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Abstract

Boolean satisfiability problems are an important benchrf@rijuestions about complexity, algorithms,
heuristics and threshold phenomena. Recent work on hiesriahd the satisfiability threshold has centered
around the structure and connectivity of the solution spddetivated by this work, we study structural
and connectivity-related properties of the space of smhstiof Boolean satisfiability problems and establish
various dichotomies in Schaefer’s framework.

On the structural side, we obtain dichotomies for the kindsubgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well astierdiameter of the connected components of
the solution space. On the computational side, we estathicdtotomy theorems for the complexity of the
connectivity andst-connectivity questions for the graph of solutions of Baslédormulas. Our results assert
that the intractable side of the computational dichotonseBSPACE-complete, while the tractable side -
which includes but is not limited to all problems with polyn@l time algorithms for satisfiability - is in P for
the st-connectivity question, and in coNP for the connectivitgsgtion. The diameter of components can be
exponential for the PSPACE-complete cases, whereas ithadt oases it is linear; thus, small diameter and
tractability of the connectivity problems are remarkallg@ed. The crux of our results is an expressibility
theorem showing that in the tractable cases, the subgraghesed by the solution space posses certain good
structural properties, whereas in the intractable casesubgraphs can be arbitrary.
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1 Introduction

In 1978, T.J. Schaefer [20] introduced a rich framework fpressing variants of Boolean satisfiability and
proved a remarkabldichotomy theorenthe satisfiability problem is in P for certain classes of Raa formu-
las, while it is NP-complete for all other classes in the fearark. In a single stroke, this result pinpoints the
computational complexity of all well-known variants oA§ such as3-SAT, HORN 3-SaT, NOT-ALL-EQUAL
3-SAT, and1-IN-3 SAT. Schaefer’s work paved the way for a series of investigatiestablishing dichotomies
for several aspects of satisfiability, including optimiaat[6, 8, 14], counting [7], inverse satisfiability [13],
minimal satisfiability [15],3-valued satisfiability [5] and propositional abduction.[9]

Our aim in this paper is to carry out a comprehensive exptoraif a different aspect of Boolean satisfiabil-
ity, namely, theconnectivity properties of the space of solutions of Boolamulas. The solutions (satisfying
assignments) of a givemn-variable Boolean formula induce a subgrap&(¢) of then-dimensional hypercube,
which we call the solution graph. We believe that connetgtigroperties of such graphs merit study in their own
right, as they shed light on the structure of the solutiorcep Boolean formulas. Furthermore, in recent years
the structure of the solution graph for random instancesbleas the main consideration at the basis of both
algorithms for and mathematical analysis of the satisfigtproblem [2, 18, 17, 16]. It has been conjectured for
3-SAT [17] and proved for 8-8t [19, 3], that the solution space fractures as one approahbkesitical region
from below. This apparently leads to performance deteiimreof the standard satisfiability algorithms, such
as WalkSAT [21] and DPLL [1]. It is also the main consideratlzehind the design of the survey propagation
algorithm, which has far superior performance on randorairees of satisfiability [17]. This body of work has
served as a motivation to us for pursuing the investigatmorted here. While there has been an intensive study
of the structure of the solution space of Boolean satisftghiloblems for random instances, our work seems to
be the first to explore this issue from a worst-case viewpoint

Our Results. Our work addresses the questiowhen does the solution graph of a Boolean formula have
nice structure? To answer this question, one must clarify what is meanhiog structure One can define

it in terms of graph theoretic properties of the solutionpgraWe can ask what kinds of graphs are possible
as solution graphs of a Boolean formula. One can focus orifgpstructural properties such as diameter of
each component. Alternatively, once can view the Booleamtita as an implicit description of the solution
graph, and study the computational complexity of algorithtasks such as finding if the graph is connected.
Surprisingly, we show that many of these properties, batltgiral and algorithmic, are remarkably aligned and
result in the same dichotomies.

We identify two broad classes of Boolean relatibmsth respect to the structure of the solution graphs of
Boolean formulas built using these relations, which we tighit and non-tight relations. The solution graphs
of formulas built from tight relations are characterizeddaytain structural properties. On the other hand we
find non-tightsets of relations; formulas built from such sets of rela&ioan express any solution graph. The
boundary between these two classes differs from the bouri&chaefer’'s dichotomy. Schaefer showed that
the satisfiability problem is solvable in polynomial timeepisely for formulas built from Boolean relations all
of which are bijunctive, or all of which are Horn, or all of vahi are dual Horn, or all of which are affine. The
class oftight relations properly contains the classes of bijunctive,iildual Horn, and affine relations.

The main step in the proof of Schaefer’s dichotomy theorem fissult of independent interest known as
Schaefer’s expressibility theorem. The crux of our resiglta different expressibility theorem which we call
the Faithful Expressibility TheoremAt a high level, this theorem asserts that given any Bootetation with
a solution grapltz, we can construct a formula using any non-tight set of reteti such that its solution graph
is isomorphic toG after certain adjacent vertices are merged. In additioneiacgban interesting structural
result in its own right, the Faithful Expressibility Thearegmplies that all non-tight relations have the same

1A Boolean relation can be thought of as a template for a claeSection?2 for precise definitions



computational complexity for both the connectivity and #ieconnectivity problems. It also shows that the
diameter of the solution graph of formulas obtainable set&tions are polynomially related.

As a consequence of the Faithful Expressibility Theorem staldish three dichotomy results. The first is
a dichotomy theorem for thet-connectivity problem: Given a Boolean formutaand two solutions andt
of ¢, is there a path froms to t in G(p)? We show thakt-connectivity is solvable in linear time for formulas
built from tight relations, and PSPACE-complete in all aticases. The second is a dichotomy theorem for
the connectivity problem: Given a Boolean formyhais G(y¢) connected? We show that connectivity is in
coNP for formulas built from tight relations, and PSPACHvgtete in all other cases. Finally, we establish a
structural dichotomy theorem for the diameter of the cotetecomponents of the solution space of Boolean
formulas. This result asserts that, in the PSPACE-compiages, the diameter of the connected components
can be exponential, but in all other cases it is linear.

Technical Contributions. In Schaefer’s Dichotomy Theorem, NP-hardness of sati$ifiabias a consequence
of an expressibility theorem, which asserted that everyl@uoorelation can be obtained as a projection over a
formula built from clauses from any “hard” set of relations( a set in which at least one relation is not
bijunctive, at least one is not Horn, at least one is not duahidand at least one is not affine). Schaefer’s notion
of expressibility is inadequate for our problem, so we idtrce and work with a delicate and more strict notion
of expressibility, which we callaithful expressibility Intuitively, faithful expressibility means that, in adidn

to definability via a projection, the space of withesses efdRistential quantifiers in the projection has certain
strong connectivity properties that allow us to capturegtaph structure of the relation that is being defined. It
should be noted that Schaefer's Dichotomy Theorem can @gwdved using a Galois connection and Post's
celebrated classification of the lattice of Boolean clorse® ([4]). This method, however, does not appear to
apply to connectivity, as the boundaries discovered hereawss Boolean clones. Thus, the use of faithful
expressibility or some other refined definability techniggems unavoidable.

