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Abstract

We show that, assuming the Unique Games Conjecture, it ifdMBto approximate
MAX 2-SAT within o, , + ¢, where0.9401 < a;,, < 0.9402 is the believed
approximation ratio of the algorithm of Lewin, Livnat and itk [L7].

This result is surprising considering the fact that balaniostances of Mx 2-
SAT, i.e. instances where each variable occurs positively agdtively equally often,
can be approximated withi.9439. In particular, instances in which rough¥%
of the literals are unnegated variables &0 are negated appear less amenable to
approximation than instances where the ratis0i%-50%.

1 Introduction

In their classic papel [8], Goemans and Williamson used definite programming to
construct0.8785-approximation algorithms for kix CuT and Max 2-SaAT, as well as

a 0.7960-approximation algorithm for Mx Di-CuT. Since then, improved approxima-
tion algorithms based on semidefinite programming have beestructed for many other
important NP-hard problems, including coloring /efcolorable graphd [12.] 9], and fairly
general versions of integer quadratic programming on tipefgubel[3].

Meanwhile, the study ohapproximabilityhas seen a perhaps even bigger revolution,
starting with the discovery of the PCP TheoremlI2, 1]. It hed {o inapproximability
results for a myriad of NP-hard problems, several of theimt tjg.g. T COVER [B], M AX
CLIQUE [10], and Max 3-SAT [IL1]) in the sense that they match the best known algorithmic
results up to lower order terms.

However, for constraint satisfaction problems in whichheegnstraint acts on two vari-
ables, tight results, or in some cases even any results blegvemore elusive. As a possible
means to remedy this, Khot[13] introduced the so called UmiGames Conjecture (UGC),
asserting the existence of a very powerful two-prover syssath some specific proper-
ties. Assuming the UGC, Khot showed superconstant hardoessiNn 2SAT-DELETION.
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Since then, the UGC has been shown to imply hardness foraetber problems, includ-
ing 2 — € hardness for ¥RTEX COVER [[15], agw + € hardness for Mx CuT [14] (where
agw =~ 0.8785 is the approximation ratio of the Goemans-Williamson dtan), super-
constant hardness foPS8RSESTCUT [IL6], coloring 3-colorable graphs with as few colors
as possible[]5], and approximatingA¥ CLIQUE within d/polylog d in degreed graphs
[19]. Additionally, Khot and Vishnoil[16] used the UGC to stintegrality gaps for SDP
relaxations of some of the above-mentioned problems (ttegyiality gap of an instance
is the quotient between the optimum value of the instancetla@aptimum value of the
SDP relaxation). They do this by showing an integrality gapd natural SDP relaxation
of Unique Games and then “translating” this instance thinoiing PCP reduction.

It should be noted that the status of the Unique Games Cangeid highly uncertain;
there is no substantial evidence supporting the conje¢hare for that matter, any substan-
tial evidence against the conjecture).

For MAX 2-SAT and Max Di-CuTt, Goemans and Williamson’s algorithms were im-
proved first by Feige and Goemans$ [7], and then by Lewin, Ltiamal Zwick [17] who
obtained &).9401-approximation algorithm for Mx 2-SAT, and a0.8740-approximation
algorithm for Max Di-CuT, and these stand as the current best results for both preblem
It should be pointed out that these two ratios arise as thaigns of complex numeric op-
timization problems and, as far as we are aware of, it hasetdigen proved formally that
these are the actual optima, though there seems to be bitllet dhat this is the case.

For both problems, better approximation algorithms arenkmfor the special case of so
calledbalanced instances-or MAX 2-SAT this corresponds to the case when every variable
occurs negated and unnegated equally often, and fex NdI1-CuT this corresponds to
each vertex having the same indegree as outdegree. Thexapation ratios achieved
are~ 0.9439 and agw respectively, and they match the best known inapproxiritgbil
ratios under the UGC [Z.ﬂ.The best known unconditional hardness fonM2-SAT is
21/22 ~ 0.9546 [IL1].

It is natural to conjecture, especially considering theseilts, that balanced instances
should be the hardest (and indeed, Khot etlal. [14] do that)that we should always be
able to use the presence of any linear terms to our advantémeever, as the main result
of our paper shows, this might actually not be the case:

Theorem 1.1. Assuming the Unique Games Conjecture, for any 0 it is NP-hard to
approximateMAX 2-SAT within o, , + ¢, wherea; ; , ~ 0.94017.

Here,a; ; , is the believedapproximation ratio of Lewin et al’s kx 2-SAT algorithm

mentioned above. In other words, assuming that their aisabjshe algorithm is correct,
Theoren_I1l is tight. The (in our opinion very remote) padisitthat their analysis is not
correct, i.e. that the approximation ratio of their algamitis smaller thamv; ; ,, does not

This is not very surprising, since the balanced versionotti problems are equivalent to thea CuT
problem with a linear transformation on the scoring funttio



affect Theoreni 111, it would just indicate that it might net tight, i.e. that MAX 2-SAT
might be even harder than indicated by our result. The rettsdrwe need to rely on the
analysis of Lewin et al. being correct is that our PCP reduncit controlled by a parameter
corresponding to a worst-case vector configuration for bestial.’s algorithm. However,
the reduction requires this vector configuration to be of eciéjg form. Fortunately, the
worst configurations found by Lewin et al. are of this form.

An in our opinion quite surprising part of our result is theriaunt” of imbalance: in
our hard instances, every variable occurs positively muae twice as often as negatively
(the ratio is roughlyr0 — 30)!

The proof relies on a careful analysis of the algorithm of leewivnat and Zwick. This
analysis provides the optimal parameters for a PCP redueatioch is similar (but slightly
more involved) to Khot et al.’s reduction for Ak CurT.

The paper is organized as follows. In Secfibn 2 we set upinatand give some nec-
essary background. In Sectibh 3, we discuss Lewin et alAx M-SAT algorithm and
its approximation ratio. In Sectidd 4 we reduc&llqUE LABEL COVER to MAX 2-SAT,
establishing Theoref.1. In Sectidn 5, we conclude by dising some related open prob-
lems.

2 Preliminaries

We associate the boolean values true and false-witand1, respectively. Thus, a disjunc-
tionx Vv yisfalseiffxr =y = 1.

