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Abstract

We show that, assuming the Unique Games Conjecture, it is NP-hard to approximate
MAX 2-SAT within α−

LLZ
+ ε, where0.9401 < α−

LLZ
< 0.9402 is the believed

approximation ratio of the algorithm of Lewin, Livnat and Zwick [17].
This result is surprising considering the fact that balanced instances of MAX 2-

SAT, i.e. instances where each variable occurs positively and negatively equally often,
can be approximated within0.9439. In particular, instances in which roughly70%
of the literals are unnegated variables and30% are negated appear less amenable to
approximation than instances where the ratio is50%-50%.

1 Introduction

In their classic paper [8], Goemans and Williamson used semidefinite programming to
construct0.8785-approximation algorithms for MAX CUT and MAX 2-SAT, as well as
a 0.7960-approximation algorithm for MAX DI-CUT. Since then, improved approxima-
tion algorithms based on semidefinite programming have beenconstructed for many other
important NP-hard problems, including coloring ofk-colorable graphs [12, 9], and fairly
general versions of integer quadratic programming on the hypercube [3].

Meanwhile, the study ofinapproximabilityhas seen a perhaps even bigger revolution,
starting with the discovery of the PCP Theorem [2, 1]. It has led to inapproximability
results for a myriad of NP-hard problems, several of them tight (e.g. SET COVER [6], M AX

CLIQUE [10], and MAX 3-SAT [11]) in the sense that they match the best known algorithmic
results up to lower order terms.

However, for constraint satisfaction problems in which each constraint acts on two vari-
ables, tight results, or in some cases even any results, havebeen more elusive. As a possible
means to remedy this, Khot [13] introduced the so called Unique Games Conjecture (UGC),
asserting the existence of a very powerful two-prover system with some specific proper-
ties. Assuming the UGC, Khot showed superconstant hardnessfor M IN 2SAT-DELETION.
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Since then, the UGC has been shown to imply hardness for several other problems, includ-
ing 2− ε hardness for VERTEX COVER [15], αGW + ε hardness for MAX CUT [14] (where
αGW ≈ 0.8785 is the approximation ratio of the Goemans-Williamson algorithm), super-
constant hardness for SPARSESTCUT [16], coloring3-colorable graphs with as few colors
as possible [5], and approximating MAX CLIQUE within d/poly log d in degree-d graphs
[19]. Additionally, Khot and Vishnoi [16] used the UGC to show integrality gaps for SDP
relaxations of some of the above-mentioned problems (the integrality gap of an instance
is the quotient between the optimum value of the instance andthe optimum value of the
SDP relaxation). They do this by showing an integrality gap for a natural SDP relaxation
of Unique Games and then “translating” this instance through the PCP reduction.

It should be noted that the status of the Unique Games Conjecture is highly uncertain;
there is no substantial evidence supporting the conjecture(nor, for that matter, any substan-
tial evidence against the conjecture).

For MAX 2-SAT and MAX DI-CUT, Goemans and Williamson’s algorithms were im-
proved first by Feige and Goemans [7], and then by Lewin, Livnat and Zwick [17] who
obtained a0.9401-approximation algorithm for MAX 2-SAT, and a0.8740-approximation
algorithm for MAX DI-CUT, and these stand as the current best results for both problems.
It should be pointed out that these two ratios arise as the solutions of complex numeric op-
timization problems and, as far as we are aware of, it has not yet been proved formally that
these are the actual optima, though there seems to be little doubt that this is the case.

For both problems, better approximation algorithms are known for the special case of so
calledbalanced instances. For MAX 2-SAT this corresponds to the case when every variable
occurs negated and unnegated equally often, and for MAX DI-CUT this corresponds to
each vertex having the same indegree as outdegree. The approximation ratios achieved
are≈ 0.9439 andαGW respectively, and they match the best known inapproximability
ratios under the UGC [14].1 The best known unconditional hardness for MAX 2-SAT is
21/22 ≈ 0.9546 [11].

It is natural to conjecture, especially considering these results, that balanced instances
should be the hardest (and indeed, Khot et al. [14] do that), i.e. that we should always be
able to use the presence of any linear terms to our advantage.However, as the main result
of our paper shows, this might actually not be the case:

Theorem 1.1. Assuming the Unique Games Conjecture, for anyε > 0 it is NP-hard to
approximateMAX 2-SAT within α−

LLZ + ε, whereα−
LLZ ≈ 0.94017.

Here,α−
LLZ is thebelievedapproximation ratio of Lewin et al.’s MAX 2-SAT algorithm

mentioned above. In other words, assuming that their analysis of the algorithm is correct,
Theorem 1.1 is tight. The (in our opinion very remote) possibility that their analysis is not
correct, i.e. that the approximation ratio of their algorithm is smaller thanα−

LLZ , does not

1This is not very surprising, since the balanced versions of both problems are equivalent to the MAX CUT

problem with a linear transformation on the scoring function.
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affect Theorem 1.1, it would just indicate that it might not be tight, i.e. that MAX 2-SAT

might be even harder than indicated by our result. The reasonthat we need to rely on the
analysis of Lewin et al. being correct is that our PCP reduction is controlled by a parameter
corresponding to a worst-case vector configuration for Lewin et al.’s algorithm. However,
the reduction requires this vector configuration to be of a specific form. Fortunately, the
worst configurations found by Lewin et al. are of this form.

An in our opinion quite surprising part of our result is the “amount” of imbalance: in
our hard instances, every variable occurs positively more than twice as often as negatively
(the ratio is roughly70 − 30)!

The proof relies on a careful analysis of the algorithm of Lewin, Livnat and Zwick. This
analysis provides the optimal parameters for a PCP reduction which is similar (but slightly
more involved) to Khot et al.’s reduction for MAX CUT.

The paper is organized as follows. In Section 2 we set up notation and give some nec-
essary background. In Section 3, we discuss Lewin et al.’s MAX 2-SAT algorithm and
its approximation ratio. In Section 4 we reduce UNIQUE LABEL COVER to MAX 2-SAT,
establishing Theorem 1.1. In Section 5, we conclude by discussing some related open prob-
lems.

2 Preliminaries

We associate the boolean values true and false with−1 and1, respectively. Thus, a disjunc-
tion x ∨ y is false iffx = y = 1.

2.1 MAX 2-SAT

A M AX 2-SAT instanceΨ on a set ofn variables consists of a set of clauses, where each
clauseψ ∈ Ψ is a disjunctionl1 ∨ l2 on two literals, where each literal is either a variable or
a negated variable, i.e. of the formbxi for b ∈ {−1, 1} and some variablexi. Additionally,
each clauseψ has a nonnegative weightwt(ψ) (by [4], weighted and unweighted MAX

2-SAT are equally hard to approximate, up to lower order terms). The MAX 2-SAT problem
is to find an assignmentx ∈ {−1, 1}n of the variables such that the sum of the weights of
the satisfied clauses is maximised. MAX 2-SAT can be viewed as an integer programming
problem by arithmetizing each clause(b1xi ∨ b2xj) as 3−b1xi−b2xj−b1b2xixj

4 . Note that the
latter expression is1 if the clause is satisfied, and0 otherwise. The value of an assignment
x ∈ {−1, 1}n to Ψ is then

ValΨ(x) =
∑

ψ=(b1xi∨b2xj)∈Ψ

wt(ψ) · 3 − b1xi − b2xj − b1b2xixj
4

, (1)
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and we can write a MAX 2-SAT instanceΨ as the (quadratic) integer program

MaximizeValΨ(x)
Subject toxi ∈ {−1, 1} ∀i (2)

In this paper, we will be especially interested in the familyof MAX 2-SAT instances
consisting of the following two clauses for every pair of variablesxi, xj: the clause(xi∨xj)
with weight wtij ·1+∆