The main technical challenge in this work is the proof of trethful Expressibility Theorem, which is
proved via a series of reductions. To prove it, we identify #implest non-tight relations: these are ternary
relations whose graph is a path of lengthetween assignments at Hamming distaicé/e show that one can
faithfully express such a path from any non-tight set oftiefes. Next, we show that these paths can faithfully
express all 3-CNF clauses, which are then easily shownttdfdidliy express any relation.

The Faithful Expressibility Theorem allows us to focus ompadific non-tight set of relations in order to
establish the hard part of our dichotomies, We show that botinectivity ands¢-connectivity are hard for
3-CNF formulas; this is proved by a reduction from a gene8&®RCE computation. Similarly, we show that
formulas built from non-tight relations can have large déen by explicitly constructing a 3-CNF formula on
n variables whose diameter is exponentiahin

Our upper bounds for tight sets of relations are proved ustingtural properties that characterize the solu-
tion graphs. For tight sets of relation, we show that evempponent has a uniqgue minimum element, or every
component has a unique maximum element, or the Hamminghdistzoincides with the shortest-path distance
in the relation. These properties are inherited by evemnida built from a tight set of relations, and yield both
small diameter and linear algorithms f@rconnectivity.

An intriguing byproduct of our work is that we have identifiacdbroad class of NP-complete satisfiability
problems - those built from tight relations - that have siengiructural properties, such as linear diameter. It
would be interesting to investigate if these propertiesemakidom instances built from tight relations easier for
WalkSAT and similar heuristics, and if so, whether such Istios are amenable to rigorous analysis.

Organization of this Paper. In Section 2 we introduce the main concepts precisely, axtd sur results. We
prove the two sides of the dichotomy in Sections 3 and 4 reispéc Finally, we will discuss a few open
guestions and conjectures in Section 5. An extended absfrtts paper appears in ICALP’06 [10].



2 Basic Concepts and Statements of Results

A logical relation R is a non-empty subset df), 1}*, for somek > 1; k is thearity of R. LetS be a finite

set of logical relations. A CNE)-formulaover a set of variable¥ = {z1,...,z,} is a finite conjunction
C1 N -+ A Cy, of clauses built using relations fro®, variables fromV/, and the constanand1; this means
that eachC’; is an expression of the forR(&,,. .., &), whereR € S is a relation of arityk, and eaclg; is a

variable inV or one of the constant 1.

The satisfiability problemSAT (S) associated with a finite sét of logical relations asks: given a CN)-
formula ¢, is it satisfiable? All well known restrictions of Booleartis&ability, such as3-SAT, NOT-ALL-
EQUAL 3-SAT, and POSITIVE 1-IN-3 SAT, can be cast asA$(S) problems, for a suitable choice 6t For
instance, BSITIVE 1-IN-3SAT is SAT({R;/3}), whereR, ;3 = {100,010,001}. Schaefer [20] identified the
complexity ofeverysatisfiability problem &7(S). To state Schaefer’s main result, we need to define some basic
concepts.

Definition 1 Let R be a logical relation.
1. R is bijunctiveif it is the set of solutions of a 2-CNF formula.

2. RisHornifitis the set of solutions of a Horn formula, where a Hormfara is a CNF formula such that
each conjunct has at most one positive literal.

3. R is dual Hornif it is the set of solutions of a dual Horn formula, where alddarn formula is a
CNF formula such that each conjunct has at most one negétval |

4. Ris affineif it is the set of solutions of a system of linear equationer@s.

Each of these types of logical relations can be charactkiizéerms ofclosureproperties [20]. A relation
R is bijunctive if and only if it is closed under thmajority operation (ifa,b,c € R, thenmaj(a,b,c) € R,
wheremaj(a, b, ¢) is the vector whoséth bit is the majority ofa;, b;, ¢;). A relation R is Horn if and only if it
is closed undev (if a,b € R, thena Vv b € R, where,a V b is the vector whosé-th bit isa; V b;). Similarly,
R is dual Horn if and only if it is closed undey. Finally, R is affine if and only if it is closed under ® b & c.

Definition 2 A setS of logical relations isSchaefeiif at least one of the following holds:
1. Every relation inS is bijunctive.
2. Every relation inS is Horn.
3. Every relation inS is dual Horn.
4

. Every relation inS is affine.

Theorem 1 (Schaefer’s Dichotomy Theorem [20})S is Schaefer, theSAT(S) is in P; otherwise,SAT(S) is
NP-complete.

Note that the closure properties of Schaefer sets yield & @ldporithm for determining, given a finite s&t
of relations, whether & (S) is in P or NP-complete (the input size is the sum of the sizeslafions inS).

Here, we are interested in the connectivity properties®tface of solutions of CNE)-formulas. Ify is a
CNF(S)-formula withn variables, therd?(¢) denotes the subgraph of thedimensional hypercube induced by
the solutions ofp. Thus, the vertices aff(y) are the solutions ap, and there is an edge between two solutions
of G(¢) precisely when they differ in a single variable.

We consider the following two algorithmic problems for C\H-formulas.
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1. Theconnectivityproblem @NN(S): given a CNKS)-formula, is G(¢) connected?

2. Thest-connectivityproblemsTCoONN(S): given a CNKS)-formula¢ and two solutions andt of ¢, is
there a path frons to t in G(¢)?

To pinpoint the computational complexity 8f-CONN(S) and GONN(S), we need to introduce certain new
types of relations.

Definition 3 Let R C {0, 1}* be a logical relation.
1. R is componentwise bijunctivieevery connected component 6{ R) is bijunctive.

2. R is ORAreeif the relationOR = {01,10,11} cannot be obtained fronk by settingk — 2 of the
coordinates of? to a constant € {0,1}¥~2. In other words,R is OR-free if(z; V z2) is not definable
from R by fixing k£ — 2 variables.

3. R is NAND-freeif (z1 V Z2) is not definable fronR by fixing k£ — 2 variables.
The next lemma follows from the closure properties of bijiugg Horn, and dual Horn relations.

Lemma 1 Let R be a logical relation.
1. If Ris bijunctive, thenR is componentwise bijunctive.
2. If Ris Horn, thenR is OR-free.
3. If Ris dual Horn, thenR is NAND-free.

4. If R is affine, therR is componentwise bijunctiv@R-free, andNAND-free.

These containments are proper. For instaife; = {100, 010,001} is componentwise bijunctive, but not
bijunctive asmaj(100,010,001) = 000 ¢ R 3.
We are now ready to introduce the key concept tfat set of relations.

Definition 4 A setS of logical relations igight if at least one of the following three conditions holds:
1. Every relation inS is componentwise bijunctive;
2. Every relation inS is OR-free;
3. Every relation inS is NAND-free.

