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Abstract

We study semidefinite programming relaxations of Vertex Cover arising from repeated appli-
cations of the LS+ “lift-and-project” method of Lovasz and Schrijver starting from the standard
linear programming relaxation.

Goemans and Kleinberg prove that after one round of LS+ the integrality gap remains
arbitrarily close to 2. Charikar proves an integrality gap of 2 for a stronger relaxation that
is, however, incomparable with two rounds of LS+ and is strictly weaker than the relaxation
resulting from a constant number of rounds.

We prove that the integrality gap remains at least 7/6 − ε after cεn rounds, where n is the
number of vertices and cε > 0 is a constant that depends only on ε.

1 Introduction

Lovasz and Schrijver [LS91] describe two versions of a “lift-and-project” method that, applied to a
convex programming relaxation K of a 0/1 integer linear program, produces a tighter relaxation. A
weaker version of the method, denoted LS, adds auxiliary variables and linear inequalities, and the
projection of the new relaxation on the original variables is denoted by N(K); a stronger version,
denoted LS+, adds semidefinite programming constraints as well, and the projection on the original
variables is denoted by N+(K).

Lovasz and Schrijver prove that if we start from a linear programming relaxation of a 0/1 integer
program with n variables, then n applications of the LS procedures are sufficient to obtain a tight
relaxation where the only feasible solutions are convex combinations of integral solutions. If one
starts from a linear program with poly(n) inequalities, then it is possible to optimize over the
set of solutions defined by k rounds of LS or LS+ in time O(nO(k)), which is sub-exponential for
k = o(n/ log n).1

In many interesting cases, a small constant number of applications of LS+ are sufficient to transform
a simple linear programming formulation of a problem into the semidefinite programming relaxation
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1It is also possible to optimize over feasible solutions for N

k(K) and N
k
+(K) in time n

O(k) provided that a
separation oracle for K is computable in time poly(n). (That is, it is not necessary for K to be a linear or semidefinite
programming relaxation with a polynomial number of inequalities.)
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that yields the best known polynomial-time computable approximation. For example, one round of
LS+ starting from the trivial linear programming relaxation of the independent set problem gives
the Lovasz Theta functions; one round of LS+ starting from a trivial linear programming relaxation
of the max cut problem gives the Goemans-Williamson relaxation; and the ARV relaxation of
the sparsest cut problem is no stronger than three rounds of LS+ applied to the standard linear
programming relaxation of sparsest cut. (See the discussion in [AAT05].)

Integrality gap results for LS+ are thus very strong unconditional negative results, as they apply
to a “model of computation” that includes the best known algorithms for several problems.

Arora, Bollobas, Lovasz, and Tourlakis [ABL02, ABLT06, Tou06] prove LS round lower bounds for
Vertex Cover. They show that even after Ωε(log n) rounds the integrality gap is at least 2− ε, and
that even after Ωε((log n)2) rounds the integrality gap is at least 1.5 − ε.

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [BOGH+03], and Alekhnovich, Arora, Tourlakis
[AAT05] prove Ω(n) LS+ round lower bounds for proving the unsatisfiablity of random instances
of 3SAT (and, in general, kSAT with k ≥ 3) and Ωε(n) round lower bounds for achieving approx-
imation factors better than 7/8 − ε for Max 3SAT, better than (1 − ε) ln n for Set Cover, and
better than k− 1− ε for Hypergraph Vertex Cover in k-uniform hypergraphs. They leave open the
question of proving LS+ round lower bounds for approximating the Vertex Cover problem.

The standard reduction from Max 3SAT to Vertex Cover shows that if one is able to approximate
Vertex Cover within a factor better than 17/16 then one can approximate Max 3SAT within a factor
better than 7/8. This fact, and the 7/8 − ε integrality gap for Max 3SAT of [AAT05], however
do not suffice to derive an integrality gap result for Vertex Cover. The reason is that reducing
an instance of Max 3SAT to a graph, and then applying a Vertex Cover relaxation to the graph,
defines a semidefinite program that is possibly tighter than the one obtained by a direct relaxation
of the Max 3SAT problem.

Feige and Ofek [FO06] are able to analyse the value of the Lovasz Theta function of the graph
obtained by taking a random 3SAT instance and then reducing it to an instance of Independent
Set (or, equivalently, of Vertex Cover). Their result immediately implies a 17/16−ε integrality gap
for one round of LS+, and the way in which they prove their result implies also the stronger 7/6−ε
bound. For one round of LS+ (or, equivalently, for the function defined as number of vertices
minus the Theta function) Goemans and Kleinberg [KG98] had earlier proved a 2− o(1) integrality
gap result by using a different family of graphs. Charikar [Cha02] proves a 2 − o(1) integrality
gap result for a semidefinite programming relaxation of Vertex Cover that includes additional
inequalities. Charikar’s relaxation is no tighter than 3 rounds of LS+, and is incomparable with
the relaxation obtained after two rounds.

