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Abstract

Boolean satisfiability problems are an important benchmarkfor questions about complexity, algorithms,
heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered
around the structure and connectivity of the solution space. Motivated by this work, we study structural
and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish
various dichotomies in Schaefer’s framework.

On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of
the solution space. On the computational side, we establishdichotomy theorems for the complexity of the
connectivity and��-connectivity questions for the graph of solutions of Boolean formulas. Our results assert
that the intractable side of the computational dichotomiesis PSPACE-complete, while the tractable side -
which includes but is not limited to all problems with polynomial time algorithms for satisfiability - is in P for
the ��-connectivity question, and in coNP for the connectivity question. The diameter of components can be
exponential for the PSPACE-complete cases, whereas in all other cases it is linear; thus, small diameter and
tractability of the connectivity problems are remarkably aligned. The crux of our results is an expressibility
theorem showing that in the tractable cases, the subgraphs induced by the solution space posses certain good
structural properties, whereas in the intractable cases, the subgraphs can be arbitrary.

�
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1 Introduction

In 1978, T.J. Schaefer [20] introduced a rich framework for expressing variants of Boolean satisfiability and
proved a remarkabledichotomy theorem: the satisfiability problem is in P for certain classes of Boolean formu-
las, while it is NP-complete for all other classes in the framework. In a single stroke, this result pinpoints the
computational complexity of all well-known variants of SAT, such as�-SAT, HORN 3-SAT, NOT-ALL -EQUAL

�-SAT, and �-IN-� SAT. Schaefer’s work paved the way for a series of investigations establishing dichotomies
for several aspects of satisfiability, including optimization [6, 8, 14], counting [7], inverse satisfiability [13],
minimal satisfiability [15],�-valued satisfiability [5] and propositional abduction [9].

Our aim in this paper is to carry out a comprehensive exploration of a different aspect of Boolean satisfiabil-
ity, namely, theconnectivity properties of the space of solutions of Booleanformulas. The solutions (satisfying
assignments) of a given�-variable Boolean formula� induce a subgraph� ��� of the�-dimensional hypercube,
which we call the solution graph. We believe that connectivity properties of such graphs merit study in their own
right, as they shed light on the structure of the solution space of Boolean formulas. Furthermore, in recent years
the structure of the solution graph for random instances hasbeen the main consideration at the basis of both
algorithms for and mathematical analysis of the satisfiability problem [2, 18, 17, 16]. It has been conjectured for
3-SAT [17] and proved for 8-SAT [19, 3], that the solution space fractures as one approachesthecritical region
from below. This apparently leads to performance deterioration of the standard satisfiability algorithms, such
as WalkSAT [21] and DPLL [1]. It is also the main consideration behind the design of the survey propagation
algorithm, which has far superior performance on random instances of satisfiability [17]. This body of work has
served as a motivation to us for pursuing the investigation reported here. While there has been an intensive study
of the structure of the solution space of Boolean satisfiability problems for random instances, our work seems to
be the first to explore this issue from a worst-case viewpoint.

Our Results. Our work addresses the question:when does the solution graph of a Boolean formula have
nice structure? To answer this question, one must clarify what is meant bynice structure. One can define
it in terms of graph theoretic properties of the solution graph. We can ask what kinds of graphs are possible
as solution graphs of a Boolean formula. One can focus on specific structural properties such as diameter of
each component. Alternatively, once can view the Boolean formula as an implicit description of the solution
graph, and study the computational complexity of algorithmic tasks such as finding if the graph is connected.
Surprisingly, we show that many of these properties, both structural and algorithmic, are remarkably aligned and
result in the same dichotomies.

We identify two broad classes of Boolean relations1 with respect to the structure of the solution graphs of
Boolean formulas built using these relations, which we calltight and non-tight relations. The solution graphs
of formulas built from tight relations are characterized bycertain structural properties. On the other hand we
find non-tightsets of relations; formulas built from such sets of relations can express any solution graph. The
boundary between these two classes differs from the boundary in Schaefer’s dichotomy. Schaefer showed that
the satisfiability problem is solvable in polynomial time precisely for formulas built from Boolean relations all
of which are bijunctive, or all of which are Horn, or all of which are dual Horn, or all of which are affine. The
class oftight relations properly contains the classes of bijunctive, Horn, dual Horn, and affine relations.

The main step in the proof of Schaefer’s dichotomy theorem isa result of independent interest known as
Schaefer’s expressibility theorem. The crux of our resultsis a different expressibility theorem which we call
theFaithful Expressibility Theorem. At a high level, this theorem asserts that given any Booleanrelation with
a solution graph�, we can construct a formula using any non-tight set of relations, such that its solution graph
is isomorphic to� after certain adjacent vertices are merged. In addition to being an interesting structural
result in its own right, the Faithful Expressibility Theorem implies that all non-tight relations have the same

1A Boolean relation can be thought of as a template for a clause, see Section2 for precise definitions
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computational complexity for both the connectivity and the��-connectivity problems. It also shows that the
diameter of the solution graph of formulas obtainable such relations are polynomially related.

As a consequence of the Faithful Expressibility Theorem we establish three dichotomy results. The first is
a dichotomy theorem for the��-connectivity problem: Given a Boolean formula� and two solutions� and �
of �, is there a path from� to � in � ���? We show that��-connectivity is solvable in linear time for formulas
built from tight relations, and PSPACE-complete in all other cases. The second is a dichotomy theorem for
the connectivity problem: Given a Boolean formula�, is � ��� connected? We show that connectivity is in
coNP for formulas built from tight relations, and PSPACE-complete in all other cases. Finally, we establish a
structural dichotomy theorem for the diameter of the connected components of the solution space of Boolean
formulas. This result asserts that, in the PSPACE-completecases, the diameter of the connected components
can be exponential, but in all other cases it is linear.

Technical Contributions. In Schaefer’s Dichotomy Theorem, NP-hardness of satisfiability was a consequence
of an expressibility theorem, which asserted that every Boolean relation can be obtained as a projection over a
formula built from clauses from any “hard” set of relations (i.e. a set in which at least one relation is not
bijunctive, at least one is not Horn, at least one is not dual Horn, and at least one is not affine). Schaefer’s notion
of expressibility is inadequate for our problem, so we introduce and work with a delicate and more strict notion
of expressibility, which we callfaithful expressibility. Intuitively, faithful expressibility means that, in addition
to definability via a projection, the space of witnesses of the existential quantifiers in the projection has certain
strong connectivity properties that allow us to capture thegraph structure of the relation that is being defined. It
should be noted that Schaefer’s Dichotomy Theorem can also be proved using a Galois connection and Post’s
celebrated classification of the lattice of Boolean clones (see [4]). This method, however, does not appear to
apply to connectivity, as the boundaries discovered here cut across Boolean clones. Thus, the use of faithful
expressibility or some other refined definability techniqueseems unavoidable.

