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Abstract

Strategic games may exhibit symmetries in a variety of wafscommon aspect of symmetry,
enabling the compact representation of games even wheruthber of players is unbounded, is that
players cannot (or need not) distinguish between the otageps. We define four classes of symmetric
games by considering two additional propertiglentical payoff functionfor all players and the ability
todistinguish oneselfrom the other players. Based on these varying notions ofisgtry, we investigate
the computational complexity of pure Nash equilibria. Itnsi out that in all four classes of games
equilibria can be found efficiently when only a constant nemidif actions is available to each player, a
problem that has been shown intractable for other succamresentations of multi-player games. We
further show that identical payoff functions simplify theasch for equilibria, while a growing number
of actions renders it intractable. Finally, we show that msults extend to wider classestbfeshold
symmetriogames where players are unable to determine the exact nuwhpkayers playing a certain
action.

1 Introduction

In recent years, the computational complexity of gamertmsolution concepts, both in cooperative and
non-cooperative game theory, has come under increasingirscr A major obstacle when considering
non-cooperative normal-form games with an unbounded numibplayers is the exponential size of the
naive representation of payoffs. More precisely, a gengaate in normal-form witm players and ac-
tions per player comprisas k" numbers. Computational statements over such large olgestsomewhat
guestionable for two reasonsf(Papadimitriou and Roughgarden, 2005). First, the valudfigient, i.e.,
polynomial-time, algorithms for problems whose input skalready exponential in a natural parameter
(the number of players) is doubtful. Secondly, most, if ngt“aatural” multi-player games will hardly
be given as multi-dimensional payoff matrices but rathereims of some more intuitive (and compact)
representation. A natural and straightforward way to siiyifihe representation of multi-player games is to
somehow formalize similarities between players. As a mattéact, symmetric gamekave been studied
since the early days of game theory (seq, von Neumann, 1928; Gale et al., 1950; Nash, 1951). The
established definition states that a game is symmetric ipdyeff functions of all players arndenticaland
symmetridn the other players’ actions.e., it is impossible to distinguish between the other playgon (
Neumann and Morgenstern, 1947; Luce and Raiffa, 1957). Vékplicitly looking atmulti-playergames,
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there are other conceivable notions of symmetry. For icgtadropping the requirement of identical payoff
functions yields a more general class of multi-player gathasstill admits a compact representation.

In this paper, we define four classes of succinctly represtmsymmetric multi-player games and study
the computational complexity of finding pure Nash equilihin games belonging to these classes. It turns
out that in all four classes equilibria can be found effidieritonly a constant number of actions is avail-
able to each player. Moreover, identical payoff functioasdll players further reduce the computational
complexity associated with pure Nash equilibria, an effeat is nullified as soon as there are two different
payoff functions. Anonymityj.e., the fact that a player cannot (or does not) distinguish eifrfeom the
other players, does not seem to offer any computationalradyga. Finally, computing equilibria becomes
intractable in all four classes of symmetric games when tmber of actions grows linearly in the number
of players.

Unlike Nash equilibria iimixedstrategiesi.e., probabilistic combinations of actions, pure Nash equilib
ria are not guaranteed to exist. They nevertheless formtaresting subset of equilibria for three reasons.
First, requiring randomization in order to reach a stablea@me has been criticized on various grounds. In
multi-player games, where action probabilities in equilitm can be irrational, randomization is particularly
guestionable. Secondly, computation of pure equilibrig matractable in cases where that of mixed ones
is not. Finally, pure equilibria as computational objeats asually much smaller in size than mixed ones.

We assume the reader to be familiar with the well-known cledinomplexity classes ACc TC? C
L € PC NP, and the notions of constant-depth and polynomial-tieticibility (seege.g, Papadimitriou,
1994:; Johnson, 1990). As the class of problems solvable by uniform constant-d&uiblean circuits
with unbounded fan-in. T€adds so-called threshold gates which outpug¢ if and only if the number of
trueinputs exceeds a certain threshold. L is the class of prabfaivable by deterministic Turing machines
using only logarithmic space. P and NP are the classes ofgmaithat can be solved in polynomial time by
deterministic and nondeterministic Turing machines, eesipely. Furthermore, #P is the class of counting
problems associated with polynomially balanced polynditmae decidable relations. The class PLS of
polynomial local search problems and an appropriate natforeduction (Johnson et al., 1988) will be
introduced as needed.

The remainder of this paper is organized as follows: In tiiewdéng section, we survey relevant work
on symmetric games, succinct representations, and thewtatignal complexity of pure Nash equilibrium.
In Section 3, we then formally introduce four different mois of symmetry in strategic games and the
solution concept of Nash equilibrium. The main results & fJaper, including efficient algorithms as well
as hardness results for all four symmetry classes, are giv@ection 4. In Section 5, we provide additional
results for a more general notion of symmetry. Section 6 lcoies the paper and points to some open
problems.

2 Related Work

Symmetries in games have been investigated since thestatéigs of game theory. Von Neumann (1928)
and von Neumann and Morgenstern (1947) were the first to densiymmetries otooperativegames,
calling a game in characteristic form symmetric if the vatifea coalition depends only on its size. In
the context of two-player (non-cooperative) normal-foraamgs, the term symmetric is used to refer to
games with a skew-symmetric payoff matrix (seqy, Borel, 1921; Gale et al., 1950), corresponding to
strong symmetry in the vocabulary of this paper. Gale etl&50) provided a (polynomial-time) reduction
from arbitrary games to symmetric games which preservedilmip Since finding a (possibly mixed)
equilibrium in general games has recently been shown PR&bptete even for just two players (Chen and
Deng, 2005; Daskalakis et al., 2006), the same holds for sstnicrgames as well.



To date, most research on symmetries in games has coneentrastrongly symmetric games, which
require identical payoff functions for all players. One bétreasons for this may have been the strong
focus of the early research in non-cooperative game theotywo-player games, where weak symmetry as
defined in this paper does not impose any restrictions. Al easult by Nash (1951) implies the existence
of a symmetric equilibrium in (again, strongly) symmetranges. Papadimitriou and Roughgarden (2005)
capitalize on this existence result and show that a NasHileduin of a strongly symmetric game with
players andk actions can be computed in Pkif= O(logn/loglogn). While their related results about the
tractability of correlated equilibrium (Aumann, 1974) dotmely on identical payoff functions and hence
apply to weakly symmetric games as well, this is not the cas¢hkir results about Nash equilibria. The
aforementioned existence sfmmetricNash equilibria does neither extend to pure equilibria, dwgs it
hold for the classes of weakly symmetric and weakly anonysrgames. For example, Figure 3 on page 7
shows a weakly symmetric game without a symmetric equiliari