It was compatible with previous results that after a constant number of rounds of LS+ or after
poly log n rounds of LS the integrality gap for Vertex Cover could become 1 + o(1).

Our Result

We prove that after Ωε(n) rounds of LS+ the integrality gap remains at least 7/6 − ε. (For a
stronger reason, the lower bound applies to LS as well.)

We combine ideas from the work of Alekhnovich, Arora and Tourlakis [AAT05] and Feige and
Ofek [FO06]. As in [FO06], we study the instance obtained by starting from a random instance
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of 3XOR and then reducing it to the independent set problem; we also define our semidefinite
programming solutions in a way that is similar to [FO06] (with the difference that we need to
define such solutions inside an inductive argument, while only one solution is needed in [FO06]).
As in [AAT05], we maintain an expansion property as an invariant in our inductive argument, and
we employ an “expansion correction procedure” to make sure that the invariant is maintained. Our
way of realizing the expansion correction is new.

2 The Lovasz-Schrijver Method

2.1 Definitions

Let R ⊆ [0, 1]N be a convex relaxation of a 0/1 Integer Program. We would like to “tighten” the
relaxation by adding inequalities that are valid for 0/1 solutions but that are violated by other
solutions.

Ideally, we would like to say that a solution (y1, . . . , yn) must satisfy the conditions y2
i = yi, because

such a condition is satisfied only by 0/1 solutions. Equivalently, we could introduce n2 new variables
Yi,j and add the conditions (i) Yi,j = yi · yj and (ii) Yi,i = yi. Unfortunately, condition (i) is neither
linear nor convex, and so we will instead “approximate” condition (i) by enforcing a set of linear
conditions that are implied by (but not equivalent to) (i).

Before getting started, we will slightly change our setting because it is more convenient to work
with a convex cone than with a convex subset of [0, 1]N . Recall that a cone is a subset K of R

d

such that if x,y ∈ K and α, β ≥ 0 then αx + βy ∈ K, that is, a cone is a set of vectors that is
closed under non-negative linear combinations. (Note that, in particular, a cone is always convex.)

If we are interested in a convex set R ⊆ [0, 1]N , we first convert it into the cone K ⊆ R
N+1 defined

as the set of all vectors (λ, λy1, . . . , λyN ) such that λ ≥ 0 and (y1, . . . , yN ) ∈ R. For example, in the
“cone” linear programming relaxation of the vertex cover problem on a graph G = (V,E) where
V = {1, . . . .N}, a solution (y0, . . . , yN ) is feasible if and only if

yi + yj ≥ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (V C(G))

and in the cone relaxation of the independent set problem (y0, y1, . . . , yN ) is feasible if and only if

yi + yi ≤ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (IS(G))

We shall define the LS+ operator N+ such that if K is a cone then N+(K) is cone, and we define
Nk

+(K) as N+(· · · (N+(K)) · · · ) applied k times. For a graph G, the relaxation of the minimum
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vertex cover problem resulting from k rounds of LS+ is the result of

max
N

∑

i=1

yi

subject to

(y0, . . . , yN ) ∈ Nk
+(V C(G))

y0 = 1

The operatorN+ will be such that if (1, y1, . . . , yN ) ∈ K and yi are all 0/1 bits, then (1, y1, . . . , yN ) ∈
N+(K), so that it will always map a relaxation of a integral problem into another relaxation.

We now come to the formal definition.

Definition 1 (N and N+ Operators) If K is a cone in R
d, then we define the set N(K) (which

will also be a cone in R
d) as follows: a vector y = (y0, . . . , yd−1) ∈ R

d is in N(K) if and only if
there is a matrix Y ∈ Rd×d such that

1. Y is symmetric;

2. For every i ∈ {0, 1, . . . , d− 1}, Y0,i = Yi,i = yi

3. Each row Yi is an element of K

4. Each vector Y0 − Yi is an element of K

In such a case, Y is called the protection matrix of y.

If, in addition, Y is positive semidefinite, then y ∈ N+(K).

Finally, we define N0(K) and N0
+(K) as K, and Nk(K) (respectively, Nk

+(K)) as N(Nk−1(K))

(respectively, N+(Nk−1
+ (K))).

If y = (1, y1, . . . , yd−1) ∈ {0, 1}d, then we can set Yi,j = yi · yj. Such a matrix Y is clearly positive
semidefinite, and it satisfies Yi.i = y2

i = yi if the yi are in {0, 1}. Consider now a row Yi of Y , that
is, the vector r such that rj := Yi,j = yi · yj. Then, either yi = 0, in which case r = (0, . . . , 0) is in
every cone, or yi = 1, and r = y. Similarly, if we consider rj := Y0,j −Yi,j = (1−yi) ·yj we find that
it either equals the all-zero vector or it equals y. This shows that if y = (1, y1, . . . , yd−1) ∈ {0, 1}d

and y ∈ K, then also y ∈ Nk
+(K) for every k.

