
Non-Mitotic Sets

Christian Glasser∗, Alan L. Selman†,
Stephen Travers‡, and Liyu Zhang§

22nd June 2006

Abstract

We study the question of the existence of non-mitotic sets in NP. We show under
various hypotheses that

• 1-tt-mitoticity and m-mitoticity differ on NP.

• 1-tt-reducibility and m-reducibility differ on NP.

• There exist non-T-autoreducible sets in NP (by a result from Ambos-Spies,
these sets are neither T-mitotic nor m-mitotic).

• T-autoreducibility and T-mitoticity differ on NP (this contrasts the situation
in the recursion theoretic setting, where Ladner showed that autoreducibility
and mitoticity coincide).

• 2-tt autoreducibility does not imply weak 2-tt-mitoticity.

• 1-tt-complete sets for NP are nonuniformly m-complete.

1 Introduction

A decidable set A is T-mitotic if there is a set B ∈ P such that A ≡p
T A ∩ B ≡p

T A ∩ B.
Here we study the question of the existence of non-mitotic sets in NP. This is a nontrivial
question, because there are no natural examples of non-mitotic sets. Natural NP-complete
sets are all paddable, and for this reason are T-mitotic. Moreover, Glasser et al. [GPSZ06]
proved that all NP-complete sets are m-mitotic (and therefore T-mitotic). Also, nontrivial

∗Theoretische Informatik, Universität Würzburg. glasser@informatik.uni-wuerzburg.de
†Department of Computer Science and Engineering, University at Buffalo. This work was done while

the author was visiting the Department of Computer Science at the University of Würzburg, Germany.

Research supported in part by NSF grant CCR-0307077 and by the Alexander von Humboldt-Stiftung.

selman@cse.buffalo.edu
‡Theoretische Informatik, Universität Würzburg. Supported by the Konrad-Adenauer-Stiftung.

travers@informatik.uni-wuerzburg.de
§Department of Computer Science and Engineering, University at Buffalo. lzhang7@cse.buffalo.edu

1

Electronic Colloquium on Computational Complexity, Report No. 90 (2006)

ISSN 1433-8092




sets belonging to the class P are T-mitotic. So any unconditional proof of the existence
of non-mitotic sets in NP would prove at the same time that P 6= NP. Buhrman, Hoene,
and Torenvliet showed [BHT98] that EXP contains non-mitotic sets.

Our first result was prompted by the question of whether NP contains sets that are
not m-mitotic. We prove that if EEE 6= NEEE ∩ coNEEE, then there exists an L ∈
(NP∩ coNP)−P that is 1-tt-mitotic but not m-mitotic. From this, it follows that under
the same hypothesis, 1-tt-reducibility and m-reducibility differ on sets in NP. On the
one hand, this consequence explains the need for a reasonably strong hypothesis. On
the other hand, with essentially known techniques using P-selective sets, we show that
1-tt-reducibility and m-reducibility separate within NP under the weaker hypothesis that
E 6= NE ∩ coNE.

This foray into questions about 1-tt-reducibility and m-reducibility provides a segue into
our next result: We would like to know whether 1-tt-complete sets for NP are m-complete
as well. We prove under an interesting hypothesis that every 1-tt-complete sets for NP is
complete under nonuniform m-reductions. The hypothesis states that the NP-complete
set SAT does not infinitely-often belong to the class coNP.

In Glasser et al. [GPSZ06] the authors proved that every m-autoreducible set is m-mitotic.
The same result follows for 1-tt-autoreducibility. In contrast, Ambos-Spies [AS84] proved
that T-autoreducible does not imply T-mitotic. Also, Glasser et al. [GPSZ06] con-
structed a 3-tt-autoreducible set that is not weakly-T-mitotic. Hence, it is known that
autoreducibility and mitoticity are not equivalent for all polynomial-time-bounded re-
ductions between 3-tt-reducibility and Turing-reducibility. However, the question for
2-tt-reducibility has been open. Here we settle this question by showing the existence of
a set in EXP that is 2-tt-autoreducible, but not weakly 2-tt-mitotic.

The last two results to be proved both give evidence of non-mitotic sets in NP. The first
of these states that if EEE 6= NEEE, then there exists a set C ∈ NP − P such that
C is not T-autoreducible. Hence, C is not T-mitotic. The second such result shows
that if NP ∩ coNP contains n-generic sets, then there exists a set L ∈ NP ∩ coNP such
that L is 2-tt-autoreducible and L is not T-mitotic. Roughly speaking, a set L is n-
generic [ASFH87] if membership of x in L cannot be predicted from the initial segment
L|x in time 2n, for almost all x, where |x| = n. This result is interesting, since under
the mentioned hypothesis it shows that within NP the notions of T-autoreducibility and
T-mitoticity differ. In contrast, Ladner [Lad73] showed that in the recursion theoretic
setting, autoreducibility and mitoticity coincide.

A summary of the results that we obtained and that are related to NP is shown in Table 1.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters, Σ∗ denotes
the set of all words, and |w| denotes the length of a word w. A tally set is a subset of 0∗.
The language accepted by a machine M is denoted by L(M). L denotes the complement

2



Assumption Conclusion Remark

EEE 6= NEEE ∃A ∈ NP that is not T-auto-
reducible

A ∈ NP − P

NP ∩ coNP contains
n-generic sets

∃A ∈ NP that is 2-tt-auto-
reducible but not T-mitotic

A ∈ (NP ∩ coNP) − P

EEE 6= NEEE∩ coNEEE ∃A ∈ NP that is 1-tt-mitotic
but not m-mitotic

A ∈ (NP ∩ coNP) − P

E 6= NE ∩ coNE ∃A, B ∈ NP such that
A≤p

1−ttB but A 6≤p
mB

A, B ∈ (NP∩coNP)−P

NP
i.o.

⊆/ coNP 1-tt-complete sets for NP are
nonuniformly m-complete

Table 1: Summary of results related to NP

of a language L and coC denotes the class of complements of languages in C. FP denotes
the class of functions computable in deterministic polynomial time.

We recall standard polynomial-time reducibilities [LLS75]. A set B many-one-reduces to
a set C (m-reduces for short; in notation B≤p

mC) if there exists a total, polynomial-time-
computable function f such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if there

exists a deterministic polynomial-time-bounded oracle Turing machine M such that for
all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

Let Q(M, x) denote the set of all queries to the oracle made by the oracle Turing machine
M on input x.

A set B truth-table-reduces to a set C (tt-reduces for short; in notation B≤p
ttC) if there

exists a deterministic polynomial-time-bounded oracle Turing machine M that behaves
non-adaptively such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

This means there exists a polynomial time-bounded function g such that on input x,
g(x) = cq1c . . . cqn where c 6∈ Σ and for all 1 ≤ i ≤ n, qi ∈ Σ∗, and Q(M, x) = {q1, . . . , qn}.

Furthermore, B 1-tt reduces to C (in notation B≤p
1−ttC) if for some M , B≤p

ttC via M
and for all x, |Q(M, x)| = 1. Similarly, we define 2-tt, and so on.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent (m-equivalent
for short, in notation B ≡p

m C). Similarly, we define equivalence for other reducibilities.

3



A set B is many-one-hard (m-hard for short) for a complexity class C if every B ∈
C m-reduces to B. If additionally B ∈ C, then we say that B is many-one-complete
(m-complete for short) for C. Similarly, we define hardness and completeness for other
reducibilities. We use the term C-complete as an abbreviation for m-complete for C.

A set B is p-selective [Sel79] if there exists a total function f ∈ FP (the selector function)
such that for all x and y, f(x, y) ∈ {x, y} and if either of x and y belongs to B, then
f(x, y) ∈ B.

Definition 2.1 ([AS84]) A set A is polynomial-time T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time-bounded oracle Turing machine M such that
A = L(MA) and for all x, M on input x never queries x. A set A is polynomial-time
m-autoreducible (m-autoreducible, for short) if A≤p

mA via a reduction function f such
that for all x, f(x) 6= x.

Let ≤p
r be a polynomial time reducibility.

Definition 2.2 ([AS84]) A recursive set A is polynomial-time r-mitotic (r-mitotic, for
short) if there exists a set B ∈ P such that:

A ≡p
r A ∩ B ≡p

r A ∩ B.