In view of Lemma 1, ifS is Schaefer, then it is tight. The converse, however, doelaid. It is also easy to
see that there is a polynomial-time algorithm for testingethler a given finite sef of logical relations is tight.

The main step in the proof of Schaefer's dichotomy theoremnssult known as Schaefer’s expressibility
theorem. Similarly, the crux of our results is the followithgecorem which we will call the Faithful Expressibility
Theorem. At a high level, this theorem asserts that for angléam relation with a solution graph, we can
construct a formula using any non-tight set of relationghstinat its solution graph is isomorphic € after
certain adjacent vertices are merged. See section 4 focasemefinition of faithful expressibility.

Theorem 2 (Faithful Expressibility Theoreml.et S be a set of relations that is not tight. Every relation is
faithfully expressible frons.



Using the Faithful Expressibility Theorem, we obtain ditdmy theorems for the computational complexity
of CONN(S) andsT-CONN(S).

Theorem 3 Let S be a finite set of logical relations. 8 is tight, thenCONN(S) is in coNP, otherwise, it is
PSPACEcomplete.

Theorem 4 Let S be a finite set of logical relations. I is tight, thensT-ConN(S) is in P, otherwise,sT
CONN(S) is PSPACEcomplete.

We also show that if is tight, but not Schaefer, thendBIN(S) is coNP-complete.

The dichotomy in the computational complexity ob8N(S) andsT-CONN(S) is accompanied by a parallel
structural dichotomy in the size of the diametelfy) (where, for a CNES)-formulay, thediameter ofG(y)
is the maximum of the diameters of the component& @§)).

Theorem 5 Let S be a finite set of logical relations. I§ is tight, then for everyCNF(S)-formula ¢, the
diameter ofG(y) is linear in the number of variables gf; otherwise, there ar€ NF(S)-formulasy such that
the diameter o7 (y) is exponential in the number of variablesaf

Our results and their comparison to Schaefer’'s Dichotormgofem are summarized in the table below.

S SAT(S) ST-CONN(S) CONN(S) Diameter
Schaefer P P coNP O(n)
Tight, non-Schaefer NP-complete| P coNP-complete O(n)
Non-tight NP-complete| PSPACE-complete PSPACE-complete 294vn)

As an example, the s&t= { R, 3}, whereR, ;3 = {100, 010,001}, is tight, but not Schaefer. It follows that
SAT(S) is NP-complete (recall that this problem i®®ITIVE 1-IN-3 SAT), ST-CONN(S) is in P, and ©NN(S)
is coNP-complete. Consider also theSet { Rxag}, whereRnar = {0,1}2\{000, 111}. This set s not tight,
hence 871(S) is NP-complete (this problem isd3ITIVE NOT-ALL-EQUAL 3-SAT), while bothsT-CONN(S)
and QNN(S) are PSPACE-complete.

We conjecture that i§ is Schaefer, then @IN(S) is in P. If this conjecture is true, it will follow that the
complexity of QNN(S) exhibits atrichotomy if S is Schaefer, then GNN(S) is in P; if S is tight, but not
Schaefer, then GNN(S) is coNP-complete; i is not tight, then ©NN(S) is PSPACE-complete.

3 The Easy Case of the Dichotomy: Tight Sets of Relations

In this section, we explore some structural properties Herdolution graphs of tight sets of relations. These
properties provide simple algorithms folo@N(S) andsT-CONN(S) for tight setsS, and also guarantee that
for such sets, the diameter 61 ) of CNF(S)-formulay is linear.

We will usea, b, ... to denote Boolean vectors, amdandy to denote vectors of variables. We writg
to denote the Hamming weight (numberlds) of a Boolean vectoa. Given two Boolean vectors andb, we
write |a — b| to denote the Hamming distance betweeandb. Finally, if a andb are solutions of a Boolean
formulay and lie in the same componentGfy), then we writed,, (a, b) to denote the shortest-path distance
betweera andb in G(yp).



3.1 Componentwise Bijunctive Sets of Relations

Lemma 2 LetS be a set of componentwise bijunctive relations anal CNF(S)-formula. Ifa andb are two
solutions ofy that lie in the same component@{y), thend,(a,b) = |a — b|.

PrROOF. Consider first the special case in which every relatiod iis bijunctive. In this casep is equivalent
to a 2-CNF formula and so the space of solutiongd$ closed under majority. We show that there is a path
in G(¢) from a to b, such that along the path only the assignments on variabisindices from the set
D = {i: a; # b;} change. This implies that the shortest path is of lengthby induction onD|. Consider any
patha — u! — --- = u* — b in G(p). We construct another path by replaciagby vi = maj (a, ul,b)
fori = 1,...,r, and removing repetitions. This is a path because foriarlyandvi*! differ in at most one
variable. Furthermorey! agrees witha andb for everyi for which a; = b;. Therefore, along this path only
variables inD are flipped.

For the general case, we show that every compofeot G(y) is the solution space of a 2-CNF formula
¢'. Let F be the component af(y) which containsa andb. Let R € S be a relation with two components,
Ry, Ry each of which are bijunctive. Consider a clausepiof the form R(x1, ..., zx). The projection ofF’
ontozy, ...,z is itself connected and must satigy Hence it lies within one of the two componerits, Rs,
assume it isR;. We replaceR(z1,...,zx) by Ri(z1,...,zx). Call this new formulap;. G(¢1) consists of
all components of7(¢) whose projection om, ...,z lies in R;. We repeat this for every clause. Finally we
are left with a formulay’ over a set of bijunctive relations. Henggis bijunctive andZ(¢') is a component of
G(y). So the claim follows from the bijunctive case. O

Corollary 1 LetS be a set of componentwise bijunctive relations. Then
1. For everyp € CNF(S) with n variables, the diameter of each componen&éf) is bounded by..
2. STCONN(S) isinP.
3. CONN(S) isin coNP.

PrROOFE The bound on diameter is an immediate consequence of Lemma 2

The following algorithm solvesT-CONN(S) given verticess, t € G(y). Start withu = s. At each step,
find a variabler; so thatu; # t; and flip it, until we reach. If at any stage no such variable exists, then declare
thats andt are not connected. If theandt are disconnected, the algorithm is bound to fail. So assinate t
they are connected. Correctness is proved by inductiah-erjs — t|. Itis clear that the algorithm works when
d = 1. Assume that the algorithm works fdr— 1. If s and¢ are connected and are distantapart, Lemma 2
implies there is a path of lengthbetween them it7(y). In particular, the algorithm will find a variabte; to
flip. The resulting assignment is at distante 1 from t, so now we proceed by induction.

Next we prove that ONN(S) € coNP. A short certificate that the graph is not connected &iragb assign-
mentss andt which are solutions from different components. To verifgttthey are disconnected it suffices to
run the algorithm fosT-CoONN. O

3.2 OR-free and NAND-free Sets of Relations

We consider sets of OR-free relations. Sets of NAND-freatiahs are handled dually. Define tbeordinate-
wise partial order< on Boolean vectors as followa: < b if a; < b;, for each.