Lovasz and Schrijver prove that if (1, y1, . . . , yd−1) ∈ N
k
+(K), then it satisfies every linear inequality

over at most k variables that is valid for 0/1 solutions. In particular, if (1, y1, . . . , yd−1) ∈ Nd−1
+ (K),

then (y1, . . . , yd−1) must be a convex combination of 0/1 solutions.

We will be interested in the integrality gap of LS+ relaxations of vertex cover. It will be easier,
however, to reason about the independent set problem. The settings are equivalent.

Lemma 2 Let G = (V,E) be a graph and V = 1, . . . , N . Then, for every k ≥ 0, (y0, y1, . . . , yN ) ∈
Nk

+(V C(G)) if and only if (y0, y0 − y1, . . . , y0 − yN ) ∈ Nk(IS(G)).
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Proof: We prove it by induction, with the k = 0 base case being clear. If (y0, y1, . . . , yN ) ∈
Nk+1

+ (V C(G)) then there is a protection matrix Y that is symmetric, positive semidefinite, and
such that Yi,i = Y0,i = yi, and such that the vectors Yi and Y0 − Yi are in Nk(V C(G)). Since Y is
positive semidefinite, there must be vectors b0, . . . ,bN such that Yi,j = bi · bj.

Consider now the vectors c0, . . . , cN defined as follows: c0 := b0 and ci := b0−bi for i > 0. Define
the matrix Z as Zi,j := ci · cj . Thus the matrix Z is symmetric and positive semidefinite. We will
argue that Z is a protection matrix by showing that the vector z := (y0, y0 − y1, . . . , y0 − yN ) ∈
Nk+1

+ (IS(G)).

First, we see that Z0,0 = Y0,0 = y0 and that, for i > 0,

Zi,i = (b0 − bi) · (b0 − bi) = Y0,0 − 2Y0,i + Yi,i = y0 − yi

Consider now the row vector Zi, which is equal to (r0, . . . , rN ) where

r0 = b0 · (b0 − bi) = y0 − yi

and, for j > 0,
rj = (b0 − bj) · (b0 − bi) = y0 − yj − yi + Yi,j

We need to show (r0, . . . , rN ) ∈ Nk
+(IS(G)) which, by the inductive hypothesis, is equivalent to

(r0, r0 − r1, . . . , r0 − rN ) ∈ Nk
+(V C(G)). But (r0, r0 − r1, . . . , r0 − rN ) = Y0 − Yi which belongs

to Nk
+(V C(G)) by our assumption that Y is a protection matrix for y. The other conditions are

similarly verified. �

2.2 The Prover-Adversary Game

As done in previous work on Lovasz-Schrijver relaxations, in order to prove that a certain vector
belongs to Nk

+(IS(G)), it will be convenient to formulate the argument in terms of a prover-
adversary game.

A prover P is an algorithm that, on an input vector (y0, . . . , yN ), either fails or outputs a matrix
Y ∈ R

(N+1)×(N+1) and a set of vectors O ⊆ R
N+1 such that

1. Y is positive semidefinite

2. Yi,i = Y0,i = yi

3. Each vector Yi and Y0 − Yi is a non-negative linear combination of vectors of O

4. Each element of O is in IS(G)

Consider now the following game played by a prover against another party called the adversary.
We start from a vector y = (y0, . . . , yN ), and the prover, on input y, outputs Y and O as before.
Then the adversary chooses a vector z ∈ O, and the prover, on input z, outputs a matrix Y ′ and a
set O′, and so on. The adversary wins when the prover fails.

Lemma 3 Suppose that there is a prover such that, starting from a vector y ∈ IS(G), every
adversary strategy requires at least k + 1 moves to win. Then y ∈ Nk(IS(G)).
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Proof: We proceed by induction on k, with k = 0 being the simple base case. Suppose that, for
every adversary, it takes at least k + 1 moves to win, and let Y and O be the output of the prover
on input y. Then, for every element z ∈ O, and every prover strategy, it takes at least k moves
to win starting from z. By inductive, hypothesis, each element of O is in Nk−1

+ (IS(G)), and since

Nk−1
+ (IS(G)) is closed under non-negative linear combinations, the vectors Yi and Y0 − Yi are all

in Nk−1
+ (IS(G)), and so Y is a protection matrix that shows that y is in Nk

+(IS(G)), �

3 Overview of Our Result

Let ϕ be an instance of 3XOR, that is, a collection of linear equations mod 2 over variables x1, . . . , xn

such that each equation is over exactly 3 variables. We denote by opt(ϕ) the largest number of
simultaneously satisfiable equations in ϕ.