2.1 MAX 2-SAT

A MAX 2-SAT instance¥ on a set ofn variables consists of a set of clauses, where each
clausey € ¥ is a disjunction/; V lo on two literals, where each literal is either a variable or
a negated variable, i.e. of the form, for b € {—1,1} and some variable;. Additionally,
each clause) has a nonnegative weightt(v)) (by [4], weighted and unweighted Ak
2-SAT are equally hard to approximate, up to lower order termsg MhAX 2-SAT problem

is to find an assignment € {—1,1}" of the variables such that the sum of the weights of
the satisfied clauses is maximisedAK?2-SAT can be viewed as an integer programming
problem by arithmetizing each claufg z; V box ;) as B*blxi*bﬁj*blbﬂm. Note that the
latter expression i$ if the clause is satisfied, aridotherwise. The value of an assignment
x € {—1,1}"to¥isthen

~bya — bowj — biboit;
Valg(e)= D wify) S ey,

w:(blmi\/bgmj)élll

(1)



and we can write a Mx 2-SAT instance¥ as the (quadratic) integer program

Maximize Valy (x)

Subject tar; € {—1,1} Vi @)

In this paper, we will be especially interested in the fanafyMAX 2-SAT instances
consisting of the following two clauses for every pair ofiahiesz;, x;: the clauséx;Vx;)
with weight wt;; -152, and the clausé—z; v —z;) with weight wt;; -152, where the
nonnegative weight't;; controls the “importance” of the pair;, =; (we allowwt;; = 0),
andA € [—1, 1] is a constant controlling the “imbalance” of the instanceté\that if A =
+1 every variable occurs only positively/negatively, and itheance is trivially satisfiable,
whereas ifA = 0 the instance is balanced and can be approximated witbit39. For our
hard instances, we will use a carefully chog®rwhich will be approximatelyd.3673 (in
other words, the relative weight on the positive clausesheiroughly 12367 ~ 68%).

We will use the terminologyA-mixed clause (of weigkit) for a pair of clauseér; V ;)
with weightwt - 152 and(—x; V —z;) with weightwt - 152, For a Max 2-SAT instanced
of the above form (i.e. an instance that can be viewed as 4 fetwixed clauses)Yaly ()
can be rewritten as (note that the effect/ofon the integer program simply constitutes a

dampening of the linear terms)

— A P — Axr: — i
Valq,(:c) = ZWtij 5 a 1 T Tit] . (3)
1<j

2.2 Harmonic analysis of Boolean functions

Fourier analysis (of Boolean functions) is a crucial toohist strong inapproximability
results. Here we review some important concepts. We deryoté ithe probability distri-
bution on{—1,1}" where each bit is set te 1 with probability ¢, independently, and we
let B be the probability spacg{—1,1}", »{"). Note that in this paper we work with gen-
eral distributions rather than the more well-known casenifioum distributions (i.e. where
qg=1/2).

We define a scalar product on the space of functions fijhto R by

(f9)= E [f(z)g(z)], (4)

zEBY
and for eacts C [n] the functionU; : B — R by U (x) = [];cg Uqg(z:) where

/L =1
Uq(wz‘) =

Proposition 2.1. The set of functions{UCf}Sg[n} forms an orthonormal basis w.r.t. the
scalar product(-, -) (i.e. expected value over the distributipfj).
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A proof of this well-known fact can be found in Appendix C. Ehany functionf : B} —
R can be written as
= fsU; (x)

SCln]

The coefficientsfg = (f, qu> =E, [f(x)UqS(x)] are the Fourier coefficients of the func-
tion f. Itis a fairly straight-forward exercise to verify the bagientitiesE, [f(z)] = f;,

Vx[f(5'3)] = ZS#Q} f§ and <f> g> = ng[n} fSQS-

Definition 2.2. Theinfluenceof the variablei on the functionf : By — Ris
Infl(f) = Ii; [sz[f(x) | Llygeoe sy Lj—1yLj415--- ,xn]] (5)

Intuitively, the influence of the variableis a measure of how much the variablis able to
change the value of once we have fixed the other— 1 variables.

Proposition 2.3.
Inf;( Z fs (6)

SCln]

€8
A proof is given in AppendiXC. Motivated by the Fourier-repentation formulation of
influence, we define the slightly stronger concept of lowrdegnfluence, crucial to PCP
applications.

Definition 2.4. For k € N, thelow-degree influencef the variable; on the functionf :

B - Ris

=> f& (7

SC[n]

€S

|S|<k
A nice property of the low-degree influence is the fact fj}}ﬂnf}’“(f) < k, implying that
the number of variables having low-degree influence mone thaust be small (think ok
andr as constants not depending on the number of variablekrformally, one can think
of the low-degree influence as a measure of how close theidingtis to dependingnly
on the variablé, i.e., for the case of boolean-valued functions, how clpgeto being the
long code ofi (or its negation).

Next, we define the Beckner operaffyy on a functionf : By — R. For the unbiased

distributiong = 1/2, T, f(x) is simply the expectation of (y) over a random variablg
that isp-correlated withe. For biased distributions, the definition is a bit more caogiéd.

Definition 2.5. Givenp € [—1, 1] satisfyingp > —% the Beckner operatdF, on
afunctionf : Bf — R is defined by

T,f(x) = E[f(s)] ®)



x; | b Prly; = b]
1]1 1—q(1-p)
1]-1 q(1—p)
11 -90-p)
1[1]1-(-90-p)

Table 1: Distribution ofy; depending orn;.

where the expectation is over arbit stringy in which each bity; is picked independently
as follows: ifz; = 1 theny; = —x; with probabilityq(1—p), and ifz; = —1 theny; = —x;
with probability (1 — ¢)(1 — p) (see Tabl&ll1).

Note that the lower bound omis needed to make this a valid probability distribution.
Forp > 0, the probability distribution ofj; can be formulated as follows: with probability
p, we lety; = z;, and with probabilityl — p, we picky; from B(}.

The operatofl, has the following very nice effect on the Fourier represioeof f.

Proposition 2.6. A
T,f(@) = ¥l fsU7 (). 9)

SC[n]
Again, a proof is given in AppendIxIC.
Definition 2.7. Thenoise correlatiorbetweenf : B;' — R andg : By — R is given by
Sp(f.9) = (£, Tpog) = > ol fsgs (10)
SC[n]

In other words, the well-studied noise stability of a funatif, is simplyS,(f) := S,(f, f).

2.3 Functions in Gaussian space

We denote by (z) = \/LQ_We*xQ/2 the standard normal density function, byz) = [*__ ¢(t)dt

the standard normal distribution function, and®y' the inverse ofb.

As with functions on the hypercube, we define a scalar prodoctunctionsf, g :
R™ — R by (we abuse notation slightly by using the same notatioroasdalar products
on functions from the hypercube)

(,9) = E[f(@)g(x)]. (11)

where the expectation is over andimensional standard Gaussian, i.e. each component
being a standardv(0,1) random variable. The counterpart of the Beckner operator in
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Gaussian space is ti@rnstein-UhlenbeckperatorU,,.
Upf () = E [ f(pr + V1= p7)| (12)

Note thatpx + /1 — p?y is an N (0, 1) variable with covariance with 2. Analogously

to the case of Boolean functions, we define the noise coioaldtetween two functions
f,9 : R* = RasS,(f,g) = (f,Uyg) wherep € [—1,1]. Forp € [—1,1] we denote by
xp : R — [0,1] the indicator function of an intervdl-oo, t), wheret is chosen so that

Elx,] = 52 (et = o (1*7#))
Definition 2.8. Forp, 1, po € [—1, 1], define

Lp(ps 12) = Sp(Xpa> Xpo) = Pr[X1 <1 A Xo < o], (13)
wheret; = &1 <1_—2"7) and whereX, X, € N(0,1) with covariancep.