The main technical challenge in this work is the proof of the Faithful Expressibility Theorem, which is
proved via a series of reductions. To prove it, we identify the simplest non-tight relations: these are ternary
relations whose graph is a path of length� between assignments at Hamming distance�. We show that one can
faithfully express such a path from any non-tight set of relations. Next, we show that these paths can faithfully
express all 3-CNF clauses, which are then easily shown to faithfully express any relation.

The Faithful Expressibility Theorem allows us to focus on a specific non-tight set of relations in order to
establish the hard part of our dichotomies, We show that bothconnectivity and��-connectivity are hard for
3-CNF formulas; this is proved by a reduction from a generic PSPACE computation. Similarly, we show that
formulas built from non-tight relations can have large diameter by explicitly constructing a 3-CNF formula on
� variables whose diameter is exponential in�.

Our upper bounds for tight sets of relations are proved usingstructural properties that characterize the solu-
tion graphs. For tight sets of relation, we show that every component has a unique minimum element, or every
component has a unique maximum element, or the Hamming distance coincides with the shortest-path distance
in the relation. These properties are inherited by every formula built from a tight set of relations, and yield both
small diameter and linear algorithms for��-connectivity.

An intriguing byproduct of our work is that we have identifieda broad class of NP-complete satisfiability
problems - those built from tight relations - that have simple structural properties, such as linear diameter. It
would be interesting to investigate if these properties make random instances built from tight relations easier for
WalkSAT and similar heuristics, and if so, whether such heuristics are amenable to rigorous analysis.

Organization of this Paper. In Section 2 we introduce the main concepts precisely, and state our results. We
prove the two sides of the dichotomy in Sections 3 and 4 respectively. Finally, we will discuss a few open
questions and conjectures in Section 5. An extended abstract of this paper appears in ICALP’06 [10].
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2 Basic Concepts and Statements of Results

A logical relation � is a non-empty subset of�� � ��� , for some� � �; � is thearity of � . Let � be a finite
set of logical relations. A CNF�� �-formula over a set of variables	 
 �� � �    � �� � is a finite conjunction�� � � � � � �� of clauses built using relations from� , variables from	 , and the constants� and �; this means
that each

��
is an expression of the form� �� � �    � �� �, where� � � is a relation of arity�, and each

��
is a

variable in	 or one of the constants�, �.
Thesatisfiability problemSAT �� � associated with a finite set� of logical relations asks: given a CNF�� �-

formula �, is it satisfiable? All well known restrictions of Boolean satisfiability, such as�-SAT, NOT-ALL -
EQUAL �-SAT, and POSITIVE �-IN-� SAT, can be cast as SAT �� � problems, for a suitable choice of� . For
instance, POSITIVE 1-IN-3SAT is SAT ��� ��� ��, where� ��� 
 ���� � � �� � �� ��. Schaefer [20] identified the
complexity ofeverysatisfiability problem SAT �� �. To state Schaefer’s main result, we need to define some basic
concepts.

Definition 1 Let � be a logical relation.

1. � is bijunctiveif it is the set of solutions of a 2-CNF formula.

2. � is Horn if it is the set of solutions of a Horn formula, where a Horn formula is a CNF formula such that
each conjunct has at most one positive literal.

3. � is dual Horn if it is the set of solutions of a dual Horn formula, where a dual Horn formula is a
CNF formula such that each conjunct has at most one negative literal.

4. � is affineif it is the set of solutions of a system of linear equations over ��.
Each of these types of logical relations can be characterized in terms ofclosureproperties [20]. A relation

� is bijunctive if and only if it is closed under themajority operation (if� � � � � � � , then��� �� � � � � � � � ,
where��� �� � � � � � is the vector whose -th bit is the majority of!� � "� � #�). A relation� is Horn if and only if it
is closed under$ (if � � � � � , then� $ � � � , where,� $ � is the vector whose -th bit is !� $ "�). Similarly,
� is dual Horn if and only if it is closed under�. Finally, � is affine if and only if it is closed under� % � % �.

Definition 2 A set� of logical relations isSchaeferif at least one of the following holds:

1. Every relation in� is bijunctive.

2. Every relation in� is Horn.

3. Every relation in� is dual Horn.

4. Every relation in� is affine.

Theorem 1 (Schaefer’s Dichotomy Theorem [20])If � is Schaefer, thenSAT �� � is in P; otherwise,SAT �� � is
NP-complete.

Note that the closure properties of Schaefer sets yield a cubic algorithm for determining, given a finite set�
of relations, whether SAT �� � is in P or NP-complete (the input size is the sum of the sizes ofrelations in� ).

Here, we are interested in the connectivity properties of the space of solutions of CNF�� �-formulas. If� is a
CNF�� �-formula with� variables, then� ��� denotes the subgraph of the�-dimensional hypercube induced by
the solutions of�. Thus, the vertices of� ��� are the solutions of�, and there is an edge between two solutions
of � ��� precisely when they differ in a single variable.

We consider the following two algorithmic problems for CNF�� �-formulas.
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1. Theconnectivityproblem CONN�� �: given a CNF�� �-formula�, is � ��� connected?

2. Thest-connectivityproblemST-CONN�� �: given a CNF�� �-formula� and two solutions� and� of �, is
there a path from� to � in � ���?

To pinpoint the computational complexity ofST-CONN�� � and CONN�� �, we need to introduce certain new
types of relations.

Definition 3 Let � � �� � ��� be a logical relation.

1. � is componentwise bijunctiveif every connected component of� �� � is bijunctive.

2. � is OR-free if the relation�� 
 �� � � �� � ��� cannot be obtained from� by setting� � � of the
coordinates of� to a constant� � �� � ����� . In other words,� is OR-free if �� � $ �� � is not definable
from � by fixing � � � variables.

3. � is NAND-free if ��� � $ ��� � is not definable from� by fixing � � � variables.

The next lemma follows from the closure properties of bijunctive, Horn, and dual Horn relations.

Lemma 1 Let � be a logical relation.

1. If � is bijunctive, then� is componentwise bijunctive.

2. If � is Horn, then� is OR-free.

3. If � is dual Horn, then� is NAND-free.

4. If R is affine, then� is componentwise bijunctive,OR-free, andNAND-free.

These containments are proper. For instance,� ��� 
 ���� � � �� � �� �� is componentwise bijunctive, but not
bijunctive as��� ���� � � �� � �� �� 
 ��� �� � ��� .

We are now ready to introduce the key concept of atight set of relations.

Definition 4 A set� of logical relations istight if at least one of the following three conditions holds:

1. Every relation in� is componentwise bijunctive;

2. Every relation in� is OR-free;

3. Every relation in� is NAND-free.

In view of Lemma 1, if� is Schaefer, then it is tight. The converse, however, does not hold. It is also easy to
see that there is a polynomial-time algorithm for testing whether a given finite set� of logical relations is tight.

The main step in the proof of Schaefer’s dichotomy theorem isa result known as Schaefer’s expressibility
theorem. Similarly, the crux of our results is the followingtheorem which we will call the Faithful Expressibility
Theorem. At a high level, this theorem asserts that for any Boolean relation with a solution graph� , we can
construct a formula using any non-tight set of relations, such that its solution graph is isomorphic to� after
certain adjacent vertices are merged. See section 4 for a precise definition of faithful expressibility.