A recursive set A is polynomial-time weakly r-mitotic (weakly r-mitotic, for short) if
there exist disjoint sets A0 and A1 such that A0 ∪ A1 = A, and

A ≡p
r A0 ≡

p
r A1.

Let EEE = DTIME(222O(n)

) and let NEEE = NTIME(222O(n)

).

3 Separation of Mitoticity Notions

Ladner, Lynch, and Selman [LLS75] and Homer [Hom90, Hom97] ask for reasonable
assumptions that imply separations of polynomial-time reducibilities within NP. In this
section we demonstrate that a reasonable assumption on exponential-time classes allows a
separation of mitoticity notions within NP. This implies a separation of the reducibilities
≤p

m and ≤p
1−tt within NP. Then we show the same separation under an even weaker

hypothesis.

Theorem 3.1 If EEE 6= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩ coNP) − P
that is 1-tt-mitotic but not m-mitotic.

4



Proof Choose B ∈ (NEEE ∩ coNEEE) − EEE. So there exists a constant c ≥ 1 such

that B and B are decidable in nondeterministic time 222c·n

. Let

t(x) =def 22x
2c

be a tower function and let

A =def {0t(n)
∣

∣ n ≥ 0}

C =def {0t(x)
∣

∣ x ∈ B}.

Note that A ∈ P.

Claim 3.2 C ∈ (NP ∩ coNP) − P.

A membership test for C has to decide x ∈ B on input y = 022x
2c

. The test x ∈ B can
be carried out in nondeterministic time

222c·|x|

≤ 222c·2·log x

= 22x
2c

= |y|.

Therefore, C ∈ NP and analogously C ∈ coNP, since B ∈ coNEEE.

Assume C ∈ P. Then B can be decided as follows: On input x we construct the string

y = 022x
2c

and simulate the deterministic polynomial-time decision procedure for C.
Clearly, this algorithm decides C.

|y| = 22x
2c

≤ 22(2|x|)2c

= 222(2c|x|)

So the described algorithm has a running time that is polynomial in 222(2c|x|)

. This shows
B ∈ EEE which contradicts the choice of B. Therefore, C /∈ P which proves Claim 3.2.

We define the language that we show to be 1-tt-mitotic, but not m-mitotic.

L = C ∪ 0(C ∩ A)

Note that the union above is disjoint, since C consists of strings of length t(n) while
0(C ∩ A) consists of strings of length t(n) + 1. Observe that L ∈ (NP ∩ coNP) − P.

Claim 3.3 L is 1-tt-mitotic.

The separator is S = A. First, we describe the 1-tt-reduction from L to L ∩ S on input
x: If x /∈ A ∪ 0A, then reject. If x ∈ A, then accept if and only if x ∈ L ∩ S. Otherwise,
accept if and only if y /∈ L ∩ S where x = 0y. Second, we describe the 1-tt-reduction
from L ∩ S to L ∩ S on input x: If x /∈ S, then reject. Otherwise, accept if and only if
0x /∈ L∩S. Finally, we describe the 1-tt-reduction from L∩S to L on input x: If x ∈ S,
then reject. Otherwise, accept if and only if x ∈ L. This shows that L is 1-tt-mitotic.

5



Claim 3.4 L is not m-mitotic.

Assume L is m-mitotic. Hence L is m-autoreducible [AS84], i.e., L≤p
mL via a reduction

such that f(x) 6= x. Let p be a polynomial bounding the computation time of f . Choose
the smallest number k such that for all n ≥ k it holds that p(t(n) + 1) < t(n + 1). This
choice is possible because

p(t(n) + 1) ≤ t(n)d =
(

22n
2c

)d

= 2d·2n
2c

≤ 22d+n
2c

< 22n+n
2c

≤ 22(n+1)2c

for a suitable constant d ≥ 1. Define the finite set

L′ =def {w
∣

∣ |w| ≤ t(k) + 1 and w ∈ L}.

The following algorithm decides in polynomial time whether the input z belongs to L.

1. x := z

2. if |x| ≤ t(k) + 1 then accept if and only if x ∈ L′

3. if |f(x)| ≥ |x| then reject

4. x := f(x), goto 2

The algorithm runs in polynomial time, since each iteration decreases the length of x.
Also, since f is an m-autoreduction, at any time it holds that

z ∈ L ⇔ x ∈ L. (1)

So if we stop in line 2, then we accept if and only if z ∈ L. It remains to argue for a stop
in line 3.

Assume z ∈ L but we reject in line 3; we will derive a contradiction. By (1), at the
moment we reject, it holds that

x ∈ L and |x| ≥ t(k) + 1 (2)

In particular, x ∈ A ∪ 0A, i.e., x = 0t(n) or x = 0t(n)+1 for a suitable n. By definition of
L,

0t(n) ∈ L ⇔ 0t(n)+1 /∈ L.

It follows that f(x) 6= 0t(n) and f(x) 6= 0t(n)+1, since otherwise either f(x) = x or
(0t(n) ∈ L ⇔ 0t(n)+1 ∈ L). Note that n ≥ k, since otherwise |x| ≤ t(n) + 1 < t(k) + 1
which contradicts (2). Therefore, by the choice of k,

|f(x)| ≤ p(|x|) ≤ p(t(n) + 1) < t(n + 1).

However, besides x there are no words in L that have a length in [t(n), t(n + 1) − 1]. It
follows that |f(x)| < |x|, since f(x) must belong to L. This contradicts our assumption

6



that we reject in line 3. Therefore, if we stop in line 3, then z /∈ L. So the algorithm above
decides L in polynomial time. This is a contradiction. Therefore, L is not m-mitotic. 2

Selman [Sel82] showed under the hypothesis E 6= NE ∩ coNE that there exist A, B ∈
NP−P such that A tt-reduces to B but A does not positive-tt-reduce to B. The separation
of mitoticity notions given in the last theorem allows us to prove a similar statement:

Corollary 3.5 If EEE 6= NEEE ∩ coNEEE, then there exist A, B ∈ (NP ∩ coNP) − P
such that A≤p

1−ttB, but A 6≤p
mB.

Proof Take the set L from Theorem 3.1 and let S ∈ P be a separator that witnesses L’s
1-tt-mitoticity, i.e., L, L ∩ S, and L ∩ S are pairwise 1-tt-equivalent. These sets cannot
be pairwise m-equivalent, since otherwise L would be m-mitotic. This gives us the sets
A and B. 2

However, an even weaker assumption separates 1-tt-reducibility from m-reducibility
within NP.

Theorem 3.6 If E 6= NE ∩ coNE, then there exist A, B ∈ (NP ∩ coNP) − P such that
A≤p

1−ttB, but A 6≤p
mB.

Proof If E 6= NE ∩ coNE, then there exists a tally set T ∈ NP ∩ coNP − P and there
exists a p-selective set A such that A ≡p

T T [Sel79]. Trivially, A≤p
1−ttA, and since A is

p-selective, and not in P, A is not m-reducible to A. 2

3.1 2-tt Autoreducibility Does Not Imply Weak 2-tt-Mitoticity

In this section we prove that autoreducibility and weak mitoticity do not coincide for
2-tt reducibility. This completes a result by Glaßer et al. [GPSZ06] which shows that
for all reducibilities between 3-tt and T, autoreducibility does not imply weak mitoticity.
We present a counterexample in EXP, i.e. we construct a set L ∈ EXP such that L is
2-tt-autoreducible but not weakly 2-tt-mitotic.

Theorem 3.7 There exists L ∈ SPARSE ∩ EXP such that

• L is 2-tt-autoreducible, but

• L is not weakly 2-tt-mitotic.

7



The proof is based on the diagonalization proof of Theorem 4.2 in Glasser et al. [GPSZ06].
However, a straightforward adaption does not work. The reason is that if one considers
groups of three strings at certain super-exponential lengths for diagonalization, the set
constructed as in the previous proof will have to be 2-tt-mitotic if we were to make it
2-tt-autoreducible. The new idea in this proof is to consider two groups of three strings
at super-exponential lengths that overlap at one string. This way we can make the set
2-tt-autoreducible while not 2-tt-mitotic.