In other words,I', is just the bivariate normal distribution function with arsfor-
mation on the input. Analogously to noise stability, we defin,(x) = T'p(u, 1). The
following nice property of”’, will be very useful to us.

Proposition 2.9. For all p € [—1,1], u1, p2 € [—1, 1], we have

Lp(—p1, —p2) = Tp(pa, p2) + p1/2 + pa/2 (14)

A proof can be found in AppendIxID.

2.4 Thresholds are extremely noise-correlated

For proving hardness of Mx CuT, Khot et al. [14] made a conjecture called Majority
Is Stablest, essentially stating that any boolean funotigh noise stability significantly
higher than the majority function must have a variable witthHow-degree influence (and
thus in a sense be close to a long code). Majority Is Stablastsnbsequently proved by
Mossel et al.[[18], using a very powerful invariance primeiprhich, essentially, allows for
considering the corresponding the problem over Gaussiacesmstead. For our result,
we will use a strengthening of Majority is Stablest due toWiat al. [5], stated here in a
simplified form (Dinur et al. state their theorem for genesainmetric Markov operators,
but we are only interested in the Beckner operaigt

Theorem 2.10(Dinur et al. [5], Theorem 3.1)For anye > 0, g € (0,1) andp € (—1,1)
there is ar > 0, k € N'such thatiff,g : B} — [0,1] with E[f] = 1‘% Elg] = %
and

min <Infi§k(f),1nfi§k(g)) <rT

7



for all i € [n], then

Sp(f.9) <Xuf’ U\p\Xu.q> te (15)
Sp(f.9) <Xuf’ Ujp (1 = X—ug)> — € (16)

We remark that Dinur et al. state their theorem for functionghem-ary hypercubém]”

underuniformdistribution, rather than the biased hypercukje However, their proof does

not make use of any properties that only hold for the unifoiistrithution (in particular,

Mossel et al.’s invariance principle is applicable to theecaf non-uniform distribution),

and so, it is a fairly straight-forward exercise to redo tipeoof for biased distributions.
As a simple Corollary to Theorem 2110, we have

<
>

Corollary 2.11. Lete > 0,¢q € (0,1) andp € (—1,0). Thenthereis & > 0, k € N such
that for every functiory : By — [~1,1] satisfyingE[f] = x and Inf?k(f) < 7 for all i,
we have

Sp(f) > 4Tp(p) + 21— 1 —¢ 17)

Proof. Setf = 151, i = E[f] = 152, Thus,S,(f) = 4S,(f)—4i+1 = 4S,(f)+2u—1.
By TheorenZZ0, )
Sp(f) 2 (X Uppy (1 = x—pu)) — €/4 (18)

for any f where every variable has sufficiently small low-degree @rilte. Now, note that
UL =x-)@) = Pr[lplz+ 1=y = 07 (1 - o)
= Pr[=lple+VI= 2y <07(@)] = U@
Combining this with Equatiori{18) and the definitionlgf, we get

Sp(f) =4 (1) + 20— 1 —e. (19)

Finally, using thap < 0, we obtain the desired form. O

2.5 The Unigue Games Conjecture (UGC)

The Unique Games Conjecture was introduced by Kihdt [13] assailple means to obtain
inapproximability for constraint satisfaction problenmsvihich each constraint acts over
two variables. As is common, we will formulate it in terms df@bel Cover problem.

Definition 2.12. AninstanceX = (V, E, wt, [L], {07, 0¢ }e—{v,w}er) Of UNIQUE LABEL
CoVER is defined as follows: given is a weighted graph= (V, E) (which may have
multiple edges) with weight functiowt : £ — (0, 1], a set[L] of allowed labels, and for
each edge = {v,w} € E two permutationsr?,c? € &, such that® = (c¥) !, i.e.

they are each others inverse. We say that a fundétiol — [L] (called a labelling of the

8



vertices) satisfies an edge= {v,w} if o?(l(v)) = I(w), or equivalently, ifo?’(l(w)) =
I[(v). The value of is the total weight of edges satisfied by it, i.e.

Valx(l) = > wi(e) (20)
l satiesfieSE

The value ofX is the maximum fraction of satisfied edges for any labellirey,

Val(X) = mlaxVaIX(l). (21)

WLOG, we will always assume thai’ wt(e) = 1, i.e. thatwt is in fact a probability
distribution over the edges of. We denote byE(v) the subset of edges adjacentuto
i.e. E(v) = {e|v € e}. The probability distributionwt induces a natural probability
distribution on the vertices ok where the probability of choosing s 3 D ecB(w) Wh(e),
andwt also induces a natural distribution on the edge$/6f) where the probability of

: : wt(e)
choosinge is el

Whenever we speak of choosing a random elemelit & or E(v), it will be according
to these probability distributions, but to simplify the peatation, we will simply refer to it
as a random element. For the same reason we will refer to @iofmacof the elements of
V, E or E(V') when in fact we mean a set of vertices/edges with probaliiggsc.

A UNIQUE LABEL COVER problem wheré? is bipartite can be viewed as a two-prover
(one-round) game in which the acceptance predicate of thiftevds such that given the
answer for one of the provers, there is always a unique anfsararthe other prover such
that the verifier accepts. The probability that the verifisregpts assuming that the provers
use an optimal strategy is th&mal(X). Hence the terminology “Unique Games”. We will
be interested in the gap version of thalldue LABEL COVER problem, which we define
as follows.

Definition 2.13. GAP-UNIQUE LABEL COVER, , , is the problem of, given a NIQUE
LABEL COVER instanceX with label set[L], determine whetheVal(X) > 1 — n or
Val(X) <.

Khot's Unique Games Conjecture (UGC) then asserts thatdpevgrsion is hard to solve
for arbitrarily smalln and~, provided we take a sufficiently large label set.

Conjecture 2.14 (Unique Games ConjecturE_J13]for everyn > 0, v > 0, there is a
constantZ > 0 such thatGAP-UNIQUE LABEL COVER, ., 1, is NP-hard.

Thus, if the UGC is true, then any problefhsuch that @QP-UNIQUE LABEL COVER, 1,

can be reduced tB in polynomial time for all constants, v, L is NP-hard. Note that even if
the UGC turns out to be false, it might still be the case tha®-®NIQUE LABEL COVER, . 1,

is hard in the sense of not being solvable in polynomial tiamg, such a (weaker) hardness
would also apply to Mx 2-SAT and (as far as we are aware, all) other problems for which
hardness has been shown under the UGC.