Lemma 3 LetS be a set ofOR-free relations andp a CNF(S)-formula. Every component ¢#(¢) contains
a minimum solution with respect to the coordinate-wise praeoreover, every solution is connected to the
minimum solution in the same component via a monotone path.
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PROOFE. We call a satisfying assignment locally minimal, if it has meighboring satisfying assignments that
are smaller than it. We will show that there is exactly onehsagsignment in each componeni(éfy).

Suppose there are two distinct locally minimal assignmargadu’ in some component & (). Consider
the path between them where the maximum Hamming weight @rasgnts on the path is minimized. If there
are many such paths, pick one where the smallest numberighasnts have the maximum Hamming weight.
Denote this path by = u! — u? — --- — u* = u’. Letu! be an assignment of largest Hamming weight in
the path. Them! # u andu' # u’, sinceu andu’ are locally minimal. The assignmeni$~! anduit* differ
in exactly 2 variables, say, i andzs. So{u} tu}y !, wiud, wittuit'} = {01,11,10}. Letd be such that
Gy = Gie = 0, andd; = u; for i > 2. If @ is a solution, then the path! — u? - --- > u! - @ — u't! —

-+ — u® contradicts the way we chose the original path. Therefdie,not a solution. This means that there is
a clause that is violated by it, but is satisfiedddy !, u!, andu'*!. So the relation corresponding to that clause
is not OR-free, which is a contradiction.

The unique locally minimal solution in a component is its imiom solution, because starting from any
other assignment in the component, it is possible to keepngde neighbors that are smaller, and the only time
it becomes impossible to find such a neighbor is when thellon@himal solution is reached. Therefore, there
is a monotone path from any satisfying assignment to thermimi in that component. O

Corollary 2 LetS be a set oDR-free relations. Then
1. For everyp € CNF(S) with n variables, the diameter of each componen&ép) is bounded bygn.
2. ST-CONN(S) isinP.
3. CONN(S) isin coNP.

PROOF. Given solutionss andt in the same component é#(y), there is a monotone path from each to the
minimal solutionu in the component. This gives a path fr@no t of length at mos2n. To check ifs andt are
connected, we just check that the minimal assignments egaitbms andt are the same. O

3.3 The Complexity of CONN(S) for Tight Sets of Relations

We can further specify the complexity ofdBiN(S) for the tight cases which are not Schaefer, using a result of
Juban [12].

Lemma 4 For S tight, but not Schaefe€oNN(S) is coNP-complete.

PROOF. The problem ANOTHER-SAT(S) is: given a formulap in CNF(S) and a solutiors, does there exist a
solutiont # s? Juban ([12], Theorem 2) shows thasifis not Schaefer, then MOTHER-SAT is NP-complete.
He also shows ([12], Corollary 1) thatsfis not Schaefer, then the relatien# y is expressible frons through
substitutions.

SinceS is not Schaefer, AOTHER-SAT(S) is NP-complete. Lep, s be an instance of AOTHER-SAT on
variableszy, . . ., z,. We define a CNES) formulay onzy, ..., 25,91, .. ,yn @S

w(xla"' yTny Y1y - - - 1yn) = (P('/Ela' .. axn) Ni (xl ?é yZ)
It is easy to see tha¥(¢) is connected if and only ¥ is the unique solution te. O

Further we can show thatdN(S) is in P if S is affine or bijunctive. Thus the only tight cases for which
CONN(S) is not known to be coNP-complete or in P are Horn and dual-Héfaconjecture that these problems
are in P.



111 1110

011 110 0110 1100
001 010 100 00110 01010 01001 10001 0011 0100 1000
(a) (b) (©

Figure 1: Expressing the relatidm; V x5 V x3) using NOT-ALL-EQUAL relations.

(@) The graph ofzy V 23 V z3);

(b) The graph of a faithful expressiop(x, y1,y2) = RNAE(T1,T2,91) A RNaE(Z2, 23, Y2) A RNAE(Y1, Y2, 1).
(c) The graph of an unfaithful expressiop({x,y1) = Rxar(z1,Z2,%1) A Rnar(P1,23,0) A Rnar(y1, 22, 1).
In both case$z; V z2 V z3) = Jy ¢(x,y), but only in the first case the connectivity is preserved.

4 The Hard Case of the Dichotomy: Non-Tight Sets of Relations

We will show that all non-tight sets of relations lead to ol graphs that have identical properties in a natural
sense that is captured in the notion of faithful expressibiVe define this notion in Section 4.1, and prove the
Faithful Expressibility Theorem in Section 4.2. This therarimplies that the complexity of the connectivity
guestions for all such sets is the same, and the possiblecthamf components of the solution graph is also
related polynomially. In section 4.3 we will prove that forCNF formulas the connectivity questions are
PSPACE-complete, and the diameter can be exponential. fattigogether with the Faithful Expressibility
Theorem implies the hard side of all of our dichotomy results

4.1 Faithful Expressibility

In his dichotomy theorem, Schaefer [20] used the followintjon of expressibility: a relatioi® is expressible
from a setS of relations if there is a CNE)-formula ¢ so thatR(x) = Jy ¢(x,y). This notion, is not
sufficient for our purposes. Instead, we introduce a morieatel notion, which we caflaithful expressibility
Intuitively, we view the relatiorR as a subgraph of the hypercube, rather than just a subseat@uice that this
graph structure be also captured by the formula

Definition 5 A relation R is faithfully expressiblérom a set of relations§ if there is aCNF(S)-formulay such
that the following condition hold:

1. R={a: Jy ¢(a,y)};
2. For everya € R, the graphG(p(a,y)) is connected,

3. Fora,b € R with |a — b| = 1, there existsw such that(a, w) and (b, w) are solutions ofp.

Fora € R, thewitnessef a are they’s such thatp(a,y) is true. The last two conditions say that the
witnesses oh € R are connected, and that neighborimg € R have a common witness. This allows us to
simulate an edgéa, b) in G(R) by a path inG(y), and thus relate the connectivity properties of the satutio
spaces. There is however, a price to pay: it is much hardesrteeaip with formulas that faithfully express a



relation R. An example is whei® is the set of all paths of lengthin {0,1}?, a set that plays a crucial role in
our proof. While 3-3T relations are easily expressible frafrin Schaefer’s sense, the C$)-formulas that
faithfully express 3-8t relations are fairly complicated and have a large witneasep

An example of the difference between a faithful and an unfaitexpression is shown in Figure 4.1.

Lemma5 LetS and S’ be sets of relations such that evelye S’ is faithfully expressible fron$. Given a
CNF(S8")-formula(x), one can efficiently construct@NF(S)-formulap(x, y) such that:

1. 9(x) =3Iy o(x,y);

2. if (s,w®), (t,w®) € ¢ are connected i (y) by a path of lengthi, then there is a path from to t in
G(v) of length at most;

3. If s,t € 1 are connected ir7(+)), then for every witnese® of s, and every witnessrt of t, there is a
path from(s, w*®) to (t, w*) in G(yp).