Theorem 2 (Faithful Expressibility Theorem)Let � be a set of relations that is not tight. Every relation is
faithfully expressible from� .
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Using the Faithful Expressibility Theorem, we obtain dichotomy theorems for the computational complexity
of CONN�� � andST-CONN�� �.

Theorem 3 Let � be a finite set of logical relations. If� is tight, thenCONN�� � is in coNP; otherwise, it is
PSPACE-complete.

Theorem 4 Let � be a finite set of logical relations. If� is tight, thenST-CONN�� � is in P; otherwise,ST-
CONN�� � is PSPACE-complete.

We also show that if� is tight, but not Schaefer, then CONN�� � is coNP-complete.
The dichotomy in the computational complexity of CONN�� � andST-CONN�� � is accompanied by a parallel

structural dichotomy in the size of the diameter of� ��� (where, for a CNF�� �-formula�, thediameter of� ���
is the maximum of the diameters of the components of� ���).

Theorem 5 Let � be a finite set of logical relations. If� is tight, then for everyCNF�� �-formula �, the
diameter of� ��� is linear in the number of variables of�; otherwise, there areCNF�� �-formulas� such that
the diameter of� ��� is exponential in the number of variables of�.

Our results and their comparison to Schaefer’s Dichotomy Theorem are summarized in the table below.

� SAT �� � ST-CONN�� � CONN�� � Diameter
Schaefer P P coNP � �� �
Tight, non-Schaefer NP-complete P coNP-complete � �� �
Non-tight NP-complete PSPACE-complete PSPACE-complete �� ��� �

As an example, the set� 
 �� ��� �, where� ��� 
 ���� � � �� � �� ��, is tight, but not Schaefer. It follows that
SAT �� � is NP-complete (recall that this problem is POSITIVE 1-IN-3 SAT), ST-CONN�� � is in P, and CONN�� �
is coNP-complete. Consider also the set� 
 ����� �, where���� 
 �� � ��� � ���� � ����. This set is not tight,
hence SAT �� � is NP-complete (this problem is POSITIVE NOT-ALL -EQUAL 3-SAT), while bothST-CONN�� �
and CONN�� � are PSPACE-complete.

We conjecture that if� is Schaefer, then CONN�� � is in P. If this conjecture is true, it will follow that the
complexity of CONN�� � exhibits atrichotomy: if � is Schaefer, then CONN�� � is in P; if � is tight, but not
Schaefer, then CONN�� � is coNP-complete; if� is not tight, then CONN�� � is PSPACE-complete.

3 The Easy Case of the Dichotomy: Tight Sets of Relations

In this section, we explore some structural properties for the solution graphs of tight sets of relations. These
properties provide simple algorithms for CONN�� � andST-CONN�� � for tight sets� , and also guarantee that
for such sets, the diameter of� ��� of CNF�� �-formula� is linear.

We will use� � � �    to denote Boolean vectors, and	 and
 to denote vectors of variables. We write�� �
to denote the Hamming weight (number of�’s) of a Boolean vector�. Given two Boolean vectors� and�, we
write �� � � � to denote the Hamming distance between� and�. Finally, if � and� are solutions of a Boolean
formula � and lie in the same component of� ���, then we write� �� � � � to denote the shortest-path distance
between� and� in � ���.
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3.1 Componentwise Bijunctive Sets of Relations

Lemma 2 Let � be a set of componentwise bijunctive relations and� a CNF�� �-formula. If � and� are two
solutions of� that lie in the same component of� ���, then� �� � � � 
 �� � � �.
PROOF: Consider first the special case in which every relation in� is bijunctive. In this case,� is equivalent
to a 2-CNF formula and so the space of solutions of� is closed under majority. We show that there is a path
in � ��� from � to �, such that along the path only the assignments on variables with indices from the set� 
 � � !� �
 "� � change. This implies that the shortest path is of length�� � by induction on�� �. Consider any
path� � �� � � � � � �� � � in � ���. We construct another path by replacing�

�
by �

� 
 ��� �� � �� � � �
for  
 � �    � � , and removing repetitions. This is a path because for any � � and�

�	
� differ in at most one

variable. Furthermore,�
�

agrees with� and� for every  for which !� 
 "�. Therefore, along this path only
variables in

�
are flipped.

For the general case, we show that every component
 of � ��� is the solution space of a 2-CNF formula
� �. Let 
 be the component of� ��� which contains� and�. Let � � � be a relation with two components,
� � � �� each of which are bijunctive. Consider a clause in� of the form� �� � �    � � � �. The projection of

onto� � �    � �� is itself connected and must satisfy� . Hence it lies within one of the two components� � � �� ,
assume it is� �. We replace� �� � �    � � � � by � � �� � �    � � � �. Call this new formula� �. � �� � � consists of
all components of� ��� whose projection on� � �    � �� lies in � �. We repeat this for every clause. Finally we
are left with a formula� � over a set of bijunctive relations. Hence� � is bijunctive and� �� � � is a component of
� ���. So the claim follows from the bijunctive case. �

Corollary 1 Let � be a set of componentwise bijunctive relations. Then

1. For every� � CNF�� � with � variables, the diameter of each component of� ��� is bounded by�.

2. ST-CONN�� � is in P.

3. CONN�� � is in coNP.

PROOF: The bound on diameter is an immediate consequence of Lemma 2.
The following algorithm solvesST-CONN�� � given vertices� � � � � ���. Start with� 
 �. At each step,

find a variable��
so that � �
 ��

and flip it, until we reach�. If at any stage no such variable exists, then declare
that � and� are not connected. If the� and� are disconnected, the algorithm is bound to fail. So assume that
they are connected. Correctness is proved by induction on� 
 �� � � �. It is clear that the algorithm works when
� 
 �. Assume that the algorithm works for� � �. If � and

�
are connected and are distance� apart, Lemma 2

implies there is a path of length� between them in� ���. In particular, the algorithm will find a variable��
to

flip. The resulting assignment is at distance� � � from �, so now we proceed by induction.
Next we prove that CONN�� � � coNP. A short certificate that the graph is not connected is a pair of assign-

ments� and� which are solutions from different components. To verify that they are disconnected it suffices to
run the algorithm forST-CONN. �

3.2 OR-free andNAND-free Sets of Relations

We consider sets of OR-free relations. Sets of NAND-free relations are handled dually. Define thecoordinate-
wise partial order� on Boolean vectors as follows:� � � if !� � "�, for each .
Lemma 3 Let � be a set ofOR-free relations and� a CNF�� �-formula. Every component of� ��� contains
a minimum solution with respect to the coordinate-wise order; moreover, every solution is connected to the
minimum solution in the same component via a monotone path.
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PROOF: We call a satisfying assignment locally minimal, if it has no neighboring satisfying assignments that
are smaller than it. We will show that there is exactly one such assignment in each component of� ���.