We remark that the proof technique cannot be generalized to show that there exists a
set in EXP that is 2-tt-autoreducible, but not weakly T-mitotic. So it remains open to
show there exists a set in EXP that is 2-tt-autoreducible, but not weakly T-mitotic.

Proof Define a tower function by t(0) = 4 and

t(n + 1) = 2222
2t(n)

.

For any word s, let W1(s) = {s000, s001, s010}, W2(s) = {s000, s011, s100}, and W (s) =
W1(s) ∪ W2(s). We will define L such that it satisfies the following:

(i) If w ∈ L, then there exists n such that |w| = t(n).

(ii) For all n, all s ∈ Σt(n)−3, and all i ∈ {1, 2}, it holds that Wi(s) ∩ L either is empty
or contains exactly two elements.

It is easy to see that such an L is 2-tt-autoreducible: On input w, determine n such that
|w| = t(n). If such n does not exist, then reject. Otherwise, let s be w’s prefix of length
|w| − 3. Accept if and only if the set L ∩ (Wi(s) − {w}) contains one element, where
w ∈ Wi(s), i ∈ {1, 2}. This is a 2-tt-autoreduction.

We turn to the construction of L. Let M1, M2, . . . be an enumeration of deterministic,
polynomial-time-bounded nonadaptive oracle Turing machines such that for all i, the
running time of Mi is ni + i and Mi makes two different queries on all inputs. Let 〈·, ·〉
be a pairing function such that 〈x, y〉 > x + y. We construct L stagewise such that in
stage n we determine which of the words of length t(n) belong to L. In other words, at
stage n we define a set Sn ⊆ Σt(n), and finally we define L to be the union of all Sn.

We start by defining S0 = ∅. Suppose we are at stage n > 0. Let m = t(n) and determine
i and j such that n = 〈i, j〉. If such i and j do not exist, then let Sn = ∅ and go to stage
n+1. Otherwise, i and j exist. In particular, i+ j < log log m. Let O =def S0∪· · ·∪Sn−1

be the part of L that has been constructed so far. Let O1, O2, . . . , Ol be the list of all
subsets of O (lexicographically ordered according to their characteristic sequences). Since
O ⊆ Σ≤t(n−1) we obtain ‖O‖ ≤ 2t(n−1)+1. Therefore,

l ≤ 22t(n−1)+1

≤ 222t(n−1)

= log log t(n) = log log m. (3)

We give some intuition for the claim below. If L is weakly 2-tt-mitotic, then in particular,
there exists a partition L = L1 ∪ L2 such that L≤p

2−ttL1 via some machine Mi. Hence

8



O ∩ L1 must appear (say as Ok) in our list of subsets of O. The following claim makes
sure that we can find a list of words s1, . . . , sl of length m−3 such that for all k ∈ [1, l] it
holds that if the partition of L is such that O∩L1 = Ok, then Mi on input of a string from
W (sk) does not query the oracle for words from W (sr) if r 6= k. Also, we will construct
L such that

L ∩ Σt(n) ⊆ W (s1) ∪ W (s2) · · ·W (sl).

Hence, if Mi on input of a string from W (sk) queries a word of length m that does not
belong to W (sk), then it always gets a no answer. So the following is the only information
about the partition of L that can be exploited by Mi:

• the partition of O = Σ<t(n) ∩ L

• the partition of W (sk) ∩ L

In particular, Mi cannot exploit information about the partition of W (sr) ∩ L for r 6= k.
This independence of Mi makes our diagonalization possible.

Claim 3.8 There exist pairwise different words s1, . . . , sl ∈ Σm−3 such that for all k, r ∈
[1, l], k 6= r, and all y ∈ W (sk), neither MO−Ok

i (y) nor MOk

j (y) queries the oracle for
words in W (sr).

Proof For s ∈ Σm−3, let

Qs =def {s
′ ∈ Σm−3

∣

∣ ∃y ∈ W (s), ∃q ∈ W (s′) such that q is
queried by Mi or Mj on input y }.

Observe that for every s ∈ Σm−3,

‖Qs‖ ≤ 5[2 + 2] = 20. (4)

We identify numbers in [1, 2m−3] with strings in Σm−3. Considered in this way, each Qs

is a subset of [1, 2m−3]. By (4), Q1, Q2, . . . , Q2m−3 are sets of cardinality ≤ 20. Clearly,
1, 2, . . . , 2m−3 are pairwise different numbers. By (3),

2m−3 ≥ (32)log m ≥ (20 + 2)2l

.

Therefore, we can apply Lemma 4.1 in Glaßer et al. [GPSZ06] with m′ = l, l′ = 20, and
k′ = 2m−3. We obtain indices s1, . . . , sl such that for all k, r ∈ [1, l],

r 6= k ⇒ sr /∈ Qsk
. (5)

Assume there exist k, r ∈ [1, l], k 6= r, and y ∈ W (sk) such that some q ∈ W (sr) is
queried by MO−Ok

i (y) or MOk

j (y). Hence sr ∈ Qsk
. This contradicts (5) and finishes the

proof of Claim 3.8.

2

9



Let s1, . . . , sl ∈ Σm−3 be the words assured by Claim 3.8. We define Sn such that for
every k ∈ [1, l] we define a set Vk ⊆ W (sk), and finally we define Sn to be the union of
all Vk. Each Vk has size 0, 2 or 3 and satisfies Condition (ii).

Fix some k ∈ [1, l]. Let Qk =def O − Ok. Let a =def sk000, b =def sk001, c =def sk010,
d =def sk011 and e =def sk100. Let Qi(x) (Qj(x)) denote the set of queries of Mi (Mj) on
input x. Note that for any x, ‖Qi(x)‖ = ‖Qj(x)‖ = 2.

Case 1: For some x ∈ W (sk), MOk

i (x) accepts or MQk

j (x) accepts. Define Vk =def ∅.

Case 2: For all x ∈ W (sk), both MOk

i (x) and MQk

j (x) reject and b 6∈ Qi(b)∪Qj(b). Define
Vk =def {b, c}.

Case 3: For all x ∈ W (sk), both MOk

i (x) and MQk

j (x) reject and Qr(a) = {d, e} for some
r ∈ {i, j}. Let Pr = Ok if r = i and Pr = Qk if r = j. There are 3 subcases here.

Case 3a: M
Pr∪{d}
r (a) rejects. Define Vk =def {a, b, d}.

Case 3b: M
Pr∪{e}
r (a) rejects. Define Vk =def {a, b, e}.

Case 3c: Both M
Pr∪{d}
r (a) and M

Pr∪{e}
r (a) accepts. Define Vk =def {d, e}.

Case 4: For all x ∈ W (sk), both MOk

i (x) and MQk

j (x) reject and Qr(a) = {y, z} for some
r ∈ {i, j}, y /∈ {a, d, e} and z ∈ {d, e}. Let y′ ∈ {b, c} − {y} and z′ ∈ {d, e}. Define
Vk = {a, y′, z′}.

In the cases 5-7 we will assume that the following three statements hold; the case where
these statements do not hold is covered with Case 8.

1. for all x ∈ W (sk), both MQk

i (x) and MOk

j (x) reject;

2. b ∈ Qi(b) ∪ Qj(b);

3. Qi(a) = {a, u} and Qj(a) = {a, v}, where {u, v} = {d, e}.

Case 5: b ∈ Qi(b) ∩ Qj(b). There are 4 subcases in this case.

Case 5a: c /∈ Qi(b) ∪ Qj(b). Define Vk =def {b, c}.
Case 5b: c ∈ Qi(b) ∪ Qj(b) and a /∈ Qi(b) ∪ Qj(b). Then in this subcase either d /∈
Qi(b) ∪ Qj(b) or e 6∈ Qi(b) ∪ Qj(b). If d /∈ Qi(b) ∪ Qj(b), then define Vk =def {a, b, d}.
Otherwise, define Vk =def {a, b, e}.
Case 5c: Qi(b) = {b, a} and Qj(b) = {b, c}. Let y ∈ {d, e} − Qj(a). Define Vk =def

{a, b, y}.
Case 5d: Qi(b) = {b, c} and Qj(b) = {b, a}. Let y ∈ {d, e} − Qi(a). Define Vk =def

{a, b, y}.

Case 6: b ∈ Qi(b) and b /∈ Qj(b). We have 3 subcases here.

