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Abstract

We show that in the bounded degree model for graph property testing, adaptivity is essential.
An algorithm is non-adaptive if it makes all queries to the input before receiving any answers.
We call a property non-trivial if it does not depend only on the degree distribution of the nodes.
We show that every tester for a non-trivial property that makes o (

√
n/d) queries to the input

graph on n vertices of degree at most d has to be adaptive.

1 Introduction

Property Testing [RS96, GGR98] is a relatively new framework for approximation algorithms that
has received a lot of attention (see [Fis01, Ron01] for surveys). Unlike in the dominant approach
to approximation algorithms, where the goal is to obtain an approximation to the cost of the
optimal solution, in property testing the goal is to approximate the distance of a given instance
to an instance that has a desired property. This framework has yielded sublinear algorithms for
many problems. Sublinear algorithms run in less time than it would take to read the input. Such
efficiency, even at the cost of accuracy, is crucial when processing massive datasets.

Two main models have been proposed for studying properties of graphs in this framework: the
adjacency matrix model [GGR98], suitable for dense graphs, and the adjacency lists model, suitable
for graphs of bounded degree [GR02]1. The adjacency matrix model has been studied much more
thoroughly than the adjacency lists model. In a recent breakthrough, Alon et al. [AFNS06] gave
a combinatorial characterization of graph properties that can be tested in the adjacency matrix
model in time independent of the size of the input.

Our current understanding of the adjacency lists model, proposed by Goldreich and Ron [GR02],
is less complete. This note takes a small step towards painting a more complete picture. In this
model, a graph on n vertices of degree at most d is represented by a function of vertex v and integer
i, where v ∈ {1, . . . , n} and i ∈ {1, . . . , d}. The value of the function at (v, i) is the ith neighbor
of v or a special symbol signifying that v does not have an ith neighbor. The distance between
two n-vertex graphs is the number of vertex pairs which are connected by an edge in exactly one
of the two graphs divided by the total possible number of edges, dn. A graph is ε-far from having
the desired property if the distance from the graph to any graph satisfying the property is at least
ε. An algorithm for a particular property gets n, d, the approximation parameter ε and oracle
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1A hybrid model, suitable for general graphs has also been considered [AKKR06], but it is beyond the scope of
this note.
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access to the function that defines the input graph. The algorithm has to accept graphs with the
desired property (with probability at least 2

3) and reject graphs that are ε-far from the property
(with probability at least 2

3). In one step, the algorithm can query the value of the function at one
location (v, i). The query complexity of an algorithm is the number of queries it makes in the worst
case. The query complexity of an algorithm is a lower bound on its running time.

In the adjacency matrix model, the role of adaptivity is well understood. Goldreich and Trevisan
[GT01] proved that in that model, without loss of generality, one can consider only very simple
algorithms, which inspect a random induced subgraph. In particular, these algorithms are non-

adaptive, that is, their queries do not depend on answers to previous queries. More specifically, an
arbitrary q-query algorithm for a graph property in the adjacency matrix model can be simulated
by a 2q2-query non-adaptive algorithm. Thus, adaptivity is not essential in this model.

We show that unlike in the adjacency matrix model, in the adjacency lists model adaptivity is
essential. So, it is not a coincidence that the two techniques that were successfully employed in
this model – the breadth-first search from a random point [GR02] and a random walk [GR00] –
are adaptive. We prove that for all non-trivial properties in the bounded degree model, algorithms
that make Ω (

√
n/d) queries must be adaptive.

Definition 1 We call a graph property non-trivial if it does not depend only on the degree distribu-

tion of the nodes: namely, for each n there is some degree sequence d1, . . . , dn ∈ {0, 1, . . . , d} such

that there is at least one graph, G1, with node degrees d1, . . . , dn with the property and at least one,

G2, that is ε-far.

To the best of our knowledge, all properties that have been studied in the literature are non-trivial.
Examples include connectedness (i.e., is the input graph connected?) [GR02], bipartiteness (i.e., is
the input graph bipartite?) [GR99], and being an expander [GR00].

Given the right definition of a non-trivial graph property, our result is not hard to prove. The
main idea is that one cannot distinguish a random isomorphic copy of G1 from a random isomorphic
copy of G2 with o (

√
n/d) non-adaptive queries and error probability ≤ 1/3. Therefore, by Yao’s

minimax principle [Yao77] all ε-testers for non-trivial graph properties in the bounded degree model
with query complexity o (

√
n/d) must be adaptive.