PROOF. Suppose) is a formula om: variables that consists ef clausesCs, ..., Cy,. For clauseC;, assume
that the set of variables I§; C [n], and that it involves relatioR; € S. Thus,y(x) is ATL; R;(xy;). Lety; be
the faithful expression foR; from &', so thatR;(xv;) = Jy; ¢;(xv;,y;). Lety be the vectoly,...,ym)
and letp(x,y) be the formula\", o, (xv;, y;). Theny(x) = Ty o(x,y).

Statemen(2) follows from (1) by projection of the path on the coordinatesxof For statemen(3), con-
siders,t € 4 that are connected i@ (z) via a paths = u® - u' — --- — u* = t. For everyu!, u'*?,
and clauseC;, there exists an assignment; to y; such that both(u'y;, w';) and (u™y,, w';) are solu-
tions of ¢;, by condition(2) of faithful expressibility. Thugu!, w') and (u'*!, wi) are both solutions op,
wherew! = (wli,...wl,). Further, for everyu!, the space of solutions gf(ul,y) is the product space

of the solutions of,aj(uiv;,yj) overj = 1,...,m. Since these are all connected by condit{8h of faith-
ful expressibility, G(¢(u',y)) is connected. The following describes a path fresyw®) to (t, wt) in G(y):
(s, wS) ~ (s,w9) = (ul,w?) ~ (ul,w!l) = -+ ~ (W Lw' 1) = (t,wr 1) ~ (t,wt). Here~
indicates a path i6 (¢(ul, y)). O

Corollary 3 Supposes andS’ are sets of relations such that evelRye S’ is faithfully expressible frons.

1. There are polynomial time reductions froBONN(S’) to CONN(S), and from ST-CONN(S’) to ST
CONN(S).

2. Given aCNF(S')-formulat)(x) with m clauses, one can efficiently construdE&lF(S)-formulap(x, y)
such that the length of is O(m) and the diameter of the solution space does not decrease.
4.2 The Faithful Expressibility Theorem

In this subsection, we prove the Faithful Expressibilityedlem. The main step in the proof is Lemma 6 which
shows that ifS is not tight, then we can faithfully express the 3-clausati@hs from the relations i, If

k > 2, then ak-clauseis a disjunction of variables or negated variables. oK i < k, let D; be the set of all
satisfying truth assignments of tleclause whose firstliterals are negated, and I8 = {Dy, D1, ..., Dg}.
Thus, CNKSy) is the collection of-CNF formulas.

Lemma 6 If setS of relations is not tightSs is faithfully expressible fror§.

10



010 010

110 011 110 011
a Ny Uunw b 100 101 001 100 100
U Ryap(x1, 9, x3) Ryap(x1, x9, 23) A (Z1V Z9)

Figure 2: Proof of Step 1 of Lemma 6, and an example.

PROOF. First, observe that al-clauses are faithfully expressible frafh There existsR € S which is not
OR-free, so we can expreés; V x2) by substituting constants iR. Similarly, we can expres&; V z2) using a
relation that is not NAND-free. The last 2-claugg V z2) can be obtained from OR and NAND by a technique
that corresponds to reverse resolutidm; V z2) = 3y (z1 V y) A (¥ V Z2). It is easy to see that this gives a
faithful expression. From here onwards we assumeditantains all 2-clauses. The proof now proceeds in four
steps. First, we will express a relation in which there eiigt elements that are at graph distance larger than
their Hamming distance. Second, we will express a relatia is just a single path between such elements.
Third, we will express a relation which is a path of length #lmen elements at Hamming distance 2. Finally,
we will express the 3-clauses.

Step 1 Faithfully expressing a relation in which some distanceaexis.

For a relationR, we say that the distance betwesrandb expandsif a andb are connected id67(R), but
dr(a,b) > |a — b|. By Lemma 2 no distance expands in componentwise bijuncélations. This property
also holds for the relatioyar = {0,1}® \ {000, 111}, which is not componentwise bijunctive. However,
we show that ifR is not componentwise bijunctive, then, by addiiglauses, we can faithfully express a
relation@ in which some distance expands. For instance, wRea Ryag, then we can také)(z1, o, 3) =
Rnag(z1, T2, 23) A (21 V Z3). The distance between = 100 andb = 001 in Q expands. Similarly, in the
general construction, we identityandb on a cycle, and ad#-clauses that eliminate all the vertices along the
shorter arc betweesm andb.

SinceS is not tight, it contains a relatioR which is not componentwise bijunctive. & containsa, b where
the distance between them expands, we are done. So assufioe #ilaa, b € G(R), dr(a,b) = |a—b|. Since
R is not componentwise bijunctive, there exists a triple sfgramentsa, b, ¢ lying in the same component such
thatmaj(a, b, ¢) is notin that component (which also easily implies itis maR). Choose the triple such that the
sum of pairwise distancek;(a, b) + dg (b, c) + dg(c,a) is minimized. Let/ = {i|a; # b;}, V = {i|b; # ¢},
andW = {i|c; # a;}. Sincedr(a,b) = |a — b|, a shortest path does not flip variables outsid& pand each
variable inU is flipped exactly once. The same holds ¥orandW. We note some useful properties of the sets
UVv,w.

1. Every index € U UV U W occurs in exactly two d, V, W.
Consider going by a shortest path frento b to ¢ and back ta. Every: € U UV U W is seen an even
number of times along this path since we returatdt is seen at least once, and at most thrice, so in fact
it occurs twice.

11



2. Every pairwise intersectiot/ NV, V NW andW N U is non-empty.
Suppose the sel$ andV are disjoint. From Property 1, we must ha¥# = U U V. But then it is easy
to see thainaj(a, b, c) = b which is in R. This contradicts the choice af b, c.

3. The setd/ NV andU N W partition the sel/.
By Propertyl, each index o/ occurs in one o¥” andW as well. Also since no index occurs in all three
setsU, V, W this is in fact a disjoint partition.

4. For each index € U N W, it holds thata @ e; ¢ R.
Assume for the sake of contradiction thét= a & e; € R. Since: € U N W we have simultaneously
moved closer to botb andc. Hence we havég(a’,b) + dr(b,c) + dr(c,a’) < dr(a,b) +dr(b,c)+
dr(c,a). Alsomaj(a’,b,c) = maj(a, b, c) ¢ R. But this contradicts our choice af b, c.