Case 6a: a /∈ Qj(b). If Qj(b) = {d, e}, then define Vk = {b, c}. Otherwise, let y ∈
{d, e} − Qj(b) and define Vk = {a, b, y}.

10



Case 6b: c /∈ Qj(b). Define Vk = {b, c}.
Case 6c: b ∈ Qi(b) and Qj(b) = {a, c}. Let y ∈ {d, e} − {u}. Define Vk = {a, b, y}.

Case 7: b /∈ Qi(b) and b ∈ Qj(b). We have 3 subcases here.

Case 7a: a /∈ Qi(b). If Qi(b) = {d, e}, then define Vk = {b, c}. Otherwise, let y ∈
{d, e} − Qi(b) and define Vk = {a, b, y}.
Case 7b: c /∈ Qi(b). Define Vk = {b, c}.
Case 7c: Qi(b) = {a, c} and b ∈ Qj(b). Let y ∈ {d, e} − {v}. Define Vk = {a, b, y}.

Case 8: If Vk cannot be defined in any of the above cases, then it must hold that {d, e} 6⊆
Qi(a) ∪ Qj(a). Now we consider the computations Mi(d) and Mj(d) (and Mi(a) and
Mj(a)) similarly, and try to define Vk in one of the cases above except with b, c and
d, e switched, respectively. If Vk still cannot be defined, then by symmetry it must be
the case that {b, c} 6⊆ Qi(a) ∪ Qj(a). Now let y ∈ {d, e} − Qi(b) ∪ Qj(a) and z ∈
{b, c} − Qi(b) ∪ Qj(a). Define Vk = {a, y, z}.

This finishes the construction of Vk. We define Sn =def

⋃

k∈[1,l] Vk. Finally, L is defined
as the union of all Sn.

Note that by the construction, Sn ⊆ Σt(n) which shows (i). Observe that the construction
also ensures (ii). We argue for L ∈ EXP: Since l ≤ log log m, there are not more
than 2m log log m possibilities to choose the strings s1, . . . , sl. For each such possibility we
have to simulate O(l2) computations Mi(y) and Mj(y). This can be done in exponential
time in m. For the definition of each Vk we have to simulate a constant number of
computations Mi(y) and Mj(y). This shows that L is printable in exponential time.
Hence L ∈ EXP. From the construction it follows that L ∩ Σm ≤ 3l ≤ 3 log log m. In
particular, L ∈ SPARSE. It remains to show that L is not weakly 2-tt-mitotic.

Assume L is weakly 2-tt-mitotic. So L can be partitioned into L = L1 ∪ L2 (a disjoint
union) such that

(iii) L≤p
2−ttL1 via machine Mi and

(iv) L≤p
2−ttL2 via machine Mj .

Let n = 〈i, j〉, m = t(n), and O = S0∪· · ·∪Sn−1, i.e., O = L∩Σ<t(n). Let O1, O2, . . . , Ol be
the list of all subsets of O (again lexicographically ordered according to their characteristic
sequences). Let s1, . . . , sl and V1, . . . , Vl be as in the definition of Sn. Choose k ∈ [1, l]
such that L1 ∩Σ<t(n) = Ok. Let Qk = O −Ok. So L2 ∩Σ<t(n) = Qk. Clearly, Vk must be
defined according to one of the cases above.

Assume Vk was defined according to Case 1: So Vk = ∅ and for every x ∈ W (sk), x /∈ L1.
Without loss of generality assume that MOk

i (x) accepts for some x ∈ W (sk). ML1
i (x) has

running time mi + i < mm + m < t(n + 1). Hence ML1
i (x) behaves like ML1∩Σ≤t(n)

i (x).
Since sk was chosen according to Claim 3.8, for all r ∈ [1, l] − {k}, MOk

i (x) does not
query the oracle for words in W (sr). Note that L ∩W (sk) = Vk = ∅. Therefore, ML1

i (x)

11



behaves like ML1∩Σ<t(n)

i (x) which is the same as MOk

i (x). The latter accepts, but x /∈ L1.
This contradicts (iii).

Assume Vk was defined according to Case 2: So Vk = {b, c} = L ∩ W (sk). Therefore,
either c /∈ L1 or c /∈ L2. Suppose c /∈ L1. Then as above, Mi(b) with oracle L1 behaves
the same way as Mi(b) with oracle Ok. The latter rejects because we are in Case 2. But
since b ∈ L, this contradicts (iii). The case c /∈ L2 is similar.

Assume Vk was defined according to Case 3: Without loss of generality, assume Qi(a) =
{d, e}. Assume Vk was defined according to Case 3a. Then L ∩ W (sk) = Vk = {a, b, d}.
So e /∈ L1. Suppose d /∈ L1. Then ML1

i (a) behaves the same way as MOk

i (a) since
Qj(a) = {d, e}. The latter rejects because we are in Case 3. Since a ∈ L, this contradicts

(iii). Now suppose d ∈ L1. So ML1
i (a) behaves the same way as M

Ok∪{d}
i . The latter

rejects because we are in Case 3a. Since a ∈ L, this contradicts (iii). Case 3b is similar.

Assume Vk was defined according to Case 3c. Then L ∩ W (sk) = Vk = {d, e}. Assume

d ∈ L1 and e /∈ L1. Then ML1
i (a) behaves the same way as M

Ok∪{d}
i (a). The latter

accepts because we are in Case 3c. Since a /∈ L, this contradicts (iii). Similar arguments
show the assumption d /∈ L1 and e ∈ L1 contradicts (iii) too. So it must be the case that
either L1 ∩ W (sk) = ∅ or L1 ∩ W (sk) = {d, e}. In the former case, ML1

i (d) behaves the
same way as MOk

i (d), which rejects. Since d ∈ L, we obtain the contradiction to (iii).
In the latter case, L2 ∩ W (sk) = ∅. So ML2

j (d) behaves the same way as MQk

j (d), which
rejects. We obtain the contradiction to (iv).

Assume Vk was defined according to Case 4. Without loss of generality, assume Qi(a) =
{y, z}, where y /∈ {a, d, e} and z ∈ {d, e}, and Vk = {a, y′, z′}, where y′ ∈ {b, c} − {y}
and z′ ∈ {d, e} − {z}. So Vk ∩ Qi(a) = ∅. Since Vk = L ∩ W (sk) = (L1 ∪ L2) ∩ W (sk),
Mi(a) with oracle L1 behaves the same as Mi(a) with oracle Ok. The latter rejects. So
this is a contradiction to (iii), since a ∈ L.

Now assume Vk was defined according to Case 5. So b ∈ Qi(b) ∩ Qj(b).

Assume Vk was defined according to Case 5a: So L∩W (sk) = {b, c}. Then either b /∈ L1

or b /∈ L2. Without loss of generality, assume b /∈ L1. Then ML1
i (b) behaves the same

way as MOk

i (b) since c /∈ Qi(b). The latter rejects because we are in Case 4. Since b ∈ L,
this contradicts (iii).

Assume Vk was defined according to Case 5b: So c ∈ Qi(b)∪Qj(b) and a /∈ Qi(b)∪Qj(b).
Suppose d /∈ Qi(b)∪Qj(b). Then L∩W (sk) = Vk = {a, b, d}. So either b /∈ L1 or b /∈ L2.
A similar argument to Case 4a gives the contradiction to (iii). The case e /∈ Qi(b)∪Qj(b)
is similar.

Assume Vk was defined according to Case 5c: So Qi(b) = {b, a} and Qj(b) = {b, c}. Note
that ‖Qj(a) ∩ {d, e}‖ = 1 and L ∩ W (sk) = Vk = {a, b, y}, where y ∈ {d, e} − Qj(a).
We argue that b ∈ L2 and a ∈ L1. Suppose b /∈ L2. Then ML2

j (b) behaves the same

as MQk

j (b). The latter rejects, which contradicts (iv). So b ∈ L2. Now assume a /∈ L1.

Then ML1
i (b) behaves the same as MOk

i (b). The latter rejects, which contradicts (iii). So
a ∈ L1 and hence, a /∈ L2. Now y /∈ Qj(a). So Qj(a)∩L2 = ∅ and hence, ML2

j (a) behaves

the same as MQk

j (a). The latter rejects, which contradicts (iv).