2 , and the clause(−xi ∨ −xj) with weight wtij ·1−∆
2 , where the

nonnegative weightwtij controls the “importance” of the pairxi, xj (we allowwtij = 0),
and∆ ∈ [−1, 1] is a constant controlling the “imbalance” of the instance. Note that if∆ =
±1 every variable occurs only positively/negatively, and theinstance is trivially satisfiable,
whereas if∆ = 0 the instance is balanced and can be approximated within0.9439. For our
hard instances, we will use a carefully chosen∆ which will be approximately0.3673 (in
other words, the relative weight on the positive clauses will be roughly1+0.3673

2 ≈ 68%).
We will use the terminology∆-mixed clause (of weightwt) for a pair of clauses(xi ∨ xj)

with weightwt ·1+∆
2 and(−xi∨−xj) with weightwt ·1−∆

2 . For a MAX 2-SAT instanceΨ
of the above form (i.e. an instance that can be viewed as a set of ∆-mixed clauses),ValΨ(x)
can be rewritten as (note that the effect of∆ on the integer program simply constitutes a
dampening of the linear terms)

ValΨ(x) =
∑

i<j

wtij
3 − ∆xi − ∆xj − xixj

4
. (3)

2.2 Harmonic analysis of Boolean functions

Fourier analysis (of Boolean functions) is a crucial tool inmost strong inapproximability
results. Here we review some important concepts. We denote by µnq the probability distri-
bution on{−1, 1}n where each bit is set to−1 with probability q, independently, and we
letBn

q be the probability space
(

{−1, 1}n, µnq
)

. Note that in this paper we work with gen-
eral distributions rather than the more well-known case of uniform distributions (i.e. where
q = 1/2).

We define a scalar product on the space of functions fromBn
q to R by

〈f, g〉 = E
x∈Bn

q

[f(x)g(x)], (4)

and for eachS ⊆ [n] the functionUSq : Bn
q → R byUSq (x) =

∏

i∈S Uq(xi) where

Uq(xi) =







−
√

1−q
q if xi = −1

√

q
1−q if xi = 1

.

Proposition 2.1. The set of functions{USq }S⊆[n] forms an orthonormal basis w.r.t. the
scalar product〈·, ·〉 (i.e. expected value over the distributionµnq ).
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A proof of this well-known fact can be found in Appendix C. Thus, any functionf : Bn
q →

R can be written as
f(x) =

∑

S⊆[n]

f̂SU
S
q (x).

The coefficientsf̂S =
〈

f, USq
〉

= Ex[f(x)USq (x)] are the Fourier coefficients of the func-

tion f . It is a fairly straight-forward exercise to verify the basic identitiesEx[f(x)] = f̂∅,
Vx[f(x)] =

∑

S 6=∅ f̂
2
S and〈f, g〉 =

∑

S⊆[n] f̂S ĝS .

Definition 2.2. The influenceof the variablei on the functionf : Bn
q → R is

Infi(f) = E
x

[Vxi
[f(x) |x1, . . . , xi−1, xi+1, . . . , xn] ] (5)

Intuitively, the influence of the variablei is a measure of how much the variablei is able to
change the value off once we have fixed the othern− 1 variables.

Proposition 2.3.
Infi(f) =

∑

S⊆[n]
i∈S

f̂2
S. (6)

A proof is given in Appendix C. Motivated by the Fourier-representation formulation of
influence, we define the slightly stronger concept of low-degree influence, crucial to PCP
applications.

Definition 2.4. For k ∈ N, the low-degree influenceof the variablei on the functionf :
Bn
q → R is

Inf≤ki (f) =
∑

S⊆[n]
i∈S
|S|≤k

f̂2
S. (7)

A nice property of the low-degree influence is the fact that
∑

i Inf≤ki (f) ≤ k, implying that
the number of variables having low-degree influence more than τ must be small (think ofk
andτ as constants not depending on the number of variablesn). Informally, one can think
of the low-degree influence as a measure of how close the function f is to dependingonly
on the variablei, i.e., for the case of boolean-valued functions, how closef is to being the
long code ofi (or its negation).

Next, we define the Beckner operatorTρ on a functionf : Bn
q → R. For the unbiased

distribution q = 1/2, Tρf(x) is simply the expectation off(y) over a random variabley
that isρ-correlated withx. For biased distributions, the definition is a bit more complicated.

Definition 2.5. Givenρ ∈ [−1, 1] satisfyingρ ≥ −min(q,1−q)
max(q,1−q) , the Beckner operatorTρ on

a functionf : Bn
q → R is defined by

Tρf(x) = E
y
[f(y)]. (8)
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xi b Pr[yi = b]

1 1 1 − q(1 − ρ)

1 -1 q(1 − ρ)

-1 1 (1 − q)(1 − ρ)

-1 -1 1 − (1 − q)(1 − ρ)

Table 1: Distribution ofyi depending onxi.

where the expectation is over ann-bit stringy in which each bityi is picked independently
as follows: ifxi = 1 thenyi = −xi with probabilityq(1−ρ), and ifxi = −1 thenyi = −xi
with probability (1 − q)(1 − ρ) (see Table 1).

Note that the lower bound onρ is needed to make this a valid probability distribution.
Forρ ≥ 0, the probability distribution ofyi can be formulated as follows: with probability
ρ, we letyi = xi, and with probability1 − ρ, we pickyi fromB1

q .
The operatorTρ has the following very nice effect on the Fourier representation of f .

Proposition 2.6.
Tρf(x) =

∑

S⊆[n]

ρ|S|f̂SUSq (x). (9)

Again, a proof is given in Appendix C.

Definition 2.7. Thenoise correlationbetweenf : Bn
q → R andg : Bn

q → R is given by

Sρ(f, g) = 〈f, Tρg〉 =
∑

S⊆[n]

ρ|S|f̂S ĝS (10)

In other words, the well-studied noise stability of a functionf , is simplySρ(f) := Sρ(f, f).

2.3 Functions in Gaussian space

We denote byφ(x) = 1√
2π
e−x

2/2 the standard normal density function, byΦ(x) =
∫ x
−∞ φ(t)dt

the standard normal distribution function, and byΦ−1 the inverse ofΦ.
As with functions on the hypercube, we define a scalar producton functionsf, g :

R
n → R by (we abuse notation slightly by using the same notation as for scalar products

on functions from the hypercube)

〈f, g〉 = E
x
[f(x)g(x)], (11)

where the expectation is over ann-dimensional standard Gaussian, i.e. each component
being a standardN(0, 1) random variable. The counterpart of the Beckner operator in
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Gaussian space is theOrnstein-UhlenbeckoperatorUρ:

Uρf(x) = E
y

[

f(ρx+
√

1 − ρ2y)
]

. (12)

Note thatρx +
√

1 − ρ2y is anN(0, 1) variable with covarianceρ with x. Analogously
to the case of Boolean functions, we define the noise correlation between two functions
f, g : R

n → R asSρ(f, g) = 〈f, Uρg〉 whereρ ∈ [−1, 1]. Forµ ∈ [−1, 1] we denote by
χµ : R → [0, 1] the indicator function of an interval(−∞, t), wheret is chosen so that

E[χµ] = 1−µ
2 (i.e. t = Φ−1

(

1−µ
2

)

).

Definition 2.8. Forρ, µ1, µ2 ∈ [−1, 1], define

Γρ(µ1, µ2) = Sρ(χµ1 , χµ2) = Pr[X1 ≤ t1 ∧X2 ≤ t2], (13)

whereti = Φ−1
(

1−µi

2

)

and whereX1,X2 ∈ N(0, 1) with covarianceρ.

In other words,Γρ is just the bivariate normal distribution function with a transfor-
mation on the input. Analogously to noise stability, we define Γρ(µ) = Γρ(µ, µ). The
following nice property ofΓρ will be very useful to us.

Proposition 2.9. For all ρ ∈ [−1, 1], µ1, µ2 ∈ [−1, 1], we have

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) + µ1/2 + µ2/2 (14)

A proof can be found in Appendix D.