Property 4 implies that the shortest pathdbtandc diverge ata, since for any shortest path tothe first
variable flipped is fronV N V whereas for a shortest pathdat is from W N V. Similar statements hold for
the vertices andc. Thus along the shortest path fraarto b the first bit flipped is from/ N V' and the last
bit flipped is fromU N W. On the other hand, if we go fromto ¢ and then tdb, all the bits fromU N W are
flipped before the bits frorty N V. We use this crucially to defin@. We will add a set of 2-clauses that enforce
the following rule on paths starting at Flip variables fromU N W before variables fron&/ N V. This will
eliminate all shortest paths fromto b since they begin by flipping a variable #hn V and end withU N W.
The paths froma to b via ¢ survive since they flig/ N W while going froma to ¢ andU NV while going from
c to b. However all remaining paths have length at Idast b| + 2 since they flip twice some variables not in
U.

Take all pairs of indice§(i,j)|[i € UNW,j € UNV}. The following conditions hold from the definition
of U,V,W: a; = & = b; anda; = c; = b;. Add the 2-claus&;; asserting that the pair of variablesr; must
take values ir{aiaj, CiCj,bibj} = {aiaj,&iaj,&i&j}. The new relation i) = R Nij C,] Note thatQ) C R.
We verify that the distance betwearandb in () expands. It is easy to see that for gng U, the assignment
a®e; € Q. Hence there are no shortest paths left froto b. On the other hand, it is easy to see thaindb
are still connected, since the vertess still reachable from both.

Step 2 Isolating a pair of assignments whose distance expands.

The relation@ obtained in Step 1 may have several disconnected compon&hts cleanupstep isolates a
single pair of assignments whose distance expands. By @ddifauses, we show that one can express a path
of lengthr + 2 between assignments at distamce

Takea,b € @ whose distance expands ¢h anddg(a,b) is minimized. LetU = {i : a; # b;}, and
|U| = r. Shortest paths betwearandb have certain useful properties:

1. Each shortest path flips every variable frdimexactly once.
Observe that each indegxe U is flipped an odd number of times along any path frano b. Suppose
it is flipped thrice along a shortest path. Startinga@nd going along this path, I&f be the assignment
reached after flipping twice. Then the distance betweamndb’ expands, sincg is flipped twice along
a shortest path between them@n Also dg(a, b’) < dg(a, b), contradicting the choice af andb.

2. Every shortest path flips exactly one variablg U.
Since the distance betwearandb expands, every shortest path must flip some variakld/. Suppose
it flips more than one such variable. Sinrc@andb agree on these variables, each of them is flipped an
even number of times. Létbe the first variable to be flipped twice. Lkt be the assignment reached
after flippingi the second time. It is easy to verify that the distance batvacendb’ also expands, but
dQ(a, b') < dQ(a, b).
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3. The variable; ¢ U is the first and last variable to be flipped along the patAssume the first variable
flipped is noti. Let a’ be the assignment reached along the path before weé ffip first time. Then
dg(a’,b) < dg(a,b). The distance betweert andb expands since the shortest path between them flips
the variableg twice. This contradicts the choice afandb. Assume;j € U is flipped twice. Then as
before we get a paw’, b’ that contradict the choice af, b.

Every shortest path betwearandb has the following structure: first a variablez U is flipped toa;, then
the variables front/ are flipped in some order,finally the variablis flipped back ta,;.

Different shortest paths may vary in the choice gf U in the first step and in the order in which the variables
from U are flipped. Fix one such pafh C Q. Assume that/ = {1, ..., r} and the variables are flipped in this
order, and the additional variable flipped twice ig- 1. Denote the path by — u® — u! — --- = u* — b.
Next we prove that we cannot flip thet 1** variable at an intermediate vertex along the path.

4 Forl < j <r—1the assignmenid @ e, 1 € Q.
Suppose that for somg we havec = w @ e, 1 € Q. Thenc differs froma on {1,...,i} and fromb
on{i+1,...,r}. The distance frone to at least one ch or b must expand, else we get a path fram
to b throughe of length|a — b| which contradicts the fact that this distance expands. Wewg;(a, c)
anddg(b, c) are strictly less thadg(a, b) so we get a contradiction to the choiceagb.

We now construct the path of lengthi 2. For alli > r + 2 we setz; = a; to get a relation omr + 1
variables. Note thab = a;...a,a,.1. Takei < j € U. Along the pathl’ the variable; is flipped beforej
so the variables;xz; take one of three valuggi;a;, a;a;, a;a;}. So we add a 2-claugg;; that requiresc;z; to
take one of these values and take= Q A; ; C;;. Clearly, every assignment along the path lie§'inWe claim
that these are the only solutions. To show this, take anrarpiassignment satisfying the added constraints.
If for somei < j < r we havec; = a; butc; = a;, this would violateC;;;. Hence the first: variables ofc are
of the formay ... a;a;41...a, for0 <i <r.If ¢,11 = @, 1 thenc =u’. If ¢, 1 = a1 thenc = u’ @ e, 1.
By property 4 above, such a vector satisfigsf and only ifi = 0 or i = r, which correspond te = a and
c = b respectively.

Step 3 Faithfully expressing paths of length

Let P denote the set of all ternary relations whose graph is a gd#mgth4 between two assignments at Ham-
ming distance. Up to permutations of coordinates, there are 6 such rektiBach of them is the conjunction
of a 3-clause and &-clause. For instance, the relatidd = {100, 110,010,011,001} can be written as of
(z1 V2 V x3) A (Z1 V Z3). (Itis named so, because its graph looks like the letter 'M'tloe cube.) These
relations are “minimal” examples of relations that are ramhponentwise bijunctive. By projecting out interme-
diate variables from the paffi obtained in Step 2, we faithfully express one of the relatiorP. We faithfully
express other relations # using this relation.

We will write all relations inP in terms of M (z1, z9, z3) = (z1 V2 Vx3) A(Z1VZ3), by negating variables.
For exampleM (Z1, z2, z3) = (Z1 V 22 V z3) A (21 V Z3) = {000, 010,110,111,101}.

Define the relationP(z1, z,11,%2) = 3z3... 2, T(x1,...,2-+1). The table below listing all tuples i
and their witnesses, shows that the conditions for faitekgressibility are satisfied, ade € P.

L15L2, Ty41 | L3y---,Tp
a1a20r41 az...ap
a1020yr41 as...ap
a1a20r4+1 as...a,
a1020yr41 as...ag, 304 ...0r, 030405 ...0r ...0304 ...0r
a1020r41 asay - - - Qp
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Let P(z1,x9,z3) = M(l1,12,13), wherel; is one of{z;,z;}. We can now usé and 2-clauses to express
every other relation inP. Given M (ly,1s,13) every relation inP can be obtained by negating some subset
of the variables. Hence it suffices to show that we can exgeatsgully M (I1,12,13) and M (I1,12,13) (M is
symmetric inz; andzs). In the following letA denote one of the literaly, 3}, such that it igj if and only if i,

iS Z1.