12



Case 5d is symmetric to Case 5c.

Now assume Vk was defined according to Case 6: So b ∈ Qi(b) and b /∈ Qj(b).

Assume Vk was defined according to Case 6a. So a /∈ Qj(b). Suppose Qj(b) = {d, e}.
Then L∩W (sk) = Vk = {b, c}. So L∩Qj(b) = ∅. Therefore, ML2

j (b) behaves the same as

MQk

j (b). The latter rejects. Since b ∈ L, this contradicts (iv). Now assume Qj(b) 6= {d, e}.
Then L ∩ W (sk) = Vk = {a, b, y}, where y ∈ {d, e} − Qj(b). So L ∩ Qj(b) = ∅. Similar
arguments obtain a contradiction to (iv).

Assume Vk was defined according to Case 6b. So c /∈ Qj(b) and L∩W (sk) = Vk = {b, c}.

Hence, L ∩Qj(b) = ∅. So ML2
j (b) behaves the same as MQk

j (b). The latter rejects. Since
b ∈ L, this contradicts (iv).

Assume Vk was defined according to Case 6c. So b ∈ Qi(b), Qj(b) = {a, c} and L∩W (sk) =
Vk = {a, b, y}, where y ∈ {d, e} − {u}. We claim a /∈ L2. Suppose a ∈ L2. Then a /∈ L1

and hence, L1 ∩ W (sk) ∩ Qi(a) = ∅ since Qi(a) = {a, u} in this case. So Mi(a) with
oracle Ok behaves the same as Mi(a) with oracle L1. The former rejects, and the latter
accepts because a ∈ L. This is a contradiction. So a /∈ L2. Hence, Vk ∩ Qj(b) = ∅. Since
Vk = (L1 ∪L2)∩W (sk), Mj(b) with oracle L2 behaves the same as Mj(b) with oracle Qk.
The latter rejects, which contradicts (iv).

Case 7 is symmetric to Case 6.

Assume Vk was defined according to Case 8. So {d, e} 6⊆ Qi(a) ∪ Qj(a) and {b, c} 6⊆
Qi(a)∪Qj(a). Without loss of generality, assume d /∈ Qi(a)∪Qj(a) and b /∈ Qi(a)∪Qj(a).
Then Vk = {a, b, d} = L ∩ W (sk). So either a /∈ L1 or a /∈ L2. Assume a /∈ L1. Then
L1 ∩ Qi(a) = ∅ since b, d /∈ Qi(a). Therefore, ML1

i (a) behaves the same as MOk

i (a). The
latter rejects. So this contradicts (iii). Similar arguments show that a /∈ L2 contradicts
(iv). This finishes Case 8 and all cases.

From the fact that all possible cases led to contradictions, we obtain that the initial
assumption was false. Hence, L is not weakly 2-tt-mitotic. 2

The following proposition shows that with our result we reached the limit of the used
proof technique. More precisely, our proof cannot be generalized to show that there is a
2-tt-autoreducible set that is not weakly T-mitotic.

Proposition 3.9 For every language L that satisfies conditions (i) and (ii) in Theorem
3.7, L is weakly 5-tt-mitotic.

Proof Let L be a language that satisfies conditions (i) and (ii). So

L ⊆
⋃

n

(∪s∈Σt(n)−3W (s)).

For any s ∈ Σt(n)−3, let a =def s000, b =def s001, c =def s010, d =def s011, and e =def s100.

We define the partition of L = L1 ∪ L2 according to the following table.

13



L ∩ W (s) L1 ∩ W (s) L2 ∩ W (s)
∅ ∅ ∅

{b, c} {b} {c}
{d, e} {d} {e}
{a, b, d} {a, b} {d}
{a, b, e} {a, e} {b}
{a, c, d} {c} {a, d}
{a, c, e} {e} {a, c}
{b, c, d, e} {c, d} {b, e}

The first column gives all possibilities of L ∩ W (s) while the second and third column
defines L1 ∩ W (s) and L2 ∩ W (s) in the corresponding cases, respectively.

Note that sets in the column for L1 ∩ W (s) are pair-wise different. So a 5-tt reduction
machine M on input x can ask for all y ∈ W (s) whether y ∈ L1, where x ∈ W (s),
and check which case it is according to the above table. Then M will have complete
knowledge of L ∩ W (s) and be able to accept or reject x correctly. Note that it takes
no more than polynomial-time to check whether x ∈ W (s) for some s, and to generate
the above table for s. So L is reduced to L1 via a polynomial-time 5-tt reduction (since
‖W (s))‖ = 5). Similar arguments show L1 is 5-tt reducible to L2 and L2 is 5-tt reducible
to L, both of which in polynomial-time. Therefore, L is weakly 5-tt mitotic. 2

4 Non-Mitotic Sets of Low Complexity

Buhrman, Hoene, and Torenvliet [BHT98] showed that EXP contains non-mitotic sets.
We are interested in constructing non-T-mitotic sets in NP. Recall that the existence
of non-mitotic sets in NP would imply that P 6= NP, hence we cannot expect to prove
their existence without a sufficiently strong hypothesis. Moreover, the same holds for the
non-existence of non-mitotic sets in NP. Since it is known [BHT98] that EXP contains
non-mitotic sets, this would imply that NP 6= EXP.

It is well known that mitoticity implies autoreducibility [AS84], hence it suffices to con-
struct non-T-autoreducible sets in NP. Beigel and Feigenbaum [BF92] construct incoher-
ent sets in NP under the assumption that NEEEXP 6⊆ BPEEEXP. In particular, these
sets are non-T-autoreducible. With the next theorem, we show that there are non-T-
autoreducible sets in NP under the weaker assumption that NEEE 6⊆ EEE. Observe that
these sets are not necessarily incoherent.

Also, under a strong assumption, we prove that 2-tt autoreducibility and T-mitoticity
(and hence r-autoreducibility and r-mitoticity for every reduction r between 2-tt and T)
do not coincide for NP.

Theorem 4.1 If EEE 6= NEEE, then there exists C ∈ NP − P such that C is not
T-autoreducible.

14



Proof Choose B ∈ NEEE − EEE. So there exists a constant c ≥ 1 such that B is
decidable in nondeterministic time 222c·n

. Let

t(x) =def 22x
2c

be a tower function and let

A =def {0t(n)
∣

∣ n ≥ 0}

C =def {0t(x)
∣

∣ x ∈ B}.

Note that A ∈ P.

Claim 4.2 C ∈ NP − P.

A membership test for C has to decide x ∈ B on input y = 022x
2c

. The test x ∈ B can
be carried out in nondeterministic time

222c·|x|

≤ 222c·2·log x

= 22x
2c

= |y|.

Therefore, C ∈ NP. Let us now assume that C ∈ P. Then B can be decided as follows:

On input x we construct the string y = 022x
2c

and simulate the deterministic polynomial-
time decision procedure for C. Clearly, this algorithm decides C.

|y| = 22x
2c

≤ 22(2|x|)2c

= 222(2c|x|)

So the described algorithm has a running time that is polynomial in 222(2c|x|)

. This shows
B ∈ EEE which contradicts the choice of B. Therefore, C /∈ P which proves Claim 4.2.

We will now show that the set C is not T-autoreducible.

Let us assume that C is T-autoreducible. So there exists a deterministic polynomial time
oracle Turing-machine M ′ such that L(M ′C) = C. Furthermore, it holds for all x that
during its work on input x, M ′ never queries the oracle C for x.

Let k ≥ 0 such that the running-time of M ′ on inputs of length n ≥ 1 is bounded by the
polynomial nk.

Observe that t(n)k <ae t(n + 1). More precisely,

(

n > log(k)−1
)

=⇒ t(n)k = (22n
2c

)k < t(n + 1) = 22(n+1)2c

. (6)

Let log(k) ≤ m, and assume that M ′ is running on input 0t(m). Since M ′ is an oracle
machine, it can query C for a string q. Observe that such a query q can have length at
most t(m)k. We can assume that M ′ queries C only for strings from A (i.e. strings of the
form 0t(i) for i ≥ 0). As C ⊆ A, these are the only queries that have a chance of getting
a positive answer from C. Notice that M ′ is not allowed to query C for 0t(m) because

15



M ′ proves that C is T-autoreducible. Furthermore, due to (6), M ′ on input 0t(m) cannot
query C for 0t(m+1) or longer strings. So M ′ on input 0t(m) can only query C for strings
in {0t(i)

∣

∣ 0 ≤ i < m}.