3 Approximating M AX 2-SAT

To approximate Mx 2-SAT, the common approach is to relax the integer program Equéip
to a semidefinite program by relaxing each variabléo a vectory; € R**+!. In addition,

we introduce the variable, € R™*!, which is supposed to encode the value “false”. The
constraintz; € {—1,1} = S° translates to the constraint thate S, i.e. that each vector
v; should be a unit vector. The value of an assignmest (v, ..., v,) € (S*)"*! to the
relaxation is then

3 — bIUi Uy — bg’l)j sV — blbg’l)z‘ . ’Uj
4 )

SDP-Valy (v) = > wt(3)) -

’l,b=(b1fl‘i\/b2xj)€\lf

(22)

wherev; - v; is the standard inner product on vectorsRif,

This semidefinite relaxation was studied by Goemans andawition [8]. For their
improved approximation algorithm, Feige and Goemans [fkimered a strengthening of
this semidefinite program, by adding, for each triplg, v;, v, } C {vo,. .., v, } the triangle
inequalities

UZ'-Uj—f—’UZ‘-’Uk—i-’Uj-’UkZ—l —’UZ‘-’Uj—i-’UZ‘-’Uk—’Uj-’UkZ—l

Ui-vj—vi-vk—vj-ka—l —’l)z‘-’l)j—’l)z‘-’l)k—i-’l)j-’l)kz—l.

These are equivalent to inequalities of the fatm — v;|[* + [Jv; — vg||* > [|vi — vgl?,
which clearly hold for the case that all vectors lie in a of@hsional subspace 6f* (so
this is still a relaxation of the original integer prograrbyt may not necessarily be true
otherwise. They are also equivalent to requiring that theevaf any possible clause on the
variableszq, ..., z, is at mostl which, again, clearly holds for a boolean solution.

In general, we cannot find the exact optimum of a semidefinibgrmam. It is however
possible to find the optimum to within an arbitrarily smaldéte factor. We ignore this
point for notational convenience and assume that we care $bév semidefinite program
exactly.

Given solution vectorgvy, . . ., v,) maximizing SDP-Valy (v), we will produce a so-
lution (x1,...z,) € {—1,1}" using some rounding method, which will typically be ran-
domized. For consistency, we require that this roundinghogetlways rounds; and —v;
to opposite values. To determine the approximation ratithefalgorithm, we analyze the
worst possible approximation ratio on the cladsgV «;) for any vector configuratioE.
This gives the a lower bound on the approximation ratio:

E[3 — Ty — CCj — CCZ'CCJ']

min ,
ve(Sn)n+l 3 — vg - v; — Vg - Vj — U+ Vj

(23)

Note that because of the consistency requirement, the dpmation ratio of the clausé—z; V z;) equals
the approximation ratio of the clause; V z;) with v; negated, and similarly for other clauses with negated
variables.
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where the minimum is over aéasiblevector solutions to the SDP, and the expected value
is over the randomness of the rounding method. Typically,rdunding of the vectou;

will only depend orvg andv;, and so the minimum in Equatiof{23) only needs to be taken
over the three vectors), v; andwv;.

3.1 The LLZ algorithm

The best approximation algorithm known foraM 2-SAT (hereafter referred to as the LLZ
algorithm) is due to Lewin, Livnat and Zwick[L7]. It uses tB®P relaxation described
above, including the triangle inequalities. In order todlie® the rounding method, it is
convenient to define some notation. Given a solutiag) . . ., v,) to the SDP, we define

& = vo-v; andv; = Guo+4/1 — £29;, i.e. v; is the part ofy; orthogonal tav, normalized
to a unit vector.

Lewin et al. consider the following general class of rougdinethods, which they call
THRESH™: First, a standard normal random vectois chosen in the:-dimensional
subspace oR"*! orthogonal tovy. Then, the variable;; is set to true iffo; - r < T(&;),
where the threshold functidfi(-) is (almost) arbitrary, and it is convenient for us to have it

on the form
T(z)=&"! (1_7‘1(5“)> , (24)

wherea : [-1, 1] — [—1, 1] is some function which is (almost) arbitrﬂyl'he consistency
requirement on the rounding method translates to requithiag7” is an odd function (or
equivalently, that: is an odd function).

The reason that it is natural to formulafein terms of the functiom becomes evident
when we analyze the performance ratio of the algorithm. N v; - » is a standard
N(0,1) variable, implying that:; is set to true with probabilitﬁ%. In other words, the
expected value af; is simply E[z;] = a(¢;), and thus, we can think of the functianas
controlling exactly how much we lose on the linear terms wivenround the solution to
the semidefinite program.

In order to evaluate the performance of the algorithm, we ated to analyze perfor-
mance on the quadratic terms, which we do by analyzing thegtitty that two variables

x; andx; are rounded to the same value. ket= v; - v; andp := 0; - 0; = %
—2)(1-¢2

It is readily verified that the scalar produats: r and®; - r are standarav (0, 1) variables
with covariancep, and thus, the probability that - » < T'(¢;) andv; - r < T'(¢;) is sim-
ply I's(a(&),a(&;)). By symmetry, the probability that bothy andz; are set to false is

®In the notation of [[I7], this corresponds to settisfz) = T(z)v1—x2, or a(z) = 1 —
20 (S(x)/v1—22) (we may, w.l.o.g., assume th@t# +1 for all 4).
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I's(—a(&), —a(&;)). Thus, the expected value of the texgx; is

2Pr[z; =] =1 = 2(T5(a(&), al§s) + Tp(—al&i), - (fj)))—
= Al5(a(&), a(&))) + al&i) + alés) — (25)

(where we used PropositignP.9), and the expected valueeafitluser; V =; becomes

3 — Elz;] — Elz)] — E[wizy] 2 —a(&) — a(§;) — 2T5(a(&), al§))) (26)

4 2

For their best algorithm, Lewin et al. choosgr) := -z to be alinear function, where
6 =~ 0.94016567, i.e. the apparent approximation ratio. Note that this ahd0] is not
the same as that described Inl[17] but is more natural andaaply) achieves the same
approximation ratio since its behavior around the worst casfigurations is the same. See
Appendix[B for details on the difference between these twmding functions. Define

4—20(& + &) — 4T, (ﬁfsz,ﬁﬁ )
6-G-p n

i.e. the expected approximation ratio of the configurati@ns;, p), using a specific choice
of 3. Let

aﬁ(f’u&]’p) =

a(ﬁ) = min aﬂ(é-l)é-ja )a (28)

&, fyvl)

i.e. a lower bound on the approximation ratio achieved fopecsic 3, where(&;, 5, p)
ranges over all configurations satisfying the triangle usijies. Finally, let

arpz = max a(f), (29)
Bel—1,1]
i.e. a lower bound on the best possible approximation ratierwlettinga be a linear func-
tion.

3.2 Simple configurations

We represent a configuration for the SDP by the three scatatupts(;,¢;, p), where
p = v; - v;. When showing hardness of A 2-SAT, we will reduce WIQUE LABEL
CoVvER to MAX 2-SAT. The reduction is parametrized by a configuratign¢;, p) of the
SDP. However, the reduction needs the configuration to bespéeific form.

