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Abstract

Boolean satisfiability problems are an important benchnfiarkjuestions about complexity, algo-
rithms, heuristics and threshold phenomena. Recent wohearistics, and the satisfiability threshold
has centered around the structure and connectivity of thei@o space. Motivated by this work, we
study structural and connectivity-related propertieshaf $pace of solutions of Boolean satisfiability
problems and establish various dichotomies in Schaeferadwork.

On the structural side, we obtain dichotomies for the kifdsibgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well asHerdiameter of the connected components
of the solution space. On the computational side, we estaldichotomy theorems for the complexity
of the connectivity andt-connectivity questions for the graph of solutions of Baoldormulas. Our
results assert that the intractable side of the computtitinhotomies is PSPACE-complete, while the
tractable side - which includes but is not limited to all peghs with polynomial time algorithms for
satisfiability - is in P for thest-connectivity question, and in coNP for the connectivityegtion. The
diameter of components can be exponential for the PSPAQEpIate cases, whereas in all other cases
it is linear; thus, small diameter and tractability of thennectivity problems are remarkably aligned.
The crux of our results is an expressibility theorem shoviimag in the tractable cases, the subgraphs
induced by the solution space possess certain good staliptoperties, whereas in the intractable cases,
the subgraphs can be arbitrary.

1 Introduction

In 1978, T.J. Schaefer [22] introduced a rich framework fqrressing variants of Boolean satisfiability and
proved a remarkabldichotomy theoremthe satisfiability problem is in P for certain classes of Ran
formulas, while it is NP-complete for all other classes ie framework. In a single stroke, this result
pinpoints the computational complexity of all well-knowariants of 3T, such as3-SAT, HORN 3-SaT,
NOT-ALL-EQUAL 3-SAT, and1-IN-3 SAT. Schaefer's work paved the way for a series of investigation
establishing dichotomies for several aspects of satiifighincluding optimization [68,_14], countin@[7],
inverse satisfiability[I113], minimal satisfiability [1L5};valued satisfiability[|56] and propositional abduction
Q.
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Our aim in this paper is to carry out a comprehensive exptorabf a different aspect of Boolean
satisfiability, namely, th&onnectivity properties of the space of solutions of Booléamulas. The so-
lutions (satisfying assignments) of a givervariable Boolean formula induce a subgraplii(p) of the
n-dimensional hypercube. Thus, the following two decisioolylems, called theonnectivity problenand
the st-connectivity problemarise naturally: (i) Given a Boolean formulg is G(y) connected? (ii) Given
a Boolean formulg and two solutions andt of ¢, is there a path fromto t in G(¢)?

We believe that connectivity properties of Boolean satidifig merit study in their own right, as they
shed light on the structure of the solution space of Booleamtdilas. Moreover, in recent years the structure
of the space of solutions for random instances has been tinecorasideration at the basis of both algorithms
for and mathematical analysis of the satisfiability probl@y21,[20,18]. It has been conjectured for 3-
SAT [20] and proved for 8-8t [[L9,[3], that the solution space fractures as one approdbestical region
from below. This apparently leads to performance deteiimmaof the standard satisfiability algorithms,
such as WalkSAT([Z23] and DPLIL]1]. It is also the main considien behind the design of the survey
propagation algorithm, which has far superior performamteandom instances of satisfiability [20]. This
body of work has served as a motivation to us for pursuingrtestigation reported here. While there has
been an intensive study of the structure of the solutionespa@oolean satisfiability problems for random
instances, our work seems to be the first to explore this issoea worst-case viewpoint.

Our first main result is a dichotomy theorem for #tteconnectivity problem. This result reveals that the
tractable side is much more generous than the tractablef@idmtisfiability, while the intractable side is
PSPACE-complete. Specifically, Schaefer showed that ttiefiahility problem is solvable in polynomial
time precisely for formulas built from Boolean relationkadliwhich are bijunctive, or all of which are Horn,
or all of which are dual Horn, or all of which are affine. We itlgnnew classes of Boolean relations, called
tight relations, that properly contain the classes of bijun¢tidern, dual Horn, and affine relations. We
show thatst-connectivity is solvable in linear time for formulas buifom tight relations, and PSPACE-
complete in all other cases. Our second main result is a iohotheorem for the connectivity problem: it
is in coNP for formulas built from tight relations, and PSHAComplete in all other cases.

In addition to these two complexity-theoretic dichotomiege establish a structural dichotomy theorem
for the diameter of the connected components of the solgtiace of Boolean formulas. This result asserts
that, in the PSPACE-complete cases, the diameter of theectauhcomponents can be exponential, but in all
other cases it is linear. Thus, small diameter and tradtgloil the st-connectivity problem are remarkably
aligned.

To establish these results, the main challenge is to shawfdhaon-tight relations, both the connec-
tivity problem and thest-connectivity problem are PSPACE-hard. In Schaefer's Biocmy Theorem, NP-
hardness of satisfiability was a consequence abammessibilitytheorem, which asserted that every Boolean
relation can be obtained as a projection over a formula aith clauses in the “hard” relations. Schae-
fer's notion of expressibility is inadequate for our prablelnstead, we introduce and work with a delicate
and stricter notion of expressibility, which we c#ithful expressibility Intuitively, faithful expressibility
means that, in addition to definability via a projection, pace of witnesses of the existential quantifiers
in the projection has certain strong connectivity projgsrthat allow us to capture the graph structure of the
relation that is being defined. It should be noted that SerseDichotomy Theorem can also be proved
using a Galois connection and Post’s celebrated classificat the lattice of Boolean clones (séé [4]). This
method, however, does not appear to apply to connectivitgha boundaries discovered here cut across
Boolean clones. Thus, the use of faithful expressibilitytsame other refined definability technique seems
unavoidable.

The first step towards proving PSPACE-completeness is 1w #fai both connectivity and st-connectivity



are hard for 3-CNF formulae; this is proved by a reductiommfra generic PSPACE computation. Next,
we identify the simplest relations that are not tight: these ternary relations whose graph is a path of
length 4 between assignments at Hamming distaBcéMe show that these paths can faithfully express
all 3-CNF clauses. The crux of our hardness result igxpressibilitytheorem to the effect that one can
faithfully express such a path from any set of relations Wiiscnot tight.

Finally, we show that aliight relations have “good” structural properties. Specifigatiya tight relation
every component has a unigue minimum element, or every coemidias a unique maximum element,
or the Hamming distance coincides with the shortest-pagtadtce in the relation. These properties are
inherited by every formula built from tight relations, anéid both small diameter and linear algorithms for
st-connectivity.

Our original hope was that tractability results for conidigt could conceivably inform heuristic al-
gorithms for satisfiability and enhance their effectivenesn this context, our findings aggrima facie
negative: we show that when satisfiability is intractabdentconnectivity is also intractable. But our results
do contain a glimmer of hope: there are broad classes ottatrke satisfiability problems, those built from
tight relations, with polynomiatt-connectivity and small diameter. It would be interestiagrivestigate if
these properties make random instances built from tightiozls easier for WalkSAT and similar heuristics,
and if so, whether such heuristics are amenable to rigonoalysis.

An extended abstract of this paper appears in ICALF’06 [10].

2 Basic Concepts and Statements of Results

A CNF formula is a Boolean formula of the for@4 A - - - A C,,, where eaclt; is a clause, i.e., a disjunction
of literals. If k is a positive integer, then/aCNF formula is a CNF formul&; A --- A C,, in which each
clauseC; is a disjunction of at most literals.

A logical relation R is a non-empty subset df), 1}*, for somek > 1; k is thearity of R. LetS be
a finite set of logical relations. A CNE)-formula over a set of variable¥ = {x;,...,z,} is a finite
conjunctionC; A --- A (), of clauses built using relations fro, variables froml/, and the constant
and 1; this means that eaadfi; is an expression of the forR(¢y, ..., &), whereR € S is a relation of
arity k, and eaclg; is a variable inV or one of the constant 1. A solutionof a CNKS)-formula ¢ is
an assignment¢ = (aq,...,a,) of Boolean values to the variables that makes every claugetnfe. A
CNF(S)-formula issatisfiableif it has at least one solution.

The satisfiability problemSAT(S) associated with a finite se§ of logical relations asks: given a
CNF(S)-formula ¢, is it satisfiable? All well known restrictions of Booleantiséability, such as3-
SAT, NOT-ALL-EQUAL 3-SAT, and ROSITIVE 1-IN-3 SAT, can be cast asA$(S) problems, for a suit-
able choice ofS. For instance, lefzy = {0,1}?\{000}, Ry = {0,1}3\{100}, Ry = {0,1}3\{110},
Rz = {0,1}3\{111}. Then3-SAT is the problem &T({ Ry, R1, Ra, R3}). Similarly, POSITIVE 1-IN-3SAT
is SAT({Ry/3}), whereR, ;3 = {100, 010,001}.