2.4 Thresholds are extremely noise-correlated

For proving hardness of MAX CUT, Khot et al. [14] made a conjecture called Majority
Is Stablest, essentially stating that any boolean functionwith noise stability significantly
higher than the majority function must have a variable with high low-degree influence (and
thus in a sense be close to a long code). Majority Is Stablest was subsequently proved by
Mossel et al. [18], using a very powerful invariance principle which, essentially, allows for
considering the corresponding the problem over Gaussian space instead. For our result,
we will use a strengthening of Majority is Stablest due to Dinur et al. [5], stated here in a
simplified form (Dinur et al. state their theorem for generalsymmetric Markov operators,
but we are only interested in the Beckner operatorTρ):

Theorem 2.10(Dinur et al. [5], Theorem 3.1). For anyε > 0, q ∈ (0, 1) andρ ∈ (−1, 1)

there is aτ > 0, k ∈ N such that iff, g : Bn
q → [0, 1] with E[f ] =

1−µf

2 , E[g] =
1−µg

2 ,
and

min
(

Inf≤ki (f), Inf≤ki (g)
)

≤ τ
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for all i ∈ [n], then

Sρ(f, g) ≤
〈

χµf
, U|ρ|χµg

〉

+ ε (15)

Sρ(f, g) ≥
〈

χµf
, U|ρ|(1 − χ−µg )

〉

− ε (16)

We remark that Dinur et al. state their theorem for functionson them-ary hypercube[m]n

underuniformdistribution, rather than the biased hypercubeBn
q . However, their proof does

not make use of any properties that only hold for the uniform distribution (in particular,
Mossel et al.’s invariance principle is applicable to the case of non-uniform distribution),
and so, it is a fairly straight-forward exercise to redo their proof for biased distributions.

As a simple Corollary to Theorem 2.10, we have

Corollary 2.11. Let ε > 0, q ∈ (0, 1) andρ ∈ (−1, 0). Then there is aτ > 0, k ∈ N such
that for every functionf : Bn

q → [−1, 1] satisfyingE[f ] = µ and Inf≤ki (f) ≤ τ for all i,
we have

Sρ(f) ≥ 4Γρ(µ) + 2µ− 1 − ε (17)

Proof. Setf̃ = 1−f
2 , µ̃ = E[f̃ ] = 1−µ

2 . Thus,Sρ(f) = 4 Sρ(f̃)−4µ̃+1 = 4 Sρ(f̃)+2µ−1.
By Theorem 2.10,

Sρ(f̃) ≥
〈

χµ, U|ρ|(1 − χ−µ)
〉

− ε/4 (18)

for anyf where every variable has sufficiently small low-degree influence. Now, note that

(U|ρ|(1 − χ−µ))(x) = Pr
y

[

|ρ|x+
√

1 − ρ2y ≥ Φ−1(1 − µ̃)
]

= Pr
y

[

−|ρ|x+
√

1 − ρ2y ≤ Φ−1(µ̃)
]

= U−|ρ|χµ(x).

Combining this with Equation (18) and the definition ofΓρ, we get

Sρ(f) ≥ 4Γ−|ρ|(µ) + 2µ− 1 − ε. (19)

Finally, using thatρ < 0, we obtain the desired form.

2.5 The Unique Games Conjecture (UGC)

The Unique Games Conjecture was introduced by Khot [13] as a possible means to obtain
inapproximability for constraint satisfaction problems in which each constraint acts over
two variables. As is common, we will formulate it in terms of aLabel Cover problem.

Definition 2.12. An instanceX = (V,E,wt, [L], {σve , σwe }e={v,w}∈E) of UNIQUE LABEL

COVER is defined as follows: given is a weighted graphG = (V,E) (which may have
multiple edges) with weight functionwt : E → (0, 1], a set[L] of allowed labels, and for
each edgee = {v,w} ∈ E two permutationsσve , σ

w
e ∈ SL such thatσwe = (σve )

−1, i.e.
they are each others inverse. We say that a functionl : V → [L] (called a labelling of the
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vertices) satisfies an edgee = {v,w} if σve (l(v)) = l(w), or equivalently, ifσwe (l(w)) =
l(v). The value ofl is the total weight of edges satisfied by it, i.e.

ValX(l) =
∑

e
l satisfiese

wt(e) (20)

The value ofX is the maximum fraction of satisfied edges for any labelling,i.e.

Val(X) = max
l

ValX(l). (21)

WLOG, we will always assume that
∑

e wt(e) = 1, i.e. thatwt is in fact a probability
distribution over the edges ofX. We denote byE(v) the subset of edges adjacent tov,
i.e. E(v) = { e | v ∈ e }. The probability distributionwt induces a natural probability
distribution on the vertices ofX where the probability of choosingv is 1

2

∑

e∈E(v) wt(e),
andwt also induces a natural distribution on the edges ofE(v) where the probability of
choosinge is wt(e)

P

e∈E(v) wt(e) .

Whenever we speak of choosing a random element ofV ,E orE(v), it will be according
to these probability distributions, but to simplify the presentation, we will simply refer to it
as a random element. For the same reason we will refer to a fraction c of the elements of
V , E orE(V ) when in fact we mean a set of vertices/edges with probabilitymassc.

A UNIQUE LABEL COVER problem whereG is bipartite can be viewed as a two-prover
(one-round) game in which the acceptance predicate of the verifier is such that given the
answer for one of the provers, there is always a unique answerfrom the other prover such
that the verifier accepts. The probability that the verifier accepts assuming that the provers
use an optimal strategy is thenVal(X). Hence the terminology “Unique Games”. We will
be interested in the gap version of the UNIQUE LABEL COVER problem, which we define
as follows.

Definition 2.13. GAP-UNIQUE LABEL COVERη,γ,L is the problem of, given a UNIQUE

LABEL COVER instanceX with label set[L], determine whetherVal(X) ≥ 1 − η or
Val(X) ≤ γ.

Khot’s Unique Games Conjecture (UGC) then asserts that the gap version is hard to solve
for arbitrarily smallη andγ, provided we take a sufficiently large label set.

Conjecture 2.14 (Unique Games Conjecture [13]). For everyη > 0, γ > 0, there is a
constantL > 0 such thatGAP-UNIQUE LABEL COVERη,γ,L is NP-hard.

Thus, if the UGC is true, then any problemP such that GAP-UNIQUE LABEL COVERη,γ,L
can be reduced toP in polynomial time for all constantsη, γ, L is NP-hard. Note that even if
the UGC turns out to be false, it might still be the case that GAP-UNIQUE LABEL COVERη,γ,L
is hard in the sense of not being solvable in polynomial time,and such a (weaker) hardness
would also apply to MAX 2-SAT and (as far as we are aware, all) other problems for which
hardness has been shown under the UGC.
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3 Approximating M AX 2-SAT

To approximate MAX 2-SAT, the common approach is to relax the integer program Equation (2)
to a semidefinite program by relaxing each variablexi to a vectorvi ∈ R

n+1. In addition,
we introduce the variablev0 ∈ R

n+1, which is supposed to encode the value “false”. The
constraintxi ∈ {−1, 1} = S0 translates to the constraint thatvi ∈ Sn, i.e. that each vector
vi should be a unit vector. The value of an assignmentv = (v0, . . . , vn) ∈ (Sn)n+1 to the
relaxation is then

SDP-ValΨ(v) =
∑

ψ=(b1xi∨b2xj)∈Ψ

wt(ψ) · 3 − b1vi · v0 − b2vj · v0 − b1b2vi · vj
4

, (22)

wherevi · vj is the standard inner product on vectors inR
n.