Given a 3XOR instance ϕ with m equation, we define the FGLSS graph Gϕ of ϕ as follows: Gϕ has
4m vertices, one for each equation of ϕ and for each assignment to the three variables that satisfies
the equation. We think of each vertex as being labeled by a partial assignment to three variables.
Two vertices u and v are connected if and only if the partial assignments that label u and v are
inconsistent. For example, for each equation, the four vertices corresponding to that equation form
a clique. It is easy to see that opt(ϕ) is precisely the size of the largest independent set of Gϕ. Note
that, in particular, the independent set size of Gϕ is at most N/4, where N = 4m is the number of
vertices.

We say that ϕ is (k, c)-expanding if every set S of at most k equations in ϕ involves at least c|S|
distinct variables.

Our main result is that if ϕ is highly expanding, then even after a large number of rounds of
Lovasz-Schrijver, the optimum of the relaxation is N/4, the largest possible value.

Lemma 4 (Main) Let ϕ be a (k, 1.95)-expanding instance of 3XOR such that any two clauses
share at most one variable, and let Gϕ be its FGLSS graph.

Then (1, 1
4 , . . . ,

1
4 ) is in N

(k−4)/44
+ (IS(Gϕ)).

Our integrality gap result follows from the well known fact that there are highly expanding instances
of 3XOR where it is impossible to satisfy significantly more than half of the equations.

Lemma 5 For every c < 2 and ε > 0 there are α, β > 0 such that for every n there is an instance
ϕ of 3XOR with n variables and m = βn equations such that

• No more than (1/2 + ε)m equations are simultaneously satisfiable;

• Any two clauses share at most one variable

• ϕ is (αn, c)-expanding.

The rest of the paper is devoted to the proof of Lemma 4. We prove it in Section 4 by describing
a prover strategy that survives for at least (k − 4)/44 rounds. Proofs of variants of Lemma 5 have
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appeared before in the literature, for example in [BSW01, BOT02]; we give a proof in the Appendix
for the sake of self-containment.

The two lemmas combine to give our lower bound.

Theorem 6 For every ε > 0 there is a cε > 0 such that for infinitely many t there is a graph G
with t vertices such that the ratio between the minimum vertex cover size of G and the optimimum
of N cεt(V C(G)) is at least 7/6 − ε.

Proof: Using Lemma 5, construct an instance ϕ of 3XOR with n clauses and Oε(m) equations
such that (i) no more than an 1/2+ ε fraction of equations can be simultaneously satisfied; (ii) any
two clauses share at most one variable; and (iii) ϕ is (Ωε(n), 1.95)-expanding.

The minimum vertex size in the graph Gϕ is at least 4m − (1/2 + ε)m, but, by Lemma 4, the
solution (1, 3/4, · · · , 3/4) is feasible for NΩε(n)(V C(Gϕ)), and so the optimum of NΩε(n)(V C(Gϕ))
is at most 3m. �

4 The Prover Algorithm

For the sake of this section, we refer to a fixed formula ϕ with n variables X = {x1, . . . , xn} and
m clauses which is (k, 1.95)-expanding and such that two clauses share at most one variable. The
graph Gϕ has 4m vertices. Recall that each vertex v of Gϕ corresponds to an equation C of ϕ and
to an assignment of values to the three variables of C that satisfies C. (In the following, if v is one
of the vertices corresponding to an equation C, we call C the equation of v.)

4.1 Some Intuition

Suppose that ϕ were satisfiable, and let D be a distribution over satisfying assignments for ϕ. Then
define the vector y = y(D) as follows: y0 = 1 and

yv := Pra∈D[a agrees with v]

We claim that this solution is in Nk
+(IS(G)) for all k. This follows from the fact that it is a convex

combination of 0/1 solutions, but it is instructive to construct the protection matrix for y. Define
the matrix Y such that Y0,i = Yi,0 = yi and

Yu,v := Pra∈D[a agrees with v and with u]

It is easy to see that this matrix is positive semidefinite.

Consider now the u-th row of Y . If yu = 0, then the row is the all-zero vector. Otherwise, it is y0

times the vector z := (1, Y1,u/y0, . . . , YN,u/y0). Observe that, for v 6= 0,

zv =
Pra∈D[a agrees with v and with u]

Pra∈D[a agrees with u]
= Pra∈D[a agrees with v|a agrees with u]

This is the vector y(D|u) where (D|u) is the distribution D conditioned on assignments that agree
with u.
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Consider now the vector Y0−Yu. If yu = 1, then this is the all-zero vector. Otherwise, it is (y0−yu)
times the vector z := (1, (y1 − Y1,u)/(1 − yu), . . . , (yn − Yn,u)/(1 − yu)). We have

zv =
Pra∈D[a agrees with v but not with u]

Pra∈D[a does not agree with u]
= Pra∈D[a agrees with v|a does not agree with u]

And this is the same as y(D|¬u), where (D|¬u) is the distribution D conditioned on assignments
that do not agree with u. Note, also, that y(D|¬u) can be realized as a convex combination of
vectors y(D|w), where w ranges over the other vertices that correspond to satisfying assignments
for the equation of u.