Schaefer([22] identified the complexity efierysatisfiability problem &1(S), whereS ranges over all
finite sets of logical relations. To state Schaefer’'s masuitewe need to define some basic concepts.

Definition 1. Let R be a logical relation.
1. Risbijunctiveif it is the set of solutions of a &NF formula.

2. RisHornifitis the set of solutions of a Horn formula, where a Hornrfarla is aCNF formula such
that each conjunct has at most one positive literal.



3. R is dual Hornif it is the set of solutions of a dual Horn formula, where a bbarn formula is a
CNF formula such that each conjunct has at most one negativeallite

4. Risaffineif it is the set of solutions of a system of linear equatiorer &s.

Each of these types of logical relations can be characteiizéerms ofclosure properties [[2R]. A
relation R is bijunctive if and only if it is closed under thraajority operation; this means thatdaf b, c € R,
thenmaj(a, b, c) € R, wheremaj(a, b, c) is the vector whoséth bit is the majority ofs;, b;, ¢;. A relation
R is Horn if and only if it is closed undev; this means that if,b € R, thenaV b € R, where,a VvV b is
the vector whoseé-th bitisa; \V b;. Similarly, R is dual Horn if and only if it is closed undey. Finally, R is
affine if and only if it is closed undex © b @ c¢. Thus there is a polynomial-time algorithm (in fact, a cubic
algorithm) to test if a relation is Schaefer.

Definition 2. A setS of logical relations isSchaefeif at least one of the following conditions holds:
1. Every relation inS is bijunctive.
2. Every relation inS is Horn.
3. Every relation inS is dual Horn.
4. Every relation inS is affine.

Theorem 1. (Schaefer's Dichotomy Theorem [22]¥t S be a finite set of logical relations. 8 is Schaefer,
thenSAT(S) is in P; otherwise,SAT(S) is NP-complete.

Theorentll is called a dichotomy theorem because Lafner fi6§town that i # NP, then there are
problems in NP that are neither in P, nor NP-complete. Thhepfenil asserts that neSS) problem is a
problem of the kind discovered by Ladner. Note that the afergtioned characterization of Schaefer sets in
terms of closure properties yields a cubic algorithm foed®ining, given a finite sef of logical relations,
whether 37(S) is in P or is NP-complete (here, the input size is the sum o$ibes of the relations if).

The more difficult part of the proof of Schafer’s Dichotomyeldnem is to show that & is not Schaefer,
then Sx7(S) is NP-complete. This is a consequence of a powerful resoltitathe expressibility of logical
relations. We say that a relatiaR is expressible frona setS of relations if there is a CNE)-formula

¢(x,y) such thatk = {a[Jy ¢(a,y)}.

Theorem 2. (Schaefer's Expressibility Theorem [22]t S be a finite set of logical relations. 8 is not
Schaefer, then every logical relation is expressible f&m

In this paper, we are interested in the connectivity praperdf the space of solutions of CN§)-
formulas. If ¢ is a CNKS)-formula with » variables, then theolution graphG(y) of ¢ denotes the
subgraph of the:-dimensional hypercube induced by the solutiongpofThis means that the vertices of
G () are the solutions op, and there is an edge between two solution& p) precisely when they differ
in exactly one variable.

We consider the following two algorithmic problems for CNH-formulas.

Problem 1. The Connectivity Problen€CONN(S):
Given a CNKS)-formulay, is G(¢) connected?

Problem 2. Thest-Connectivity ProblersT-CONN(S):
Given a CNKS)-formulay and two solutions andt of ¢, is there a path fromto t in G(¢)?
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To pinpoint the computational complexity ofd®IN(S) andsT-CONN(S), we need to introduce certain
new types of relations.

Definition 3. Let R C {0, 1}* be a logical relation.

1. Ris componentwise bijunctivé every connected component of the graphR) is a bijunctive rela-
tion.

2. R is OR-freeif the relationOR = {01,10, 11} cannot be obtained fron® by settingk — 2 of the
coordinates of? to a constant € {0, 1}*~2. In other words R is OR-free if (21 V1) is not definable
from R by fixingk — 2 variables.

3. Ris NAND-freeif the relationNAND = {00, 01, 10} cannot be obtained from® by settingk — 2 of
the coordinates oR to a constant € {0, 1}¥~2. In other words,R is NAND-free is(z; V #5) is not
definable fromR by fixingk — 2 variables.

We are now ready to introduce the key concept tiflat set of relations.
Definition 4. A setS of logical relations igtight if at least one of the following three conditions holds:
1. Every relation inS is componentwise bijunctive;
2. Every relation inS is OR-free;
3. Every relation inS is NAND-free.

In Sectior#, we show that# is Schaefer, then it is tight. Moreover, we show that the ecs®w does not
hold. It is also easy to see that there is a polynomial-tingerithm (in fact, a cubic algorithm) for testing
whether a given relation is tight.

Just as Schaefer’s dichotomy theorem follows from an exsjiygity statement, our dichotomy theorems
are derived from the following theorem, which we will caletRaithful Expressibility Theorem. The precise
definition of the concept ofaithful expressibilityis given in Sectiol3. Intuitively, this concept strength-
ens the concept of expressibility with the requirement thatspace of the witnesses to the existentially
guantified variables has certain strong connectivity priigse

Theorem 3. (Faithful Expressibility TheoremletS be a finite set of logical relations. 8§ is not tight,
then every logical relation is faithfully expressible fran

Using the Faithful Expressibility Theorem, we obtain thidi@ing dichotomy theorems for the compu-
tational complexity of ©NN(S) andsT-CONN(S).

Theorem 4. Let S be a finite set of logical relations. 8 is tight, thenCONN(S) is in coNP, otherwise, it
is PSPACEcomplete.

Theorem 5. Let S be a finite set of logical relations. 8 is tight, thensT-ConN(S) is in P; otherwise,
ST-CONN(S) is PSPACEcomplete.

We also show that if is tight, but not Schaefer, thendBIN(S) is coNP-complete.

To illustrate these results, consider the Set= {R,/3}, where R, ;3 = {100,010,001}. This set is
tight (actually, it is componentwise bijunctive), but nath@aefer. It follows that 8r(S) is NP-complete
(recall that this problem is®sITIVE 1-IN-3 SAT), ST-CONN(S) is in P, and ©NN(S) is coNP-complete.
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Consider also the s& = {Rxag}, Where Rxag = {0,132\ {000,111}. This set is not tight, hence
SAT(S) is NP-complete (this problem isd3ITIVE NOT-ALL-EQUAL 3-SaT), while both ST-CONN(S)
and GONN(S) are PSPACE-complete.

The dichotomy in the computational complexity 0b8N(S) and ST-CONN(S) is accompanied by a
parallel structural dichotomy in the size of the diameteidgfy) (where, for a CNFES)-formula ¢, the
diameter ofG(¢p) is the maximum of the diameters of the component& @f)).

Theorem 6. Let S be a finite set of logical relations. 8 is tight, then for evenCNF(S)-formula ¢, the
diameter ofG() is linear in the number of variables ¢f; otherwise, there ar€NF(S)-formulasy such
that the diameter of7(¢) is exponential in the number of variablesaf

Our results and their comparison to Schaefer’s Dichotomgofém are summarized in the table below.

S SAT(S) ST-CONN(S) CONN(S) Diameter
Schaefer P P coNP O(n)
Tight, non-Schaefer NP-compl.| P coNP-compl. O(n)
Non-tight NP-compl.| PSPACE-compl| PSPACE-compl] 2%(v/7)

We conjecture that the complexity ofdBiN(S) exhibits atrichotomy that is, for every finite se§ of
logical relations, one of the following holds:

1. CONN(S)isin P;
2. CONN(S) is coNP-complete;
3. CONN(S) is PSPACE-complete.

As mentioned above, we will show thatSfis tight but not Schaefer, thend®IN(S) is coNP-complete.
We will also show that ifS is bijunctive or affine, then GNN(S) is in P. Hence, to settle the above con-
jecture, it remains to pinpoint the complexity ofo®@N(S) wheneverS is Horn and wheneve§ is dual
Horn. In the conference version]10] of the present paperfuntber conjectured that i§ is Horn or dual
Horn, then @NN(S) is in P. In other words, we conjectured thatSifis Schaefer, then @NN(S) is in P.
This second conjecture, however, was subsequently disgroy Makino, Tanaka and Yamamatol[17], who
discovered a particular Horn s8tsuch that ©NN(S) is coNP-complete. Here, we go beyond the results
obtained in the conference version of the present paperderdify additional conditions on a Horn set
S implying that @NN(S) is in P. These new results suggest a natural dichotomy w8hklmefer sets of
relations and, thus, provide evidence for the trichotomyjecture.