This semidefinite relaxation was studied by Goemans and Williamson [8]. For their
improved approximation algorithm, Feige and Goemans [7] considered a strengthening of
this semidefinite program, by adding, for each triple{vi, vj, vk} ⊆ {v0, . . . , vn} the triangle
inequalities

vi · vj + vi · vk + vj · vk ≥ −1 −vi · vj + vi · vk − vj · vk ≥ −1

vi · vj − vi · vk − vj · vk ≥ −1 −vi · vj − vi · vk + vj · vk ≥ −1.

These are equivalent to inequalities of the form||vi − vj ||2 + ||vj − vk||2 ≥ ||vi − vk||2,
which clearly hold for the case that all vectors lie in a one-dimensional subspace ofSn (so
this is still a relaxation of the original integer program),but may not necessarily be true
otherwise. They are also equivalent to requiring that the value of any possible clause on the
variablesx1, . . . , xn is at most1 which, again, clearly holds for a boolean solution.

In general, we cannot find the exact optimum of a semidefinite program. It is however
possible to find the optimum to within an arbitrarily small additive factor. We ignore this
point for notational convenience and assume that we can solve the semidefinite program
exactly.

Given solution vectors(v0, . . . , vn) maximizingSDP-ValΨ(v), we will produce a so-
lution (x1, . . . xn) ∈ {−1, 1}n using some rounding method, which will typically be ran-
domized. For consistency, we require that this rounding method always roundsvi and−vi
to opposite values. To determine the approximation ratio ofthe algorithm, we analyze the
worst possible approximation ratio on the clause(xi ∨ xj) for any vector configuration.2

This gives the a lower bound on the approximation ratio:

min
v∈(Sn)n+1

E[3 − xi − xj − xixj]

3 − v0 · vi − v0 · vj − vi · vj
, (23)

2Note that because of the consistency requirement, the approximation ratio of the clause(−xi ∨ xj) equals
the approximation ratio of the clause(xi ∨ xj) with vi negated, and similarly for other clauses with negated
variables.
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where the minimum is over allfeasiblevector solutions to the SDP, and the expected value
is over the randomness of the rounding method. Typically, the rounding of the vectorvi
will only depend onv0 andvi, and so the minimum in Equation (23) only needs to be taken
over the three vectorsv0, vi andvj.

3.1 The LLZ algorithm

The best approximation algorithm known for MAX 2-SAT (hereafter referred to as the LLZ
algorithm) is due to Lewin, Livnat and Zwick [17]. It uses theSDP relaxation described
above, including the triangle inequalities. In order to describe the rounding method, it is
convenient to define some notation. Given a solution(v0, . . . , vn) to the SDP, we define

ξi = v0 ·vi andvi = ξiv0 +
√

1 − ξ2i ṽi, i.e. ṽi is the part ofvi orthogonal tov0, normalized
to a unit vector.

Lewin et al. consider the following general class of rounding methods, which they call
T HRESH−: First, a standard normal random vectorr is chosen in then-dimensional
subspace ofRn+1 orthogonal tov0. Then, the variablexi is set to true iffṽi · r ≤ T (ξi),
where the threshold functionT (·) is (almost) arbitrary, and it is convenient for us to have it
on the form

T (x) = Φ−1

(

1 − a(x)

2

)

, (24)

wherea : [−1, 1] → [−1, 1] is some function which is (almost) arbitrary.3 The consistency
requirement on the rounding method translates to requiringthatT is an odd function (or
equivalently, thata is an odd function).

The reason that it is natural to formulateT in terms of the functiona becomes evident
when we analyze the performance ratio of the algorithm. Notethat ṽi · r is a standard
N(0, 1) variable, implying thatxi is set to true with probability1−a(ξi)2 . In other words, the
expected value ofxi is simply E[xi] = a(ξi), and thus, we can think of the functiona as
controlling exactly how much we lose on the linear terms whenwe round the solution to
the semidefinite program.

In order to evaluate the performance of the algorithm, we also need to analyze perfor-
mance on the quadratic terms, which we do by analyzing the probability that two variables
xi andxj are rounded to the same value. Letρ := vi · vj andρ̃ := ṽi · ṽj =

ρ−ξiξj
q

(1−ξ2i )(1−ξ2j )
.

It is readily verified that the scalar productsṽi · r andṽj · r are standardN(0, 1) variables
with covariancẽρ, and thus, the probability that̃vi · r ≤ T (ξi) andṽj · r ≤ T (ξj) is sim-
ply Γρ̃(a(ξi), a(ξj)). By symmetry, the probability that bothxi andxj are set to false is

3In the notation of [17], this corresponds to settingS(x) = T (x)
√

1 − x2, or a(x) = 1 −
2Φ

`

S(x)/
√

1 − x2
´

(we may, w.l.o.g., assume thatξi 6= ±1 for all i).
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Γρ̃(−a(ξi),−a(ξj)). Thus, the expected value of the termxixj is

2Pr[xi = xj] − 1 = 2 (Γρ̃(a(ξi), a(ξj)) + Γρ̃(−a(ξi),−a(ξj))) − 1

= 4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj) − 1 (25)

(where we used Proposition 2.9), and the expected value of the clausexi ∨ xj becomes

3 − E[xi] − E[xj ] − E[xixj ]

4
=

2 − a(ξi) − a(ξj) − 2Γρ̃(a(ξi), a(ξj))

2
(26)

For their best algorithm, Lewin et al. choosea(x) := β ·x to be a linear function, where
β ≈ 0.94016567, i.e. the apparent approximation ratio. Note that this choice [20] is not
the same as that described in [17] but is more natural and (apparently) achieves the same
approximation ratio since its behavior around the worst case configurations is the same. See
Appendix B for details on the difference between these two rounding functions. Define

αβ(ξi, ξj, ρ) =
4 − 2β(ξi + ξj) − 4Γρ̃(βξi, βξj)

3 − ξi − ξj − ρ
, (27)

i.e. the expected approximation ratio of the configuration(ξi, ξj, ρ), using a specific choice
of β. Let

α(β) = min
ξi,ξj ,ρ

αβ(ξi, ξj , ρ), (28)

i.e. a lower bound on the approximation ratio achieved for a specific β, where(ξi, ξj, ρ)
ranges over all configurations satisfying the triangle inequalities. Finally, let

αLLZ = max
β∈[−1,1]

α(β), (29)

i.e. a lower bound on the best possible approximation ratio when lettinga be a linear func-
tion.

3.2 Simple configurations

We represent a configuration for the SDP by the three scalar products(ξi, ξj , ρ), where
ρ = vi · vj. When showing hardness of MAX 2-SAT, we will reduce UNIQUE LABEL

COVER to MAX 2-SAT. The reduction is parametrized by a configuration(ξi, ξj , ρ) of the
SDP. However, the reduction needs the configuration to be of aspecific form.

First, it needs the configuration to satisfyξi = ξj, in other words, that bothvi andvj
have the same angle tov0. This restriction is quite natural; considering the symmetry of the
linear terms in the quadratic program, it seems intuitive that the weight on the two linear
terms should be distributed fifty-fifty for a worst case configuration, i.e. thatξi = ξj .

Second, the reduction needs the configuration to satisfy−2|ξi| + ρ = −1, in other
words, that we have equality in one of the triangle inequalities. This restriction is also quite

12



natural; the triangle inequalities cut away a part of the configuration space in which there
are extremely bad configurations, and sticking as close as possible to this part of the config-
uration space would intuitively seem like a good approach for finding bad configurations.

We will refer to a configuration satisfying the two criterions, i.e. a configuration of the
form (ξ, ξ,−1+2|ξ|) for someξ ∈ [−1, 1], as asimple configurationξ. The worst configu-
rations found by Lewin et al. are roughly(0.169, 0.169,−0.662) and(−0.169,−0.169,−0.662),
both being simple configurations.