Suppose there are two distinct locally minimal assignments� and�� in some component of� ���. Consider
the path between them where the maximum Hamming weight of assignments on the path is minimized. If there
are many such paths, pick one where the smallest number of assignments have the maximum Hamming weight.
Denote this path by� 
 � � � �� � � � � � �� 
 ��. Let �

�
be an assignment of largest Hamming weight in

the path. Then�
�
�
 � and�

�
�
 ��, since� and�� are locally minimal. The assignments�

�
�� and�

�	
� differ

in exactly 2 variables, say, in� � and�� . So �
�
� �� 

�
� �� � 

�
�

�
� � 

�	 �� 
�	 �� � 
 �� � � �� � ���. Let

�� be such that� � 
 � � 
 �, and
� � 
  �

for  � �. If
�� is a solution, then the path� � � �� � � � � � �

�
� �� � �

�	
� �

� � � � �� contradicts the way we chose the original path. Therefore,
�� is not a solution. This means that there is

a clause that is violated by it, but is satisfied by�
�
��, �

�
, and�

�	
�. So the relation corresponding to that clause

is not OR-free, which is a contradiction.
The unique locally minimal solution in a component is its minimum solution, because starting from any

other assignment in the component, it is possible to keep moving to neighbors that are smaller, and the only time
it becomes impossible to find such a neighbor is when the locally minimal solution is reached. Therefore, there
is a monotone path from any satisfying assignment to the minimum in that component. �

Corollary 2 Let � be a set ofOR-free relations. Then

1. For every� � CNF�� � with � variables, the diameter of each component of� ��� is bounded by��.

2. ST-CONN�� � is in P.

3. CONN�� � is in coNP.

PROOF: Given solutions� and � in the same component of� ���, there is a monotone path from each to the
minimal solution� in the component. This gives a path from� to � of length at most��. To check if� and� are
connected, we just check that the minimal assignments reached from� and� are the same. �

3.3 The Complexity ofCONN
�� �

for Tight Sets of Relations

We can further specify the complexity of CONN�� � for the tight cases which are not Schaefer, using a result of
Juban [12].

Lemma 4 For � tight, but not Schaefer,CONN�� � is coNP-complete.

PROOF: The problem ANOTHER-SAT �� � is: given a formula� in CNF�� � and a solution�, does there exist a
solution� �
 �? Juban ([12], Theorem 2) shows that if� is not Schaefer, then ANOTHER-SAT is NP-complete.
He also shows ([12], Corollary 1) that if� is not Schaefer, then the relation� �
 � is expressible from� through
substitutions.

Since� is not Schaefer, ANOTHER-SAT �� � is NP-complete. Let� � � be an instance of ANOTHER-SAT on
variables� � �    � �� . We define a CNF�� � formula� on � � �    � �� � � � �    � �� as

� �� � �    � �� � � � �    � �� � 
 � �� � �    � �� � �� ��� �
 � � �
It is easy to see that� �� � is connected if and only if� is the unique solution to�. �

Further we can show that CONN�� � is in P if � is affine or bijunctive. Thus the only tight cases for which
CONN�� � is not known to be coNP-complete or in P are Horn and dual-Horn. We conjecture that these problems
are in P.
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Figure 1: Expressing the relation�� � $ �� $ �� � using NOT-ALL -EQUAL relations.
(a) The graph of�� � $ �� $ �� �;
(b) The graph of a faithful expression:� �	 � � � � �� � 
 ���� �� � � �� � � �� � ���� ��� � � � � �� � � ���� �� � � �� � ��.
(c) The graph of an unfaithful expression:� �	 � � � � 
 ���� �� � � �� � � � � � ���� ��� � � �� � � � � ���� �� � � �� � ��.
In both cases�� � $ �� $ �� � 
 �
 � �	 � 
 �, but only in the first case the connectivity is preserved.

4 The Hard Case of the Dichotomy: Non-Tight Sets of Relations

We will show that all non-tight sets of relations lead to solution graphs that have identical properties in a natural
sense that is captured in the notion of faithful expressibility. We define this notion in Section 4.1, and prove the
Faithful Expressibility Theorem in Section 4.2. This theorem implies that the complexity of the connectivity
questions for all such sets is the same, and the possible diameter of components of the solution graph is also
related polynomially. In section 4.3 we will prove that for 3-CNF formulas the connectivity questions are
PSPACE-complete, and the diameter can be exponential. Thisfact together with the Faithful Expressibility
Theorem implies the hard side of all of our dichotomy results.

4.1 Faithful Expressibility

In his dichotomy theorem, Schaefer [20] used the following notion of expressibility: a relation� is expressible
from a set� of relations if there is a CNF�� �-formula � so that� �	 � � �
 � �	 � 
 �. This notion, is not
sufficient for our purposes. Instead, we introduce a more delicate notion, which we callfaithful expressibility.
Intuitively, we view the relation� as a subgraph of the hypercube, rather than just a subset, andrequire that this
graph structure be also captured by the formula�.

Definition 5 A relation� is faithfully expressiblefrom a set of relations� if there is aCNF�� �-formula� such
that the following condition hold:

1. � 
 �� � �
 � �� � 
 ��;

2. For every� � � , the graph� �� �� � 
 �� is connected;

3. For � � � � � with �� � � � 
 �, there exists� such that�� �� � and �� �� � are solutions of�.

For � � � , the witnessesof � are the
 ’s such that� �� � 
 � is true. The last two conditions say that the
witnesses of� � � are connected, and that neighboring� � � � � have a common witness. This allows us to
simulate an edge�� � � � in � �� � by a path in� ���, and thus relate the connectivity properties of the solution
spaces. There is however, a price to pay: it is much harder to come up with formulas that faithfully express a
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relation� . An example is when� is the set of all paths of length� in �� � ��� , a set that plays a crucial role in
our proof. While 3-SAT relations are easily expressible from� in Schaefer’s sense, the CNF�� �-formulas that
faithfully express 3-SAT relations are fairly complicated and have a large witness space.

An example of the difference between a faithful and an unfaithful expression is shown in Figure 4.1.

Lemma 5 Let � and � � be sets of relations such that every� � � � is faithfully expressible from� . Given a
CNF�� � �-formula� �	 �, one can efficiently construct aCNF�� �-formula� �	 � 
 � such that:

1. � �	 � � �
 � �	 � 
 �;
2. if �� �� � � � �� �� � � � � are connected in� ��� by a path of length�, then there is a path from� to � in

� �� � of length at most�;

3. If � � � � � are connected in� �� �, then for every witness� � of �, and every witness�
�

of �, there is a
path from�� �� � � to �� �� � � in � ���.

PROOF: Suppose� is a formula on� variables that consists of� clauses
�� �    � ��

. For clause
��

, assume
that the set of variables is	� � �� �, and that it involves relation�� � � . Thus,� �	 � is �

�� � ��� �	 �� �. Let ��
be

the faithful expression for��
from � �, so that�� �	 �� � � �
� �� �	 �� � 
� �. Let 
 be the vector�
 � �    � 
� �

and let� �	 � 
 � be the formula�
�� � ��� �	 �� � 
� �. Then� �	 � � �
 � �	 � 
 �.