Obviously, deciding the existence of a pure equilibriumasyeif the number of candidates for such an
equilibrium, i.e., the number of action profiles, is polynomial in the size & ame. This is certainly the
case for the “naive” representation of a game as a multi-dgiomal table of payoffs, but no longer holds
if the game is represented succinctly. For example, degithia existence of a pure Nash equilibrium has
been shown to be NP-complete for games in graphical noranal-{Fischer et al., 2006; Gottlob et al.,
2005) or circuit form (Schoenebeck and Vadhan, 2006). Aparh these generic types, many succinct
representations are related to symmetries in that theyo#gimilarities between players. In congestion
games (Rosenthal, 1973), the available actions consistsfos resources, and the payoff depends on the
number of other players that have selected the same resofueegeplayed the same action). Congestion
games always have a pure Nash equilibrium (Rosenthal, 1@n8) finding one is PLS-complete in the
general case and in P in the symmetric network case (Falbrkah, 2004). For singleton (or simple) con-
gestion games, where only a single resource can be seldwtegljs a polynomial-time algorithm for finding
a social-welfare-maximizing Nash equilibrium (leong et 2005). In local-effect games (Leyton-Brown
and Tennenholtz, 2003), the payoff from an action may alpedé on (a function of) the number of agents
playing “neighboring” actions. Unlike congestion gamed &tal-effect games, action-graph games (Bhat
and Leyton-Brown, 2004; Jiang and Leyton-Brown, 2006) aacode arbitrary payoffs. For action-graph
games of bounded degree, expected payoffs and the Jacdhiaa mayoff function can be computed in
polynomial time. In practice, the latter forms the pradtisattleneck step of the algorithm of Govindan
and Wilson (2003) for finding Nash equilibria, but the algfum may still take exponentially many steps
to converge even for bounded degree. While closely relatete general notion of symmetry as studied
in this paper, the main idea behind all the above represensais to exploit some form of independency
among certain actions, or among players playing theseractid/e do not make such assumptions in this
paper.

3 Preliminaries

In this section, we formally define essential game-theoincepts, introduce four notions of symmetry in
games, and state several facts concerning these notions.

3.1 Strategic Games

An accepted way to model situations of strategic interacisdoy means of aormal-form gamdsee,e.g,
Luce and Raiffa, 1957).



Indistinguishability | Identical payoff | Indistinguishability of
of other players functions oneself and other players
weakly symmetric v - -
strongly symmetric v v -
weakly anonymous v - v
strongly anonymous v v v

Table 1: Four classes of symmetric games

Definition 1 (normal-form game) A game in normal-forms a tuplel” = (N, (A)ien, (Pi)ien) Where N
is a set ofplayersand for each player € N, A is a nonempty set odctionsavailable to player i, and
pi : (XienA)) — R is a function mapping each action profile of the gare.,(combination of actions) to a
real-valuedpayoff for player i.

A combination of actions € XjcnA; is also called a profile giure strategiesThis concept can be general-
ized tomixed strategy profiles s S= XjcnS, by letting players randomize over their actions. We hgve
denote the set of probability distributions over plajeractions, omixed strategiesivailable to player.
We further writen = |N| for the number of players in a gan® for theith strategy in profiles, ands_; for
the vector of all strategies mbuts.

3.2 Symmetries in Multi-Player Games

A central aspect of our view on symmetry is the inability tstoiguish between other players. We will
therefore mainly talk about games where the set of actiotteisame for all players and write= A; =

-+ = Aq andk = |A|, respectively, to denote this set and its cardinality. l& fbllowing definition, we
formally introduce four classes of symmetric games by aerang two additional characteristicistentical
payoff functiondor all players and the ability tdistinguish oneselfrom the other players. An overview of
the different classes and their properties is given in Table

Definition 2 (symmetries) LetI" = (N, (A)ien, (Pi)ien) be a normal-form game, A a set of actions such
that A = A for all i € N. For any permutationt: N — N of the set of players, let’ : AN — AN be the
permutation of the set of action profiles givenry(ay, . ..,an)) = (ay),---,ann))- I is called

o weakly symmetridf pi(s) = pi(17(s)) for all s€ AN, i € N and all rwith (i) =1,

e strongly symmetridf pi(s) = p;(77(s)) forallse€ AN, i, j € N and all mwith 7i(j) =1,
e weakly anonymous pj(s) = pi(17(s)) foralls€ AN, i € N, and

e strongly anonymoui pj(s) = pj(17(s)) forall s€ AN, i, j € N.

Inclusions and separations of the different classes foloectly from the definition and are illustrated in
Figure 1. Figure 2 details the relationship foe 3 andk = 2.

7 is an automorphism on the set of action profiles that presetve number of players that play a
particular action. Thus, an intuitive and convenient wayléscribe a symmetric game is in terms of the
equivalence classes induced ty or by the number of players playing the different actionsach of these
classes. We use a notion introduced by Parikh (1966) in theegbof context-free languages.
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Figure 1. Inclusion relationships between weakly symmefWs), weakly anonymous (WA), strongly
symmetric (SS), and strongly anonymous (SA) games

rl: ('7'7') (a>gvb) (a,c,-) ('>e>f)

o (,+,2) | (&b,c) (a,b,c) | (d,e f)
¥ [abo) [(def)| [(def)| ()

(a,a,a) | (b,b,b) (b,b,b) | (c,c,c)

Fa (b,bb) | (c.c0) | | (cc0) |(ddd)

Figure 2. Relationships between the payoffs of weakly sytnm@ 1), strongly symmetricl(,), weakly
anonymous [(3), and strongly anonymoug {) games fom = 3 andk = 2. Players 1, 2, and 3 choose
rows, columns, and tables, respectively. As an exampléhoséparation of the different classEg,is not
strongly symmetric ifa # b and not weakly anonymous @ g. "> is not anonymous ib # c. '3 is not
strongly symmetric ifa £ C.

Definition 3 (commutative image) Letl" = (N, (A))ien, (Pi)ien) be a normal-form game, A a set of actions
such that A= A for all i € N. Then, theommutative imagef an action profile s= AN is defined as

#(s) = (#(a,9))aca Where
#@ass) =|{ieN|s=a}|.

That is, #a,s) denotes the number of players playing actéom action profiles, and #s) is the vector of
these numbers for all the different actions. This definitiaturally extends to action profiles for subsets of
the players. Since for every permutatimhinduced by a permutatiorr of the set of players and for every
action profiles, #(s) = #(1'(s)), the following is easily verified.

Fact 4 Let A be a set of actions. A normal-form game- (N, (A))ien, (Pi)ien) With A = A for each ie N
is

o weakly symmetric iffips) = pi(t) for alli € N and all st € AN with § =t; and#(s_j) = #(t_),
e strongly symmetric iff i§s) = pj(t) for alli, j € N and all st € AN with § =tj and#(s_;) = #(t_;),

¢ weakly anonymous iff; () = pi(t) for alli € N and all st € AN with #(s) = #(t), and



e strongly anonymous ifffs) = pj(t) for all i, j € N and all st € AN with #(s) = #(t).