First, it needs the configuration to satigfy= ¢;, in other words, that both; andv;
have the same angle tg. This restriction is quite natural; considering the symmef the
linear terms in the quadratic program, it seems intuitivat the weight on the two linear
terms should be distributed fifty-fifty for a worst case coufafion, i.e. that; = &;.

Second, the reduction needs the configuration to sati;| + p = —1, in other
words, that we have equality in one of the triangle inedigalitThis restriction is also quite
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natural; the triangle inequalities cut away a part of thefigmmation space in which there
are extremely bad configurations, and sticking as close ssilge to this part of the config-
uration space would intuitively seem like a good approacHifaing bad configurations.

We will refer to a configuration satisfying the two critergri.e. a configuration of the
form (£, ¢, —1+2|¢|) for some§ € [—1, 1], as asimple configuratior. The worst configu-
rations found by Lewin et al. are rough(§.169, 0.169, —0.662) and(—0.169, —0.169, —0.662),
both being simple configurations.

Motivated by this restriction to simple configurations, vefide

2 — 28¢ — 2T'5(6¢)
2-¢- ¢
to be the expected approximation ratio on a specific simpidiguration¢, wherep =
2
—1+2E -6 _ [EI71 ig the value ofj for the simple configuratio. Analogously toa(S3)

1-¢2 ¢+l
andaLLZ, let

05 (€) = apl6, €, —1 + 2l¢]) = (30)

a (B) = gefl[fii{ll]ag(f) (31)
Arry = ﬁg[lffl]af(ﬁ)a (32)

i.e. lower bounds on the approximation ratio for a specifmiof of 3 and the best approx-
imation ratio for any choice off, when only considering simple configurations. Clearly,
we havearrz < o), ,, and unless Lewin et al.'s analysis is wrong, we have equalit
Appendix{A, we briefly discuss the actual numeric valuepf ,,.

It is possible to show that the right hand side of Equatiaf) (82hdeed maximised by
setting3 = o, , (see AppendiK/ALR for a proof), and in fact, we need this faladting
an expression foti; ; , that matches the inapproximability yielded by the reducfiom
UNIQUE LABEL COVER.

3.3 Approximation of A-mixed clauses

In order to be able to show matching inapproximability, weeganother formulation of
o, We show that for an appropriately chosen configuratioand imbalanced, we
can not get a better approximation ratio th@p, , on the configuratiorg for a A-mixed
clause even if we change the value®fThis is not quite as trival as it may sound—for the
regular clausé¢z; \V z;), we can do better on any specific configuratfoby adjusting the
value of —if £ < 0 then increasing? will give a better approximation ratio, and§f> 0
then decreasing will give a better approximation ratio—but in doing so we dExse the
performance on the configuratiors, i.e. on the clausé—x; v —z;). Formally, we show
(see AppendikAl3 for a proof):
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1:th bit
z1 | T9 Probability
(€1+8/2=0
A1 (A-E)/2=0+8)/2
(I1—-[Eh/2=01+¢)/2
AL -8)/2=-¢

Table 2: Distribution of theé:th bit of z; andz+ (recall that{ < 0).

Proposition 3.1. There are € (—1,0) andA € (—1, 1) such that

_ 2 — (1+ A)p — 2T 5(p)
ez = SNy 2—Af—|g

(33)

~ —1
wherep = Igiﬁ

The values of and A given by Propositiol3l11 are roughfy~ —0.1625, A ~ 0.3673.
The difference ir¢ from the previously mentioned worst case vati@. 169 from [17] is
due to the fact that we use a slightly different rounding fiorc Again, see AppendixIB
for details on the difference.

We remark that the choice of sign féris arbitrary (essentially, it corresponds to the
choice of whether most of the variable occurences in our Wed 2-SAT instance should
be positive or negative), the proposition holdsgaf (0, 1) as well.

4 Reduction from UNIQUE LABEL COVER

In this section, we reduce NUQUE LABEL COVER to MAX 2-SAT. Lete > 0. We will
show hardness of approximatingAM 2-SAT within o, , + O(e). Letn > 0 andy > 0
be parameters which will be chosen sufficiently small and.lbe the corresponding label
size given by the UGC. We will reduceAB-UNIQUE LABEL COVER,, , ;, to the problem
of approximating M\x 2-SAT via a PCP verifier whose queries correspond to checking a
A-mixed MAX 2-SAT clause.

The reduction is controlled by a parametee (—1,0) and an imbalance parameter
A € (—1,1). The values of these will be chosen later.

Given is a (NIQUE LABEL CoVERinstanceX = (V, E, [L], {0 }e—{v,w}er)- A proof
¥ that X is (1 —n)-satisfiable will consist of supposed long codes of the Ebe&llv € V.
Denote byf, : {—1,1}* — {—1,1} the purported long code of the label of vertexFor
a permutationr € Sy andz = zy...xp € {—1,1}*, we letox = z,() ... z,). The
PCP verifierV is described in Algorithm 1.

14



Algorithm 1: The verifiery

VX, E = {fo}vev)

Q) Pick a random € V.

2 Picke; = {v,w;} andes = {v, ws} randomly fromE(v).

3) Pickzy,z9 € {—1,1}* such that each bit of ; is picked indepen-
dently with expected valug and that the:th bits ofz; andx, are
(—1 + 2[¢|)-correlated (see Tabl@ 2).

(4) Fori =1, 2, leth; = fwi(agixi).

(5)  With probability 252, accept iffb; V bs.

(6) Otherwise, i.e. with probabilitﬁ;—A, accept iff—b; vV —bo.

We now analyze the properties Bf Arithmetizing the acceptance predicatelgfwe
get that the probability that accepts a proof is

E 3 = A(fuy (08,71) + fun(06,72)) = fu, (08, 21) fus (08, 72)

M
v,e1,2,T1,22 4

(34)

wherev, eq, es, x1, x5 are picked with the same distribution as they are picked by#mi-
fier.