The remainder of this paper is organized as follows. In 8af3i, we prove the Faithful Expressibility
Theorem, establish the hard side of the dichotomies forKXS) and forsT-CONN(S), and contrast our
result to Schaefer’'s Expressibility and Dichotomy Theaern Sectior ¥, we describe the easy side of
the dichotomy - the polynomial-time algorithms and the dntal properties for tight sets of relations. In
addition, we obtain partial results towards the trichotaogpjecture for ©NN(S).

3 The Hard Case of the Dichotomy: Non-Tight Sets of Relations

In this section, we address tlhard side of the dichotomy, where we deal with the more computatlpg
intractable cases. As with other dichotomy theorems, thado the harder part of our proof. We define
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the notion of faithful expressibility in Sectidn_8.1 and peahe Faithful Expressibility Theorem in Section
B2. This theorem implies that for all non-tight sétsand S’, the connectivity problems @IN(S) and
CoNN(S’) are polynomial-time equivalent; moreover, the same haids for the connectivity problems
ST-CONN(S) and sT-CoNN(S’). In addition, the diameters of the solution graphs of G8Fformulas
and CNKS’)-formulas are also related polynomially. In Sectionl 3.3, weve that for 3-CNF formulas
the connectivity problems are PSPACE-complete, and theetier can be exponential. This fact combined
with the Faithful Expressibility Theorem yields the hardesof all of our dichotomy results, as well as the
exponential size of the diameter.

We will usea, b, ... to denote Boolean vectors, ardandy to denote vectors of variables. We write
|a| to denote the Hamming weight (numberlds) of a Boolean vectoa. Given two Boolean vectors and
b, we write |a — b| to denote the Hamming distance betweeandb. Finally, if a andb are solutions
of a Boolean formulay and lie in the same component 6f¢), then we writed,(a, b) to denote the
shortest-path distance betwegandb in G(yp).

3.1 Faithful Expressibility

As we mentioned in the previous section, in his dichotomptém, Schaefel [22] used the following notion
of expressibility: a relatiorR is expressible froma setS of relations if there is a CNE)-formula ¢ so
that R = {a| Jy ¢(a,y)}. This notion, is not sufficient for our purposes. Instead,imteoduce a more
delicate notion, which we calhithful expressibility Intuitively, we view the relatiorR as a subgraph of the
hypercube, rather than just a subset, and require thatréghgtructure be also captured by the formpla

Definition 5. A relation R is faithfully expressibldrom a set of relations if there is aCNF(S)-formulay
such that the following conditions hold:

1. R={alJy p(a,y)};
2. For everya € R, the graphG(p(a,y)) is connected,
3. Fora,b € R with |a — b| = 1, there existsw such that(a, w) and (b, w) are solutions ofp.

Fora € R, thewitnesse®f a are they’s such thatp(a, y) is true. The last two conditions say that the
witnesses oh € R are connected, and that neighboriagb € R have a common witness. This allows
us to simulate an edge, b) in G(R) by a path inG(y), and thus relate the connectivity properties of the
solution spaces. There is however, a price to pay: it is maectidr to come up with formulas that faithfully
express a relatio®. An example is wheis is the set of all paths of lengthin {0,1}3, a set that plays
a crucial role in our proof. While 3-& relations are easily expressible frafhin Schaefer’s sense, the
CNF(S)-formulas that faithfully express 343 relations are fairly complicated and have a large witness
space.

An example of the difference between a faithful and an unffiaitexpression is shown in FigureB.1.

Lemma 1. LetS and S’ be sets of relations such that evaRye S’ is faithfully expressible frons. Given
a CNF(S’)-formula(x), one can efficiently construct@NF(S)-formulay(x,y) such that:

1. (x) =Ty o(x,y);

2. if (s,w®), (t,w®) € ¢ are connected it () by a path of lengthl, then there is a path fromto t in
G(v) of length at most;
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011 110
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(a)
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(b) (c)

Figure 1: Expressing the relatigm; V x5 V 23) using NOT-ALL-EQUAL relations.

(a) Graph of(x1 V x2 V z3);

(b) Graph of a faithful expressiorqa(x, Y1, yg) = RNAE (1‘1, X9, yl) A RNAE(.%'Q, xs, yg) A RNAE(yl, Y2, 1).
(c) Graph of an unfaithful expressiop(x, y1) = Rnar(z1, z2,y1) A RNAE(U1, 3,0) A RNag(Y1, 22, 1).
In both case$z; V x2 V 23) = Jy ¢(x,y), but only in the first case the connectivity is preserved.



3. Ifs, t € ¢ are connected i6+(z)), then for every witnese® of s, and every witnese/* of t, there is
a path from(s, w®) to (t, w*) in G(y).

Proof. Suppose) is a formula om variables that consists af clauses’, ..., Cy,. For claus&’;, assume
that the set of variables i8; C [n], and that it involves relatio®?; € S. Thus,y(x) is AJL; R;(xv; ).
Let o; be the faithful expression fak; from &', so thatR;(xy,) = Jy; ¢;(xv;,y;). Lety be the vector
(¥1,---,ym) and lety(x, y) be the formulan]™, ;(xv;,y;). Theny(x) = Jy o(x,y).

Statement2) follows from (1) by projection of the path on the coordinatescofor statemen(3), con-
siders, t € ¢ that are connected if¥(v)) via a paths = u® — u! — ... — u* =t . For everyu!, uit?,
and clause”;, there exists an assignmewt; to y; such that boti{u'y,, w;) and (u***y,, w';) are solu-
tions ofp;, by condition(2) of faithful expressibility. Thugu', wi) and(ui*!, w') are both solutions ap,
wherew! = (wiy,...wi,,). Further, for everyd!, the space of solutions ¢f(ul, y) is the product space of

the solutions otpj(uivj,yj) overj = 1,...,m. Since these are all connected by conditigh of faithful
expressibility,G(¢(ul, y)) is connected. The following describes a path fr@mws) to (t, wt) in G(y):
(s, wS) ~ (5,w?) — (ul,w9) ~ (ul,wl) = -+~ (WL w' 1) = (t,w' 1) ~ (t,w'). Here~
indicates a path it (o (ul, y)). O

Corollary 1. SupposeS andS’ are sets of relations such that eveRye S’ is faithfully expressible frors.

1. There are polynomial time reductions fraDONN(S’) to CONN(S), and fromsT-CONN(S’) to ST-
CONN(S).

2. Given aCNF(S’)-formula ¢ (x) with m clauses, one can efficiently construcCNF(S)-formula
©(x,y) such that the length of is O(m) and the diameter of the solution space does not decrease.

3.2 The Faithful Expressibility Theorem

In this subsection, we prove the Faithful Expressibilitye®@rem. The main step in the proof is Lemiia 2
which shows that ifS is not tight, then we can faithfully express the 3-clausatiehs from the relations
in S. If k& > 2, then ak-clauseis a disjunction oft variables or negated variables. Fb i < k, let

D; be the set of all satisfying truth assignments of khelause whose first literals are negated, and let
Sk = {Dy, D1,...,Dy}. Thus, CNRSy) is the collection of-CNF formulas.

Lemma 2. If setS of relations is not tightSs is faithfully expressible frons.

Proof. First, observe that afl-clauses are faithfully expressible frafh There exists® € S which is not
OR-free, so we can expreés; V z3) by substituting constants iR. Similarly, we can expres&e; V z2)
using a relation that is not NAND-free. The last 2-clagseV z3) can be obtained from OR and NAND by
a technique that corresponds to reverse resolution.v z2) = Jy (z1 V y) A (¥ V T2). Itis easy to see
that this gives a faithful expression. From here onwards sgeme thaS contains all 2-clauses. The proof
now proceeds in four steps. First, we will express a relaitiowhich there exist two elements that are at
graph distance larger than their Hamming distance. Seawadyill express a relation that is just a single
path between such elements. Third, we will express a relatltch is a path of length 4 between elements
at Hamming distance 2. Finally, we will express the 3-clause

Step 1. Faithfully expressing a relation in which some distanceaex|s.



a Unv Unw

010 010
110 011 110 011
100 101 001 100 100
Ryap(z1, 9, T3) Ryap(xy, o, 23) A (21 V Z2)

Figure 2: Proof of Stefl 1 of Lemnla 2, and an example.

For arelationR, we say that the distance betweeandb expandsf a andb are connected i¥(R), but
dr(a,b) > |a—b|. Later on, we will show that no distance expands in compamisatbijunctive relations.
The same also holds true for the relatifyag = {0,1}® \ {000,111}, which is not componentwise
bijunctive. Nonetheless, we show here thakifs not componentwise bijunctive, then, by addihglauses,
we can faithfully express a relati@p in which some distance expands. For instance, when Rxag, then
we can take&)(x1, 2, x3) = RNag(z1, T2, 23) A (21 V Z3). The distance between= 100 andb = 001
in @ expands. Similarly, in the general construction, we idgriiandb on a cycle, and ad@-clauses that
eliminate all the vertices along the shorter arc betweandb.