Motivated by this restriction to simple configurations, we define

α−
β (ξ) = αβ(ξ, ξ,−1 + 2|ξ|) =

2 − 2βξ − 2Γρ̃(βξ)

2 − ξ − |ξ| (30)

to be the expected approximation ratio on a specific simple configurationξ, whereρ̃ =
−1+2|ξ|−ξ2

1−ξ2 = |ξ|−1
|ξ|+1 is the value of̃ρ for the simple configurationξ. Analogously toα(β)

andαLLZ , let

α−(β) = min
ξ∈[−1,1]

α−
β (ξ) (31)

α−
LLZ = max

β∈[−1,1]
α−(β), (32)

i.e. lower bounds on the approximation ratio for a specific choice ofβ and the best approx-
imation ratio for any choice ofβ, when only considering simple configurations. Clearly,
we haveαLLZ ≤ α−

LLZ , and unless Lewin et al.’s analysis is wrong, we have equality. In
Appendix A.1, we briefly discuss the actual numeric value ofα−

LLZ .
It is possible to show that the right hand side of Equation (32) is indeed maximised by

settingβ = α−
LLZ (see Appendix A.2 for a proof), and in fact, we need this for obtaining

an expression forα−
LLZ that matches the inapproximability yielded by the reduction from

UNIQUE LABEL COVER.

3.3 Approximation of ∆-mixed clauses

In order to be able to show matching inapproximability, we give another formulation of
α−
LLZ . We show that for an appropriately chosen configurationξ and imbalance∆, we

can not get a better approximation ratio thanα−
LLZ on the configurationξ for a ∆-mixed

clause even if we change the value ofβ. This is not quite as trival as it may sound—for the
regular clause(xi ∨ xj), we can do better on any specific configurationξ by adjusting the
value ofβ—if ξ < 0 then increasingβ will give a better approximation ratio, and ifξ > 0
then decreasingβ will give a better approximation ratio—but in doing so we decrease the
performance on the configuration−ξ, i.e. on the clause(−xi ∨ −xj). Formally, we show
(see Appendix A.3 for a proof):
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i:th bit
x1 x2 Probability

1 1 (|ξ| + ξ)/2 = 0

-1 1 (1 − |ξ|)/2 = (1 + ξ)/2

1 -1 (1 − |ξ|)/2 = (1 + ξ)/2

-1 -1 (|ξ| − ξ)/2 = −ξ

Table 2: Distribution of thei:th bit of x1 andx2 (recall thatξ < 0).

Proposition 3.1. There areξ ∈ (−1, 0) and∆ ∈ (−1, 1) such that

α−
LLZ = max

µ∈[−1,1]

2 − (1 + ∆)µ− 2Γρ̃(µ)

2 − ∆ξ − |ξ| , (33)

whereρ̃ = |ξ|−1
|ξ|+1 .

The values ofξ and∆ given by Proposition 3.1 are roughlyξ ≈ −0.1625, ∆ ≈ 0.3673.
The difference inξ from the previously mentioned worst case value±0.169 from [17] is
due to the fact that we use a slightly different rounding function. Again, see Appendix B
for details on the difference.

We remark that the choice of sign forξ is arbitrary (essentially, it corresponds to the
choice of whether most of the variable occurences in our hardMAX 2-SAT instance should
be positive or negative), the proposition holds forξ ∈ (0, 1) as well.

4 Reduction from UNIQUE L ABEL COVER

In this section, we reduce UNIQUE LABEL COVER to MAX 2-SAT. Let ε > 0. We will
show hardness of approximating MAX 2-SAT within α−

LLZ + O(ε). Let η > 0 andγ > 0
be parameters which will be chosen sufficiently small and letL be the corresponding label
size given by the UGC. We will reduce GAP-UNIQUE LABEL COVERη,γ,L to the problem
of approximating MAX 2-SAT via a PCP verifier whose queries correspond to checking a
∆-mixed MAX 2-SAT clause.

The reduction is controlled by a parameterξ ∈ (−1, 0) and an imbalance parameter
∆ ∈ (−1, 1). The values of these will be chosen later.

Given is a UNIQUE LABEL COVER instanceX = (V,E, [L], {σve }e={v,w}∈E). A proof
Σ thatX is (1−η)-satisfiable will consist of supposed long codes of the labels of allv ∈ V .
Denote byfv : {−1, 1}L → {−1, 1} the purported long code of the label of vertexv. For
a permutationσ ∈ SL andx = x1 . . . xL ∈ {−1, 1}L, we letσx = xσ(1) . . . xσ(L). The
PCP verifierV is described in Algorithm 1.
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Algorithm 1: The verifierV
V(X, Σ = {fv}v∈V )
(1) Pick a randomv ∈ V .
(2) Picke1 = {v,w1} ande2 = {v,w2} randomly fromE(v).
(3) Pickx1, x2 ∈ {−1, 1}L such that each bit ofxj is picked indepen-

dently with expected valueξ and that thei:th bits ofx1 andx2 are
(−1 + 2|ξ|)-correlated (see Table 2).

(4) Fori = 1, 2, let bi = fwi
(σvei

xi).
(5) With probability 1+∆

2 , accept iffb1 ∨ b2.
(6) Otherwise, i.e. with probability1−∆

2 , accept iff−b1 ∨ −b2.

We now analyze the properties ofV. Arithmetizing the acceptance predicate ofV, we
get that the probability thatV accepts a proof is

E
v,e1,e2,x1,x2

[

3 − ∆(fw1(σ
v
e1x1) + fw2(σ

v
e2x2)) − fw1(σ

v
e1x1)fw2(σ

v
e2x2)

4

]

, (34)

wherev, e1, e2, x1, x2 are picked with the same distribution as they are picked by the veri-
fier.

4.1 Completeness

The completeness ofV is as follows:

Lemma 4.1 (Completeness). If Val(X) ≥ 1 − η, then there is a proofΣ that makesV
accept with probability at least

(1 − 2η)
2 − ∆ξ − |ξ|

2
(35)

Proof. Suppose there is an assignment of labels to the vertices ofX such that the fraction
of satisfied edges is at least1−η. Fix such a labelling, and letfv : {−1, 1}L → {−1, 1} be
the long code of the label ofv. Note that for a satisfied edgee = {v,w}, fw(σvexi) equals
the value of thelv:th bit of xi (wherelv is the label of vertexv)

By the union bound, the probability that any of the two edgese1 ande2 are not sat-
isfied is at most2η. For a choice of edgese1, e2 that are satisfied, the expected value of
fwi

(σvei
xi) is simply the expected value of thelv:th bit in xi, i.e. ξ, and the expected value

of fw1(σ
v
e1x1)fw2(σ

v
e2x2) is the expected value of thelv:th bit ofx1x2, i.e.−1+2|ξ|. Thus,

for such a choice of edges, the acceptance probability becomes

3 − 2∆ξ − (−1 + 2|ξ|)
4

=
2 − ∆ξ − |ξ|

2
(36)
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4.2 Soundness

The soundness ofV is as follows:

Lemma 4.2 (Soundness). For any ε > 0, η ∈ (−1, 0) and ∆ ∈ (−1, 1) there exists a
γ > 0, such that ifVal(X) ≤ γ, then for any proofΣ, the probability thatV accepts is at
most

max
µ∈[−1,1]

2 − (1 + ∆)µ− 2Γρ̃(µ)

2
+ ε, (37)

whereρ̃ = |ξ|−1
|ξ|+1 .

Proof. As is common, the proof is by contradiction. Assume that the value ofX is at most
Val(X) ≤ γ. Take any proofΣ = {fv}v∈V . Definegv(x) := Ee={v,w}∈E(v)[fw(σvex)],
andµv := Ex[gv(x)]. Assume that the probability that the verifier accepts this proof is at
least

Pr[V acceptsΣ] ≥ E
v

[

2 − (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

]

. (38)

We will show that in that case, it is possible to satisfy a constant (that depends only onξ
andε) fraction of the edges ofX. Settingγ smaller than this constant will yield the desired
result.