4.1 Completeness
The completeness 0f is as follows:

Lemma 4.1 (Completeness)If Val(X) > 1 — 5, then there is a prooE that makes)
accept with probability at least

2 - AL—[¢

2
Proof. Suppose there is an assignment of labels to the vertic&s afch that the fraction
of satisfied edges is at ledst- 1. Fix such a labelling, and let, : {—1,1}* — {—1,1} be
the long code of the label of. Note that for a satisfied edge= {v, w}, fi,(c'z;) equals
the value of thé,:th bit of z; (wherel, is the label of vertex)

By the union bound, the probability that any of the two edgesinde,; are not sat-
isfied is at mosRy. For a choice of edges,, e, thatare satisfied, the expected value of
Jw; (08, 7;) is simply the expected value of thgth bit in z;, i.e. £, and the expected value
of fu, (08, 71) fu, (08, x2) is the expected value of thig:th bit of 2, x5, i.e. —1+2|¢[. Thus,
for such a choice of edges, the acceptance probability besom

3—2A8 = (=1+2[f])  2-AL—[¢]
4 N 2

(1—2n) (35)

(36)

O
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4.2 Soundness

The soundness df is as follows:

Lemma 4.2 (Soundness)For anye > 0, n € (—1,0) and A € (—1,1) there exists a
~v > 0, such that ifVal(X) < ~, then for any proof, the probability thaty accepts is at

most 2 1+ A 2r
max —(+A)p- ﬁ(#) + €, (37)
pe[-1,1] 2

wherep = %

Proof. As is common, the proof is by contradiction. Assume that tdeer of X is at most

Val(X) < v. Take any proot = {f,},ev. Defineg,(z) = Ee:{v,w}EE(v) [fuw(oez)],

andy, = E;[g,(x)]. Assume that the probability that the verifier accepts thimpis at

least

2—(1+A)py —205(p0)
2

We will show that in that case, it is possible to satisfy a tanis(that depends only ah
ande) fraction of the edges oX. Settingy smaller than this constant will yield the desired
result.

Note that the probability distribution af;, x5 is the same as that induced by first pick-
ing z1 at random inB; and then constructing, from z; in the same way is constructed

from 2 in the Beckner operatdf;, for g = 45 andj = —1-4 = EI—;} Thus, the expected

value ofg, (z1)g,(z2) equalsS;(g,). So by the definition of, and,, we can rewrite the
probability that the verifier accepts as

Pr[V accepts] > E

+e€. (38)

Pr[V acceptsl] = ) xEx [3 — Ago(21) + gv(ZQ)) - gv(xl)gv(xz)}
_ E [3 — 28u, = Sﬁ@v)}
v 1

Plugging in Equatior{338), this gives

E [3 — 281y — Sﬁ(gv)}

4
E[4T5(k0) + 200 =1 =S5(g0)] > de

2

v v

E [2 = (L4 A)py = 2Mp(p0) 6}

Note thatdl's (1) +210 —1=S5(g0) = 2(L5(tt0) +T5(—p10)) —1-S5(g0) < 2—1—(-1) =
2, so it must be the case that for a fraction of at I@i{ > ¢ of the verticesy € V, we
have

Sﬁ(gv) < 4Fﬁ(:uv) + 2y — 1 —€. (39)
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Let Vgood be the set of all such. Sincep < 0 we have by (extended) Majority Is Stablest

(Corollary[Z11) that for alb € Vyooqthere must be somiec [L] such thaﬁnffk(gv) >,
wherer andk are constants depending only oandgﬂ Thus, for anyv € Vgoos We have

T < Inf?k(gv) = E [Inf(f;(i)(fw)h (40)

e={v,w}

This, and the fact tha‘lnfff(i)(fw) < 1 for all 4, implies that for a fraction of at least

I:Z/g > % of the edges = {v,w} € E(v), we haveInffg’“(i)(fw) > 7/2.

orveV,let

C(v) = {ie L| Inf=F(f,) > 7/2 Vv Inf=F(g,) > 7} (41)

Intuitively, the criteriorﬂnff’“(fv) > 7/2 means that the purported Long Codes of the label
of v suggests as a suitable label far, and the criteriorinffk(gv) > 7 means that many
of the purported Long Codes for the neighbours aluggests that should have the label
i. By the fact thab", Inf="(f,,) < k, we must haveC(v)| < 2k/7 + k/7 = 3k/.

We now define a labelling by picking independently for eacle V' a (uniformly)
random labeli € C(v) (or an arbitrary label in cas€'(v) is empty). For a label €
Vgood With Inf?k(gv) > 7, the probability thaw is assigned labelis 1/|C(v)| > 7/3k.
Furthermore, by the above reasoning and the definitioff,adt least a fraction /2 of the
edgese = {v,w} from v will satisfy o?(i) € C(w). For such an edge, the probability
that w is assigned the labet! (i) is 1/|C(w)| > 7/3k. Thus, the expected fraction of
satisfied edges adjacent to anye Vyood is at leastr /2 - (1/3k)?, and so the expected
fraction of satisfied edges in tdfiab at least - é% (note that this is a positive constant
that depends only oaand¢) and thus there is an assignment satisfying at least thas tot
weight of edges. Making sure that< -, we get a contradiction on the assumption of

18k2"
the acceptance probability (Equati@nl(38)), implying tiet soundness is at most

2 — (14 A)pay — 205 (110
Pr[V acceptsl] < E (1+ )g p(u)+€

2—(1+A)p—2I';
< max (L4 &)u = 205(n) +e
pe(-1,1] 2

(42)

as desired. O

“The dependency afistems from the fact that, is a function fromB; toR, whereq = %
SWe remind the reader of the convention of Seclioh 2.5 thathméces of random vertices and edges are
according to the probability distributions induced by theights of the edges, and so choosing a randamV’

and then a random € E(v) is equivalent to just choosing a randent E.
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4.3 Wrapping it up

Combining the completeness and soundness Lemmas andgigckimall enough, we get
that, assuming the UGC, it is NP-hard to approximatex2-SAT within a factor
2—(1+A)p—2T5(n)

e s sy v O (43)

Setting¢ and A to the values given by PropositienB.1, this equajs , + O(e), proving
Theoren_IIL. Again, we would like to emphasize the valuesrgby Propositiof 3l1. The
large value ofA =~ 0.3673 in particular is interesting, since the weights on positwel
negative occurences of variables éi;é and1=2, which is roughly68% vs.32%. We find
it remarkable that so greatly imbalanced instances shautidohardest to approximate.

5 Concluding remarks

We have shown that it is hard to approximat@¥2-SAT within o, , +¢, wherea; ; , ~
0.94017 is the guaranteed performance ratio of the LLZ algorithm ectar configurations
vo, V3, vj such thaty; - v = v; - vo and such that one of the two triangle inequalities
v - Vo +vj - vg + v V5 2> —land—wv; - vy — Vi - Vo + V- Uy > —1 holds with equality.