These observations suggest the following prover algorithm: on input a vector of the form y(D),
output a matrix Y as above, and then set

O := {y(D|u) : u ∈ V and Pra∈D[a consistent with u] > 0}

To prove Lemma 4, we need to find a prover strategy that suceeds for a large number of rounds
starting from the vector (1, 1

4 , . . . ,
1
4). The above prover strategy would work if there is a distribu-

tion over satisfying assignments for ϕ such that, for each equation C, each of the four satisfying
assignments for C occurs with probability 1

4 in the distribution. Since we want to prove an in-
tegrality gap, however, we will need to work with highly unsatisfiable instances, and so no such
distribution exists.

In our proof, we essentially proceed by pretending that such a distribution exists. Every time we
“look” at certain equations and have certain conditions, we refer to the distribution that is uniform
over all assignments that satisfy the equations and meet the conditions; this will mean that, for
example, when defining the matrix Y we will refer to different distributions when filling up different
entries. If the instance is highly expanding, however, it will take several rounds for the adversary
to make the prover fail. This is because if there is an adversary strategy that makes the prover fail
after k rounds, we can find a non-expanding subset of the formula of size O(k).

4.2 Fractional Solutions and Protection Matrices Based on Partial Assignments

All the fractional solutions and protection matrices produced by the prover algorithm have a special
structure and are based on partial assignments to the variables of ϕ. Before describing the prover
algorithm, we will describe such solutions and matrices, and prove various facts about them.

A partial assignment α ⊆ X × {0, 1} is a set of assignments of values to some of the variables of
ϕ such that each variable is given at most one value. For example, {(x3, 0), (x5, 1)} is a partial
assignment. A partial assignment α contradicts an equation of ϕ if it assigns values to all the three
variables of the equations, and such values do not satisfy the equation; a partial assignment is
consistent with ϕ if it contradicts none of the equations of ϕ.

If α is a consistent partial assignment, then the restriction of ϕ to α, denoted ϕ|α, is the set of
equations that we obtain by applying the assignments of values to variables prescribed by α. (We
remove the equations in whch all variables are assigned, and that are reduced to 0 = 0.)

ϕ|α contains some equations with three variables, some equations with two variables and some
equations with one variable (as we said, we remove the equations with zero variables). If an
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equation has two variables, we say those variables are α-equivalent. Note that α-equivalence is
an equivalence relation, and so the variables in X not fixed by α are split into a collection of
equivalence classes.

We make the following observations.

Claim 7 If ϕ|α is (2, 1.51)-expanding, then

1. Each equivalence class contains at most two variables;

2. If an equation contains three variables, then those variables belong to three distinct classes.

The first part of the claim follows from the fact that, under the expansion assumption, all equations
of size two are over disjoint sets of variables (otherwise, two equations of size two with a variable
in common would form a set of two equations with only three occurring variables). The second
part of the claim follows from the first part and from the assumption that in ϕ (and, for a stronger
reason, in ϕ|α) two clauses can share at most one variable.

Definition 8 (Good partial assignment) A partial assignment α is good for a formula ϕ if: (i)
it is consistent with ϕ; (ii) ϕ|α has no equation with only one variable; (iii) the set of all equations
of ϕ|α with two variables is satisfiable.

The third condition seems very strong, but it is implied by expansion.

Claim 9 Suppose that α is consistent with ϕ and that ϕ|α is (2, 1.51)-expanding. Then α is a good
partial assignment.

Proof: ϕ|α cannot contain an equation with a single variable, otherwise it would not even be
(1, 1.1)-expanding. Furthermore, any pair of equations with two variables cannot have any variable
in common (otherwise we would have two equations involving only 3 variables), and so it is trivial
to simultaneously satisfy all the size-2 equations. �

Definition 10 (α-Consistent Assignment) If α is a good partial assignment for ϕ, then we say
that an assignment r ∈ {0, 1}n is α-consistent if it agrees with α and if it satisfies all the equations
with two variables in ϕ|α.

Definition 11 (Fractional solution associated to a good partial assignment) Let α be a
good partial assignment for ϕ. We describe the following fractional solution y = y(α) of the
independent set problem in Gϕ: y(α)0 := 1, and for every vertex v

y(α)v := Prr∈{0,1}n [ r agrees with v | r agrees with α and satisfies C ]

where C is the equation of v.

Another way of thinking of y(α) is to remove from Gϕ all the vertices that are inconsistent with
α, and then, for each equation, split equally among the surviving vertices for that equation a total
weight of 1. Note that, in y(α) each entry is either 1, or 1/2, or 1/4 or 0.
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Claim 12 Let α be a good partial assignment for ϕ. Then y(α) is a feasible solution in the cone
IS(G).

Proof: If two vertices u and v are connected in G, then there is a variable x such that u and v
assign different values to x. If y(α) assigns non-zero weight to both u and v, then it means that x
is not assigned a value by α, and so both y(α)u and y(α)v are at most 1/2. �

We also define the following “semidefinite solution.”