We construct a deterministic polynomial-time Turing-machine M such that L(M) = C.
On input x, M first checks whether x ∈ A, i.e., whether x = 0t(n) for some n ≥ 0. If no
such n exists, M rejects. Since this can easily be done in polynomial time, we assume
that there exists an n ≥ 0 such that M is running on input 0t(n).

We define

E[i] =

{

1, if 0t(i) ∈ C
0, if 0t(i) 6∈ C.

M will compute E[0], E[1], . . . , E[n] one after another and accept the input 0t(n) if and
only if E[n] = 1.

Since k is a constant, we can encode E[0], E[1], . . . , E[log(k)− 1] into the program of M .

During its work on input 0t(n), M will simulate M ′. Notice that while M ′ is equipped with
oracle C, M is not an oracle machine and hence cannot query an oracle while simulating
M ′. Instead, M will make use of the values E[0], E[1], . . . it has computed so far to
answer possible oracle queries of M ′.

Let log(k) ≤ m ≤ n. We now describe how M computes E[m] if it has access to
E[0], E[1], . . . , E[m − 1].

Subroutine compute E[m];

1. Compute 0t(m).

2. Simulate M′ on input 0t(m). For every oracle query q of M′ on input

0t(m), proceed as follows:

(a) Compute j ≥ 0 such that q = 0t(j). //Note that j < m.

(b) If E[j] = 0, continue the simulation of M′ with a negative answer

to query q. If E[j] = 1, continue the simulation of M′ with a

positive answer to query q.

3. If M′ accepts, set E[m] := 1, else set E[m] := 0.

From our above argumentation it follows that for 0 ≤ i ≤ n, the algorithm computes
E[i] correctly if it has access to E[0], . . . , E[i− 1]. Since M is running on input 0t(n) and
computes E[0], E[1], . . . , E[n] one after another, M clearly is a polynomial time machine
and it holds that L(M) = C.

This proves C ∈ P, which contradicts our assumption. Hence, such machine M ′ cannot
exist. So C is not T-autoreducible. 2

16



Corollary 4.3 If EEE 6= NEEE, then there exists C ∈ NP − P such that C is not
T-mitotic.

Proof T-mitoticity implies T-autoreducibility [AS84]. Consequently, the set C in The-
orem 4.1 cannot be T-mitotic since it is not T-autoreducible. 2

Under a stronger assumption, we can show that there are non-T-autoreducible sets in
(NP ∩ coNP) − P.

Corollary 4.4 If EEE 6= NEEE∩ coNEEE, then there exists C ∈ (NP∩ coNP)−P such
that

• C is not T-autoreducible.

• C is not T-mitotic.

Proof This can easily be seen by using the set C from the proof of Theorem 3.1 in the
proof of Theorem 4.1 instead of the one constructed in the latter. 2

Ladner [Lad73] showed that autoreducibility and mitoticity coincide for computably enu-
merable sets. Under the strong assumption that NP ∩ coNP contains n-generic sets, we
can show that the similar question in complexity theory has a negative answer.

The notion of resource-bounded genericity was defined by Ambos-Spies, Fleischhack, and
Huwig [ASFH87]. We use the following equivalent definition [BM95, PS02], where L(x)
denotes L’s characteristic function on x.

Definition 4.5 For a set L and a string x let L|x = {y ∈ L
∣

∣ y < x}. A deterministic

oracle Turing machine M is a predictor for a set L, if for all x, ML|x(x) = L(x). L is
a.e. unpredictable in time t(n), if every predictor for L requires more than t(n) time for
all but finitely many x.

Definition 4.6 A set L is t(n)-generic if it is a.e. unpredictable in time t(2n).

This is equivalent to say that for every oracle Turing machine M , if ML|x(x) = L(x) for
all x, then the running time of M is at least t(2|x|) for all but finitely many x.

For a given set L and two strings x and y, there are 4 possibilities for the string L(x)L(y).
For 1-cheatable sets L, a polynomial-time-computable function can reduce the number
of possibilities to 2.

Definition 4.7 ([Bei87, Bei91]) A set L is 1-cheatable if there exists a polynomial-
time-computable function f such that f : Σ∗ × Σ∗ −→ {0, 1}2 × {0, 1}2 and for all x and
y, the string L(x)L(y) belongs to f(x, y).

17



Note that in this definition and in the following text we identify the pair f(x, y) = (w1, w2)
with the set {w1, w2}. Moreover, if f(x, y) = (w1, w2), then f(x, y)R denotes the pair
(wR

1 , wR
2 ) where wR denotes the reverse of the word w.

Theorem 4.8 If NP ∩ coNP contains n-generic sets, then there exists a tally set S ∈
NP ∩ coNP such that

• S is 2-tt-autoreducible.

• S is not T-mitotic.

Proof Let t(0) = 2 and t(n + 1) = 22t(n)
be a tower function. Let A′ = {0t(n)

∣

∣ n ≥ 0},
A′′ = A′ ∪ 0A′, and A′′′ = A′ ∪ 0A′ ∪ 00A′. In this way, the number of primes indicates
the number of words in the set with length around t(n) for each n. By assumption,
there exists an n-generic set L ∈ NP ∩ coNP. Define L′′ = L ∩ A′′ and observe that
L′′ ∈ NP ∩ coNP.

Claim 4.9 L′′ is not 1-cheatable.

Assuming that L′′ is 1-cheatable we will show that L is not n-generic. Let f be a function
that witnesses the 1-cheatability of L′′. Without loss of generality we may assume that
if f(x, y) = (v, w), then v 6= w.

g(x, y) =def



















f(x, y) : if x < y

f(y, x)R : if x > y

(00, 11) : if x = y

Observe that also g witnesses the 1-cheatability of L′′ such that if g(x, y) = (v, w), then
v 6= w. In addition, for all x and y,

g(x, y) = g(y, x)R. (7)

We describe a predictor M for L on input x.

1. if x /∈ A′′ then accept if and only if x ∈ L

2. // here either x = 0t(n) or x = 0t(n)+1 for some n

3. if x = 0t(n) then let y = 0t(n)+1 else let y = 0t(n)

(i.e., with y we compute the neighbour of x in A′′)

4. compute g(x, y) = (ab, cd) where a, b, c, and d are suitable bits

5. if a = c then return a

18



6. if b = d then accept if and only if x ∈ L

7. // here ab = cd and hence g(x, y) = {00, 11} or g(x, y) = {01, 10}

8. if a = b and |x| > |y| then accept if and only if y belongs to the

oracle L|x

9. if a = b and |x| ≤ |y| then accept if and only if x ∈ L

10. // here g(x, y) = {01, 10}

11. if |x| > |y| then accept if and only if y does not belong to the

oracle L|x

12. accept if and only if x ∈ L

In the algorithm, the term “accept if and only if x ∈ L” means that first, in deterministic
time 2nO(1)

, we find out whether x belongs to L, and then we accept accordingly.

We observe that M is a predictor for L: In line 5, M predicts correctly, since g(x, y) =
(ab, ad) and therefore, L(x) = a. M predicts correctly in line 8, since g(x, y) = {00, 11}
implies x ∈ L ⇔ y ∈ L and |y| < |x| implies y ∈ L|x ⇔ y ∈ L. M predicts correctly
in line 11, since g(x, y) = {01, 10} implies x ∈ L ⇔ y /∈ L and again |y| < |x| implies
y ∈ L|x ⇔ y ∈ L. Hence M is a predictor for L.

If we do not take the lines 1, 6, 9, and 12 into account, then the running time of M is
polynomially bounded, say by the polynomial p. Now we are going to show the following.

For all n, at least one of the following holds: ML|x(x) stops within p(|x|)
steps or ML|y(y) stops within p(|y|) steps, where x = 0t(n) and y = 0t(n)+1.

(∗)

Assume (∗) does not hold for a particular n, and let x = 0t(n) and y = 0t(n)+1. Hence,
both computations, ML|x(x) and ML|y(y) must stop in one of the lines 1, 6, 9, and 12.
Since, x, y ∈ A′′, these computations do not stop in line 1.