SinceS is not tight, it contains a relatioR which is not componentwise bijunctive. R containsa, b
where the distance between them expands, we are done. Soeat®t for alla,b € G(R), dr(a,b) =
|a — b|. SinceR is not componentwise bijunctive, there exists a triple gigramentsa, b, c lying in the
same component such thatj(a, b, c¢) is not in that component (which also easily implies it is mofd).
Choose the triple such that the sum of pairwise distadgés, b) + dr (b, c) + dr(c,a) is minimized. Let
U = {ila; # b}, V = {i|b; # ¢;}, andW = {i|¢; # a;}. Sincedgr(a,b) = |a — b|, a shortest path does
not flip variables outside df, and each variable iti is flipped exactly once. The same holds ¥oandlV.
We note some useful properties of the dét§, 17/.

1. Every index € U UV U W occurs in exactly two af/, V, .
Consider going by a shortest path frento b to ¢ and back taa. Everyi € U UV U W is seen an
even number of times along this path since we retur. th is seen at least once, and at most thrice,
so in fact it occurs twice.
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2. Every pairwise intersectiot/ NV, V N W andW N U is non-empty.
Suppose the sefg andV are disjoint. From Property 1, we must hadeé = U U V. But then itis
easy to see thahaj(a, b, c) = b which is in R. This contradicts the choice af b, c.

3. The setd/ NV andU N W partition the set.
By Propertyl, each index of/ occurs in one o/ andWW as well. Also since no index occurs in all
three setd/, V, W this is in fact a disjoint partition.

4. For each index € U N W, it holds thata & e; ¢ R.
Assume for the sake of contradiction thét= a @ e; € R. Sincei € U N W we have simultaneously
moved closer to botfb andc. Hence we havelz(a’,b) + dr(b,c) + dg(c,a’) < dr(a,b) +
dr(b,c) + dgr(c,a). Alsomaj(a’,b,c) = maj(a,b,c) ¢ R. But this contradicts our choice of
a,b,c.

Property 4 implies that the shortest pathbtandc diverge ata, since for any shortest pathtothe first
variable flipped is fronl/ NV whereas for a shortest pathddt is from W N V. Similar statements hold for
the verticed andc. Thus along the shortest path frento b the first bit flipped is froni/ N V' and the last
bit flipped is fromU N W. On the other hand, if we go fromto ¢ and then tdb, all the bits fromU N W
are flipped before the bits froli N V. We use this crucially to defin@. We will add a set of 2-clauses that
enforce the following rule on paths startingaatFlip variables fromU N W before variables front/ N V.
This will eliminate all shortest paths fromto b since they begin by flipping a variable {in V" and end
with U N W. The paths frona to b via c survive since they flig/ N W while going fromatocandU NV
while going fromc to b. However all remaining paths have length at léast b| + 2 since they flip twice
some variables not ify.

Take all pairs of indice$(i, j)|i € UNnW, 5 € UNV }. The following conditions hold from the definition
of U,V,W: a; = ¢; = b; anda; = ¢; = b;. Add the 2-claus€’;; asserting that the pair of variablesr;
must take values ifa;a;, cicj, bib;} = {a;a;,aa5,a;a;}. The new relation i€) = R A; ; Cy;. Note that
@ C R. We verify that the distance betwearandb in @) expands. It is easy to see that for gng U, the
assignmenh @ e; ¢ (). Hence there are no shortest paths left frato b. On the other hand, it is easy to
see that andb are still connected, since the verteis still reachable from both.

Step 2. Isolating a pair of assignments whose distance expands.

The relation( obtained in Stepl1 may have several disconnected comporidnssleanupstep isolates
a single pair of assignments whose distance expands. Bygeldilauses, we show that one can express a
path of lengthr + 2 between assignments at distamce

Takea,b € @ whose distance expands @handdg(a,b) is minimized. LetU = {i|a; # b;}, and
|U| = r. Shortest paths betweerandb have certain useful properties:

1. Each shortest path flips every variable frémexactly once.
Observe that each indexe U is flipped an odd number of times along any path froto b. Suppose
itis flipped thrice along a shortest path. Starting ahd going along this path, lef be the assignment
reached after flipping twice. Then the distance betwearandb’ expands, sincé is flipped twice
along a shortest path between then@inAlso dgp(a,b’) < dg(a,b), contradicting the choice af
andb.

2. Every shortest path flips exactly one variablg U.
Since the distance betweenand b expands, every shortest path must flip some variabje U.
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Suppose it flips more than one such variable. Sime&db agree on these variables, each of them
is flipped an even number of times. Lebe the first variable to be flipped twice. Lbt be the
assignment reached after flippindghe second time. It is easy to verify that the distance betveee
andb’ also expands, buig(a,b’) < dg(a,b).

3. The variablei ¢ U is the first and last variable to be flipped along the pathssume the first variable
flipped is noti. Leta’ be the assignment reached along the path before wethig first time. Then
dg(a’,b) < dg(a,b). The distance betweeti andb expands since the shortest path between them
flips the variables twice. This contradicts the choice afandb. Assumej € U is flipped twice.
Then as before we get a paif, b’ that contradict the choice af b.

Every shortest path betweenandb has the following structure: first a variablez U is flipped toa;,
then the variables frory are flipped in some order, finally the variables flipped back taz;.

Different shortest paths may vary in the choice @¢f U in the first step and in the order in which the
variables fromlJ are flipped. Fix one such path C Q). Assume that/ = {1, ...,r} and the variables are
flipped in this order, and the additional variable flippeddsvisr + 1. Denote the path by — u® — u! —

. — u" — b. Next we prove that we cannot flip thet+ 1*" variable at an intermediate vertex along the
path.

4 For1 < j <r—1theassignment’ ® e, & Q.
Suppose that for somg we havec = w @ e, € Q. Thenc differs fromaon{1,...,i} and from
bon{i+1,...,7}. The distance frone to at least one o& or b must expand, else we get a path
from a to b throughc of length|a — b| which contradicts the fact that this distance expands. Kewe
dg(a,c) anddg(b, c) are strictly less thafig(a, b) so we get a contradiction to the choicezob.

We now construct the path of lengtht+ 2. For alli > r + 2 we setz; = a; to get a relation om + 1
variables. Note thab = a; ...a,a,;. Takei < j € U. Along the pathl’ the variablei is flipped before
J so the variables:;z; take one of three value@i;a;, a;a;,a;a;}. So we add a 2-clausg;; that requires
x;x; to take one of these values and take= ) A; ; C;;. Clearly, every assignment along the path lies in
T. We claim that these are the only solutions. To show thig takarbitrary assignmentsatisfying the
added constraints. If for some< j < r we havec; = a; butc; = a;, this would violateC’;;. Hence the
first » variables ofc are of the forma, ... a;a;41...a, for0 < i < r. If .41 = @,41 thenc = u’. If
¢r41 = ar41 thenc = u’ @ e,. By property 4 above, such a vector satisfig# and only ifi = 0 or
i = r, which correspond te = a andc = b respectively.

Step 3. Faithfully expressing paths of length

Let P denote the set of all ternary relations whose graph is a gdémgth 4 between two assignments
at Hamming distance. Up to permutations of coordinates, there are 6 such rekti&ach of them is the
conjunction of a3-clause and &-clause. For instance, the relatiddh = {100, 110,010,011,001} can be
written as(z; Vxa Vas) A (21 VZ3). (Itis named so, because its graph looks like the letter 'Mtiee cube.)
These relations are “minimal” examples of relations thatrast componentwise bijunctive. By projecting
out intermediate variables from the pathobtained in Stefpl2, we faithfully express one of the relation
P. We faithfully express other relations A using this relation.

We will write all relations inP in terms of M (x1, z2,x3) = (x1 V 22 V x3) A (Z1 V Z3), by negating
variables. For exampl&/(z, x2,x3) = (Z1 V x2 V 23) A (21 V Z3) = {000,010, 110,111, 101}.

Define the relatiorP(z1, xy41, 22) = 3x3... 2, T(21,...,2,41). The table below listing all tuples in
P and their withesses, shows that the conditions for faitekgressibility are satisfied, ardeél € P.
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L1, X2, Lp41 | L3y+--,Tp
a1020r41 as...ay

a1a20r41 as...ay

a1a20r41 as...Qy

a1a20yr41 as...ag, a3ay4 ...Gp, Q30405 ...0p ...0304 ... Gy
a1a20r41 asaq - .. Qp

Let P(xy,x2,x3) = M(ly,ls,13), wherel; is one of{z;,z;}. We can now useé® and 2-clauses to
express every other relation i GivenM (I, 13,13) every relation inP can be obtained by negating some
subset of the variables. Hence it suffices to show that wexganess faithfullyM (11, lo, I3) and M (14, I, I3)

(M is symmetric inz; andzs). In the following letA denote one of the literalsy, 3}, such that it isy if
and only ifly is zy.