Statement��� follows from ��� by projection of the path on the coordinates of	 . For statement���, con-
sider � � � � � that are connected in� �� � via a path� 
 �	 � �� � � � � � �� 
 � . For every�

� � ��	 �,
and clause

��
, there exists an assignment�

��
to 
�

such that both��
��� �� �� � and ��

�	
��� �� �� � are solu-

tions of ��
, by condition ��� of faithful expressibility. Thus��

� �� �
� and ��

�	
� �� �

� are both solutions of�,
where�

� 
 ��
� � �   � �� �. Further, for every�

�
, the space of solutions of� ��

� � 
 � is the product space
of the solutions of�� ����� � 
� � over 
 
 � �    �� . Since these are all connected by condition��� of faith-
ful expressibility,� �� ��

� � 
 �� is connected. The following describes a path from�� �� � � to �� �� � � in � ���:
�� �� � � � �� �� 	 � � �� � �� 	 � � �� � �� � � � � � � � ����� �� ��� � � �� �� ��� � � �� �� � �. Here�
indicates a path in� �� ��

� � 
 ��. �

Corollary 3 Suppose� and� � are sets of relations such that every� � � � is faithfully expressible from� .

1. There are polynomial time reductions fromCONN�� � � to CONN�� �, and from ST-CONN�� � � to ST-
CONN�� �.

2. Given aCNF�� � �-formula� �	 � with � clauses, one can efficiently construct aCNF�� �-formula� �	 � 
 �
such that the length of
 is � �� � and the diameter of the solution space does not decrease.

4.2 The Faithful Expressibility Theorem

In this subsection, we prove the Faithful Expressibility Theorem. The main step in the proof is Lemma 6 which
shows that if� is not tight, then we can faithfully express the 3-clause relations from the relations in� . If
� � �, then a�-clauseis a disjunction of� variables or negated variables. For� �  � � , let

� �
be the set of all

satisfying truth assignments of the�-clause whose first literals are negated, and let�� 
 �� � �� � �    �� � �.
Thus, CNF��� � is the collection of�-CNF formulas.

Lemma 6 If set� of relations is not tight,�� is faithfully expressible from� .
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Figure 2: Proof of Step 1 of Lemma 6, and an example.

PROOF: First, observe that all�-clauses are faithfully expressible from� . There exists� � � which is not
OR-free, so we can express�� � $ �� � by substituting constants in� . Similarly, we can express��� � $ ��� � using a
relation that is not NAND-free. The last 2-clause�� � $ ��� � can be obtained from OR and NAND by a technique
that corresponds to reverse resolution.�� � $ ��� � 
 �� �� � $ � � � ��� $ ��� �. It is easy to see that this gives a
faithful expression. From here onwards we assume that� contains all 2-clauses. The proof now proceeds in four
steps. First, we will express a relation in which there existtwo elements that are at graph distance larger than
their Hamming distance. Second, we will express a relation that is just a single path between such elements.
Third, we will express a relation which is a path of length 4 between elements at Hamming distance 2. Finally,
we will express the 3-clauses.

Step 1 Faithfully expressing a relation in which some distance expands.

For a relation� , we say that the distance between� and � expandsif � and � are connected in� �� �, but
�� �� � � � � �� � � �. By Lemma 2 no distance expands in componentwise bijunctiverelations. This property
also holds for the relation���� 
 �� � ��� � ���� � ����, which is not componentwise bijunctive. However,
we show that if� is not componentwise bijunctive, then, by adding�-clauses, we can faithfully express a
relation

�
in which some distance expands. For instance, when� 
 ���� , then we can take

� �� � � � � � �� � 

���� �� � � �� � �� � � � �� � $ ��� �. The distance between� 
 ��� and� 
 �� � in

�
expands. Similarly, in the

general construction, we identify� and� on a cycle, and add�-clauses that eliminate all the vertices along the
shorter arc between� and�.

Since� is not tight, it contains a relation� which is not componentwise bijunctive. If� contains� � � where
the distance between them expands, we are done. So assume that for all � � � � � �� �, �� �� � � � 
 �� � � �. Since
� is not componentwise bijunctive, there exists a triple of assignments� � � � � lying in the same component such
that��� �� � � � � � is not in that component (which also easily implies it is not in � ). Choose the triple such that the
sum of pairwise distances�� �� � � �� �� �� � � �� �� �� � � � is minimized. Let� 
 � �!� �
 "� �, 	 
 � �"� �
 #� �,
and� 
 � �#� �
 !� �. Since�� �� � � � 
 �� � � �, a shortest path does not flip variables outside of� , and each
variable in� is flipped exactly once. The same holds for	 and� . We note some useful properties of the sets
� � 	 �� .

1. Every index � � � 	 � � occurs in exactly two of� � 	 �� .
Consider going by a shortest path from� to � to � and back to�. Every  � � � 	 � � is seen an even
number of times along this path since we return to�. It is seen at least once, and at most thrice, so in fact
it occurs twice.
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2. Every pairwise intersection� � 	 � 	 � � and� � � is non-empty.
Suppose the sets� and	 are disjoint. From Property 1, we must have� 
 � � 	 . But then it is easy
to see that��� �� � � � � � 
 � which is in� . This contradicts the choice of� � � � �.

3. The sets� � 	 and� � � partition the set� .
By Property�, each index of� occurs in one of	 and� as well. Also since no index occurs in all three
sets� � 	 �� this is in fact a disjoint partition.

4. For each index � � � � , it holds that� % � � �� � .
Assume for the sake of contradiction that� � 
 � % � � � � . Since � � � � we have simultaneously
moved closer to both� and�. Hence we have�� �� � � � � � �� �� � � � � �� �� � � � � � �� �� � � � � �� �� � � � �
�� �� � � �. Also ��� �� � � � � � � 
 ��� �� � � � � � �� � . But this contradicts our choice of� � � � �.

Property 4 implies that the shortest paths to� and� diverge at�, since for any shortest path to� the first
variable flipped is from� � 	 whereas for a shortest path to� it is from � � 	 . Similar statements hold for
the vertices� and�. Thus along the shortest path from� to � the first bit flipped is from� � 	 and the last
bit flipped is from� � � . On the other hand, if we go from� to � and then to�, all the bits from� � � are
flipped before the bits from� � 	 . We use this crucially to define

�
. We will add a set of 2-clauses that enforce

the following rule on paths starting at�: Flip variables from� � � before variables from� � 	 . This will
eliminate all shortest paths from� to � since they begin by flipping a variable in� � 	 and end with� � � .
The paths from� to � via � survive since they flip� � � while going from� to � and� � 	 while going from
� to �. However all remaining paths have length at least�� � � � � � since they flip twice some variables not in
� .