Note that the probability distribution ofx1, x2 is the same as that induced by first pick-
ing x1 at random inBn

q and then constructingx2 from x1 in the same wayy is constructed

from x in the Beckner operatorTρ̃, for q = 1−ξ
2 andρ̃ = −1−q

q = |ξ|−1
|ξ|+1 . Thus, the expected

value ofgv(x1)gv(x2) equalsSρ̃(gv). So by the definition ofgv andµv, we can rewrite the
probability that the verifier accepts as

Pr[V acceptsΣ] = E
v,x1,x2

[

3 − ∆(gv(x1) + gv(x2)) − gv(x1)gv(x2)

4

]

= E
v

[

3 − 2∆µv − Sρ̃(gv)

4

]

Plugging in Equation (38), this gives

E
v

[

3 − 2∆µv − Sρ̃(gv)

4

]

≥ E
v

[

2 − (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

]

E
v

[4Γρ̃(µv) + 2µv − 1 − Sρ̃(gv)] ≥ 4ε

Note that4Γρ̃(µv)+2µv−1−Sρ̃(gv) = 2(Γρ̃(µv)+Γρ̃(−µv))−1−Sρ̃(gv) ≤ 2−1−(−1) =
2, so it must be the case that for a fraction of at least3ε

2−ε ≥ ε of the verticesv ∈ V , we
have

Sρ̃(gv) ≤ 4Γρ̃(µv) + 2µv − 1 − ε. (39)
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Let Vgood be the set of all suchv. Sinceρ̃ < 0 we have by (extended) Majority Is Stablest
(Corollary 2.11) that for allv ∈ Vgood there must be somei ∈ [L] such thatInf≤ki (gv) ≥ τ ,
whereτ andk are constants depending only onε andξ.4 Thus, for anyv ∈ Vgood, we have

τ ≤ Inf≤ki (gv) = E
e={v,w}

[Inf≤kσv
e (i)(fw)], (40)

This, and the fact thatInf≤kσv
e (i)(fw) ≤ 1 for all i, implies that for a fraction of at least

τ−τ/2
1−τ/2 ≥ τ

2 of the edgese = {v,w} ∈ E(v), we haveInf≤kσv
e (i)(fw) ≥ τ/2.

Forv ∈ V , let

C(v) = { i ∈ L | Inf≤ki (fv) ≥ τ/2 ∨ Inf≤ki (gv) ≥ τ }. (41)

Intuitively, the criterionInf≤ki (fv) ≥ τ/2 means that the purported Long Codes of the label
of v suggestsi as a suitable label forv, and the criterionInf≤ki (gv) ≥ τ means that many
of the purported Long Codes for the neighbours ofv suggests thatv should have the label
i. By the fact that

∑

i Inf≤ki (fw) ≤ k, we must have|C(v)| ≤ 2k/τ + k/τ = 3k/τ .
We now define a labelling by picking independently for eachv ∈ V a (uniformly)

random labeli ∈ C(v) (or an arbitrary label in caseC(v) is empty). For a labelv ∈
Vgood with Inf≤ki (gv) ≥ τ , the probability thatv is assigned labeli is 1/|C(v)| ≥ τ/3k.
Furthermore, by the above reasoning and the definition ofC, at least a fractionτ/2 of the
edgese = {v,w} from v will satisfy σve (i) ∈ C(w). For such an edge, the probability
thatw is assigned the labelσve (i) is 1/|C(w)| ≥ τ/3k. Thus, the expected fraction of
satisfied edges adjacent to anyv ∈ Vgood is at leastτ/2 · (τ/3k)2, and so the expected

fraction of satisfied edges in total5 is at leastε · τ3

18k2 (note that this is a positive constant
that depends only onε andξ) and thus there is an assignment satisfying at least this total
weight of edges. Making sure thatγ < ετ3

18k2 , we get a contradiction on the assumption of
the acceptance probability (Equation (38)), implying thatthe soundness is at most

Pr[V acceptsΣ] ≤ E
v

[

2 − (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

]

≤ max
µ∈[−1,1]

2 − (1 + ∆)µ− 2Γρ̃(µ)

2
+ ε, (42)

as desired.
4The dependency onξ stems from the fact thatgv is a function fromBn

q to R, whereq = 1−ξ

2
.

5We remind the reader of the convention of Section 2.5 that thechoices of random vertices and edges are
according to the probability distributions induced by the weights of the edges, and so choosing a randomv ∈ V
and then a randome ∈ E(v) is equivalent to just choosing a randome ∈ E.

17



4.3 Wrapping it up

Combining the completeness and soundness Lemmas and picking η small enough, we get
that, assuming the UGC, it is NP-hard to approximate MAX 2-SAT within a factor

max
µ∈[−1,1]

2 − (1 + ∆)µ− 2Γρ̃(µ)

2 − ∆ξ − |ξ| + O(ε) . (43)

Settingξ and∆ to the values given by Proposition 3.1, this equalsα−
LLZ + O(ε), proving

Theorem 1.1. Again, we would like to emphasize the values given by Proposition 3.1. The
large value of∆ ≈ 0.3673 in particular is interesting, since the weights on positiveand
negative occurences of variables are1+∆

2 and1−∆
2 , which is roughly68% vs.32%. We find

it remarkable that so greatly imbalanced instances should be the hardest to approximate.

5 Concluding remarks

We have shown that it is hard to approximate MAX 2-SAT within α−
LLZ + ε, whereα−

LLZ ≈
0.94017 is the guaranteed performance ratio of the LLZ algorithm on vector configurations
v0, vi, vj such thatvi · v0 = vj · v0 and such that one of the two triangle inequalities
vi · v0 + vj · v0 + vi · vj ≥ −1 and−vi · v0 − vj · v0 + vi · vj ≥ −1 holds with equality.

5.1 Open problems and further work

Beside the obvious importance of resolving the Unique GamesConjecture, there are a few
other, quite possibly easier, questions that would be nice to settle.

• Given the result in this paper and previous works on integrality gap for e.g. MAX

CUT [16], it seems likely that we should be able to show a matchingintegrality gap
for the SDP relaxation of MAX 2-SAT (since otherwise, the UGC would be false, and
it seems unlikely that a careful analysis of the MAX 2-SAT SDP should be enough to
disprove the conjecture), but so far, our attempts at showing this has been elusive.

• It would be nice to have a proof that there are worst configurations for the LLZ
algorithm that are simple, i.e. that the performance ratio is indeedα−

LLZ .

• Given that progress for MAX 2-SAT has tended to go hand in hand with progress
for MAX DI-CUT, it seems natural to conjecture that imbalanced instances should
be harder also for the latter problem. However, our reduction relies heavily on the
special structure of the worst-case configuration for MAX 2-SAT, in particular, that
ξi = ξj (this causes the PCP verifier’s queries to be random variables from the same
distribution, something that is critical for the soundnessanalysis). This is not the
case for the worst-case configurations for Lewin et al.’s MAX DI-CUT algorithm—
indeed, for configurations whereξi = ξj the linear terms cancel out and the problem
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behaves as its balanced version. Thus, it seems some (perhaps small) new idea would
be needed for the PCP verifier in order to show improved hardness for MAX DI-CUT.

• It would be interesting to determine how the hardness of approximating MAX 2-SAT

depends on the imbalance of the instances considered (for a suitable definition of
imbalance for general instances and not just instances consisting only of ∆-mixed
clauses). For instance, how large can we make the imbalance and still have instances
that are hard to approximate within, say,0.95?
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0.94016567248(ξ)

A Analysis of α−
LLZ

In this section we show some properties ofα−
LLZ .

A.1 The numeric value ofα−
LLZ

First, we will (very briefly) discuss the actual numeric value ofα−
LLZ . LetB = 0.9401656724.