Definition 13 (Protection Matrix Associated to a Partial Assignment) Let α be a good
partial assignment. To every vertex v we associate a (d + 1)-dimensional vector bv = bv(α),
where d is the number of equivalence classes in the set of variables of ϕ|α. When two variables
are α-equivalent, we choose a representative. (Recall the earlier discussion about variables being
α-equivalent.)

• If v is inconsistent with α, then we simply have bv := (0, . . . , 0).

• If α assigns values to all the variables of v (consistently with v), then bv = (1, 0, . . . , 0).

• If the equation of v has only two free variables in ϕ|α, they are in the same class, say the

i-th class, and one of them is the representative. Then bv = (1, 0, . . . , 0,±1
2 , 0, . . . , 0), where

the only non-zero entries are the 0th and the ith. The ith entry is 1/2 if v requires the
representative of the ith class to be 1; the ith entry is −1/2 otherwise.

• If the equation of v has three free variables in ϕ|α, then they are in three distinct classes, say

the ith, the jth and the hth. Then bv = (1
4 , 0, . . . ,±

1
4 , . . . ±

1
4 , . . . ,±

1
4 , . . . , 0), where the only

nonzero entries are the 0th, the ith, the jth and the hth. The ith entry is 1/4 if v requires
the representative of the ith class to be 1, and −1/4 otherwise, and similarly for the other
classes.

• Finally, let b0(α) = (1, 0 . . . , 0).

Define the matrix Y (α) as

Yu,v(α) := bu(α) · bv(α) (1)

Note that, by definition, Y (α) is positive semidefinite.

The matrix has the following equivalent characterization

Claim 14 Let α be a good partial assignment such that ϕ|α is (4, 1.51)-expanding. Then, for two
vertices u, v, let C1, C2 be their equations; we have:

Yu,v(α) = Prr∈{0,1}n [r agrees with u and v |r satisfies C1, C2, r is α-consistent ]

Furthermore, Y0,u(α) = yu(α).

10



Proof: To simplify notation we will omit the dependency on α.

If u and v correspond to two distinct assignments for the same equation, then it is easy to see that
Yu,v = 0.

If the equation of u and the equation of v have variables in disjoint classes, then Yu,v = bu · bv =
bu,0bv,0, where

bu,0 = Prr∈{0,1}n [r agrees with u | r is α-consistent ]

and
bv,0 = Prr∈{0,1}n [r agrees with v | r is α-consistent ]

and, using independence

bu,0bv,0 = Prr∈{0,1}n [r agrees with u and v | r is α-consistent ]

If the equation of u and the equation of v each share precisely one variable from the same class i, then
either both equations must involve three variables, or one equation involves two variables and the
second involves two variables from the same class. In either case we have Yu,v = bu,0bv,0 +bu,ibv,i.
In the first case, if the label of u and the label of v assign consistent values to the variable(s) in
class i, then Yu,v = 1/8, otherwise Yu,v = 0, in accordance with the claim. In the second case, if the
label of u and the label of v assign consistent values to the variable(s) in class i, then Yu,v = 1/4,
otherwise Yu,v = 0, again, in accordance with the claim.

Finally, it is impossible for two distinct equations to have each two variables in common classes.
Otherwise, we would have four equations involving at most six variables and contradict expansion.
�

The matrix has also the following useful property.

Claim 15 For a vertex v, let S denote the set of vertices corresponding to the equation of v which
are consistent with α.

Then
Y0 − Yv =

∑

v′∈S−{v}

Yv′

Proof: The claim follows from the fact that

∑

v′∈S

b(α)v′ = b(α)0 = (1, 0, . . . , 0)

a fact that can be established by a simple cases analysis:

• If S contains only one element, then that element must be v, and it must be the case that
bv(α) = (1, 0, . . . , 0).

• If S = {v, v′} contains two elements, then v and v′ have 1/2 in the first coordinate and then
one has 1/2 and another has −1/2 in the coordinate corresponding to the equivalence class
of the two unassigned variables in the equation.

11



• If S = {v, v1, v2, v3} has four elements, then each one has 1/4 in the first coordinates and
then they have ±1/4 entries in the three coordinates corresponding to the three classes of the
variables occurring in the equation. Each variable is given value zero in 2 vertices and value
one in 2 vertices, so the entries in these three coordinates all cancel out.

�

4.3 Expansion and Satisfiability

Let α be a good partial assignments for ϕ, let C be an equation whose three variables are not
assigned in α, and v be one of the vertices in Gϕ corresponding to C. For the sake of this subsection,
we think of v as being itself a partial assignment.