M(l1,l0,13) = (LhViaViz)A (1 VI3)
= (VI AAVI2VIZ) A (L V)
= Fy L VIAAVIVEB)AILVI)AAVI)
= Jy (L VA) AL VIZ)AM(NI,Il3)
Jy (1L VA) A (11 VI3) APy, z2,23)

For the next expression latdenote one of the literalgy, 7}, such that it is negated if and onlyif is z5.

M(ly,l0,13) = (1 VigViz) Al Vi)
= Ty VIZVIAAVI) AL VI3)
= Fy (AVi) AM(, N\ 13)
= Jy (AVi)AP(z1,y,z3)

The above expressions are both based on resolution andasyste check that they satisfy the properties of
faithful expressibility.

Step 4 Faithfully expressingss.

We faithfully express(z; V z2 V z3) from M using a formula derived from a gadget in [11]. This gadget
expresses$zr; V o V x3) in terms of “Protected OR”, which corresponds to our relafid.

(:L‘l\/:L‘Q\/.’Eg) = Jyi1...y5 (.’Elvgl)/\(xgvgg)A($3V§3)A(.’E3V@74)

AM (y1,ys5,y3) A M (y2,Ys,ys)

The table below shows that the conditions for faithful esgikility are satisfied.

Z1,22,23 | Y1.--Ys
111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relatior{z; V z2 V z3) we derive the other 3-clauses by reverse resolution, foamce

(5)1V$2VI3):Hy(.’flvg)/\(yvajgv.’ﬂg)

(1)

O

To complete the proof of the Faithful Expressibility Theorewe show that an arbitrary relation can be
expressed faithfully fron®s.
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Lemma 7 LetR C {0,1}* be any relation of arityt > 1. R is faithfully expressible fronss.

PROOF If k < 3 thenR can be expressed as a formula in Qi§¥) with constants, without introducing witness
variables. This kind of expression is always faithful.

If £ > 4 thenR can be expressed as a formula in QF), without witnesses (i.e. faithfully). We will show
that everyk-clause can be expressed faithfully fra8p_,. Then, by induction, it can be expressed faithfully
from S3. For simplicity we express A-clause corresponding to the relatiély. The remaining relations are
expressed equivalently. We exprd3gin a way that is standard in other complexity reductions, tanas out to
be faithful:

(x1VaaV---Vag) =Fy (@ Ve VYY) A(GV a3 V.- V).

This is the reverse operation of resolution. For any satigiassignment foxk, its withess space is eithéd},
{1} or {0, 1}, so in all cases itis connected. Furthermore, the only wayrteighboring satisfying assignments
for z can have no common witness is if one of them has witnesfi§etand the other one has witness §&}.
This implies that the first one hdss, ..., zx) = (0,...,0), and the other one hds, z3) = (0,0), thus they
differ in the assignments of at least two variables: one ffam z2} and one from{zs, ..., zx}. In that case
they cannot be neighboring assignments. Therefore alinergents of faithful expressibility are satisfied[d

4.3 Hardness Results fo3-CNF formulas

Lemma 6, together with Corollary 3 allows us to focus 3CNF formulas to prove the hard side of our
dichotomies. We show th@tCNF formulas can have exponential diameter, by indugtieehstructing a path
of length at leas2? on n variables and then identifying it with the solution spaceadtCNF formula with
O(n?) clauses. By Lemma 6 and Corollary 3, this implies the diamgitshotomy (Theorem 5).

Lemma 8 For n even, there is 8&-CNF formulay,, with n variables andO(n?) clauses, such tha®(ip,,) is a
path of length greater than?.

PROOFE The construction is in two steps: we first exhibit an indusatdgraph,, of then dimensional hyper-
cube with large diameter. We then construct a 3-CNF formul@o thatG,, = G(pn).

The graphG,, is a path of lengtl2Z. We construct it using induction. Far = 2, we takeV (Gs) =
{(0,0),(0,1),(1,1)} which has diamete2. Assume that we have constructég_, with 2" vertices, and
with distinguished vertices, s, t,_2 such that the shortest path franto t in G,,_5 has IengtmnT_Z. We now
describe the se' (G,,). For each vertex € V(G,—2), V(Gy,) contains two verticegv,0,0) and(v,1,1).
Note that the subgraph induced by these vertices alonestemditwo disconnected copies@f, . To connect
these two components, we add the vertax= (t,0,1) (which is connected tdt,0,0) and (t,1,1) in the
induced subgraph). Note that the resulting gréghis connected, but any path frofa, 0, 0) to (v, 1,1) must
pass throughm. Further note that by induction, the gra@tj is also a path. The verticeg = (s,—2,0,0) and
tn = (sn—2,1,1) are diametrically opposite ends of this path. The path leigat lease - 2"3° +2 > 25,
Alsosg = (0,0), sp = (Sn-2,0,0), t, = (sn_2,1,1) and hence, = (0,...,0),t, = (0,...,0,1,1).

We construct a sequence of 3-CNF formulggz1, . . ., ) so thatG, = G(¢y,). Letya(z1,x2) = Z1Vze.

Assume we have,, o(z1,...,z,_2). We add two variables,,_; andz,, and the clauses
(Pan(xla .- 7‘/E'n72)a Tp-1 N\ Ty
Tp 1V ZTpVZ; fori<n-—4 (2
Tp-1V Iy Vx; fori=n—-3,n—2 3)

Note that a clause in 2 is just the implicati¢m, 1 A z,) — Z;. Thus clauses 2, 3 enforce the condition that
Tp_1 =0z, =1 |mpI|es that($1, e ,.Z'n_g) =th_2= (0, ...,0,1, 1). O
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The proof that ©NN(S3) and sT-CONN(S3) are PSPACE-complete is fairly intricate, and is via a direct
reduction from the computation of a polynomial-space Tgirimachine. The result fasT-CONN can also be
proved using results of Hearne and Demaine on Non-detestitit@onstraint Logic [11]. It does not appear that
completeness for GNN follows from their results.

Lemma 9 sT-CONN(S3) and CONN(S3) are PSPACEcomplete.

PROOF Given a CNF§3) formula ¢ and solutionss, t we can check if they are connected Gf{y) with
polynomial amount of space. Similarly foraBiN(S3), we can check for all pairs of assignments whether they
are satisfying and connected @) with polynomial amount of space, so both problems are in RERA

Next we show that ONN(S3) and ST-CONN(S3) are PSPACE-hard. Led be a language decided by a
deterministic Turing machind/ = (Q, 3, T, 8, qo, Gaccept, dreject) iN SPacen” for some constart. We give a
polynomial time reduction from A teT-CONN(S3) and GONN(S3).

The reduction maps a string (with |w| = n) to a3-CNF formulay and two satisfying assignments for the
formula, which are connected @&(y) if and only if M acceptsw. Furthermore, all satisfying assignments.of
are connected to one of these two assignments, s@-thigtis connected if and only iM acceptaw.

Before we show how to construgt we modify M in several ways:

1. We add a clock that counts frobrto n* x |Q| x |1‘|”'“ — 20**) which is the total number of possible
distinct configurations oM. It uses a separate tape of lengttw**1) with the alphabef0, 1}. Before a
transition happens, control is passed on to the clock, iisiten is incremented, and finally the transition
is completed.