Assume ML|x(x) stops in line 6. In this case, g(x, y) = (ab, cb). By (7), the computation
ML|y(y) computes the value g(y, x) = (ba, bc) in line 4. So ML|y(y) stops in line 5, which
contradicts our observation that we must stop in the lines 6, 9, or 12. This shows that
ML|x(x) does not stop in line 6. Analogously we obtain that ML|y(y) does not stop in
line 6. So both computations must stop in line 9 or line 12.

ML|y(y) does not stop in line 9, since in this computation, the second condition in line
9 evaluates to false. So ML|y(y) stops in line 12. However, this is not possible, since
ML|y(y) would have stopped already in line 11. This proves (∗).

From (∗) it follows that for infinitely many x, ML|x(x) stops within p(|x|) steps. Hence L
is not (log p(n))-generic and in particular, not n-generic. This contradicts our assumption
on L. (Note that we obtain also a contradiction if we assume L to be t(n)-generic such
that t(n) > c log n for all c > 0.) This finishes the proof of Claim 4.9.

19



So far we constructed an L′′ ∈ NP ∩ coNP such that L′′ ⊆ A′′ and L′′ is not 1-cheatable.
Now we define a set L′′′ ⊆ A′′′ (this will be the set asserted in the theorem). For n ≥ 0 let
xn = 0t(n), yn = 0t(n)+1, zn = 0t(n)+2, and cn = L′′(xn)L′′(yn). Define L′′′ to be the unique
subset of A′′′ that satisfies the following conditions where dn = L′′′(xn)L′′′(yn)L′′′(zn):

1. if cn = 00 then dn = 000

2. if cn = 01 then dn = 110

3. if cn = 10 then dn = 101

4. if cn = 11 then dn = 011

Observe that L′′′ is a tally set in NP ∩ coNP. Moreover, note that for all n, either 0 or 2
words from {xn, yn, zn} belong to L′′′. This implies that L′′′ is 2-tt-autoreducible: If the
input x is not in A′′′, then reject. Otherwise, determine the n such that x ∈ {xn, yn, zn}.
Ask the oracle for the two words in {xn, yn, zn}−{x} and output the parity of the answers.

Claim 4.10 L′′′ is not T-mitotic.

Assume L′′′ is T-mitotic, and let S ∈ P be a witnessing separator. Let L′′′≤p
TL′′′ ∩ S via

machine M1 and let L′′′≤p
TL′′′ ∩ S via machine M2. We will obtain a contradiction by

showing that L′′ is 1-cheatable. We define the witnessing function h(x, y) as follows.

1. If x = y then output (00, 11).

2. If |x| > |y| then output h(y, x)R.

3. If x /∈ A′′ then output (00, 01).

4. If y /∈ A′′ then output (00, 10).

5. // Here |x| < |y| and x, y ∈ A′′.

6. If |y| − |x| > 1 then let a = L′′(x) and output (a0, a1).

7. Determine n such that x = xn and y = yn.

8. Distinguish the following cases.

(a) S ∩ {xn, yn, zn} = ∅: Simulate M2(xn), M2(yn), and M2(zn) where oracle
queries q of length ≤ t(n − 1) + 2 are answered according to q ∈ L′′′ ∩ S and
all other oracle queries are answered negatively. Let dn be the concatenation
of the outputs of these simulations. Let cn be the value corresponding to dn

according to the definition of L′′′. Output (cn, 00).

(b) S ∩{xn, yn, zn} = ∅: Do the same as in step 8a, but use M1 instead of M2 and
answer short queries q according to q ∈ L′′′ ∩ S.

20



(c) |S ∩ {xn, yn, zn}| = 1: Without loss of generality we assume xn ∈ S and
yn, zn /∈ S. For r ∈ {yes, no} we simulate M2(xn), M2(yn), and M2(zn) where
oracle queries q of length ≤ t(n−1)+2 are answered according to q ∈ L′′′∩S,
the oracle query xn is answered with r, and all other oracle queries q are
answered negatively. Let dr be the concatenation of the outputs of these
simulations. Let cr be the value corresponding to dr according to the definition
of L′′′ (if such cr does not exist, then let cr = 00). Output (cyes, cno).

(d) |S ∩ {xn, yn, zn}| = 1: Do the same as in step 8c, but use M1 instead of M2

and answer short queries q according to q ∈ L′′′ ∩ S.

We argue that h is computable in polynomial time. Note that if we recursively call h(y, x)
in step 2, then the computation of h(y, x) will not call h again. So the recursion depth
of the algorithm is ≤ 2. In step 6, |x| < |y| and x, y ∈ A′′, since |x| = |y| implies that we
stop in line 3 or 4. From the definition of A′′ it follows that there exists an n such that
|x| ≤ t(n − 1) + 1 and |y| ≥ t(n). So the computation of a in step 6 takes time

≤ 2|x|
O(1)

≤ 2t(n−1)O(1)

≤ 22t(n−1)

= t(n) ≤ |y|. (8)

The n in step 7 exists, since x, y ∈ A′′ and |y| − |x| = 1. In step 8, queries q of length
≤ t(n − 1) + 2 must be answered according to q ∈ L′′′ ∩ S or according to q ∈ L′′′ ∩ S.
Similar to (8) these simulations can be done in polynomial time in |x|. This shows that
h is computable in polynomial time.

We now argue that h witnesses that L′′ is 1-cheatable, i.e., if f(x, y) = (ab, cd), then
L′′(x)L′′(y) = ab or L′′(x)L′′(y) = cd. It suffices to show this for the case |x| < |y|. If we
stop in step 3, then x /∈ L′′ and hence L′′(x)L′′(y) = 00 or L′′(x)L′′(y) = 01. Similarly, if
we stop in step 4, then y /∈ L′′ and hence L′′(x)L′′(y) = 00 or L′′(x)L′′(y) = 10. If we stop
in step 6, then L′′(x) = a and so L′′(x)L′′(y) = a0 or L′′(x)L′′(y) = a1. So it remains to
argue for step 8.

Assume the output is made in step 8a. Consider the computations ML′′′∩S
2 (xn),

ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). Since these are polynomial-time computations, they cannot

ask for words of length ≥ t(n + 1) = 22t(n)
. So xn, yn, and zn are the only candidates for

words that are of length > t(n − 1) + 2 and that can be queried by these computations.
But by assumption of case 8a, these words are not in L′′′ ∩ S. Therefore, the simulations
of M2(xn), M2(yn), and M2(zn) in step 8a behave the same way as the computations
ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). Hence we obtain dn = L′′′(xn)L′′′(yn)L′′′(zn)
and cn = L′′(xn)L′′(yn). So the output contains the string L′′′(x)L′′′(y). Step 8b is argued
similar to step 8a.

Assume the output is made in step 8c. We can reuse the argument from step 8a. The
only difference is the words xn. It can be an element of L′′′ ∩ S and it can be queried
by the computations ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). So we simulate both
possibilities, the one where xn ∈ L′′′ ∩ S and the one where xn /∈ L′′′ ∩ S. So at least
one of the strings cyes and cno equals L′′′(x)L′′′(y) and so the output contains the string
L′′′(x)L′′′(y). Step 8d is argued similar to step 8c.

21



This shows that L′′ is 1-cheatable via function h. This contradicts Claim 4.9 and therefore,
L′′′ is not T-mitotic. This finishes the proof of Claim 4.10 and of Theorem 4.8. 2

Corollary 4.11 If NP ∩ coNP contains n-generic sets, then T -autoreducibility and T -
mitoticity differ on NP.

Proof Follows from the fact that every 2-tt-autoreducible set is T-autoreducible. 2

Corollary 4.12 Let t(n) be a function such that for all c > 0, t(n) > c log n. If NP ∩
coNP contains t(n)-generic sets, then there exists a tally set L ∈ NP ∩ coNP that is
2-tt-autoreducible, but not T-mitotic.

Proof Consider the proof of Theorem4.8. There, at the end of the proof of Claim 4.9,
we mention that t(n)-genericity suffices. 2

5 Uniformly Hard Languages in NP

In this section we assume that NP contains uniformly hard languages, i.e., languages that
are uniformly not contained in coNP. After discussing this assumption we show that it
implies that every ≤p

1−tt-complete set for NP is nonuniformly NP-complete.