When talking about symmetric games, we will writgs,x_;) to denote the payoff of playerunder any
action profiles with #(s_;) = x_;. For anonymous games, we will wrifg(x) for the payoff of playei
under any profileswith #(s) = x. In terms of this characterization, a gamevisakly symmetrit the payoff
pi(s) of playeri € N in action profiles depends, besides his own actignonly on the number @&, s_;)

of other players playing each of the actiomg A, but not on who plays them. If two players exchange
actions, all other players’ payoffs remain the same. Forlayer games, weak symmetry does not impose
any restrictions (action sets of equal size can simply bé&get by adding dummy actions for one of the
players). This may be one of the reasons why weak symmetmdtagceived much attention in the past.
A game isstrongly symmetridf it is weakly symmetric and if the payoff function is the sarfor all players.
Hence, if two players exchange actions, their payoffs ase akchanged while all other players’ payoffs
remain the same. Many well-known games like the Prisoneitsnidina, Rock-Paper-Scissors, or Chicken
are examples of (two-player) strongly symmetric games. tiMilbyer simple congestion games (leong
et al., 2005) are also strongly symmetric. Iwaakly anonymougame the payoff of each player depends
only on the number ¢&,s) of players playing each of the actioas= A, including the player himselfIf
two players exchange actions, the payoffs of all playersarerthe same. Matching Pennies is a weakly
anonymous two-player game, voting with identical weigl#s be seen as an example for the multi-player
case. Finally, in &trongly anonymougame the payoff is always the same for all players and staysaime

if two players exchange actions. Strongly anonymous gameea apecial case of common payoff (or pure
coordination) games, in which every action profile with nmaxim payoff is a Nash equilibrium (no player
can gain by deviating). Obviously, every common payoff gaamel hence every strongly anonymous game,
is guaranteed to possess a pure Nash equilibrium. Othergyatiethis property, and the complexity of
finding an equilibrium in this case, have recently been itigated by Fabrikant et al. (2004).

The most basic way to specify a normal-form game is by meaaswilti-dimensional table of payoffs
for every single action profile. Certain games are sucginetpresentable simply because the payoff is
the same for action profiles that are equivalent accordirgptoe equivalence relation, and needs only be
specified once. For symmetric games, this equivalencdaoela given by the number of players playing
each action. The representation that lists the payoffsMerneequivalence class will henceforth be referred
to as thenaive representationf a symmetric game. There a(%fgf;l) distributions ofn players amondgx
actions. Since these are exactly the equivalence classbhe eét of action profiles fan— 1 players under
the commutative image, we have the following.

Fact 5 A weakly symmetric game can be represented using at mis{'H*;?) numbers, and is succinctly
representablen generalif and only if k is bounded by a constant.

In turn, the size of the game may become super-polynomialewen for the slightest growth & Never-
theless, a succinct representation may existéotain classe®f games with a larger number of actions.
3.3 Nash Equilibrium

One of the best-known solution concepts for strategic gambBash equilibrium (Nash, 1951). In a Nash
equilibrium, no player is able to increase his payoffunjlaterally changing his strategy.

Definition 6 (Nash equilibrium) A strategy profile & S is called aNash equilibriumif for each player
i € N and each strategyl & S,

pi(S) = pi((s-i,5))-

A Nash equilibrium is calleghureif it is a pure strategy profile.
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(0,1,1) | (0,0,2) (0,1,0) | (0,0,0)
(1,1,1) | (0,0,0) (0,1,0) | (1,0,1)

Figure 3: A weakly symmetric game with a unique, non-symindtfiash equilibrium at the action profile
with payoff (1,1,1). Players 1, 2, and 3 choose rows, columns, and tables, tesbecAction profiles with
the same commutative image as the equilibrium are shaded.

For general games, simply checking the equilibrium coadifor each action profile takes time polynomial
in the size of their natural representatidre( a table of payoffs for the different action profiles). Usig
succinct representation for games where the size of theatakpresentation grows exponentially in the
number of players, which is the case kop 2 already, quickly renders the problem NP-complete (sag,
Fischer et al., 2006; Schoenebeck and Vadhan, 2006). Inthepolynomial size of the naive representation
for symmetric games with a constant number of actions migggsst that finding pure Nash equilibria is
easy by a similar argument as above. This reasoning is fldweeever, since a single entry in the payoff
table corresponds to an exponential number of action pspfilied it is very well possible that only a single
one of them is a Nash equilibrium while all others are not. Weakly symmetric game given in Figure 3
illustrates this fact.

Interestingly, the ability to distinguish oneself from thther players does not extend the expressive
power of anonymous games when players only have two actions.

Fact 7 When there are only two actions available to each playergtigean ACG-reduction from symmetric
games to anonymous games that preserves pure Nash egudimlistrong symmetry.

Letl = (N,{a1,a2}", (pi)ien) be a weakly symmetric game. This game induces a weakly anmnygame
" = (N,{a1,a2}", (p)ien) by definingp’ so that for alli € N and for allx € {0,...,n— 1} the following
statements hold:

1. pi(x) > pl(x+1) if pi(az,x) > pi(az,x)
2. pi(x) < pi(x+1) if pi(aq,X) < pi(az,x)
3. pi(x) = pl(x+1) if pi(aq,x) = pi(az,x)

Depending on the original ganfie it may be necessary to use uprtdifferent payoffs inl”’, even wherl”
contains only two. Moreover, the procedure cannot in géeraxtended to games where players have more
than two actions, because it can lead to cyclic preferenediaons. For example, the (strongly) symmetric
two-player game Rock-Paper-Scissors cannot be mapped doesponding anonymous game using the
above technique.

4 Solving Symmetric Games

In this section, we analyze the computational complexigpamted with pure Nash equilibrium in symmet-
ric games with a constant number of actions and a growing rumiactions, respectively.

4.1 Games with a Constant Number of Actions

As we have noted earlier, the potential hardness of findimg Mash equilibria in games with succinct repre-
sentations stems from the fact that the number of actionlesdfiat are candidates for being an equilibrium
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is exponential in the size of the representation of the gafitale weakly symmetric games certainly satisfy
this property, the following lemma shows that the problendetiding whether such a game possesses a
pure Nash equilibrium is nevertheless tractable.

Lemma 8 The problem of deciding whether a weakly symmetric or wesakdynymous game with a constant
number of actions has a pure Nash equilibrium is in L.

Proof: We propose an algorithm to decide whether there exists a [dash equilibriums with #(s) =
(Way, ..., Wy, ). Fixing a particulax = (wa,, ... ,Ws, ), this algorithm can be divided into two phases:

1. For eachC C A, compute the numbenc of players for whichC is the set ofpotential pure best
responses irR. We say that an actiosy € Ais a potential best response for player the commutative
imagex = (Wa,, .. .,Ws, ) Of an action profile for all players includirigf w,, > 0 and

pi(ar,X—¢) > Pi(@m,X—r) for all am € A, (1)
wherex_p = (Wa,,...,Wa, ;,Wa, — 1L, Wa, 1,...,Wg,).