M(ly,l9,l3) = (I3 VI VI3)A (1 VIi3)
= Fy (L VI)AAVIQVIZ) AL V)
Fy (LVIA)AANVIVI) AL VIZ)AANVI3)
= Fy L VA AL VIZ)AMNI,I3)
Jy (11 V) A (I3 Vi3) A P(y, z2,73)

In the second step the claugeV 3) is implied by the resolution of the claus@ls vV A\) A (I; V I3).
For the next expression latdenote one of the literalsy, 5}, such that it is negated if and onlylif is

Z9.

M(ly,l2,l3) = (1 VI VI3) A (1 Vi3)

Jy (L VISV AAVI)A (Vi)
Jy (A Vi) A M(ly, A\ 13)

= Jy(AVi)AP(x1,y,23)

The above expressions are both based on resolution andagyg@ check that they satisfy the properties of
faithful expressibility.

Step 4. Faithfully expressingSs.

We faithfully expresgz; V z2 VV x3) from M using a formula derived from a gadgetin(11]. This gadget
expresses$r; V xo V x3) in terms of “Protected OR”, which corresponds to our refatld.

(x1VaeVas) = Jyi...ys (@1 V§) A(22V P2) A (23 V ¥3) A (23 V Ja)
AM (y1,y5,Y3) N M (y2, Y5, Ya) (1)

The table below listing the witnesses of each assignmentaforzs, z3), shows that the conditions for
faithful expressibility are satisfied.
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T1,%2,23 | Y1...Y5
111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relatior{x; V =2 V x3) we derive the other 3-clauses by reverse resolution, foamte
(Z1VaaVas) =3y (Z1VY) A(yVaVes)
O

To complete the proof of the Faithful Expressibility Thaoreve show that an arbitrary relation can be
expressed faithfully fron®s.

Lemma 3. Let R C {0, 1}* be any relation of arityc > 1. R is faithfully expressible fronss.

Proof. If £ < 3 then R can be expressed as a formula in G¥§ with constants, without introducing
witness variables. This kind of expression is always faithf

If £ > 4 thenR can be expressed as a formula in QE), without witnesses (i.e. faithfully). We will
show that everyk-clause can be expressed faithfully fra®p_,. Then, by induction, it can be expressed
faithfully from Ss. For simplicity we express k-clause corresponding to the relatidhy. The remaining
relations are expressed equivalently. We expfggs1 a way that is standard in other complexity reductions,
and turns out to be faithful:

(1 VaaV---Vag) =Jy(x1 VaaVy) A(gV e V- V).

This is the reverse operation of resolution. For any satigfassignment fox, its witness space is either
{0}, {1} or {0,1}, so in all cases it is connected. Furthermore, the only wayreighboring satisfying
assignments fox can have no common witness is if one of them has witnes$(getand the other one
has witness sefl}. This implies that the first one hdss,...,zx) = (0,...,0), and the other one has
(z1,22) = (0,0), thus they differ in the assignments of at least two vargbtme from{z;, z2} and one
from {z3,...,z;}. In that case they cannot be neighboring assignments. fbnerell requirements of
faithful expressibility are satisfied. O

3.3 Hardness Results fo3-CNF formulas

From LemmdR and Corollafy 1, it follows that, to prove thedchside of our dichotomy theorems, it suffices
to focus on3-CNF formulas.

The proof that ©NN(S3) andsT-CONN(S3) are PSPACE-complete is fairly intricate; it entails a direc
reduction from the computation of a space-bounded Turinghina. The result fosT-CONN can also be
proved easily using results of Hearne and Demaine on Ncermetistic Constraint Logid [11]. However,
it does not appear that completeness fam® follows from their results.

Lemma 4. sT-CONN(S3) and CONN(S3) are PSPACEcomplete.
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Proof. Given a CNF§s3) formula ¢ and satisfying assignmengst we can check if they are connected in
G(¢) with polynomial amount of space. Similarly fordBiN(Ss), by reusing space we can check for all
pairs of assignments whether they are satisfying and, yfm¢h are, whether they are connectedify).

It follows that both problems are in PSPACE.

Next we show that ONN(S3) and ST-CONN(S3) are PSPACE-hard. Consider the following known
PSPACE-complete problem: Given a deterministic Turinghmiae) = (Q, X, T, 6, g0, Gaccept » Greject) aNd
n in unary, will M accept the string consisting afblanks, without ever leaving its tape squares? We give
a polynomial time reduction from this problem $a-CONN(S3) and GONN(S3).

The reduction maps a machiné and integern (without loss of generality, assuming thats at least as
large as the description @ff) to a3-CNF formulay and two satisfying assignments for the formula, which
are connected () if and only if M accepts. Furthermore, all satisfying assignments affe connected
to one of these two assignments, so tiép) is connected if and only i/ acceptsw.

Before we show how to construgt we modify M in several ways:

1. We add a clock that counts frobrto n x |Q| x |T|* = 29", which is the total number of possible
distinct configurations of/. It uses a separate tape of leng¥n) with the alphabe{0,1}. Before
a transition happens, control is passed on to the clock,oimiter is incremented, and finally the
transition is completed.

2. We define a standard accepting configuration. Whengygy,; is reached, the clock is stopped and
set to zero, the original tape is erased and the head is pladée initial position, always in state

Qaccept .

3. Whenevely,..: IS reached the machine goes into its initial configuratiome Tape is erased, the
clock is set to zero, the head is placed in the initial posjtand the state is set tg (and thus the
computation resumes).

4. Whenever the clock overflows, the machine goesgnt@.:.

The new machiné//’ runs forever ifM does not accept (rejects or loops), and accepld iiccepts.
It also has the property that every configuration leads etth¢éhe accepting configuration or to the initial
configuration. Therefore the space of configurations is eotad if and only ifAf accepts. Let's denote by
Q' the states of\/’ and byd’ its transitions.M’ runs on two tapes, the main one of si¥eand the clock of
size N, bothO(n). The alphabet of\/” on one tape if’, and on the othef0, 1}. For simplicity we can
also assume that at each transition the machine uses onbyf timetwo tapes.

Next, we construct an intermediate CNF-formilavhose solutions are the configurationsiéf. How-
ever, the space of solutions ¢fis disconnected.

For eachi € [N] anda € T, we have a variable(i,a). If 2(i,a) = 1, this means that th&" tape
cell contains symbok. For everyi € [N] there is a variable(:) which is 1 if the head is at position
For everyqg € @, there is a variable(q) which is 1 if the current state i Similarly for everyj € [N,]
anda € {0,1} we have variables.(j,a) and a variable,.(j) which is 1 if the head of the clock tape is at
positionj.

We enforce the following conditions:

1. Every cell contains some symbol:

= /\ (\/(IEF x(i,a)) /\ (vaE{O,l} xc(j,a)) :

i€[N] JENe]

15



2. No cell contains two symbols:

b=\ A (EGavica)) A (#GOvEGD).

i€[N] a#a’ €T JEN]

3. The head is in some position, the clock head is in someiposdnd the machine is in some state:
Y3 = (Vien) y(7)) /\ (Viemng ve(d)) /\ (Vgeqr 2(9))-

4. The main tape head is in a unique position, the clock hesdasinique position, and the machine is
in a unique state:

va= N (WV,@(Z”)) A (yc(j)vyc(j’)) A\ (@w(y)).

i#i'€[N] J#5'€[N] q#q'€Q’

Solutions ofy) = 11 Ay A1h3 A1py are in 1-1 correspondence with configurationg6f Furthermore,
the assignments corresponding to any two distinct configuns differ in at least two variables (hence the
space of solutions is totally disconnected).

Next, to connect the solution space along valid transitmng/’, we relax conditions 2 and 4 by intro-
ducing new transition variables, which allow the head taehiawo states or a cell to have two symbols at the
same time. This allows us to go from one configuration to the.ne

Consider a transition(q, a) = (¢, b, R), which operates on the first tape, for example. Fix the positi
of the head of the first tape to beand the symbol in positioh+ 1 to bec. The variables that are changed
by the transition arex (i, a), y(4), 2(q), z(i,b), y(i+ 1), z(¢'). Before the transition the first three are set to
1, the second three are set to 0, and after the transitionattees! flipped. Corresponding to this transition
(which is specified by, g, a, andc) we introduce a transition variabiéi, ¢, a, ¢). We now relax conditions
2 and 4 as follows:

o Replace(m Vox(i, b)) by (x(z, a)V z(i,b) V t(i,q, a, c)) .

. Replace(y(i) Vit 1)) by (y(i) VyG+1)V t(i,q,a,c)).

. Replace(z(q) Vv z(q’)) by <z(q) vV z(q') Vv t(i, q,a, c))

This is done for every value af, a, i andc (and also for transitions acting on the clock tape). We add
the transition variables to the corresponding clausesatdahexample the clauser(i, a) V (i, b)) could
potentially become very long, such as:

<x(i, a) vV xz(i,b) Vt(i,q1,a,c1) V t(i,q2,a,c2) V .. ) .