To give a feel forα−
B(ξ), Figure 1 gives a plot of this function in the intervalξ ∈ [−1, 1],

along with the liney = B (dashed). The one-dimensional optimization problem

min
ξ
αB(ξ) (44)

can be solved numerically to a high level of precision. This gives a lower boundα−
LLZ ≥

0.9401656724. The two minima seen in Figure 1 turn out to be roughlyξ1 = −0.1624783294
andξ2 = 0.1624783251. In order to obtain an upper bound onα−

LLZ , we can then solve the
one-dimensional optimization problem

max
β

min
(

α−
β (ξ1), α

−
β (ξ2)

)

(45)

numerically to a high level of precision. This results in an upper bound ofα−
LLZ ≤

0.9401656725. In conclusion, we have|α−
LLZ − 0.94016567245| ≤ 5 · 10−11.
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Note that our worst configurationsξ ≈ ±0.1625 differs slightly from the worst con-
figurationsξ ≈ ±0.169 found by Lewin et al.. This is because of the small difference
in behaviour of the two rounding functions (see Appendix B);the approximation ratio is
marginally worse when using the original function of [17] rather than the one used in this
paper [20].

A.2 The optimal choice ofβ

Proposition A.1. α−(α−
LLZ) = α−

LLZ . In other words, the functionα−(β) is maximized
by settingβ = α−

LLZ .
Furthermore, ifξ satisfiesα−

α−

LLZ

(ξ) = α−
LLZ then so does−ξ. In other words, ifξ is a

worst-case configuration forβ = α−
LLZ , then so is−ξ.

Proof. Define

gain(β, ξ) = (1 − βξ − Γρ̃(βξ)) − α−
LLZ ·

(

1 − ξ

2
− |ξ|

2

)

(46)

=
α−
LLZ − β

2
ξ +

2 − Γρ̃(βξ) − Γρ̃(−βξ)
2

− α−
LLZ

2 − |ξ|
2

(47)

to be the advantage over the guaranteed approximation ratioof the LLZ algorithm when
rounding the configuration(ξ, ξ,−1 + 2|ξ|) using a particular value ofβ (where we used
Proposition 2.9 to get Equation (47)). The first part of the proposition amounts to showing
that

gain(α−
LLZ , ξ) ≥ 0 (48)

for all ξ ∈ [−1, 1].
Let β∗ be such thatα−(β∗) = α−

LLZ , i.e. an optimal choice ofβ. By definition, we
have thatgain(β∗, ξ) ≥ 0 for all simple configurationsξ. Also, from Equation (47) we see
thatgain(β,−ξ) − gain(β, ξ) = (β − α−

LLZ)ξ for all β andξ. Let

gainβ(β, ξ) =
∂ gain

∂β
(β, ξ) = −ξ

(

1 + Γ′
ρ̃(βξ)

)

(49)

be the derivative ofgain (in the form of Equation (46)) with respect toβ. Note that by
Corollary D.2 we have1 + Γ′

ρ̃(βξ) ∈ [0, 1]. In particular, the sign of the derivative depends
only on the sign ofξ.

Consider an arbitrary configurationξ. Let ξ′ = ξ if (β∗ − α−
LLZ)ξ ≥ 0, andξ′ = −ξ

otherwise. It might help to think ofξ′ the following way: if ξ has the right sign for the
functiongain(·, ξ) to be increasing fromβ∗ to α−

LLZ , we are happy, but otherwise we flip
ξ, thereby also flipping the sign ofgainβ.
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Note that sinceξ′ = ±ξ, we have by the observation above thatgain(α−
LLZ , ξ

′) =
gain(α−

LLZ , ξ). By the Mean Value Theorem, there is aβ′ betweenβ∗ andα−
LLZ such that

gain(α−
LLZ , ξ) = gain(β∗, ξ′) + (α−

LLZ − β∗) gainβ(β
′, ξ′)

≥ (β∗ − α−
LLZ)ξ′

(

1 + Γ′
ρ̃(β

′ξ′)
)

≥ 0, (50)

as desired.
The second part of the proposition follows fromgain(α−

LLZ , ξ) = gain(α−
LLZ ,−ξ). In

particular, ifξ is a worst case configuration, they both equal0.

Analyzing this a bit further will (unsurprisingly) show that β = α−
LLZ is indeed theonly

maximum of the functionα−(β). In order to show this, it suffices to realize thatξ = 0 can
never be a worst-case configuration.

A.3 Proof of Proposition 3.1

In this section, we prove Proposition 3.1, which states thatfor an appropriately chosen
configurationξ and imbalance∆, we can not get a better approximation ratio thanα−

LLZ

on the configurationξ for a∆-mixed clause even if we change the value ofβ.

Proposition 3.1 restated.There areξ ∈ (−1, 0) and∆ ∈ (0, 1) such that

α−
LLZ = max

µ∈[−1,1]

2 − (1 + ∆)µ− 2Γρ̃(µ)

2 − ∆ξ − |ξ| . (51)

whereρ̃ = |ξ|−1
|ξ|+1 .

Proof. Let β∗ = α−
LLZ , and letξ ≈ −0.1625 be a worst configuration, i.e. such that

α−
β∗(ξ) = α−

LLZ . Note that for∆ ∈ [−1, 1], the quantity

2 − (1 + ∆)β∗ξ − 2Γρ̃(β
∗ξ)

2 − ∆ξ − |ξ| (52)

is the approximation ratio of a∆-mixed clause on the simple configurationξ. And since−ξ
is also a worst configuration (Proposition A.1), we have thatEquation (52) equalsα−

LLZ .
Now, similarly to the proof of Proposition A.1, let

gain(β) =

(

1 − 1 + ∆

2
βξ − Γρ̃(βξ)

)

− α−
LLZ · 2 − ∆ξ − |ξ|

2
(53)

be the advantage over the approximation ratioα−
LLZ on a∆-mixed clause when rounding

the configurationξ using a particular value ofβ. Again, since bothξ and−ξ are worst case
configurations, we have thatgain(β∗) = 0. We want to show that there is a suitable choice

23



of ∆ such thatgain(β) ≤ 0 for all β. Substitutingµ for βξ then gives the desired result.
Let

gainβ(β) = −ξ
(

1 + ∆

2
+ Γ′

ρ̃(βξ)

)

(54)

be the derivative ofgain. Solvinggainβ(β
∗) = 0 for ∆ gives

∆ = −2Γ′
ρ̃(β

∗ξ) − 1 = 2Φ

(

Φ−1

(

1 − β∗ξ
2

)

/
√

|ξ|
)

− 1 (55)

(see Corollary D.2 for the derivative ofΓρ̃). Note that clearly∆ < 1, and sinceξ <
0 we also have∆ > 0, as promised. Furthermore, we have that the second derivative
gainββ(β) = −ξ2Γ′′

ρ̃(βξ) which, sinceΓρ̃(·) is a convex function (see Corollary D.2),
implies thatgain is a concave function, and thus

max
β

gain(β) = gain(β∗) = 0, (56)

and we are done.

B The tale of the two rounding functions

The rounding function of the LLZ algorithm used in this paperdiffers from the rounding
function used by Lewin et al. [17]. The rounding function used in this paper isa1(x) = β·x,
whereβ = α−

LLZ ≈ 0.94016567 (see Section 3.1 for further details). The rounding func-
tion used in [17] isa2(x) = 1−2Φ(S(x)/

√
1 − x2). Here,S(x) = −2 cot(f(arccos x))

√
1 − x2

wheref is the linear rotation function given by

f(θ) ≈ 0.58831458θ + 0.64667394. (57)

a2(x) can be simplified to

a2(x) = 1 − 2Φ(−2 cot(f(arccos x))) = 2Φ(2 cot(f(arccos x))) − 1. (58)

Figure 2 gives plots of the functionsa1(x) anda2(x) for the intervalx ∈ [0, 1] (since both
functions are odd we restrict our attention to positivex). As can be seen, the functions
are fairly close to each other. Most importantly, the functions behave almost the same
in the critical intervalx ∈ [0.1, 0.2]. Nevertheless, there is a small difference between
the functions in this interval as well, and as noted in Appendix A.1, this causes the worst
configuration when usinga1(x) to be slightly different from the worst configuration when
usinga2(x). This small difference in fact causes the (apparent) approximation ratio when
usinga1(x) to be marginally better than when usinga2(x).