2. Check if the numbers computed in the first step are consigtigh X, i.e., if for eachC C A and each
c € Cthere exists a non-negative integeg ) such that

W(c,c) =We 2)
Cgc co)
and
; Wca =Wa forallacA. (3)
A

In other wordswc ) denotes the number of players that h&e A as their set of potential best
responses i and actually play € A, and Equations 2 and 3 ensure this number is consistent with
the numbemc of players havindgC as possible best responses and the numbef players playing

C.

Weights (W(c ¢))ccacec eXist if and only if there is an action profile in which everyapér plays a best
response irx, i.e., a Nash equilibrium. Furthermore, kfis a constantx, a constant number of values not
larger thann, can be stored using only logarithmic space. It hence ssfteceshow that both of the above
steps require only logarithmic space. The number of diffeoceefficientswe equals the cardinality of"2
and is a constant Kis. Since each coefficient is an integer not larger thaail of them can be stored using
logarithmic space. Their computation from the input ineslchecking Inequality 1 for each playier N
and can be done using logarithmic space as well.

The problem faced in the second phase of the algorithm camatively be written as a homologous
flow problem in a directed (almost bipartite) gragh= (V,E) with nodesV = AU2*U {s;t} and edges
E={(C,a) e 2" xAlacC}U({s} x 2*)U(Ax {t}). In a homologous flow problem, both a lower bound
¢(e) and an upper bound(e) are given for the capacity of every edge: E (see,e.g, Greenlaw et al.,
1995). If we let/(s,C) = u(s,C) = wc and/(a,t) = u(a,t) = w, for all C C Aandac A, and/(e) =0,
u(e) = notherwise, then a feasible flow f@ exists if and only if(wc)cca and(wa)aca are compatible. To
see this, observe that Equations 2 and 3 constitute flowstensy conditions for all nodes bsiaindt, and
that the size of every feasible flow throu@must equah. While this problem can be solved in polynomial
time in the general case @ has a polynomial number of nodes and is in fact P-completeg/@aw et al.,
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Figure 4: Integer flow network used in the proof of Lemma 8 nepie for the game of Figure 3. Edgds
labeled(u(e), 4(e)).

1995), we will give an algorithm for our special case of theljpem that requires only logarithmic space.
As an example, the flow network for the game in Figure 3 is ginelRigure 4. Edge capacities have been
computed by checking for each player if his action in the eeipe (shaded) action profile of Figure 3
is a best response. This particular instance can easily lbedsby assigningv(oy.0) = 2, W({0,1},0) = 0,
W(j0,13,1) = 1, andw(sq; 1) = 0. In general, however, there need not be a unique solutiuh tiee graph
may contain (undirected) cycles, preventing a direct assant of the weights. We therefore claim that the
existence of a feasible flow means that there are particutdghis (Wc ¢)ccacec Satisfying an additional
property, namely that there is a sequeneg...,en) of all edgese; = (Cj,c;) and an integer < msuch
thatwc, ;) =01if j <iand

W(c; ¢;) = Min((wg; — Z W(Cnncm))» (We; — Z Wi cm)) (4)
CC; Cm=t;

otherwise. To see that this is indeed the case, considehtgeigtisfying Equations 2 and 3. Further assume
w.l.o.g. thatevery(undirected) cycle in the flow network contains an edgeith weight zero. Otherwise,
while the graph contains a cycley, ... ,en) (which must have even length, since the graph is bipartitef) s
that the weightvg, of e; is positive and minimal among all edges in the cycle, we nyottié weightswg,

1 <i <maccording to

W Wg +We, if i is even
7 wg —We, if i is odd.

Observe that after this modification, (i) Equations 2 andesiill satisfied and (iiwe, = 0. If now we
remove all edges with zero weight from the graph, we obtaia@lic graph, which must have a node
with degree 1 if it contains at least one edge. If the lattes @t the case, we could construct a sequence
(V1,...,Vm) for arbitrarymwith (vi,vi;1) € Efor 1<i<m-—21andy # vz for1<i <m-—2. Form> |V|,
we would necessarily hawg = v; for somei # j, and hence a cycle. Returning to the nodas degree one,
we can greedily assign the weight to the sole eg€) incident tov, remove(v,V') from the graph, and
update the weights of andV accordingly. Repeating this process until no more edgesirenwe obtain
all weightswc ¢, C C A, ¢ € C. These weights satisfy Equations 2 and 3 if and only if altiges in the
remaining graph (witlc = 0) have weight zero.

Based on this observation, we can design a simple algoritatneinumerates all possible pajesi) of
a sequence= (ey,...,6n) and an index < mand tries to assign weights in a particular order. élivith
j <ireceive weight 0. If one of the nodes incidenejoj > i has degree 1 in the gra¥, {e;,...,em}), We,
is set according to Equation 4. Otherwise the sequencedstegl. Ifk and hence the number of different
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pairs(e,i) is a constant, the algorithm requires only logarithmic spdthe inclusion relationship between
the different classes of symmetric games implies that the Nash equilibrium problem is in L for all kinds
of symmetric games with a constant number of actions, andéakly anonymous games in particular]

The flow network used to prove the above lemma has some ratlhisual properties. On the one hand,
its structure only depends on the number of actions in theegamd is predetermined if this number is a
constant. On the other hand, edge capacities greatly depetite number of players and on the payoff
structure of the game. Hence, while showing that the setaientecution of the above algorithm requires
only logarithmic space has been quite illustrative, thedfigigucture of the flow network for a fixed number
of actions raises the question if we can do better than thatwé will see, this is indeed the case. The
following theorem states that the problem under consideratan be solved in T¢ and is in fact TC-
complete.

Theorem 9 Deciding whether a weakly symmetric or weakly anonymousegaith a constant number
of actions has a pure Nash equilibrium is 8€omplete. Hardness holds even if there is only a constant
number of payoffs and only two different payoff functions.

Proof: To showmembershipwe will return to the algorithm used in the proof of Lemma 8lézide whether
a weakly symmetric gamg has a pure Nash equilibrium, and show that it can be realigelthreshold
circuit with unbounded fan-in, constant depth, and a paiyiab number of gates.

We start with the edge capacities computed in the first phge@lgorithm. For a fixed commutative
imagex, a particular player € N, and a particular actioa € A, we can easily construct a circuit of constant
depth that checks whether Equation 1 is satisfied. To convplag¢herC C Ais the set of best responses for
playeri underx, we simply combine the outputs of the above circuits for elicansa € A into a singleAND
gate, negating the outputs of that for actieng C. wc is then obtained by adding up the outputs of these
gates for all playerse N. Clearly, the number of gates in this circuit is polynomfahie number of actions
is a constant.