However, the total number of transition variables is onliypomial inn. We also add a constraint for every
pair of transition variables(i, q, a, c), t(i',¢’, a’, ¢'), saying they cannot be 1 simultaneousdl(i, g, a, c) V
t(i',q',a’,)). This ensures that only one transition can be happeningydtras. The effect of adding the
transition variables to the clausesf and, is that by setting(4, , a, ¢) to 1, we can simultaneously set
x(i,a) andz(i, ) to 1, and so on. This gives a path from the initial configuratiothefinal configuration
as follows: Set(i,q,a,c) =1, setx(i,b) = 1,y(i + 1) =1, 2(¢") = 1, z(i,a) = 0, y(i) = 0, z(q) =0,
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then set (i, ¢, a,c) = 0. Thus consecutive configurations are now connected. Talaainecting to other
configurations, we also add an expression to ensure tha #reghe only assignments the 6 variables can
take whert(i, g, a,c) = 1:

Yigae = t(i,q,a,¢) V(i a),y(i),2(q),2(i,)),y(i +1),2()) €
{111000,111100,111110,111111,011111,001111,000111}).

This expression can of course be written in conjunctive rbfiorm.

Call the resulting CNF formula(x, X¢, ¥, Ye, Z, t). Note thatp(x, X¢, ¥, Ve, 2,0) = (X, Xc, ¥, Ye, 2),
so0 a solution where all transition variables @reorresponds to a configuration df’. To see that we have
not introduced any shortcut between configurations thatargalid machine transitions, notice that in any
solution of p, at most a single transition variable can he Therefore none of the transitional solutions
belonging to different transitions can be adjacent. Funtioee, out of the solutions that have a transition
variable set to 1, only the first and the last correspond tolid eanfiguration. Therefore none of the
intermediate solutions can be adjacent to a solution wittraaisition variables set to O.

The formulay is a CNF formula where clause size is unbounded. We use the saduction as in the
proof of LemmdB to get a 3-CNF formula. By Lemfda 1 and CorgllrsT-CoNN and GONN for S are
PSPACE-complete. O

By Lemmal2 and Corollarfl1, this completes the proof of thedhess part of the dichotomies for
CoNN andsT-CoNN (Theorem$§H and 5).

Finally, we show thaB-CNF formulas can have exponential diameter, by indugtieenstructing a
path of length at least> onn variables and then identifying it with the solution space@8fCNF formula
with O(n?) clauses. By Lemmid 2 and Corolldiy 1, this implies the harsipast of the diameter dichotomy
(TheorenDb).

Lemma 5. For n even, there is & CNF formula,, with n variables and)(n?) clauses, such that(e;,)
is a path of length greater tha®:z .

Proof. The construction is in two steps: we first exhibit an inducedgsaphG,, of the n dimensional
hypercube with large diameter. We then construct a 3-CNnditap,, so thatG,, = G(¢,,).

The graphG,, is a path of lengtt2z. We construct it using induction. Far = 2, we takeV (Ga) =

{(0,0),(0,1),(1,1)} which has diamete2. Assume that we have constructé_, with 2”3 vertices,
and with distinguished vertices, s, t, o such that the shortest path franmo t in G,,_» has Iengch"T_Q.
We now describe the séf(G,,). For each vertex € V(G,_2), V(G,) contains two vertice$v, 0,0)
and(v, 1,1). Note that the subgraph induced by these vertices alonést®n$ two disconnected copies of
G,—2. To connect these two components, we add the vertex (t,0,1) (which is connected tét, 0,0)
and(t,1,1) in the induced subgraph). Note that the resulting gr&phis connected, but any path from
(u,0,0) to (v,1,1) must pass through. Further note that by induction, the gragh is also a path. The
verticess, = (snp—2,0,0) andt, = (sp—_2,1,1) are diametrically opposite ends of this path. The path
length is at least - 2"2° + 2 > 2%. Alsosy = (0,0), sn = (Sn_2,0,0), tn = (Sn_2,1,1) and hence
Sn=(0,...,0),ty = (0,...,0,1,1).

We construct a sequence of 3-CNF formulagz1, ..., x,) SO thatG,, = G(p,). Letya(z1,22) =

Z1 V x9. Assume we have,,_o(z1,...,x,_2). We add two variables,,_; andz,, and the clauses
907172(551a ce axn72)a Tp—1 N\ Zp
Tp-1V Iy VI for i<n-—4 (2)
Tpo1V TpV T fori=n—-3,n—-2 3)
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Note that a clause id 2 is just the implicati¢h, | A z,,) — ;. Thus clauseBl Z] 3 enforce the condition
thatz, 1 = 0,z, = 1 implies that(z1,...,2,—2) = tn—2 = (0,...,0,1,1). O

4 The Easy Case of the Dichotomy: Tight Sets of Relations

4.1 Schaefer sets of relations

We begin by showing that all Schaefer sets of relations gt#.tiSchaefer relations are characterized by
closure properties. We say that-ary relationR is closed under someary operationy : {0, 1}* — {0,1}
if for everyal,a? ... ak € R, the tuple(a(al,a?,...,d),...,a(al,..., a¥)) isin R. We denote this
tuple bya(al,..., ak).

We will use the following lemma about closure properties evesal occassions.

Lemma 6. If a logical relation R is closed under an operatian: {0, 1}* — {0,1} such thai(1,1,...,1) =
1 and «(0,0,...,0) = 0 (a.k.a. an idempotent operation) then every connected ooem ofG(R) is
closed undery.

Proof. Consideral,... ak € R, such that they all belong to the same connected compone@t Bj.

It suffices to prove thah = a(al,...,a¥) is in the same connected component(fR). To that end
we will first prove that for any, t € R if there is a path frons to t in G(R) then there is a path from
a(bl,... bl 1 s bitl . bk toa(bl,...,b"1 t, bt ... bK)foranyb!, ... ,b¥ € R. This ob-
servation implies that there is a path freth = a(al,al,... al) to a(al,a2 al,... al), from there to
a(al,a? a3 al,... a')andsoon, tax(al,a?, ..., ak) = a. Thusais in the same connected component
of G(R) asa'.

Let the path froms to t bes = s! — s2 — ...s™ = t. Foreveryj € {1,2,...,m — 1}, the
tuplesa(bl,...,bi"1 & bitl . b™)anda(b!,..., bi"t s*1 bitl b™) differ in at most one
position (the position in whiclsd andsit! are different) therefore they belong to the same component
of G(R). Thusa(bl,... , bi=1 sl bitl . b™)anda(bl,...,bi"1 s™ bitl  b™) pelong to the
same component. m

We are ready to prove that all Schaefer relations are tight.
Lemma 7. Let R be a logical relation.
1. If Ris bijunctive, thenR is componentwise bijunctive.
2. If Ris Horn, thenR is OR-free.
3. If Ris dual Horn, thenR is NAND-free.
4. If R is affine, therR is componentwise bijunctiv@R-free, andNAND-free.

Proof. The case of bijunctive relations follows immediately fromrarbmal® and the fact that a relation is
bijunctive if and only if it is closed under the ternary maijpioperationmaj, which is idempotent.

The cases of Horn and dual Horn are symmetric. Suppose aHaryrelationR is not OR-free. Then
there exist, j € {1,...,r}and constants, ..., t, € {0,1} suchthattherelatioR(t1,...,t;i—1, 2z, tiy1,...,tj—1,9,t;
on variablesr andy is equivalent tac V y, i.e.

R(tl, ce ,tl',l,x,tlurl,. .. ,tjfl,y,tjurl,. .. ,tr) = {01, 11, 10}
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Thus the tuples®,t°1¢1%, ¢! defined by(t5*, 19") = (a,b) andtg® = ¢, for everyk ¢ {i,j}, where
a,b, € {0,1} satisfyt1? t11 t%1 ¢ R andt®® ¢ R. However, since every Horn relation is closed under
it follows thatt%® A 10 = t%0 must be inR, which is a contradiction.

For the affine case, a small modification of the last step ofath@ve argument shows that an affine
relation also is OR-free; therefore, dually, it is also NANiBe. Namely, since a relatioR is affine if and
only if it is closed under ternarg, it follows thatt®! @t @ t1° = t°0 must be inR.

Since the connected components of an affine relation are®@Btfree and NAND-free the subgraphs
that they induce are hypercubes, which are also bijunctleations. Therefore an affine relation is also
componentwise bijunctive. O

These containments are proper. For instaifitgs = {100,010, 001} is componentwise bijunctive, but
not bijunctive asnaj(100,010,001) = 000 & R, 3.

4.2 Structural properties of tight sets of relations

In this section, we explore some structural properties efsilution graphs of tight sets of relations. These
properties provide simple algorithms folo@N(S) and sT-CoNN(S) for tight setsS, and also guarantee
that for such sets, the diameter®@fy) of CNF(S)-formulay is linear.