Take all pairs of indices� � � 
 � � � � � � � 
 � � � 	 �. The following conditions hold from the definition
of � � 	 �� : !� 
 �#� 
 �"� and!� 
 #� 
 �"� . Add the 2-clause

���
asserting that the pair of variables����

must
take values in�!�!� � #� #� � "� "� � 
 �!�!� � �!�!� � �!� �!� �. The new relation is

� 
 � �� �� ���
. Note that

� � � .
We verify that the distance between� and� in

�
expands. It is easy to see that for any
 � � , the assignment

� % �� �� �
. Hence there are no shortest paths left from� to �. On the other hand, it is easy to see that� and�

are still connected, since the vertex� is still reachable from both.

Step 2 Isolating a pair of assignments whose distance expands.

The relation
�

obtained in Step 1 may have several disconnected components. This cleanupstep isolates a
single pair of assignments whose distance expands. By adding �-clauses, we show that one can express a path
of length� � � between assignments at distance� .

Take � � � � �
whose distance expands in

�
and �� �� � � � is minimized. Let� 
 � � !� �
 "� �, and

�� � 
 � . Shortest paths between� and� have certain useful properties:

1. Each shortest path flips every variable from� exactly once.
Observe that each index
 � � is flipped an odd number of times along any path from� to �. Suppose
it is flipped thrice along a shortest path. Starting at� and going along this path, let� � be the assignment
reached after flipping
 twice. Then the distance between� and� � expands, since
 is flipped twice along
a shortest path between them in

�
. Also �� �� � � � � � �� �� � � �, contradicting the choice of� and�.

2. Every shortest path flips exactly one variable �� � .
Since the distance between� and� expands, every shortest path must flip some variable �� � . Suppose
it flips more than one such variable. Since� and� agree on these variables, each of them is flipped an
even number of times. Let be the first variable to be flipped twice. Let� � be the assignment reached
after flipping  the second time. It is easy to verify that the distance between � and� � also expands, but
�� �� � � � � � �� �� � � �.
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3. The variable �� � is the first and last variable to be flipped along the path.Assume the first variable
flipped is not . Let � � be the assignment reached along the path before we flip the first time. Then
�� �� � � � � � �� �� � � �. The distance between� � and� expands since the shortest path between them flips
the variables twice. This contradicts the choice of� and�. Assume
 � � is flipped twice. Then as
before we get a pair� � � � � that contradict the choice of� � �.

Every shortest path between� and� has the following structure: first a variable �� � is flipped to�!�
, then

the variables from� are flipped in some order,finally the variable is flipped back to!�
.

Different shortest paths may vary in the choice of �� � in the first step and in the order in which the variables
from � are flipped. Fix one such path� � �

. Assume that� 
 �� �    � � � and the variables are flipped in this
order, and the additional variable flipped twice is� � �. Denote the path by� � �	 � �� � � � � � �� � �.
Next we prove that we cannot flip the� � ��� variable at an intermediate vertex along the path.

4 For � � 
 � � � � the assignment�
� % ��	 � �� �

.
Suppose that for some
 , we have� 
 �

� % ��	 � � �
. Then� differs from � on �� �    �  � and from�

on � � � �    � � �. The distance from� to at least one of� or � must expand, else we get a path from�
to � through� of length �� � � � which contradicts the fact that this distance expands. However �� �� � � �
and�� �� � � � are strictly less than�� �� � � � so we get a contradiction to the choice of� � �.

We now construct the path of length� � �. For all  � � � � we set�� 
 !�
to get a relation on� � �

variables. Note that� 
 �! �    �!� !�	 �. Take � 
 � � . Along the path� the variable is flipped before

so the variables����

take one of three values�!�!� � �!�!� � �!� �!� �. So we add a 2-clause
���

that requires����
to

take one of these values and take� 
 � �� �� ���
. Clearly, every assignment along the path lies in� . We claim

that these are the only solutions. To show this, take an arbitrary assignment� satisfying the added constraints.
If for some � 
 � � we have#� 
 !�

but #� 
 �!�
, this would violate

���
. Hence the first� variables of� are

of the form�! �    �!�!�	 �    !� for � �  � � . If #�	 � 
 �!�	 � then� 
 �
�
. If #�	 � 
 !�	 � then� 
 �

�
% ��	 �.

By property 4 above, such a vector satisfies
�

if and only if  
 � or  
 � , which correspond to� 
 � and
� 
 � respectively.

Step 3 Faithfully expressing paths of length�.

Let � denote the set of all ternary relations whose graph is a path of length� between two assignments at Ham-
ming distance�. Up to permutations of coordinates, there are 6 such relations. Each of them is the conjunction
of a �-clause and a�-clause. For instance, the relation� 
 ���� � ��� � � �� � � �� � �� �� can be written as of
�� � $ �� $ �� � � ��� � $ ��� �. (It is named so, because its graph looks like the letter ’M’ on the cube.) These
relations are “minimal” examples of relations that are not componentwise bijunctive. By projecting out interme-
diate variables from the path� obtained in Step 2, we faithfully express one of the relations in� . We faithfully
express other relations in� using this relation.

We will write all relations in� in terms of� �� � � �� � � � � 
 �� � $ �� $ �� �� ��� � $ ��� �, by negating variables.
For example� ��� � � � � � �� � 
 ��� � $ �� $ �� � � �� � $ ��� � 
 ���� � � �� � ��� � ��� � �� ��.

Define the relation� �� � � � �	 � � � � � 
 ���    � � � �� � �    � � �	 ��. The table below listing all tuples in�
and their witnesses, shows that the conditions for faithfulexpressibility are satisfied, and� � � .

� � � � � � � �	 � �� �    � � �
! �!�!�	 � !�    !�
! �!� �!�	 � !�    !�
�! �!� �!�	 � !�    !�
�! � �!� �!�	 � !�    !� � �!�!�    !� � �!� �!�!	    !�    �!� �!�    �!�
�! � �!�!�	 � �!� �!�    �!�
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Let � �� � � � � � �� � 
 � ��� � �� � �� �, where�
�

is one of��� � ��� �. We can now use� and 2-clauses to express
every other relation in� . Given � ��� � �� � �� � every relation in� can be obtained by negating some subset
of the variables. Hence it suffices to show that we can expressfaithfully � ���� � �� � �� � and� ��� � ��� � �� � (� is
symmetric in� � and��). In the following let� denote one of the literals�� � �� �, such that it is�� if and only if ��
is �� �.

� ���� � �� � �� � 
 ���� $ �� $ �� � � ��� $ ��� �

 �� ���� $ �� � � �� $ �� $ �� � � ��� $ ��� �

 �� ���� $ �� � � �� $ �� $ �� � � ��� $ ��� � � ��� $ ��� �

 �� ���� $ �� � � ��� $ ��� � � � �� � �� � �� �

 �� ���� $ �� � � ��� $ ��� � � � �� � � � � �� �

For the next expression let� denote one of the literals�� � �� �, such that it is negated if and only if�� is ��� .
� ��� � ��� � �� � 
 ��� $ ��� $ �� � � ���� $ ��� �


 �� ��� $ �� $ � � � ��� $ ��� � � ���� $ ��� �

 �� ��� $ ��� � � � ��� � � � �� �

 �� ��� $ ��� � � � �� � � � � �� �

The above expressions are both based on resolution and it is easy to check that they satisfy the properties of
faithful expressibility.