As for the the second phase of the algorithm, we constructaitthat computes whether a feasible flow
can be found by assigning weights to edges using the algoxth_Lemma 8 and according to a particular
pair ({(e1,...,em),i) of a sequence of all edges and an index in this sequence. Werght is assigned
to edgee;, ] > i, the weights of the nodes incidenteéphave to be updated by subtracting the weight just
assigned. Clearly, the new weights can be computed usingsdast-depth circuit, and sinoeis a constant,
these circuits can be layered. Tlth layer receives as inputs the weights before a weight has assigned
to ej, and outputs the updated weights after this has been donteFuore, it outputs an additional bit that
is true if and only if the assignments up to and including fitle step have been consistent. If the latter is
true at the final layer, and the updated weights are zero, theicatputstrue. Finally, since there is only
a constant number of pai(g,i), the outputs of the above circuits can be combined into desiOf gate
to obtain a circuit with constant depth and a polynomial nandf gates that decides whethehas a pure
Nash equilibrium.

For hardness we reduce the problem of deciding whether exaéthjits of a string ofm bits are 1 to
deciding the existence of a pure Nash equilibrium in a weaklgnymous game. Hardness of the former
problem is immediate from that ®AJORITY (seee.g, Chandra et al., 1984). For a particufetbit string
b, we define a gam€ with m+ 2 players of two different types 0 and 1 and actidns: {0,1}. Theith
player ofl is of type 0 or 1 if theith bit of b is O or 1, respectively. Playen+ 1 is of type 0, playem+ 2
is of type 1. The payoffgg and p; for the two types are given in Figure 5, the column labglegpecifies
the payoff when exactly players, including the player himself, play action 1. It &sity verified that this
is an AC’ reduction. We claim thdf possesses a pure Nash equilibrium if and only if exachits of b are
1. We observe the following:

10
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Figure 5: Payoffs of the ganfeused in the proof of Theorem 9

e An action profiles cannot be a Nash equilibrium &fif #(1,s) # ¢+ 1. In this case, the players of
one of the two types get a higher payoff at boft,#) — 1 and #1,s) + 1 (or at one of these in case
#(1,s) = 0 and #1,s) = m+ 2). Since by construction we have at least one player of ggeh there
always exists a player who can change his action to get a hpgy®ff.

o If there arel + 1 players of type 1, the action profile where all players oktgpplay action 0 and
all players of type 1 play action 1 is a Nash equilibrium. Nafi¢he players of type O can gain by
changing his action to 1, and none of them can change hisnaiti® (because all of them already
play 0). A symmetric condition holds for players of type 1.

¢ Inturn, if the number of players of type 1 does not equsall, an action profiles with #(s,1) = ¢+ 1
cannot be a Nash equilibrium. In this case, there must beplyer of type 0 playing action 1 ig
or (ii) a player of type 1 playing 0. This player can changeauition to get a higher payoff.

Hence, a pure Nash equilibrium exists if and only if therefarel players of type 1i,e., if and only ifb has
¢ 1-bits. This completes the reduction. O

In contrast to weakly symmetric games sifs a Nash equilibrium of &trongly symmetric game, so
are allt satisfying #t) = #(s). This is due to the fact that the payoff functions of all pl@yeand thus the
situation of all players playing the same acti@e A, is identical, as would be the situation of any other
player exchanging actions with someone playmgWe exploit this property to show that deciding the
existence of a Nash equilibrium in strongly symmetric gamib a constant number of actions is strictly
easier than for weakly symmetric or weakly anonymous games.

Theorem 10 The problem of deciding whether a strongly symmetric gartteaxgonstant number of actions
has a pure Nash equilibrium is in AC

Proof: Like with weakly symmetric games, an action pro8le a Nash equilibrium of a strongly symmetric
game if and only if, for all € N, 5 is a best response t@st;), i.e., if

pi(s,#(s_i)) > pi(a,#(s-i)) forallac A. (5)

For a particular playere N and for constank, checking this inequality requires only a constant numlber o
comparisons and can be done using a circuit of constant deptpolynomial size (see,g, Chandra et al.,
1984). When it comes to checking Equation 5 for the diffepayers, the observation about action profiles
with identical commutative images affords us a considerabimputational advantage as compared to, say,
weakly symmetric or weakly anonymous games. More pregisadyonly have to check if Equation 5 is
satisfied for a playeplaying a certain actionof which there are at mo&t Again, this can be done using a
circuit of constant depth and polynomial sizékifs a constant.

Finally, to decide whether ganiehas a pure Nash equilibrium, we have to check Equation 5 r th
different values of #s) for sc AN. If k is constant, there are only polynomially many of these, o th
complete check requires only polynomial size and constepitia O

11



This proof provides a nice illustration of the fact that gvstrongly symmetric game with two actions
possesses a pure Nash equilibrium, as recently shown byg@&hah (2004). In this cas@; depends only on
playeri’s action (0 or 1) and on the number of other players playirigpad.. A pure Nash equilibrium exists
if for somem neither the players playing 0 (who seeplayers playing 1) nor the players playing 1 (who
seem— 1 other players playing 1) have an incentive to deviate, p;(0,m) > pj(1,m) andp;(1,m—1) >
pi(0,m—1). Form= 0 andm = n, one of the conditions is trivially satisfied, because treeeno players
playing 1 or O, respectively. It is easily verified that atdeane suchm must exist. Alternatively, the
existence of pure Nash equilibria in strongly symmetric gamwith two actions can be obtained as an
immediate consequence of Fact 7. We can transform evenygifregymmetric game with two actions into
a strongly anonymous game with the same set of equilibrieaary strongly anonymous is guaranteed to
have at least one pure equilibrium.

As we have already said, strong@nonymousyames always possess a pure Nash equilibrium. We
proceed to show that we can find one that maximizes the sunyoffpaf all players in AC.

Theorem 11 The problem of finding a social-welfare-maximizing pure INasgjuilibrium of a strongly
anonymous game with a constant number of actions is th AC

Proof: Since strongly anonymous games belong to the class of conpapoif games, any action pro-
file with maximum payoff (for all players) is a social-weldamaximizing Nash equilibrium (and Pareto-
dominates any other strategy profile). Finding such an ibgiuiim is thus equivalent to finding the maximum

of (”jg'_‘;z) integers. The exact number is irrelevant as long as it isrqootyal in the size of the input which,
according to Fact 5, is certainly the cask i$ bounded by a constant. Chandra et al. (1984) have shown tha
the maximum ofm mbit binary numbers can be computed by an unbounded fareirstant-depth Boolean
circuit of size polynomial irm. Sincem is of course polynomial in the size of the input, the size @ th
circuit is as well. 0

4.2 Games with a Growing Number of Actions

The proofs we have seen in the previous section rely on théfarcfor constank the naive representation of
a symmetric gama.€., in terms of payoff tables) is computationally equivalenaiy kind of polynomially
computable payoff function because we can transform ther lepresentation into the former by means of a
log-space reduction. This is no longer the case for unbalikdeecause the size of the naive representation
grows exponentially im. However, a succinct representation of the payoff funcfeag, a Boolean circuit)
might exist for certain classes of games.