Lemma 8. LetS be a set of componentwise bijunctive relations anal CNF(S)-formula. Ifa andb are
two solutions ofp that lie in the same component@fy), thend,(a,b) = |a — b].

Proof. Consider first the special case in which every relatio§ i bijunctive. In this casep is equivalent

to a 2-CNF formula and so the space of solutions>d$ closed under majority. We show that there is a
path inG(y) from a to b, such that along the path only the assignments on variaktésindices from
the setD = {ila; # b;} change. This implies that the shortest path is of lengthby induction on|D|.
Consider any patlh — u! — --- — u* — b in G(p). We construct another path by replacing by

vi =maj (a,ul,b)fori=1,...,r, and removing repetitions. This is a path because forafyandvit!
differ in at most one variable. Furthermosé,agrees witta andb for everyi for which a; = b;. Therefore,
along this path only variables i are flipped.

For the general case, we show that every compoRaftG () is the solution space of a 2-CNF formula
¢'. Let F be the component @¥(¢) which containsa andb. Let R € S be arelation with two components,
R, R, each of which are bijunctive. Consider a clauseiof the formR(z1, ..., x). The projection of
F ontozy,...,x; is itself connected and must satis Hence it lies within one of the two components
R1, Ry, assume it isR,. We replaceR(x1,...,xx) by Ri(z1,...,z). Call this new formulap;. G(p1)
consists of all components 6f(y) whose projection omy,. ..,z lies in R;. We repeat this for every
clause. Finally we are left with a formula over a set of bijunctive relations. Hengé s bijunctive and
G(¢') is a component of?(¢). So the claim follows from the bijunctive case. O

Corollary 2. LetS be a set of componentwise bijunctive relations. Then
1. For everyp € CNF(S) with n variables, the diameter of each componen&od) is bounded by..
2. ST-CONN(S) isinP.

3. CONN(S) isin coNP.
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Proof. The bound on diameter is an immediate consequence of Léinma 8.

The following algorithm solvesT™-CONN(S) given verticess,t € G(y). Start withu = s. At each
step, find a variable; so thatu; # t; and flip it, until we reactt. If at any stage no such variable exists,
then declare that andt are not connected. If theandt are disconnected, the algorithm is bound to fail.
So assume that they are connected. Correctness is provedumtion ond = |s — t|. It is clear that the
algorithm works when/ = 1. Assume that the algorithm works fdr— 1. If s andt are connected and
are distancel apart, Lemm&l8 implies there is a path of lendthetween them i7(y). In particular, the
algorithm will find a variabler; to flip. The resulting assignment is at distante 1 from t, so now we
proceed by induction.

Next we prove that ONN(S) € coNP. A short certificate that the graph is not connected iailagh
assignments andt which are solutions from different components. To verifgittthey are disconnected it
suffices to run the algorithm f@TCONN. O

We consider sets of OR-free relations. Definedberdinate-wise partial ordeK on Boolean vectors
as follows:a < b if a; < b;, for eachi.

Lemma 9. LetS be a set 0OR-free relations and» a CNF(S)-formula. Every component 6f() contains
a minimum solution with respect to the coordinate-wise grdereover, every solution is connected to the
minimum solution in the same component via a monotone path.

Proof. We call a satisfying assignment locally minimal, if it hasmeghboring satisfying assignments that
are smaller than it. We will show that there is exactly onehsagsignment in each componentéfy).

Suppose there are two distinct locally minimal assignmentnd u’ in some component of/(y).
Consider the path between them where the maximum Hamminghivef assignments on the path is
minimized. If there are many such paths, pick one where thallsst number of assignments have the
maximum Hamming weight. Denote this path bty= u! — u? — ... — u* = u/. Letu! be an
assignment of largest Hamming weight in the path. Thén# u andu! # u/, sinceu andu’ are
locally minimal. The assignmentsi—! and ui*! differ in exactly 2 variables, say, im; andz,. So
{ut b g, wittubt™} = {01,11,10}. Let be such thati; = dy = 0, and; = u; fori > 2. If
i is a solution, then the path! — u? — ... — u! — @ — u'*! — ... — u’ contradicts the way we
chose the original path. Therefori,js not a solution. This means that there is a clause that lateib by
it, but is satisfied byai 1, u!, andui*!. So the relation corresponding to that clause is not OR-fiéch
is a contradiction.

The unique locally minimal solution in a component is its imiam solution, because starting from
any other assignment in the component, it is possible to kempng to neighbors that are smaller, and the
only time it becomes impossible to find such a neighbor is wthenlocally minimal solution is reached.
Therefore, there is a monotone path from any satisfyinggassent to the minimum in that component]

Corollary 3. LetS be a set ofOR-free relations. Then
1. For everyy € CNF(S) with n variables, the diameter of each componen&dp) is bounded bypn.
2. ST-CONN(S) isinP.
3. CONN(S) isin coNP.

Proof. Given solutionss andt in the same component 6f(y), there is a monotone path from each to the
minimal solutionu in the component. This gives a path freno t of length at mos2n. To check ifs and
t are connected, we just check that the minimal assignmeathee frons andt are the same. O
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Sets of NAND-free relations are handled dually to OR-frdatiens. In this case there is a maximum
solution in every connected component(¥f¢) and every solution is connected to it via a monotone path.
Finally, putting everything together, we complete the jpsaa all our dichotomy theorems.

Corollary 4. LetS be a tight set of relations. Then
1. For everypy € CNF(S) with n variables, the diameter of each componen&dp) is bounded byn.
2. STCONN(S) isinP.
3. CONN(S) isin coNP.

4.3 The Complexity of CONN for Tight Sets of Relations

We pinpoint the complexity of GNN(S) for the tight cases which are not Schaefer, using a resulitudrd
[22].

Lemma 10. For S tight, but not Schaefe€oNN(S) is coNP-complete.

Proof. The problem ANOTHER-SAT(S) is: given a formulap in CNF(S) and a solutiors, does there exist
a solutiont # s? Juban [[I2], Theorem 2) shows thatSifis not Schaefer, then MOTHER-SAT is NP-
complete. He also shows (J12], Corollary 1) thaSifs not Schaefer, then the relatien y is expressible
from S through substitutions.

SinceS is not Schaefer, AOTHER-SAT(S) is NP-complete. Lep, s be an instance of ROTHER-SAT
on variablesy, ..., z,. We define a CNES) formulas on the variables:, ..., z,,y1,...,y, @s

’l,Z)(CCl,... yTny Y1y« - - ayn) - So(xla--- ,fEn) /\Z (-TZ # yl)
It is easy to see tha¥(v) is connected if and only ¥ is the unique solution te. O

We are left with the task to determine the complexity aNdi(S) for the case whes is a Schaefer set
of relations. In LemmaS21 afdl12 we show thatN®I(S) is in P if S is affine or bijunctive. This leaves
the case of Horn and dual Horn, which we discuss in the endss#ction.

Lemma 11. If S is a bijunctive set of relations then there is a polynomiaidialgorithm forCONN(S).

Proof. Consider a formulas(z1,...,z,) in CNFS). SinceS is a bijunctive set of relationg can be
written as a 2-CNF formula. Since satisfiability of 2-CNFrfarlas is decidable in polynomial time, it is
easy to decide for a given variahlg whether there exist solutions in which it takes a particuldue in
{0,1}. The variables which can only take one value are assignedidhge. Without loss of generality we

can assume that the resulting 2-CNF formula (g1, . . ., z.,).
Consider the graph of implications af defined in the following way: the vertices are the literals
r1,...,Tm, T1,...,L,m. Thereis a directed edge from literal to literal [ if and only if 1) contains a

clause containing, and the negation of;, which we denote by, (if [, is a negated variable, thenl;
denotesr). The directed edge represents the fact that in a satisBgsginment if the literal, is assigned
true, then the literal is also assigned true. We will show th@ify)) is disconnected if and only if the graph
of implications contains a directed cycle. This property ba checked in polynomial time.

Suppose the graph of implications contains a directed ofdigeralsly — lo — I3 — -+ — I, — 1.
By the construction, the graph also contains a directedeayulthe negations of these literals, but in the
opposite directionl, — Il_; — --- — ly — 1 — [;. There is a satisfying assignmesin which I,
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is assigned 1, and also a satisfying assignntentwhich ; is assigned 1. By the implications, inthe
literals iy, 1o, . .., 1, are assigned 1, and tni1, o, . . ., [, are assigned 1. Suppose there is a path &dm
t. Then letl; be the first literal in the cycle whose value changes alongé#ik froms to t. Then there
is a satisfying assignment in whic¢his assigned whereas all other literals on the cycle are assigned 1.
On the other hand, this cannot be a satisfying assignmeaubedhe edg€;_1,[;) implies that there is a
clause containing only; and the negation df_;, and this clause is violated by the assignment. This is a
contradiction, therefore there can be no path frolo t.