Step 4 Faithfully expressing�� .
We faithfully express�� � $ �� $ �� � from � using a formula derived from a gadget in [11]. This gadget
expresses�� � $ �� $ �� � in terms of “Protected OR”, which corresponds to our relation � .

�� � $ �� $ �� � 
 �� �    �	 �� � $ �� �� � ��� $ ��� � � ��� $ ��� � � ��� $ ��� �
�� �� � � �	 � �� � � � ��� � ��	 � �� � (1)

The table below shows that the conditions for faithful expressibility are satisfied.

� � � � � � �� � �    �	
��� ��� �� �� ��� �� ��� �� ��� � ���� � ��� � � ��� � ���� � ����� ����� ��� �� ��� ��
��� � ��� � ���� � ����� �����
��� �����
�� � ��� �� �� ��� �� ��� �� ��� ����� ��� �� ��� ��
�� � ��� �� �� ��� �� ��� �� ���
� �� ��� �� �� ��� �� ��� �� ��� � ���� � ��� � � ��� �
� �� � ��� �

From the relation�� � $ �� $ �� � we derive the other 3-clauses by reverse resolution, for instance

��� � $ �� $ �� � 
 �� ��� � $ �� � � �� $ �� $ �� �
�

To complete the proof of the Faithful Expressibility Theorem, we show that an arbitrary relation can be
expressed faithfully from�� .
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Lemma 7 Let � � �� � ��� be any relation of arity� � �. � is faithfully expressible from�� .
PROOF: If � � � then� can be expressed as a formula in CNF��� � with constants, without introducing witness
variables. This kind of expression is always faithful.

If � � � then� can be expressed as a formula in CNF��� �, without witnesses (i.e. faithfully). We will show
that every�-clause can be expressed faithfully from��� �. Then, by induction, it can be expressed faithfully
from �� . For simplicity we express a�-clause corresponding to the relation

� �
. The remaining relations are

expressed equivalently. We express
� �

in a way that is standard in other complexity reductions, andturns out to
be faithful:

�� � $ �� $ � � � $ �� � 
 �� �� � $ �� $ � � � ��� $ �� $ � � � $ �� � 
This is the reverse operation of resolution. For any satisfying assignment for	, its witness space is either���,
��� or �� � ��, so in all cases it is connected. Furthermore, the only way two neighboring satisfying assignments
for � can have no common witness is if one of them has witness set���, and the other one has witness set���.
This implies that the first one has��� �    � � � � 
 �� �    � � �, and the other one has�� � � �� � 
 �� � � �, thus they
differ in the assignments of at least two variables: one from�� � � �� � and one from��� �    � � � �. In that case
they cannot be neighboring assignments. Therefore all requirements of faithful expressibility are satisfied.�

4.3 Hardness Results for�-CNF formulas

Lemma 6, together with Corollary 3 allows us to focus on�-CNF formulas to prove the hard side of our
dichotomies. We show that�-CNF formulas can have exponential diameter, by inductively constructing a path
of length at least� �� on � variables and then identifying it with the solution space ofa �-CNF formula with
� �� � � clauses. By Lemma 6 and Corollary 3, this implies the diameter dichotomy (Theorem 5).

Lemma 8 For � even, there is a�-CNF formula�� with � variables and� �� � � clauses, such that� ��� � is a
path of length greater than� �� .

PROOF: The construction is in two steps: we first exhibit an inducedsubgraph�� of the� dimensional hyper-
cube with large diameter. We then construct a 3-CNF formula�� so that�� 
 � ��� �.

The graph�� is a path of length� �� . We construct it using induction. For� 
 �, we take	 �� � � 

� �� � � � � �� � �� � �� � ��� which has diameter�. Assume that we have constructed���� with � ��

�� vertices, and

with distinguished vertices���� � ���� such that the shortest path from� to � in ���� has length� ��
�� . We now

describe the set	 ��� �. For each vertex� � 	 ����� �, 	 ��� � contains two vertices�� � � � � � and �� � � � ��.
Note that the subgraph induced by these vertices alone consists of two disconnected copies of���� . To connect
these two components, we add the vertex� 
 �� � � � �� (which is connected to�� � � � � � and �� � � � �� in the
induced subgraph). Note that the resulting graph�� is connected, but any path from�� � � � � � to �� � � � �� must
pass through� . Further note that by induction, the graph�� is also a path. The vertices�� 
 ����� � � � � � and
�� 
 ����� � � � �� are diametrically opposite ends of this path. The path length is at least� � � ��

�� � � � � �� .
Also �� 
 �� � � � � �� 
 ����� � � � � � � �� 
 ����� � � � �� and hence�� 
 �� �    � � � � �� 
 �� �    � � � � � ��.

We construct a sequence of 3-CNF formulas�� �� � �    � �� � so that�� 
 � ��� �. Let�� �� � � �� � 
 �� �$��.
Assume we have���� �� � �    � ���� �. We add two variables��� � and�� and the clauses

���� �� � �    � ���� � � ���� � � ��
��� � $ ��� $ ���

for  � � � � (2)

��� � $ ��� $ ��
for  
 � � � � � � � (3)

Note that a clause in 2 is just the implication����� � � �� � � ���
. Thus clauses 2, 3 enforce the condition that

��� � 
 � � �� 
 � implies that�� � �    � ���� � 
 ���� 
 �� �    � � � � � ��. �
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The proof that CONN��� � and ST-CONN��� � are PSPACE-complete is fairly intricate, and is via a direct
reduction from the computation of a polynomial-space Turing machine. The result forST-CONN can also be
proved using results of Hearne and Demaine on Non-deterministic Constraint Logic [11]. It does not appear that
completeness for CONN follows from their results.

Lemma 9 ST-CONN��� � andCONN��� � are PSPACE-complete.

PROOF: Given a CNF(��) formula � and solutions� � � we can check if they are connected in� ��� with
polynomial amount of space. Similarly for CONN(��), we can check for all pairs of assignments whether they
are satisfying and connected in� ��� with polynomial amount of space, so both problems are in PSPACE.

Next we show that CONN��� � and ST-CONN��� � are PSPACE-hard. Let� be a language decided by a
deterministic Turing machine� 
 �� � � � � � � � �� � ������	 � �
�� ��	 � in space� � for some constant�. We give a
polynomial time reduction from A toST-CONN��� � and CONN��� �.

The reduction maps a string� (with �� � 
 �) to a�-CNF formula� and two satisfying assignments for the
formula, which are connected in� ��� if and only if � accepts� . Furthermore, all satisfying assignments of�
are connected to one of these two assignments, so that� ��� is connected if and only if� accepts� .

Before we show how to construct�, we modify� in several ways:

1. We add a clock that counts from� to � �  �� �  �� �� � 
 �� �� �� ��, which is the total number of possible
distinct configurations of� . It uses a separate tape of length� �� �	 �� with the alphabet�� � ��. Before a
transition happens, control is passed on to the clock, its counter is incremented, and finally the transition
is completed.