5.1 Open problems and further work

Beside the obvious importance of resolving the Unique Gabwgecture, there are a few
other, quite possibly easier, questions that would be nicettle.

e Given the result in this paper and previous works on intégrglp for e.g. Max
CurT [A8], it seems likely that we should be able to show a matcibegrality gap
for the SDP relaxation of Mx 2-SAT (since otherwise, the UGC would be false, and
it seems unlikely that a careful analysis of thek2-SAT SDP should be enough to
disprove the conjecture), but so far, our attempts at shpttiis has been elusive.

e It would be nice to have a proof that there are worst configumatfor the LLZ
algorithm that are simple, i.e. that the performance ratiodeed~, ; ,.

e Given that progress for Mx 2-SAT has tended to go hand in hand with progress
for Max DiI-CuT, it seems natural to conjecture that imbalanced instartvaesld
be harder also for the latter problem. However, our redactaies heavily on the
special structure of the worst-case configuration foxXVR-SAT, in particular, that
& = & (this causes the PCP verifier's queries to be random vasidfaien the same
distribution, something that is critical for the soundnessilysis). This is not the
case for the worst-case configurations for Lewin et al.sXVD1-CuT algorithm—
indeed, for configurations whegg = ¢; the linear terms cancel out and the problem

18



behaves as its balanced version. Thus, it seems some (pestinafl) new idea would
be needed for the PCP verifier in order to show improved hasifee Max Di-CuT.

e It would be interesting to determine how the hardness of@pprating MAX 2-SAT
depends on the imbalance of the instances considered (foitadble definition of
imbalance for general instances and not just instancesstiogsonly of A-mixed
clauses). For instance, how large can we make the imbalawtstidl have instances
that are hard to approximate within, s@y)5?
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A Analysisofa;; ,

In this section we show some properties\gf; .

A.1 The numeric value ofa;, ,

First, we will (very briefly) discuss the actual numeric vabfo, ; ,. Let B = 0.9401656724.
To give a feel fora; (&), Figurell gives a plot of this function in the intenélke [—1, 1],
along with the liney = B (dashed). The one-dimensional optimization problem

min g (&) (44)

can be solved numerically to a high level of precision. Thigga lower boundy, , , >
0.9401656724. The two minima seen in FiguEé 1 turn out to be roughly= —0.1624783294
and§; = 0.1624783251. In order to obtain an upper bound af; ,, we can then solve the
one-dimensional optimization problem

mgx min (045 (&1), oy (fg)) (45)

numerically to a high level of precision. This results in goper bound ofa;,, <
0.9401656725. In conclusion, we haviy;; ,, — 0.94016567245| < 5101,
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Note that our worst configurations ~ +0.1625 differs slightly from the worst con-
figurations¢ ~ +0.169 found by Lewin et al.. This is because of the small difference
in behaviour of the two rounding functions (see Apperndix B approximation ratio is
marginally worse when using the original function bfl[17{her than the one used in this
paper [20].

A.2 The optimal choice of3

Proposition A.1. o~ (o}, ,) = o, ,. In other words, the function™ () is maximized

by settings = a; ;.
Furthermore, if¢ satisfiesa”_  (£) = o, , then so does-£. In other words, if is a

ALz

worst-case configuration fo¥ = o ; ,, then so is-¢.

Proof. Define

gn(.6) = (1- 56— 13(50) —ap,; - (1-5- &) o)
L7 — 2—-T; —T5(— 2 —
PR S I T S g

to be the advantage over the guaranteed approximationaftiee LLZ algorithm when

rounding the configuratiof, £, —1 + 2|¢|) using a particular value of (where we used
PropositioZP to get Equation{47)). The first part of thepmsition amounts to showing
that

gain(ag; 7, §) >0 (48)

forall¢ € [-1,1].

Let 5* be such thatv™ (5*) = o, ,, i.e. an optimal choice of. By definition, we
have thagain(5*, ¢) > 0 for all simple configuration§. Also, from Equation[{47) we see
thatgain (5, —§) — gain(5,£) = (8 — o )¢ for all 5 and§. Let

gain (0,) = ZE2(5,6) = € (1+ T3(56)) (49)
be the derivative ofain (in the form of Equation[{46)) with respect t& Note that by
Corollary[D.2 we have +I';(5¢) € [0,1]. In particular, the sign of the derivative depends
only on the sign of.

Consider an arbitrary configuratigh Let¢’ = ¢ if (5% —a;; ,)§ > 0, and¢’ = —¢
otherwise. It might help to think of’ the following way: if £ has the right sign for the
function gain(-, £) to be increasing frong* to o, ; ,, we are happy, but otherwise we flip
¢, thereby also flipping the sign ghin .
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Note that since’ = +&, we have by the observation above thain(a;; ,,&') =
gain(ay; ,,&). By the Mean Value Theorem, there igfabetweens* anda ; , such that

gain(aZszf) = gain(ﬁ*,f’) + (aZLZ - %) gainﬁ(ﬁ/’fl)
> (8" —ap)€ (1+THBE)) >0, (50)
as desired.
The second part of the proposition follows fremin(« ; ,, &) = gain(a;; ,,—£). In
particular, if¢ is a worst case configuration, they both equal O

Analyzing this a bit further will (unsurprisingly) show thd = o, , is indeed thenly
maximum of the functiorx™ (). In order to show this, it suffices to realize tifat 0 can
never be a worst-case configuration.

A.3 Proof of Proposition[3.1

In this section, we prove PropositibnB.1, which states fbatan appropriately chosen
configuration and imbalance\, we can not get a better approximation ratio thgf) ,
on the configuratiorg for a A-mixed clause even if we change the valugjof

Proposition[3] restated. There are¢ € (—1,0) andA € (0, 1) such that

o — max 2—(1+A),U,—2Fﬁ(u)
LLZ  e-1) 2 — A¢— [

(51)

wherep = '51—;}

Proof. Let 3* = a;,;,, and let{ ~ —0.1625 be a worst configuration, i.e. such that
ag.(§) = app . Note that forA € [-1, 1], the quantity

2— (14 4)5%¢ —20%(87¢)
2 - Ag—[¢]

(52)

is the approximation ratio of A-mixed clause on the simple configurati®nAnd since—¢
is also a worst configuration (PropositibnA.1), we have Bgation [5P) equals;; ,,.
Now, similarly to the proof of PropositidnA.1, let

1+ A

_AE —
gain(f) = <1 - Tﬁf - Fﬁ(ﬂf)) —Qrrz- 2-a8-

5 (53)

be the advantage over the approximation ratjg , on aA-mixed clause when rounding
the configuratiorg using a particular value gf. Again, since botlf and—¢ are worst case
configurations, we have thgtin(5*) = 0. We want to show that there is a suitable choice
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of A such thatgain(3) < 0 for all 3. Substitutingy for 3¢ then gives the desired result.
Let

A
gaing () = ~¢ (5= + T5(00)) (54)
be the derivative ofain. Solvinggain;(3*) = 0 for A gives
A =—2T%(3*¢) —1 =20 (<I>1 (1 _25*5> /\/E> -1 (55)