Recall that we have separated 1-tt-reducibility from m-reducibility within NP under a
reasonable assumption in Section 3. Nevertheless the main result of this section indicates
that these two reducibilities are pretty similar in terms of NP-complete problems: Every
≤p

1−tt-complete set for NP is m-complete if we allow the reducing function to use an
advice of polynomial length.

Definition 5.1 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

1. A
i.o.

= B
df

⇐⇒ for infinitely many n it holds that A ∩ Σn = B ∩ Σn.

2. A
i.o.

∈ C
df

⇐⇒ there exists C ∈ C such that A
i.o.

= C.

3. C
i.o.

⊆D
df

⇐⇒ C
i.o.

∈ D for all C ∈ C.

The following proposition is easy to observe.

Proposition 5.2 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

22



1. A
i.o.

= B if and only if A
i.o.

= B.

2. A
i.o.

∈ C if and only if A
i.o.

∈ coC.

3. C
i.o.

⊆D if and only if coC
i.o.

⊆ coD.

Proposition 5.3 The following are equivalent:

(i) coNP
i.o.

⊆/ NP

(ii) NP
i.o.

⊆/ coNP

(iii) There exists an A ∈ NP such that A
i.o.

∈/ coNP.

(iv) There exists a paddable NP-complete A such that A
i.o.

∈/ coNP.

Proof The equivalence of (i) and (ii) is by Proposition 5.2. Moreover, from the
definition it immediately follows that ¬(ii)⇒¬(iii) and ¬(iii)⇒¬(iv). It remains to
show ¬(iv)⇒¬(ii). So we assume that for all paddable NP-complete A it holds that
A

i.o.

∈ coNP. Choose any C ∈ NP and let B = 0C ∪ 1SAT. Hence B is paddable and
NP-complete. By our assumption B

i.o.

∈ coNP. So there exists a D ∈ coNP such that
B

i.o.

= D. Let D′ = {w
∣

∣ 0w ∈ D} and note that D′ ∈ coNP. Observe that for every n, if

B ∩Σn+1 = D ∩Σn+1, then C ∩Σn = D′ ∩Σn. Hence C
i.o.

= D′ which shows C
i.o.

∈ coNP. 2

We define polynomial-time many-one reductions with advice. Non-uniform reductions are
of interest in cryptography, where they model an adversary who is capable of long pre-
processing [BV97]. They also have applications in structural complexity theory. Agrawal
[Agr02] and Hitchcock and Pavan [HP06] investigate non-uniform reductions and show
under reasonable hypotheses that every many-one complete set for NP is also hard for
length-increasing, non-uniform reductions.

Definition 5.4 A≤
p/poly
m B if there exists an f ∈ FP/poly such that for all words x,

x ∈ A ⇔ f(x) ∈ B.

The following theorem assumes as hypothesis that NP
i.o.

∈/ coNP. This hypothesis says for
sufficiently long formulas that not all tautologies of a given size have short proofs. We
use this hypothesis to show that 1-tt-complete sets for NP are nonuniformly m-complete.

Theorem 5.5 If NP
i.o.

⊆/ coNP, then every ≤p
1−tt-complete set for NP is ≤

p/poly
m -complete.

Proof By assumption, there exists an NP-complete K such that K
i.o.

∈/ coNP. Choose
g ∈ FP such that {(u, v)

∣

∣u ∈ K ∨ v ∈ K}≤p
mK via g. Let A be ≤p

1−tt-complete for
NP. So K≤p

1−ttA, i.e., there exists a polynomial-time computable function f : Σ∗ 7→
Σ∗ ∪ {w

∣

∣ w ∈ Σ∗} such that for all words x:

23



1. If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w ∈ A).

2. If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w /∈ A).

Moreover, choose r ∈ FP such that A≤p
mK via r. Define

EASY =def {u
∣

∣∃v, |v| = |u|, f(g(u, v)) = w for some w ∈ Σ∗, and r(w) ∈ K}

EASY belongs to NP. We see EASY ⊆ K as follows: r(w) ∈ K implies w ∈ A, hence
g(u, v) /∈ K, and hence u /∈ K. From our assumption K

i.o.

∈/ NP it follows that there exists
an n0 ≥ 0 such that

∀n ≥ n0, K
=n

6⊆ EASY=n.

So for every n ≥ n0 we can choose a word wn ∈ K
=n

− EASY. For n < n0, let wn = ε.
Choose fixed z1 ∈ A and z0 /∈ A. We define the reduction that witnesses K≤

p/poly
m A.

h(v) =def































f(g(w|v|, v)) : if |v| ≥ n0 and f(g(w|v|, v)) ∈ Σ∗

z1 : if |v| ≥ n0 and f(g(w|v|, v)) = w for some w ∈ Σ∗

z1 : if |v| < n0 and v ∈ K

z0 : if |v| < n0 and v /∈ K

Observe that h ∈ FP/poly (even in FP/lin) with the advice n 7→ wn.

We claim that for all v,
v ∈ K ⇔ h(v) ∈ A. (9)

This equivalence clearly holds for all v such that |v| < n0. So assume |v| ≥ n0 and let
n = |v|.

If f(g(wn, v)) ∈ Σ∗, then h is defined according to the first line of its definition and
equivalence (9) is obtained as follows.

v ∈ K ⇔ g(wn, v) ∈ K ⇔ f(g(wn, v)) ∈ A

Otherwise, f(g(wn, v)) = w for some w ∈ Σ∗. We claim that v must belong to K. If
not, then g(wn, v) /∈ K and hence w ∈ A (since K≤p

1−ttA via f). So r(w) ∈ K which
witnesses that wn ∈ EASY. This contradicts the choice of wn and it follows that v ∈ K.
This shows v ∈ K ⇔ h(v) = z1 ∈ A and proves equivalence (9). 2

24



References

[Agr02] M. Agrawal. Pseudo-random generators and structure of complete degrees. In
IEEE Conference on Computational Complexity, pages 139–147, 2002.

[AS84] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Rod-
ing, editors, Logic and Machines, volume 171 of Lecture Notes in Computer
Science, pages 1–23. Springer Verlag, 1984.

[ASFH87] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polyno-
mial time computable sets. Theoretical Computer Science, 51:177–204, 1987.

[Bei87] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University, 1987.

[Bei91] R. Beigel. Relativized counting classes: Relations among thresholds, parity,
mods. Journal of Computer and System Sciences, 42:76–96, 1991.

[BF92] R. Beigel and J. Feigenbaum. On being incoherent without being very hard.
Computational Complexity, 2:1–17, 1992.

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and struc-
ture of complete sets. SIAM Journal on Computing, 27:637–653, 1998.

[BM95] J. Balcazar and E. Mayordomo. A note on genericty and bi-immunity. In Pro-
ceedings of the Tenth Annual IEEE Conference on Computational Complexity,
pages 193–196, 1995.

[BV97] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic
applications. In SODA, pages 675–681, 1997.

[GPSZ06] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete
sets. In Proceedings 23nd Symposium on Theoretical Aspects of Computer
Science, volume 3884 of Lecture Notes in Computer Science, pages 444–454.
Springer, 2006.

[Hom90] S. Homer. Structural properties of nondeterministic complete sets. In Structure
in Complexity Theory Conference, pages 3–10, 1990.

[Hom97] S. Homer. Structural properties of complete problems for exponential time.
In A. L. Selman and L. A. Hemaspaandra, editors, Complexity Theory Retro-
spective II, pages 135–153. Springer Verlag, New York, 1997.

[HP06] J. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Tech-
nical Report TR06-039, Electronic Colloquium on Computational Complexity,
2006.

[Lad73] R. E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

[LLS75] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial
time reducibilities. Theoretical Computer Science, 1:103–123, 1975.

25



[PS02] A. Pavan and A. L. Selman. Separation of NP-completeness notions. SIAM
Journal on Computing, 31(3):906–918, 2002.

[Sel79] A. L. Selman. P-selective sets, tally languages, and the behavior of polynomial-
time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[Sel82] A. L. Selman. Reductions on NP and p-selective sets. Theoretical Computer
Science, 19:287–304, 1982.

26

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