2. We define a token accepting configuration. Whenever������	 is reached, the clock is stopped and set to
zero, the original tape is erased and the head is placed in theinitial position.

3. Whenever�
�� ��	 is reached the machine goes into its initial configuration. First � is written back on the
input tape. This step requires adding� states to the machine in order to write the� letters of� . This
increases the number of states of� � to � �� �. Next, the rest of the tape is erased, the clock is set to zero,
the head is placed in the initial position, and the state is set to ��.

4. Whenever the clock overflows, the machine goes into�
�� ��	 .
The new machine� � runs forever if� is not in� and accepts if� is in � . It also has the property that every

configuration leads either to the accepting configuration orto the initial configuration with input� . Therefore
the space of configurations is connected if and only if� � � . Let’s denote by

� � the states of� � and by� �
its transitions. As mentioned earlier,�� � � 
 � �� �, and� � runs on two tapes, one of size� 
 � � , and the
other (for the clock) of size�� 
 � �� �	 ��. The alphabet of� � on one tape is�, and on the other�� � ��. For
simplicity we can also assume that at each transition the machine uses only one of the two tapes.

Next, we construct a CNF-formula� whose solutions are the configurations of� �. However, the space of
solutions of� is disconnected.

For each � �� � and! � �, we have a variable� � � ! �. If � � � ! � 
 �, this means that the �� tape cell
contains symbol!. For every � �� � there is a variable� � � which is 1 if the head is at position . For every� � � �, there is a variable� �� � which is 1 if the current state is� . Similarly for every
 � ��� � and! � �� � ��
we have variables� � �
 � ! � and a variable� � �
 � which is 1 if the head of the clock tape is at position
 .

We enforce the following conditions:

1. Every cell contains some symbol:

� � 
 �
���� � �$��� � � � ! �� �

� � ���� �$���� ��� � � �
 � ! � 
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2. No cell contains two symbols:

� � 
 �
�� �� � �

� ��� � ��
�
� � � ! � $ � � � ! � �� �

� ����� �� � �
 � � � $ � � �
 � ��� 

3. The head is in some position, and in some state:

� � 
 �$���� � � � � � �$� � �� � � � �
 � �
�$ ��� � � �� �� 

4. The head is in a unique position, and in a unique state:

� � 
 �
� �� �� ��� � �� � � $ � � � �� �

� ��� �� ��� � �� � �
 � $ � � �
 � �� �
� �� � ��� �

�� �� � $ � �� � �� 

Solutions of� 
 � � � � � � � � � � � are in 1-1 correspondence with configurations of� �. Furthermore, the
assignments corresponding to any two distinct configurations differer in at least two variables.

Next, to connect the solution space along valid transitionsof � �, we relax conditions 2 and 4 by introducing
new transition variables, which allow the head to have two states or a cell to have two symbols at the same time.
This allows us to go from one configuration to the next.

Consider a transition� �� � ! � 
 �� � � " � � �, which operates on the first tape, for example. Fix the position of
the head of the first tape to be , and the symbol in position � � to be#. The variables that are changed by the
transition are:� � � ! �, � � �, � �� �, � � � "�, � � � ��, � �� � �. Before the transition the first three are set to 1, the
second three are set to 0, and after the transition they are all flipped. Corresponding to this transition (which is
specified by , �, !, and#) we introduce a transition variable

� � � � � ! � #�. We now relax conditions 2 and 4 as
follows:

� Replace
�
� � � ! � $ � � � "�� by

�
� � � ! � $ � � � "� $ � � � � � ! � #�� .

� Replace
�
� � � $ � � � ��� by

�
� � � $ � � � �� $ � � � � � ! � #�� .

� Replace
�� �� � $ � �� � �� by

�� �� � $ � �� � � $ � � � � � ! � #�� .

This is done for every value of� , !,  and # (and also for transitions acting on the clock tape). We add

the transition variables to the corresponding clauses so that for example the clause
�
� � � ! � $ � � � "�� could

potentially become very long, such as:
�
� � � ! � $ � � � "� $ � � � � � � ! � # � � $ � � � �� � ! � #� � $    �. However, the

total number of transition variables is only polynomial in�. We also add a constraint for every pair of transition
variables

� � � � � ! � #�, � � � � � � � ! � � # � �, saying they cannot be 1 simultaneously:�� � � � � ! � #� $ � � � � � � � ! � � # � ��. This
ensures that only one transition can be happening at any time. The effect of adding the transition variables to the
clauses of� � and� � is that by setting

� � � � � ! � #� to 1, we can simultaneously set� � � ! � and� � � "� to �, and so
on. This gives a path from the initial configuration to the final configuration as follows: Set

� � � � � ! � #� 
 �, set
� � � "� 
 �, � � � �� 
 �, � �� � � 
 �, � � � ! � 
 �, � � � 
 �, � �� � 
 �, then set

� � � � � ! � #� 
 �. Thus consecutive
configurations are now connected. To avoid connecting to other configurations, we also add an expression to
ensure that these are the only assignments the 6 variables can take when

� � � � � ! � #� 
 �:

� � �� �� �� 
 � � � � � ! � #� $ ��� � � ! � � � � � � � �� � � � � � "�� � � � � �� � � �� � �� �
������� � ������ � ������ � ������ � � ����� � �� ���� � ��� ����� 
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This expression can of course be written in conjunctive normal form.
Call the resulting CNF formula� �	 � 	 � � 
 � 
 � � � � � �. Note that� �	 � 	 � � 
 � 
 � � � � � � 
 � �	 � 	 � � 
 � 
 � � � �,

so a solution where all transition variables are� corresponds to a configuration of� �. To see that we have not
introduced any shortcut between configurations that are notvalid machine transitions, notice that in any solution
of �, at most a single transition variable can be�. Therefore none of the transitional solutions belonging to
different transitions can be adjacent. Furthermore, out ofthe solutions that have a transition variable set to 1,
only the first and the last correspond to a valid configuration. Therefore none of the intermediate solutions can
be adjacent to a solution with all transition variables set to 0.

The formula� is a CNF formula where clause size is unbounded. We use the same reduction as in the
proof of Lemma 7 to get a 3-CNF formula. By Lemma 5 and Corollary 3, ST-CONN and CONN for �� are
PSPACE-complete. �

By Lemma 6 and Corollary 3, this completes the proof of the dichotomies for CONN andST-CONN (Theo-
rems 3 and 4).

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy for CONN�� �. We have made progress towards this conjecture; what
remains is to pinpoint the complexity of CONN�� � when� is Horn or dual-Horn. We can extend our dichotomy
theorem for��-connectivity to formulas without constants; the complexity of connectivity for formulas without
constants is open. We conjecture that when� is not tight, one can improve the diameter bound from�� ��� �
to �� �� �. Finally, we believe that our techniques can shed light on other connectivity-related problems, such as
approximating the diameter and counting the number of components. For counting the number of components,
using results of Creignou and Hermann [7], we can show that the problem is in P for affine, monotone and
dual-monotone relations, and #P-complete otherwise.
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