We will now show that deciding the existence of a pure Nashliegum in weakly and strongly sym-
metric and weakly anonymous games becomes NP-hard if théeraf actions grows im. For strongly
anonymous games, which always have a Nash equilibrium, gbecated search problem will be shown
to be PLS-hard. In the following, we will only consider ganvelsere (i) the payofto all playerscan be
computed in polynomial time and (ii) a single player can éhicpolynomial time whether a particular
action is a best response to a given action profile for thergitayers. Under this assumption, which is
quite reasonable for “natural” games, we will be able to wtaembership in NP or PLS, respectively. All
hardnesgesults hold irrespective of this assumption. While thergainly are meaningful games with an
exponential number of players or actions, the complexitthia case mainly stems from the sheer size of
the game rather than the actual problem of finding a Nashibquih.

For the following proofs, recall that circuit satisfiablifCSAT), i.e., deciding whether a Boolean circuit
has a satisfying assignment, is NP-complete (sgg,Papadimitriou, 1994). We provide a reduction from
CSAT to the problem of deciding the existence of a pure Nash dujiuitn in a special class of games. For
a particular circuit” with inputsM = {1,...,m}, we define a gam€& with playersN = M and actions
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A={alal|ieM}. An action profiles of I where #a°,s) + #(al,s) = 1 for alli € M, i.e,, one where
exactly one action of each pai?, al is played, directly corresponds to an assignneott ¢, theith bit ¢;

of this assignment beinge {0,1} if a1-J is played. We can thus distinguish between the action psofife

I corresponding to a satisfying assignmentsgfthose corresponding to a non-satisfying assignment, and
those not corresponding to an assignment at all.

Theorem 12 Deciding whether a weakly anonymous game has a pure Naslhibeiguon is NP-complete,
even if the number of actions is linear in the number of playand there is only a constant number of
different payoffs.

Proof: If the number of players and actions is polynomial in the ingime, and if the payoff function is
computable in polynomial timenembershifn NP is immediate. We can simply guess an action profile and
verify that it satisfies the equilibrium condition.

To showhardnesswe reduceCSAT to the problem at hand by mapping a particular ciréivith inputs
M = {1,...,m} to a gamd" with playersN = M, actionsA = {a°,al | i € M}, and payoff functiong; as
follows:

¢ If scorresponds to satisfyingassignment o¥’, we letp;(s) = 2 for all i € N.
¢ If scorresponds to an assignment that does not safistye let
— pu(s) =2, pa(s) = 1 if |{i € M | #@&0,s) > 0}] is even,i.e, an even number of O-actions is
played by at least one player, and
— p1(s) =1, pz(s) = 2 if this number is odd.
— Foralli e N\ {1,2}, we letpi(s) = 2.

e If sdoes not correspond to an assignmerit’ofve letpi(s) = 1 if #(a°,s) + #(al,s) > 0, andpi(s) =0
otherwise.

We observe the following:
e [ (e.g, Boolean circuits that compuig) can be constructed frofd in polynomial time.

o For all of the above cases, the payoff of plaiyenly depends on the number of players playing certain
actions. If two players exchange actions, the payoff to #léoplayers remains the same. Herlce,
is weakly anonymous.

e Clearly, every action profils corresponding to a satisfying assignmenfzofs a Nash equilibrium,
because in this case all players receive the maximum payaff o

¢ In any other cases cannot be a Nash equilibrium. $fcorresponds to a non-satisfying assignment
of &, either player 1 or player 2 can change his action to get aehigayoff, depending on whether
the number of actiona,-O played by at least one player is even or odds dioes not correspond to an
assignment o, there exists € M such that #a°,s) +#(al,s) = 0, so playeii can change to either
a° or al to get a higher payoff.

Hence, there is a direct correspondence between satisiggignments o& and Nash equilibria of . This
completes the reduction. O

Theorem 13 Deciding whether a strongly symmetric game has a pure Nashilaium is NP-complete,
even if the number of actions is linear in the number of playand there is only a constant number of
different payoffs.
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Proof: Under the same conditions as in the previous theoreembershipn NP is immediate.
Forhardnesswe again provide a reduction froBBAT, mapping a circui’ with inputsM = {1,... . m}
to a gamd with playersN = M, actionsA = {aio,ail |i € M}, and payoff functiong; as follows:

e If scorresponds to a satisfying assignment%ofwe letp;(s) = 3 for alli € N.
¢ If sdoes not correspond to a satisfying assignmenf ofve let
— pi(s) = 2if s = af for somej € M, #a?,s) > 0, and #aj,s) > 0,

— pi(s) = 1if 5 = & for somej € M, #(a?,s) > 0, and #af,s) = 0, and
— pi(s) = 0 otherwise.

We observe the following:
e [ (e.g, Boolean circuits that compuig) can be constructed frofd in polynomial time.

e For all of the above cases, the payoff of playemly depends on his own action and on the num-
ber of players playing certain other actions. If two playexshange actions, their payoffs are also
exchanged. Hencg, is strongly symmetric.

e Clearly, any action profile corresponding to a satisfyingigrtament of#” is a Nash equilibrium, be-
cause in this case all players receive the maximum payoff &fi 8urn, if s does not correspond to a
satisfying assignment, we have one of two cases, in both @ihvgis not a Nash equilibrium:

— If#(a),s) = 1 for all j € M, playeri € N can change to soma, such thas # a3, to get a higher
payoff.

— Otherwise, there has to be some playeiN who gets payoff 0, and, by the pigeonhole principle,
somej € M such that#a0,s ;) = #(a},s i) = 0 . Then, playef can change te to get a higher
payoff.

Again, there is a direct correspondence between Nash legaibf " and satisfying assignments 6f This
completes the reduction. d

By each of the previous two theorems and by the inclusioniogiships between the different classes of
symmetric games, we also have the following.

Corollary 14 Deciding whether a weakly symmetric game has a pure Nashitegun is NP-complete,
even if the number of actions is linear in the number of playand there is only a constant number of
different payoffs. d

In the proofs of Theorems 12 and 13, every satisfying asségmrof circuit4 corresponds to a certain
number of pure Nash equilibria of ganie This allows us to show that counting the number of Nash
equilibria in these games is hard.