(see CorollaryDJ2 for the derivative df;). Note that clearlyA < 1, and sincef{ <
0 we also haveA > 0, as promised. Furthermore, we have that the second deevati

gaings(f) = —§2Fg(ﬁ§) which, sincel';(-) is a convex function (see CorolldyID.2),
implies thatgain is a concave function, and thus
max gain(8) = gain(3*) = 0, (56)

and we are done.
O

B The tale of the two rounding functions

The rounding function of the LLZ algorithm used in this papéfers from the rounding
function used by Lewin et al. [17]. The rounding functiondigethis paper is (z) = -z,
where = o, =~ 0.94016567 (see Sectioh 31 for further details). The rounding func-
tion used in[[17]isia(x) = 1-2®(S(x)/V1 — 22). Here,S(z) = —2 cot(f(arccos z))v1 — z2

wheref is the linear rotation function given by
£(0) ~ 0.588314586 + 0.64667394. (57)
az(x) can be simplified to
az(z) =1 —2®(—2cot(f(arccosx))) = 2®(2 cot(f(arccosx))) — 1. (58)

Figure[2 gives plots of the functions () andas(x) for the intervalx € [0, 1] (since both
functions are odd we restrict our attention to positiJe As can be seen, the functions
are fairly close to each other. Most importantly, the fumes behave almost the same
in the critical intervalz € [0.1,0.2]. Nevertheless, there is a small difference between
the functions in this interval as well, and as noted in AppeBdI] this causes the worst
configuration when using; (z) to be slightly different from the worst configuration when
usingaz(x). This small difference in fact causes the (apparent) appration ratio when
usingaq (z) to be marginally better than when usiag(z).

For largez, the functions:; (z) andaz(x) differ noticeably, but usinghe best rounding
does not matter there; these are configurations that arera sense easy to round, and any
function with a reasonable behaviour suffices to get a dgcgabd approximation ratio.
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Figure 2:a;(x) vs. az(x)

C Proofs of some Fourier-analytic identities

In this section, we prove some basic Fourier-analytic itiestwhich were given in Sectidn 2.2.

Proposition[Z] restated.The set of function§U;’} 5[, forms an orthonormal basis w.r.t.
the scalar product-, -).

Proof. First, note that the functiotv,, satisfiesE[U, (x;)] = 0 andE[U,(z;)?] = 1. Take
any S,T C [n], and denote byn(i) = |S N {i}| + |T" N {i}| € {0,1,2} the number of
occurences of in the two sets. We have

(U7.05) = E

[TUa() [[Ual=i)

€S €T

= TIEW, @), (59)
=1

where the last equality uses thatandz; are independent far # j. If S = T we have
thatm(i) € {0,2} for all i and thus(U;,Ul) = 1. If S # T there is some such that

m(i) = 1and thus(US,UT) = 0. O
Proposition[Z3 restated.
Infi(f) = > f3 (60)
SC[n]
€S
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Proof. Forz € {—1,1}", letz Ui denote the bit stringz1, ..., x;—1, —1,Zi41,...,2y)
(i.e. we set the:th bit), and letz \ i denote the bit strindz1, ..., 21,1, Zit1, ..., Tn)
(i.e. we unset the:th bit).

Split f into f(z) = fo(z) + fi(z), where

fol) = > fsU7 (x) (61)
iZS

fi@) = > U7 (@) (62)
€S

Note thatf, does not depend on the variahig We have

E[f(x) | Llyeoe sy Lj—1yLj415--- ,xn]
q(fo(z) + fi(z Vi) + (1 = ) (fo(x) + fr(z \ 4))
where we use the fact thf(z U i) = — fi(z \ i) 2. This implies
le[f(.%') ’.%'1, ey Li—1, Lj41y - - - ,{L‘n]
qfi(z Vi) + (1 = q) fi(x \ i)?
= E,[fl(x)Q]xl,...,xi_l,xiﬂ,...,xn]. (64)

Averaging over allz, we get that

Inf;(f) = E[fi(2)*] = (f1. f1) = ) f3, (65)

i€S
and we are done. O

Proposition[Z8 restated.

Tpf(z) =Y pP*lfsU; (). (66)

SC|n]

Proof. Clearly, it suffices to show that for evetyE,, [U,(y;)] = p - Ug(z;). If z; = 1, we
have

BlUq(y)] = a1 =p)Uq(=1) + (1 —q(1 = p))Uy(1)
= —(1=9)1 =p)Us(1) + (1 = q(1 = p))Uqs(1) = pUy(1), ~ (67)

where we used/,(—1) = —Uq(l)l;qq. The caser; = —1 is handled analogously. O
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D Proofs of some properties of",

In this section we prove some useful properties abdout We start with the proof of
PropositioZB, which we restate for convenience.

Proposition[Z3 restated. For all p € [—1, 1], p1, u2 € [—1, 1], we have
Lp(—pa, —p2) = Tp(pr, p2) + p1/2 + piz/2 (68)

Proof. Lett; = ! ( 5 ) and letX andY be two p-correlatedN (0, 1) variables.

Clearly, I'p(—p1, —p2) = Pr[X < —t3 AY < —to]. Assume thaf; < 0,0 < 0
(implying t; > 0 andt, > 0). We have

Lo(pr,po) = Tp(=p1,—p2) = PriX <ty AY <to] = Pr[X < —t1 AY < —ty]
= PrX <OA|Y|<t]+

H0< X <t A—ta <Y <0+

[0

[

U T

0< X <t A0<Y <t] +

IX| <t AY < —t]. (69)

g

r

Note thatPr[0 < X < t; A0 <Y <ty =Pr[-t; < X <0A -ty <Y < 0] and that
PrX <OAY|<ty] =Pr[X >0A| -Y| < ts] =Pr[|Y| < t2]/2 = —po/2. Thus,
Cp(pa, p2) = Tp(—p1, —p2) = PriX <OAY|<ta] +
PI‘[|X| <t N —ty < YSO] +
PI‘[|X| <tHi\NY < —tz]

= —p1/2— p2/2, (70)
as desired. The other three sign combinationg/foandus are handled analogously. [
1—x

Next, we compute the derivative Bf.. For the rest of this section, lgtz) = @~ (152).

Proposition D.1. For p € (—1,1), we have

Iy 1 [ t(p2) — pt(p)
=—— 71
a/ﬂ (/’L17 /’LQ) 2 ( ﬂ ( )
Proof. This follows from the fact thal', (1.1, u2) can be written as
Ho) t(p2) — px
T,(pr, pio) = 2)® | 22 ) d, 72
P(:U'l NQ) /x:oo ¢( ) < \/m ( )
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giving

or t — pt
o r.iz) = ﬂmnwum»¢<i@l—&%ﬁ>. 73)
K1 1—p
Usingt'(z) = — g7 the result follows. O

As a simple corollary, we get

Corollary D.2. For p € (—1,1), we have

%—FJ(M) =—® (\/%t(uo (74)

Note that CorollarfDI2 implies tha%%"(u) > 0 for all g, i.e. thatl', is a convex
function.

Proof. Indeed,

or, ar,
a = a 9 + a 9
(1) i (1, 1) s (1, 1)

_ 2_<_1¢<w>>
2 1—p2
_ 1-p
= o (|1 %). (75)

Here, we used the fact thBy,(u1, p12) = I'p(12, p11), SO the derivative of , with respect to
12 can also be computed using ProposifionlD. 1. O
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