2. We define a token accepting configuration. Wheneygt,: is reached, the clock is stopped and set to
zero, the original tape is erased and the head is placed initla position.

3. Wheneveiect is reached the machine goes into its initial configuratioinstky is written back on the
input tape. This step requires addingstates to the machine in order to write thdetters ofw. This
increases the number of statesMf to O(n). Next, the rest of the tape is erased, the clock is set to zero,
the head is placed in the initial position, and the statetisosg.

4. Whenever the clock overflows, the machine goesgnt@:.

The new machind/’ runs forever ifw is not in A and accepts ifv is in A. It also has the property that every
configuration leads either to the accepting configuratiotodhe initial configuration with inputv. Therefore
the space of configurations is connected if and only iE A. Let's denote byQ' the states of\/’ and by’
its transitions. As mentioned earlie)’| = O(n), and M’ runs on two tapes, one of siZé = n*, and the
other (for the clock) of siz&V, = O(n**1). The alphabet o’ on one tape i¥', and on the othef0, 1}. For
simplicity we can also assume that at each transition thénmaaises only one of the two tapes.

Next, we construct a CNF-formuka whose solutions are the configurationsiéf. However, the space of
solutions ofy is disconnected.

For eachi € [N] anda € T, we have a variable(i,a). If z(i,a) = 1, this means that th&" tape cell
contains symbok. For every; € [N] there is a variable(i) which is 1 if the head is at position For every
q € @', there is a variable(q) which is 1 if the current state iz Similarly for everyj € [N.] anda € {0,1}
we have variables.(j, a) and a variabley.(j) which is 1 if the head of the clock tape is at positipn

We enforce the following conditions:

1. Every cell contains some symbol:

P = /\ (Vaer z(i,a)) /\ (vaE{O,l} xc(j,a)).

i€[N] JE[Ne]
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2. No cell contains two symbols:

= AN (EavEED) A (GO vEGD).

[N]a#a’ €l JE[N]

3. The head is in some position, and in some state:
s = (Vierwy ¥@0) N\ (Ve () )\ Veeq 2(9) -

4. The head is in a unique position, and in a unique state:

pi= N (@Ove®) A (wlve@) A (d@ve).

i#i' €[N] Jj#3 €[Nc] q£q €Q’

Solutions ofy) = 11 A1hs A1P3 A1p4 are in 1-1 correspondence with configurationgbf Furthermore, the
assignments corresponding to any two distinct configunatifferer in at least two variables.

Next, to connect the solution space along valid transit@n®’, we relax conditions 2 and 4 by introducing
new transition variables, which allow the head to have twtestor a cell to have two symbols at the same time.
This allows us to go from one configuration to the next.

Consider a transitiod(q,a) = (¢’, b, R), which operates on the first tape, for example. Fix the positif
the head of the first tape to bgand the symbol in positioh+ 1 to bec. The variables that are changed by the
transition are:z(i,a), y(i), 2(q), z(i,b), y(i + 1), 2(¢'). Before the transition the first three are set to 1, the
second three are set to 0, and after the transition they ldigped. Corresponding to this transition (which is
specified byi, ¢, a, andc) we introduce a transition variabtéi, ¢, a,c¢). We now relax conditions 2 and 4 as
follows:

o Replace(w(i,a) Vz(i,b ) by (x i,a) V z(i,b) V t(z’,q,a,c)).

. Replace(y(z') Vit 1)) by (y(i) VyG+1)Vi6,q,a, c)) .

o Replace<z(q) V z(q’)) by (z(q) Vz(q') vV t(i,q,a,c)).

This is done for every value af, a, i andc (and also for transitions acting on the clock tape). We add
the transition variables to the corresponding clauses abftih example the clausém(z',a) V z(i, b)) could

potentially become very long, such a(az(z',a) V z(i,b) Vt(i,q1,a,¢1) V t(i,q2,a,c2) V ... ) However, the
total number of transition variables is only polynomiakinWe also add a constraint for every pair of transition
variablest(s, ¢,a, ¢), t(i',¢',d’, ¢'), saying they cannot be 1 simultaneoudli(i, g, a,c) V t(i, ¢',a’,')). This
ensures that only one transition can be happening at any Tieeffect of adding the transition variables to the
clauses of), andy is that by setting(z, ¢, a, ¢) to 1, we can simultaneously sefi, a) andz(i,b) to 1, and so
on. This gives a path from the initial configuration to the fficenfiguration as follows: Sef{i, ¢,a,c) = 1, set
z(1,0) = 1,y(i+1) =1, 2(¢') = 1,z(i,a) = 0,y(z) =0, z(q) = 0, then set(i, g, a, c) = 0. Thus consecutive
configurations are now connected. To avoid connecting teratbnfigurations, we also add an expression to
ensure that these are the only assignments the 6 variabi¢akeawhert(i, ¢, a,c) = 1:

Yigae = t(i,¢,a,¢)V ((z(i,a),y(0), 2(q), (i), y(i +1),2(q)) €
{111000,111100,111110,111111,011111, 001111, 000111}).
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This expression can of course be written in conjunctive r@bfiorm.

Call the resulting CNF formule(x, xc,y, ¥y, 2z,t). Note thatp(x,xc,y,¥c,2,0) = ¥(X,Xc,¥,¥e, 2),
so0 a solution where all transition variables @reorresponds to a configuration df’. To see that we have not
introduced any shortcut between configurations that argaiimt machine transitions, notice that in any solution
of ¢, at most a single transition variable can heTherefore none of the transitional solutions belonging to
different transitions can be adjacent. Furthermore, oubefsolutions that have a transition variable set to 1,
only the first and the last correspond to a valid configuratiimerefore none of the intermediate solutions can
be adjacent to a solution with all transition variables edl.t

The formulay is a CNF formula where clause size is unbounded. We use the szdnction as in the
proof of Lemma 7 to get a 3-CNF formula. By Lemma 5 and CorglayrsT-CoNN and GONN for Ss are
PSPACE-complete. O

By Lemma 6 and Corollary 3, this completes the proof of théadiomies for @NN andsT-CoNN (Theo-
rems 3 and 4).

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy foo@N(S). We have made progress towards this conjecture; what
remains is to pinpoint the complexity ofd®iN(S) whenS is Horn or dual-Horn. We can extend our dichotomy
theorem forst-connectivity to formulas without constants; the compexif connectivity for formulas without
constants is open. We conjecture that wiseis not tight, one can improve the diameter bound fr2v™)

to 2°") . Finally, we believe that our techniques can shed light trelotonnectivity-related problems, such as
approximating the diameter and counting the number of carapts. For counting the number of components,
using results of Creignou and Hermann [7], we can show thepthblem is in P for affine, monotone and
dual-monotone relations, and #P-complete otherwise.
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