Corollary 15 For weakly symmetric, weakly anonymous, and strongly syritngames, counting the num-
ber of pure Nash equilibria is #P-complete, even if the nunobactions is linear in the number of players
and there is only a constant number of different payoffs.
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Proof. Recall that in the proof of Theorem 12, actions of the gdmare identified with inputs of the
Boolean circuit#’. As a direct consequence of anonymity or symmetry, it doesmaiter which player
plays a particular action to assigns a value to the correipgrgate. Every satisfying assignment@thus
corresponds tm! equilibria of I', so the number of satisfying assignments can be determipedunting
the number of Nash equilibria, of which there are at mdst,2and dividing this number by!. Division
of two m-bit binary numbers can be done using a circuit with boundedif and deptl©(logm) (Beame
et al., 1986). Fom= log(2"n!) = O(n?), we have deptiD(logn?) = O(logn), so the above division can
be carried out in N& We have thus found a reduction of the problem #SAT of cogntite number
of satisfying assignments &, which is #P-complete (see,g, Papadimitriou, 1994), to the problem of
counting the Nash equilibria df. The same line of reasoning applies to the proof of TheoremBy3
Corollary 14, #P-completeness extends to weakly symmgamees. d

As we have already outlined above, every strongly anonyrganse possesses a pure Nash equilibrium.
Theorem 11 states that finding even a social-welfare-maimgione is very easy as long as the number of
actions is bounded by a constant. If now the number of aci®igsowing but polynomial in the size of
the input, an assumption we have made throughout the paparamvstart at an arbitrary action profile and
check in polynomial time whether some player can changedtisrato increase the (common) payoff. If
this is not the case, we have found an equilibrium. Otherwigecan repeat the process for the new profile,
resulting in a procedure calldukst-response dynamiagsgame theory. Since the payoff strictly increases
in every step, we are guaranteed to find a Nash equilibriunoipnpmial time if the number of different
payoffs is polynomial. In turn, we will show that, given astgly anonymous game with a growing number
of actions and an exponential number of different payoffsjifig a Nash equilibrium is at least as hard as
finding alocally optimalsolution to an NP-hard optimization problem. For this, werfally introduce the
class of search problems for which a solution is guaranteedist by a local optimality argument.

Definition 16 (local search, PLS)A local search problenis given by (i) a set¥ of instances, (ii) a set
Z (x) of feasible solutions for each« .7, (iii) an integer measurei(S x) for each Sc .#(x), and (iv) a
set.# (S x) of neighboring solutions for each&.#(x). A solution islocally optimalif it does not have
a strictly better neighbori.e., one with a higher or lower measure depending on the kind tfrapation
problem.

A local search problem is in the class PLSpdlynomial local searcbroblems (Johnson et al., 1988)
if for every xe .# there exist polynomial time algorithms for (i) computing iaitial feasible solution in
Z (X), (ii) computing the measure(S x) of a solution S .%, and (iii) determining that S is locally optimal
or finding a better solution in/’(S x).

A problem P in PLS is PL8ducibleto another problem Q in PLS if there exist polynomial time €om
putable functionsb and W mapping (i) instances x of P to instanc®$x) of Q and (ii) solutions S of an
instanced®(x) of Q to solutions¥(S,x) of the corresponding instance x of P such that locally optista
lutions are mapped to locally optimal solutions. A PLS rdatucfrom P to Q is calledight (Sctaffer and
Yannakakis, 1991) if for any instance x of P there exists &set.7 (®(x)) with the following properties:

1. Z contains all local optima ofd(x).
2. For every pe % (x), a solution ge # satisfying¥(qg,x) = p can be computed in polynomial time.

3. Consider g,...,qs € .Z(®(x)) such that g,.qs € Z, g € Z forall 0 < i < ¢, gi+1 € A (q,P(X))
for alli < ¢, and u(q) > p(q;) if i > j. Let p=W(0o,x), P = W(aq¢). Then, either p= p’ or
peAN(p,X).

15



Theorem 17 The problem of finding a pure Nash equilibrium in a stronglyom@aymous game is PLS-
complete, even if the number of actions is linear in the nurabplayers.

Proof: Neighborhood among action profiles is given by a single plapanging his action. If the number
of players and actions is polynomial in the input size, aridefpayoff function is computable in polynomial
time, membershipn PLS is immediate.

For hardness consider a Boolean circui” with inputs M = {1,...,m} and ¢ outputs. Finding an
assignment such that the output interpreted a&laih binary number is a local maximum under the FLIP
neighborhoodi(e., changing a single input bit) is known to be PLS-complete (3ghnson et al., 1988;
Schaffer and Yannakakis, 1991). We provide a PLS redudtighe problem of finding a Nash equilibrium
in a strongly anonymous game by mapping a particular cirguis described above to a garmewith
playersN = M, actionsA = {a°,al | i € M}, and a (common) payoff functiop as follows:

e If scorresponds to an assignmentf ¢, we letp(s) = n+ %(c), where%'(c) denotes the output of
% for inputc, interpreted as a binary number.

e Otherwise, we lep(s) = |{i € M | #(a¥,s) + #(al,s) > 0}|. That is, the payoff is at most— 1 and
decreases in the minimum number of players that would hagbdnge their action in order to make
scorrespond to an assignment@f

We observe the following:

e Obviously,I" is a common payoff game. Singes invariant under any permutation of the players in
both of the above casels,is strongly anonymous.

e [ (e.g, a Boolean circuit that computg® can be constructed frof in polynomial time. Hence,
there exists a polynomial time computable function that snaptances of FLIP to instances of the
problem under consideration.

e An action profilea that does not correspond to a valid assignmerf einnot be a Nash equilibrium
of I'. In this case there always exisj € M such that? anda} are played by more than one player
while no one playsa? or ajl. If one of the players playing the former changes to theralie gets a
higher payoff (actually, all players do).

e There is a direct correspondence between the FLIP neigbbdrbf%é and a single player changing
betweenati0 anda! for somei € M. Furthermore, changing to an action profile that does neespond
to an assignment of” will get the player strictly less payoff. Thus, there is aedircorrespondence
between Nash equilibria df and local maxima of6” under the FLIP neighborhood. Obviously,
the assignment corresponding to an action profile can be wwapn polynomial time (if such an
assignment exists). The conditions of Definition 16 do nquines that we map solutions 6fthat are
not locally optimal to solutions o& that are not locally optimal. This means that action profiles
corresponding to an assignment can simply be mapped to dgragytassignment.

We observe that this satisfies the properties of a PLS remtucti O

Implicit in the definition of PLS is atandard algorithnfor finding a locally optimal solution for a given
inputx € . start with an arbitrary feasible soluti®e .# (x) and repeatedly find a strictly better neighbor
until a locally optimal solutiorl € .%(x) has been found. Th&tandard algorithm probleran be phrased
as follows: giver, find the locally optimal solutioff output by the standard algorithm on inputBy the
above proof, we can draw some additional conclusions al@uvbrst-case running time of the standard
algorithm and about the hardness of the standard algoritioivigm.
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Corollary 18 The standard algorithm for finding Nash equilibria in strdywjganonymous games has an
exponential worst-case running time. The standard alfariproblem is NP-hard.

Proof: To show tightness of the reduction used in the proof of theipus theorem, choos# to be the set
of actions profiles of that correspond to an assignmentf Obviously,Z contains all optimal solutions,
and a payoff profile corresponding to a particular assigriro@mbe computed in polynomial time. The third
condition is trivially satisfied because the measure of ahyti®n insideZ is strictly greater than that of any
solution outside ofZ. The corollary then follows directly from Lemma 3.3 in (2dfei and Yannakakis,
1991). O

By a slight modification of the proof of Theorem 17, PLS-coetphess, exponential worst-case running
time of the standard algorithm, and NP-hardness of the atdralgorithm problem can also be shown for
general (.e., not necessarily symmetric) common payoff games Wwith2. This fact nicely illustrates the
influence of symmetry on the hardness of finding (or decidmgexistence of) a Nash equilibrium.