We define the “closure” of α ∪ v as the output of the following algorithm

• β := α ∪ v;

• while ϕβ has at least an equation with only one variable, of the form xi = b

– β := β ∪ {(xi, b)}

• return β

If ϕα is highly expanding, then the above algorithm terminates almost immediately, and it outputs
an assignment β such that every small enough subset of the equations of ϕβ are mutually satisfiable.

Lemma 16 Suppose that ϕα is a (k, 1.9)-expanding instance of 3XOR let v be a vertex of Gϕ that
is not inconsistent with α. Let β be the closure of α∪ v. Then β is a consistent partial assignment,
and it fixes at most one variable not fixed in α ∪ v.

Proof: First, we note that ϕ|α∪v has at most one equation with only one variable. (Otherwise we
would have three equations with a total of only 5 variables in ϕ|α.)

Let α′ be α∪ v possibly extended to assign a value to the only equation of size one in ϕ|α∪v so that
the equation is satisfied.

Then α′ is a consistent partial assignment for ϕ such that ϕ|α′ has no equation of size one. (Oth-
erwise, if ϕ|α′ had an equation of size one, then there would be three equations with five variables
in ϕ|α.) We conclude that β = α′ and the lemma follows. �

Lemma 17 (Satisfiability of Subsets of Expanding Instances) Suppose that ϕα is a (k, 1.9)-
expanding instance of 3XOR, let v be a vertex of Gϕ corresponding to an equation involving variables
not assigned by α. Let β be the closure of α ∪ v.

Let S be any subset of at most k − 2 equations of ϕ|β. Then there is assignment that satisfies all
the equations of S. Furthermore, for every equation C in S and every assignment to the variables
of C that satisfies C, it is possible to extend such an assignment to an assignment that satisfies all
the equations in S.
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Proof: Recall that the difference between ϕ|β and ϕ|α is that ϕ|β has either one fewer equation
and at most three fewer variables than ϕ|α, or two fewer equations and at most four fewer variables
than ϕα. (Depending on whether the closure algorithm performs zero steps or one step.)

Let C be an equation in ϕ|β, let a be an assignment to the free variables in C that satisfies C, and
let S be a smallest set of equations in ϕβ such that S cannot be satisfied by an extension of a.

Suppose towards a contradiction that S contains at most k − 3 equations.

Observe that, in ϕ|β∪a, every variable that occurs in S must occur in at least two equations of S,
otherwise we would be violating minimality.

We will need to consider a few cases.

1. S cannot contain just a single equation C1, because C1 must have at least two variables in
ϕ|β , and it can share at most one variable with C.

2. Also, S cannot contain just two equations C1 and C2, because, for this to happen, C1 and
C2 can have, between them, at most one variable not occurring in C, so that C, C1 and C2

are three clauses involving at most 4 variables in ϕ|β; this leads to having either 4 equations
involving at most 7 variables in ϕ|α, or to 5 equations involving at most 8 variables. In either
case, we contradict the expansion assumption.

3. Consider now the case |S| = 3. We note that no equation in S can have three free variables in
ϕ|β∪a, because then one of those three variables would not appear in the other two equations.
Thus, each equation has at most two variables, each variable must occur in at least two
equations, and so we have at most three variables occuring in S in ϕ|β∪a. In ϕ|α, this
corresponds to either 5 clauses involving at most 9 variables, or 6 clauses involving at most
10 variables, and we again violate expansion.

4. If |S| = 4, then we consider two cases. If each equation in S has three free variables in ϕ|β∪a,
then there can be at most 6 variables occurring in S, and we have a set of 4 equations in ϕ|α

involving only 6 variables.

If some of the equations in S have less than three free variables, then at most a total of 5
variables can occur S in ϕ|β∪a. This means that we can find either 6 equations in ϕα involving
at most 11 variables, or 7 equations involving at most 12 variables.

5. If |S| ≥ 5, then at most 1.5 · |S| variables can occur in S in ϕ|β∪a, and so we find either |S|+2
equations in ϕ|α involving at most b1.5 · |S|c + 6 variables, or |S| + 3 equations involving at
most b1.5 · |S|c + 7 variables. Either situation violates expansion if |S| ≥ 5.

�

4.4 Expansion-Correction

We will make use of the following simple fact.

Lemma 18 Let ψ be an instance of 3XOR, and k be an integer. Then there is a subset |S| of at
most k equations such that:

13



• The instance ψ − S is a (k − |S|, 1.9)-expanding instance of 3XOR;

• There is at most a total of 1.9|S| variables occurring in the equations in S.

Proof: Take a largest set S of equations in ψ such that |S| ≤ k and at most 1.9|S| variables occur
in S. (Note that, possibly, S is the empty set.)

Suppose towards a contradiction that ψ − S is not (k − |S|, 1.9)-expanding. Then there is a set T
of equations in ψ − S such that |T | ≤ k − |S| and at most 1.9|T | variables occur in T . Then the
union of S and T and observe that it contradicts te maximality assumption about S. �

4.5 The Output of the Prover Algorithm

The prover algorithm takes in input a vector y = y(α) such that α is a consistent partial assignment
and ϕ|α is (k, 1.9)-expanding, k ≥ 4. The output is a positive semidefinite matrix Y that is a
protection matrix for y and a set of vectors O ⊆ R

1+4m such that each column Yv of Y and each
difference Y0 − Yv are positive linear combinations of elements of O.