2 Adaptivity in the exploration of bounded degree graphs

Before we state and prove our result, we introduce notation used in the rest of the paper. Recall
that the statistical distance between distributions D1 and D2 is defined as:

CD(D1,D2) = max
S=support(D1)∪support(D2)

(
∣

∣

∣

∣

Pr
x←D1

[x ∈ S] − Pr
x←D2

[x ∈ S]

∣

∣

∣

∣

)

.

In what follows, D1 ≈δ D2 denotes that the statistical difference between the distributions D1 and
D2 is at most δ.

Theorem 2 Every non-adaptive tester for a non-trivial property in the adjacency lists model re-

quires Ω (
√

n/d) queries.

To simplify the argument, we will give the tester a little more power: every time it queries a
neighbor i of vertex v, it will get the entire adjacency list of vertex v, i.e., it will find out a ”star”
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portion of the graph with v in the center and its neighbors connected to it. The main idea is that
with q = o (

√
n/d) queries even the enhanced (non-adaptive) tester will see only a disjoint collection

of stars with high probability. Therefore, the only information the tester will be able to collect is
the degrees of q vertices.

To prove the lower bound formally, we will use Yao’s principle (the version with two distribu-
tions, see Claim 5). Let G1 and G2 be as stated in Definition 1. Let P be a random isomorphic
copy of G1 and N be a random isomorphic copy of G2. Without loss of generality assume that the
(deterministic) tester queries the adjacency lists of nodes 1, . . . , q. Let a1 . . . aq(G) be the answers
to the queries on input G. Define P-view to be the distribution on a1 . . . aq(G) when G is selected
according to P. Similarly, define N -view. As proved in the Appendix, it is enough to show that
P-view ≈ 1

4

N -view.

Let BAD denote the event that two stars centered at query points intersect, namely, that for
some pair of queries v and u there is some vertex s such that both (u, s) and (v, s) are edges in
the input graph. Let I be a random variable that denotes the number of such intersecting pairs.
If vi is the node that got mapped to node i under random isomorphism of graph G then the set
containing vi, the neighbors of vi and the neighbors of neighbors of vi has at most d2 + 1 nodes.
Under random isomorphism, the probability that one of these nodes is mapped to node j is at most
d2+1

n
. Therefore, for both distributions P-view and N -view,

E[I] ≤
(

q

2

)

d2 + 1

n
≤ 1

17
, for sufficiently large n.

Consequently,

Pr[BAD] = Pr[I > 0] =

∞
∑

i=1

Pr[I = i] ≤
∞
∑

i=1

iPr[I = i] = E[I] ≤ 1

17
.

We will show that conditioned on BAD not occurring, (1) the tester learns only the degrees of
the queried nodes, and (2) the distributions on the degree list seen by the tester are similar under
P and N . For a graph G, let d1, ..., dq(G) be the degrees of the vertices of G queried by the tester.
Let P-degs be the distribution d1, ..., dq(G) when G is selected according to P. Similarly, define
N -degs. Observe that P-degs = N -degs because of our condition on the degrees of G1 and G2.

To show that knowing adjacency lists does not give any advantage over knowing only the degree
list when BAD does not occur, define a randomized algorithm A that converts a degree list to a
possible set of answers. On input d1, ..., dq , A picks d =

∑q
i=1 di random numbers from {q+1, ..., n}

without replacement and outputs those numbers in order as elements of the adjacency lists of the
nodes 1, . . . , q. Note that A always produces non-intersecting adjacency lists (i.e., A simulates a
world where BAD never happens).

Claim 3 Conditioned on BAD not occurring, the output of A is distributed according to

• P-view when its input is distributed according to P-degs;

• N -view when its input is distributed according to N -degs.

That is, in symbols, A(P-degs|BAD) = P-view|BAD and A(N -degs|BAD) = N -view|BAD.
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Proof We prove the claim only for distribution P. The same proof works for N . First, observe
that the distribution on lists of degrees in P-view|BAD and in A(P-degs|BAD) is the same: in both
cases it is P-degs|BAD, by definition. Thus, it is sufficient to prove that for each possible degree
list d1, ..., dq , the distribution on neighbor lists a1, ..., aq is the same in both distributions.