5 Threshold Symmetries

In order to extend the basic concept of symmetry as the indisishability of players, we will now consider
games where the players cannot even observe the exact nohgiayers playing a certain action, but only
whether this number reaches certdiresholds Let” = (N, (Ai)ien, (pi)ien) be a normal-form game arfl

a set of actions such th& = Aforalli € N. ForT C {1,...,n}, let~1C AN AN he defined as follows:
s~rtifforallac Aand allx e T, #(a,s) < x if and only if #a,t) < x. ~7 naturally extends to action
profiles for subsets dfl. The following is easily verified.

Fact 19 For any TC {1,...,n}, ~7 is an equivalence relation on the sef &f action profiles for players
M CN.

Based on~T, we can give a more general version of Definition 2.

Definition 20 (threshold symmetry) Letl" = (N, (Aj)ien, (Pi)ien) be a normal-form game, A a set of ac-
tions such that A=Aforallie N. Let TC {1,...,n}. I is called

o weakly T-symmetricif p;(s) = pi(t) for alli € N and all st € AN with s =t and s ~7 t_j,

e strongly T-symmetricif pi(s) = p;(t) foralli,j € N and all st e AN with s =t; and s ~1 t_j,
o weakly T-anonymousf p;(s) = pi(t) for alli € N and all st € AN with s~ t, and

e strongly T-anonymousf pj(s) = pj(t) forall i, j € N and all st € AN with s~ t.

ForT = {1,...,n}, these classes are equivalent to those of Definition 2. Fhisinediate from Fact 4.
Moreover, we obtairBoolean symmetrywhere payoffs only depends on thepportof an action profile
(i.e, the actions that are played by at least one player)Tfer{1}. In general, we call a gantéreshold
symmetriqfor one of the above classes) if itTssymmetric for somé& (and the corresponding class).

Obviously, the number of payoffs that need to be written dd@meach player to specify a general
weakly T-symmetric game is exactly the number of equivalence ctasse-t for action profiles of the
other players.
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Fact 21 A weakly T-symmetric game can be represented using at mkstA'*/ ~1 | numbers, where
X/ ~ denotes the quotient set of set X by equivalence relatidfor Boolean weak symmetry, the number of
equivalence classes equals the number of k-bit binary nrswiteere at least one bit i i.e., 2K— 1. More
generally, there cannot be more thA | + 1) equivalence classes|if| is bounded by a constant (since for
every action, the number of players playing this action rbedbetween two thresholds), while foreT{n}
there are as few ask 1. Hence, any T-symmetric game with constdritis succinctly representable if
k= O(logn).

Theorem 22 For threshold symmetric games with=kO(logn) and a constant number of thresholds, de-
ciding the existence of a Nash equilibrium is in P.

Proof: Like in the proof of Lemma 8, we provide an algorithm that dtsewhether there is a Nash equilib-
rium in a particular quotient sé" / ~t of the set of payoff profiles. Since fear= O(logn) and|T| = O(1),
the cardinality ofAN / ~7 is polynomial inn, it suffices to show that the algorithm requires only polyfdm
time for every such set.

For a particular elemerX € AN/ ~1, the algorithm is again divided into two phases: (i) compgitihe
set of best responses for each player uileand (ii) checking whether there is a particular action peofi
se X where each player plays a best response.

In the first phase, and unlike the caBe- {1,...,n} covered by Lemma 8, the actiaplayed by player
i € N may or may not yield a different element AN\{} / ~1 against whicha should be a best response.
Instead of just looking for best responses under elemerits pive thus look for best responses under those
of UN, whereU = {u<n|ueTor(u—1) € T}. Since the cardinalities of both™ and of the set possible
best responses is polynomial 7| = O(1) andk = O(logn), the first phase requires only polynomial time.

As for the second phase, we recall that it can be reduced ididgadhe existence of a feasible flow
in a homologous flow network wit(2¥) nodes. Since this problem is in P if the number of nodes is
polynomial (seee.g, Greenlaw et al., 1995), observing th&ti€ polynomial ifk = O(logn) completes the
proof. d

In turn, it is easily verified that all the games defined in thegfs of Theorems 12, 13, and 17 are
Boolean. Action profiles corresponding to an assignment oifcuit trivially satisfy the conditions of
Definition 20, since each action is played by either zero @& players. For all other action profiles, the
conditions have to be checked individually. In the proof bedrem 12, for example, the payoff of player
only depends on whethef or al is played by at least one player. We thus have the followingltzoy.

Corollary 23 Deciding the existence of a pure Nash equilibrium is NP-detepfor threshold weakly
symmetric, threshold weakly anonymous, and thresholah@lyasymmetric games, even if thresholds are
Boolean, the number of actions is linear in the number of g@gyand there is only a constant number of
different payoffs. For the same classes, counting the nuofimire Nash equilibria is #P-complete.

For threshold strongly anonymous games, finding a pure Nagiililerium is PLS-complete, even if
thresholds are Boolean. O

6 Conclusion and Future Work

In this paper, we have introduced four notions of symmetistiategic multi-player games and investigated
the computational complexity of finding pure Nash equiibriThis problem has been shown tractable for
games with a constant number of actions, but intractableeihumber of actions is linear in the number of
players. It is worth noting that, for games with a constamhhar of actions, the Nash equilibrium problem
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k=0(1) k= 0(n)

weakly symmetric TCC-complete

weakly anonymous NP-complete
strongly symmetric in ACO
strongly anonymous PLS-complete

Table 2: Complexity of Nash equilibrium in symmetric games

happens to lie in NEfor all types of symmetry and is thus open to parallel comiputa For games in
which the number of actions grows slowlg.§, logarithmically) in the number of players, the complexity
remains open. The main results are summarized in Table 2.

In future work, it would further be interesting to investigahe notion of alayer typeto obtain efficient
algorithms for more general classes of games. For examaheeg where indistinguishability holds only
for players of the same type can be obtained by restrictingn@ien 2 to permutations that map players
from a certain subset to players of the same set. We congethat using the algorithm of Lemma 8,
pure Nash equilibria can still be found in polynomial timgh& number of player types is constant. A
different notion, such that players of the same type hawvetickd payoff functions, does not seem to provide
additional structure. As we have already shown, only twéedsint payoff functions suffice to make the
Nash equilibrium problem T&hard for a constant number of actions and NP-hard for a grgpwimber
of actions. More generally, one might investigate gamesrgvpayoffs are invariant under particular sets
of permutations. Von Neumann and Morgenstern (1947) rethigrchumber of permutations under which
the payoffs of a game are invariant as a measure for the defjsgenmetry. The question is in how far the
computational complexity of solving a game depends on tigeedeof symmetry.
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