Next, suppose the graph of implications contains no dicecyele, and~(v) is disconnected. Letand
t be satisfying assignments from different connected comaptznofG(v) that are at minimum Hamming
distance. LeU be the set of variables on whishandt differ. There are two literals corresponding to each
variable, and let/s andU* denote respectively the literals that are true iand int. The directed graph
induced byU? in the implications graph contains no directed cycle, tfoeeethere exists a literdl € US
without an incoming edge from a literal UA°. There is also no incoming edge from any other true literal in
s, because is also satisfying. Thus the value of the correspondingatéei can be flipped and the resulting
assignment is still satisfying. This assignment is in themeaomponent as but it is closer tot which
contradicts our choice efandt. O

Lemma 12. If S is an affine set of relations then there is a polynomial tingmathm for CONN(S).

Proof. An affine formula can be described as the set of solutions wfeal system of equations. For any
solution, if only a variable that appears in at least one efguations is flipped, the resulting assignment is
not a solution. Therefore it suffices to check whether théesydias more than one solution (after variables
that don't appear in any equation are removed), which is bgsshecking the rank of the matrix obtained
from the Gaussian elimination algorithm. O

We are left with characterizing the complexity ob@&n for sets of Horn relations and for sets of dual
Horn relations. In the conference versidnli[10] of the pregaper, we had conjectured thatSfis Horn
or dual Horn, then ONN(S) is in P, but this was disproved by Makino, Tamaki and Yamanijhij.
They showed that GNN({R,}) is coNP-complete, wher®, = {0,1}3\{110}, hence there exist Horn
(and by symmetry also dual Horn) sets of relations for whiabN@ is coNP-complete. Their proof is
via a reduction from BsITIVE NOT-ALL-EQUAL 3-SaT, which as seen earlier isAS({ Rxar }), Where
Rnag = {0,1}3\ {000, 111}. This problem is also known as 3-Hypergraph 2-colorability

The relationR; is a 3-clause with one positive literal. We will describe #unal set of Horn relations
first introduced in[[8], which cannot be used to expr&ss We show that for this set there is a polynomial
time algorithm for GNN.

Definition 6. A logical relation R is implicative hitting set-bounded or IHSB— if it is the set of solutions
of a Horn formula in which all clauses of size greater than Zdanly negative literals. Similarly is
implicative hitting set-bounded or IHSB+ if it is the set of solutions of a dual Horn formula in which all
clauses of size greater than 2 have only positive literals.

These types of logical relations can be characterized gucboproperties. A relatioR® is IHSB—
if and only if it is closed undea A (b V c¢); in other words ifa,b,c € R, whereR is of arity r, then
aAN(bVve)=(agAbi1Ve),aaA(baVe), ... ,ar A(br V) € R Arelation R is IHSB+ if
and only if it is closed undea Vv (b A c¢). While the definition may at first look unnatural, it comesnfro
Post’s classification of Boolean functions (sek [4]). Oné¢hef consequences of this classification is that
IHSB— relations cannot express all Horn relations, and in pddicR,, even in the sense of Schaefer's
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expressibility. For the purposes of faithful expressibilive can define an even larger class of relations
which cannot faithfully expres®s (unless P = coNP).

Definition 7. A logical relation R is componentwise IHSB (IHSB+) if every connected component of
G(R) is IHSB- (IHSB+).

By Lemmal®, every relation that is IHSB(IHSB+) is also componentwise IHSB (IHSB+). Of
course, the class of componentwise IHSBelations is much broader, and in fact includes relatiomas th
are not even Horn, such @ /3, However in the following lemma we are only considering comgntwise
IHSB— (IHSB+) relations which are Horn (dual Horn). We will say that a datetationsS is component-
wise IHSB- (IHSB+) if every relation inS is componentwise IHSB (IHSB+).

Lemma 13. If S is a set of relations that are Horn (dual Horn) and componéseéWHSB- (IHSB+), then
there is a polynomial time algorithm f@&oNN(S).

Proof. First we consider the case in which every relatiosiis IHSB—. The formula can be written as a
conjunction of Horn clauses, such that clauses of lengthtgrehan 2 have only negative literals. Let all unit
clauses be assigned and propagated—their variables wlsamhe value in all satisfying assignments. The
resulting formula is also IHSB, and has two kinds of clauses: 2-clauses with one positigl@ar negative
literal, and clauses of size 2 or more with only negativedie The assignment of zero to all variables is
satisfying. There is more than one connected componentifaly if there is another assignment that is
locally minimal by Lemmd19. A locally minimal satisfying agament is such that if any of the variables
assigned 1 is changed to 0 the resulting assignment is nisfygay. Thus all variables assigned 1 appear in
at least one 2-clause with one positive and one negativalliter which both variables are assigned 1. We
say that such an assignment certifies the disconnectivity.

To describe the algorithm, we first define the following iroption graphz. The vertices are the set of
variables. There is a directed edgs, =) if and only if (z; V Z;) is a clause in the IHSB representation.
Let Sq,...,S, be the sets of variables in clauses with only negative lgerkor every variable:; let T;
denote the set of variables reachable froyrin the directed graph. Note thatf is set tol, then every
variable inT; must also be set tb. The algorithm rejects if and only if there exists a variabjesuch that
z; € T; andT; does not contairy; for any j € {1,...,m}. We show that this happens if and only if the
solution graph is disconnected. Note that the algorithns farpolynomial time.

Assume that the graph of solutions is disconnected andaenttie satisfying assignmesnthat certifies
disconnectivity. Let/ be the set of variables; such thats; = 1. Since every variable iV appears in at
least one 2-clause for which both variables are fil@nthe directed graph induced By is such that every
vertex has an incoming edge. By starting at any vertel{ iand following the incoming edge backwards
until we repeat some vertex, we find a cycle in the subgraphced byU. For any variabler; in such a
cycle it holds thatz; € T;. FurtherT; C U, since settinge; to 1 forces all variables iff; to bel. Also T;
cannot contairt; for any j, else the corresponding clause would not be satisfiesl Gjhus the algorithm
rejects whenever the solution graph is disconnected.

Conversely, if the algorithm rejects, there exists a vagiah such thatr; € T; and7; does not contain
S; foranyj € {1,...,m}. Consider the assignment in which all variables frépare assigned 1, and the
rest are assigned 0. We will show that this assignment isfgaiy and it is a certificate for disconnectivity.
Clauses which contain only negated variables are satisfied S; ¢ T for all j. Now consider a clause of
the form(z; Vv 7;;) and note that there is a directed edag, z;). If x;, = 0, this is satisfied. If;;, = 1 then
zy, € T;, and hence; € T; because of the eddey,, z;). But thenz; is set tol, so the clause is satisfied. To
show that this solution is minimal, consider trying to sgte T; to 0. There is an incoming edge:;, z)
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for somex; € T;, and hence a clausge;, v z;), which will become unsatisfied if we sef, = 0. Thus we
have a certificate for the space being disconnected.

Next, consider a formula(xy, ..., z,) in CNF(S). We reduce the connectivity question to one for a
formula with IHSB- relations. Since satisfiability of Horn formulas is decidaim polynomial time and
every connected component of a Horn relation is a Horn melatly Lemmd, it is easy to decide for a
given clause and a given connected component of its comegmp relation (the relation obtained after
identifying repeated variables), whether there existslatisa for which the variables in this clause are
assigned a value in the specified connected component. rif thaésts a clause for which there is more
than one connected component for which solutions exish, the space of solutions is disconnected. This
follows from the fact that the projection 6f(¢) on the hypercube corresponding to the variables appearing
in this clause is disconnected. Therefore we can assuméhthatlation corresponding to every clause has
a single connected component. Since that component is HH8&B relation itself is IHSB-. O

It is still open whether ©ONN is coNP-complete for every remaining Horn set of relatioms,every set
of Horn relations that contains at least one relation thabiscomponentwise IHSB. Following the same
line of reasoning as in the proof of our Faithful Expres#pilheorem we are able to show that one of the
paths of length 4 defined in Sectibnl3.2, namélyz,, zo, x3), can be expressed faithfully from every such
set of relations. Thus the trichotomy would be establistieahé shows that GNN({M (z1, T2, x3)}) iS
coNP-hard.

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy foo@N(S). In view of the results established here, what
remains is to pinpoint the complexity ofd®iN(S) whensS is Horn but not componentwise IHSB and
whensS is dual Horn but not componentwise IHSB

We can extend our dichotomy theorem fgrconnectivity to CNES)-formulas without constants; the
complexity of connectivity for CNES)-formulas without constants is open. We conjecture thatnahes
not tight, one can improve the diameter bound fr2f#fv™ to 2("). Finally, we believe that our techniques
can shed light on other connectivity-related problemshsagapproximating the diameter and counting the
number of components.
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