Consider any two non-intersecting sequences of adjacency lists a1, ..., aq and a′1, ..., a
′
q which

correspond to the same degree list d1, . . . , dq. Since A(d1, ..., dq) selects a non-intersecting sequence
uniformly at random (from the set of non-intersecting sequences with degrees d1, . . . , dq), it outputs
both sequences with the same probability. We will show that they also arise with same probability
under P-view. Note that there exists some permutation π of G1, such that the nodes in a′1, ...a

′
q

are the images of the nodes in a1, ..., aq under π (since, in both cases, no node appears twice).
We can now set up a 1-to-1 correspondence between permutations that give rise to a1, ..., aq and
permutations that give rise to a′1, ..., a

′
q : for any permutation σ of {1, ..., n} such that σ(G1) has

adjacency lists a1, ..., aq , the permutation π◦σ produces a′1, ..., a
′
q; similarly, if σ led to a′1, ..., a

′
q, then

π−1◦σ would lead to a1, ..., aq . This correspondence is 1-to-1 since we can never have π◦σ1 = π◦σ2

unless σ1 = σ2.
Because of this correspondence, the two sequences of adjacency lists arise with same probability

under P-view, and so P-view|BAD = A(P-degs|BAD). (Note that the equality would not hold
without conditioning on BAD).

Conditioning on BAD does not significantly change our distributions, as formalized in claim 4.

Claim 4 Let E be an event that happens with probability at least 1 − δ under the distribution D
and let B denote distribution D|E. Then B ≈δ′ D where δ′ = 1

1−δ
− 1.

Proof It is enough to show that PrB[S] ≤ PrD[S] + δ′ for every event S.

Pr
B

[S] = Pr
D

[S|E] =
PrD[S ∧ E]

PrD[E]
≤ PrD[S]

PrD[E]
≤ PrD[S]

1 − δ
= Pr
D

[S](1 + δ′) ≤ Pr
D

[S] + δ′.

In particular, if δ = 1
17 then δ′ = 1

16 . We will apply the claim four times with these parameters
to prove that P-view ≈ 1

4

N -view. First, P-view ≈ 1

16

P-view|BAD and P-degs ≈ 1

16

P-degs|BAD.

The second statement implies that A(P-degs) ≈ 1

16

A(P-degs|BAD). Putting the two statements

together and applying Claim 3 gives P-view ≈ 1

8

A(P-degs). Similarly, N -view ≈ 1

8

A(N -degs).

It remains to use that P-degs = N -degs and, consequently, A(P-degs) = A(N -degs), yielding
P-view ≈ 1

4

N -view, as required.

Acknowledgement. The theorem proved in this note was initially given as a homework problem
in a course on sublinear algorithms at the Weizmann Institute of Science, but with an incorrect def-
inition of “non-trivial”. As students complained and the definition was refined, it became apparent
that the statement was not as easy to prove as intended.
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A Yao’s Principle

Yao’s Principle states that in order to prove a lower bound for a randomized algorithm, it is enough
to give a distribution D on inputs, for which the lower bound holds for any deterministic algorithm.
It is often more convenient to look at positive and negative instances separately. For completeness,
we state and prove the resulting version of Yao’s Principle.

Claim 5 [Folklore]: To prove a lower bound q on the worst-case query complexity of a randomized

algorithm, it is enough to give two distributions on inputs:

• P on positive instances, and

• N on negative instances

such that it is hard for any q-query deterministic algorithm to distinguish P from N . Let a1 . . . aq(x)
be the answers to the queries on input x. Define P-view to be the distribution on a1 . . . aq(x) when

x is selected according to P. Similarly, define N -view. By ”hard to distinguish P from N”, we

mean CD (P-view,N -view) < 1
3 .
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We will prove this alternative formulation of Yao’s Principle, using the mainstream formulation.
Proof Let A be any (adaptive) deterministic q-query tester. Given distributions P,N with
CD (P-view,N -view) < 1

3 for all such testers A, we define a distribution D, as required in the
mainstream version of Yao’s Principle.

Let S be the set of strings a1...aq on which A accepts.

∣

∣

∣

∣

Pr
x←P

[A(x) = 1] − Pr
x←N

[A(x) = 1]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
a←P-view

[a ∈ S] − Pr
a←N -view

[a ∈ S]

∣

∣

∣

∣

≤ SD(P-view,N -view) <
1

3
.

If algorithm A accepts an input distributed according to P with probability < 2
3 , we set D = P.

Otherwise, A accepts an input distributed according to N with probability > 2
3 − 1

3 = 1
3 . In

this case, we set D = N . The algorithm A is correct on inputs distributed according to D with
probability less than 2

3 . In other words, there is no deterministic q-query algorithm that works on
distribution D, so we can conclude, by the original formulation of Yao’s Principle that there is no
q query probabilistic algorithm for the problem.
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