state when he runs it with an equal superposition of 0 and 1 (in our
analysis ¢ =(14)) then we have for an appropriate Alice’s input: 0 = my # m; = 1, hence
trp(y) = 1/25°, |r)(r|i)(¢], and trg(¢;) = |r){r||i)(i|. Thus trp(¢;) # trp(¢y) in general,

what contradicts the assumption in (x).
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