For largex, the functionsa1(x) anda2(x) differ noticeably, but usingthebest rounding
does not matter there; these are configurations that are in some sense easy to round, and any
function with a reasonable behaviour suffices to get a decently good approximation ratio.
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Figure 2:a1(x) vs.a2(x)

C Proofs of some Fourier-analytic identities

In this section, we prove some basic Fourier-analytic identities which were given in Section 2.2.

Proposition 2.1 restated.The set of functions{USq }S⊆[n] forms an orthonormal basis w.r.t.
the scalar product〈·, ·〉.
Proof. First, note that the functionUq satisfiesE[Uq(xi)] = 0 andE[Uq(xi)

2] = 1. Take
anyS, T ⊆ [n], and denote bym(i) = |S ∩ {i}| + |T ∩ {i}| ∈ {0, 1, 2} the number of
occurences ofi in the two sets. We have

〈

USq , U
T
q

〉

= E

[

∏

i∈S
Uq(xi)

∏

i∈T
Uq(xi)

]

=

n
∏

i=1

E[Uq(xi)
m(i)], (59)

where the last equality uses thatxi andxj are independent fori 6= j. If S = T we have
thatm(i) ∈ {0, 2} for all i and thus

〈

USq , U
T
q

〉

= 1. If S 6= T there is somei such that
m(i) = 1 and thus

〈

USq , U
T
q

〉

= 0.

Proposition 2.3 restated.
Infi(f) =

∑

S⊆[n]
i∈S

f̂2
S. (60)
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Proof. For x ∈ {−1, 1}n, let x ∪ i denote the bit string(x1, . . . , xi−1,−1, xi+1, . . . , xn)
(i.e. we set thei:th bit), and letx \ i denote the bit string(x1, . . . , xi−1, 1, xi+1, . . . , xn)
(i.e. we unset thei:th bit).

Split f into f(x) = f0(x) + f1(x), where

f0(x) =
∑

i6∈S
f̂SU

S
q (x) (61)

f1(x) =
∑

i∈S
f̂SU

S
q (x). (62)

Note thatf0 does not depend on the variablexi. We have

E
xi

[f(x) |x1, . . . , xi−1, xi+1, . . . , xn]

= q(f0(x) + f1(x ∪ i)) + (1 − q)(f0(x) + f1(x \ i))
= f0(x), (63)

where we use the fact thatf1(x ∪ i) = −f1(x \ i)1−q
q . This implies

Vxi
[f(x) |x1, . . . , xi−1, xi+1, . . . , xn]

= qf1(x ∪ i)2 + (1 − q)f1(x \ i)2

= E
xi

[f1(x)
2 |x1, . . . , xi−1, xi+1, . . . , xn]. (64)

Averaging over allx, we get that

Infi(f) = E
x
[f1(x)

2] = 〈f1, f1〉 =
∑

i∈S
f̂2
S, (65)

and we are done.

Proposition 2.6 restated.

Tρf(x) =
∑

S⊆[n]

ρ|S|f̂SU
S
q (x). (66)

Proof. Clearly, it suffices to show that for everyi, Eyi
[Uq(yi)] = ρ · Uq(xi). If xi = 1, we

have

E
yi

[Uq(yi)] = q(1 − ρ)Uq(−1) + (1 − q(1 − ρ))Uq(1)

= −(1 − q)(1 − ρ)Uq(1) + (1 − q(1 − ρ))Uq(1) = ρUq(1), (67)

where we usedUq(−1) = −Uq(1)1−q
q . The casexi = −1 is handled analogously.
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D Proofs of some properties ofΓρ

In this section we prove some useful properties aboutΓρ. We start with the proof of
Proposition 2.9, which we restate for convenience.

Proposition 2.9 restated.For all ρ ∈ [−1, 1], µ1, µ2 ∈ [−1, 1], we have

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) + µ1/2 + µ2/2 (68)

Proof. Let ti = Φ−1
(

1−µi

2

)

, and letX and Y be two ρ-correlatedN(0, 1) variables.

Clearly, Γρ(−µ1,−µ2) = Pr[X ≤ −t1 ∧ Y ≤ −t2]. Assume thatµ1 < 0, µ2 < 0
(implying t1 > 0 andt2 > 0). We have

Γρ(µ1, µ2) − Γρ(−µ1,−µ2) = Pr[X ≤ t1 ∧ Y ≤ t2] − Pr[X ≤ −t1 ∧ Y ≤ −t2]
= Pr[X ≤ 0 ∧ |Y | ≤ t2] +

Pr[0 ≤ X ≤ t1 ∧ −t2 ≤ Y ≤ 0] +

Pr[0 ≤ X ≤ t1 ∧ 0 ≤ Y ≤ t2] +

Pr[|X| ≤ t1 ∧ Y ≤ −t2]. (69)

Note thatPr[0 ≤ X ≤ t1 ∧ 0 ≤ Y ≤ t2] = Pr[−t1 ≤ X ≤ 0 ∧ −t2 ≤ Y ≤ 0] and that
Pr[X ≤ 0 ∧ |Y | ≤ t2] = Pr[X ≥ 0 ∧ | − Y | ≤ t2] = Pr[|Y | ≤ t2]/2 = −µ2/2. Thus,

Γρ(µ1, µ2) − Γρ(−µ1,−µ2) = Pr[X ≤ 0 ∧ |Y | ≤ t2] +

Pr[|X| ≤ t1 ∧ −t2 ≤ Y ≤ 0] +

Pr[|X| ≤ t1 ∧ Y ≤ −t2]
= −µ1/2 − µ2/2, (70)

as desired. The other three sign combinations forµ1 andµ2 are handled analogously.

Next, we compute the derivative ofΓρ. For the rest of this section, lett(x) = Φ−1
(

1−x
2

)

.

Proposition D.1. For ρ ∈ (−1, 1), we have

∂Γρ
∂µ1

(µ1, µ2) = −1

2
Φ

(

t(µ2) − ρt(µ1)
√

1 − ρ2

)

(71)

Proof. This follows from the fact thatΓρ(µ1, µ2) can be written as

Γρ(µ1, µ2) =

∫ t(µ1)

x=−∞
φ(x)Φ

(

t(µ2) − ρx
√

1 − ρ2

)

dx, (72)

27



giving

∂Γρ
∂µ1

(µ1, µ2) = t′(µ1)φ(t(µ1))Φ

(

t(µ2) − ρt(µ1)
√

1 − ρ2

)

. (73)

Usingt′(x) = − 1
2φ(t(x)) , the result follows.

As a simple corollary, we get

Corollary D.2. For ρ ∈ (−1, 1), we have

∂Γρ
∂µ

(µ) = −Φ

(
√

1 − ρ

1 + ρ
t(µ)

)

(74)

Note that Corollary D.2 implies that∂
2Γρ

∂µ2 (µ) > 0 for all µ, i.e. thatΓρ is a convex
function.

Proof. Indeed,

∂Γρ
∂µ

(µ) =
∂Γρ
∂µ1

(µ, µ) +
∂Γρ
∂µ2

(µ, µ)

= 2 ·
(

−1

2
Φ

(

(1 − ρ)t(µ)
√

1 − ρ2

))

= −Φ

(
√

1 − ρ

1 + ρ
t(µ)

)

. (75)

Here, we used the fact thatΓρ(µ1, µ2) = Γρ(µ2, µ1), so the derivative ofΓρ with respect to
µ2 can also be computed using Proposition D.1.
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