As we will see, each element of O is itself a vector of the form y(β), where β is an extension of α.

4.5.1 The Positive Semidefinite Matrix

The matrix Y is the matrix Y (α) defined in (1). By definition, Y is positive semidefinite. It also
follows from the definition that Y0,v = Yv,v = yv.

4.5.2 The Set of Vectors

Because of Claim 15, each vector Y0 − Yv is a non-negative linear combination of vectors Yu, and
so it is enough to prove that Yv can be obtained as a non-negative combination of O.

In order to define the set O, we will define a set Ov for each vertex of the graph, and show that
Yv is a positive linear combination of elements of Ov . We will then define O to be the union of the
sets Ov.

Let us fix a vertex v.

Let β be the closure of α ∪ v.

Let us now find a set |S| of equations of ϕ|β as in Lemma 18 with parameter k − 3. The equations
in S (if any), are simultaneously satisfiable by Lemma 17. Let A be the set of assigments that
satisfy all equations in S. Define

Ov = {y(β ∪ a)|a ∈ A}

Lemma 19 The vector Yv is a non-negative combination of elements of Ov.

Proof: We will argue that

Yv = Y0,v ·
1

|A|

∑

a∈A

y(β ∪ a)
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As a warm-up, we note that Yv,v = Y0,v (as observed before) and that yv(β ∪ a) = 1 for every a
(because β already sets all the variables of v consistently with the label of v).

Let us now consider u 6= v, and let C be the equation of v. Recall that Yu,v has the following
probabilistic interpretation:

Yu,v = Prr∈{0,1}n [ r agrees with u and v | r preserves α-consistency, r satisfies C,C ′]

where C is the equation of u and C ′ is the equation of v.

We can also derive a probabilistic interpretation of the right-hand side of the equation we wish to
prove

1

|A|

∑

a∈A

y(β ∪ a)u =

= Pra∈A,r∈{0,1}n [ r agrees with u | r satisfies C and agrees with β ∪ a ] (2)

Now we claim that the probability (2) is precisely the same as

Prr∈{0,1}n [ r agrees with u | r satisfies C and agrees with β ] (3)

This is clear if the clauses in S and C share no variable outside β, because the conditioning on a
has no influence on the event we are considering.

If C shares some, but not all, of its variables outside β with the clauses in S, then a random element
a of A assigns uniform and independent values to such variables. This is because A is an affine
space, and so if the above were not true, then A would force an affine dependency among a strict
subset of the variables of C outside β; this would mean that there is a satisfying assignment for
C that is inconsistent with each assignment in A, that is, there is a satisfying assignment for C
that is inconsistent with S (in ϕ|β), thus violating Lemma 17.) If C shares all its variables with
the clauses of S, then a random a in A must assign to the variables of C a random satisfying
assignment. (Otherwise, we would again conclude that there is a satisfying assignment for C that
is inconsistent with S in ϕ|β .)

The next step is to observe that, thus,

1

|A|

∑

a∈A

y(β ∪ a)

is the same as the probability that a random extension of α is consistent with u conditioned on:
(i) being consistent with v; (ii) satisfying the equation of u; (iii) preserving α-consistency. If we
multiply by Y0,v, what we get is the probability that a random extension of α is consistent with
the labels of u and v conditioned on: (i) satisfying the equation of v; (ii) satisfying the equation of
u; (iii) preserving α-consistency. And this is just the definition of Yu,v. �
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4.6 Putting Everything Together

Let ϕ be a (k, 1.95)-expanding instance of 3XOR, and suppose that there is an adversary strategy
that makes the game terminate after r steps.

The game begins with the solution (1, 1/4, . . . , 1/4), which is y(∅), and, at each round, the prover
picks a solution of the form y(α) for a partial assignment α. The game ends when ϕ|α is not a
(4, 1.9)-expanding instance of 3XOR.

Let us denote by y(∅), y(α1), . . . , y(αr) the solutions chosen by the adversary. Note that αi is an
extension of αi−1 in which the variables occuring in a set Si of clauses have been fixed, in addition
to the the variables occuring in one or two clauses (call this set Ti). We also have that Si contains
at most 1.9|Si| variables that do not occur in Tj j ≤ i or in Sj, j ≤ i− 1. By the properties of the
expansion correction, y(αi) is (k −

∑

j≤i |Sj| + |Tj |, 1.9)-expanding.

When the game terminates, we have

k ≥
∑

i

|Si| + |Ti| ≥ k − 4

Let t be total number of variables occurring in the Si and Ti. We have

t ≥ 1.95(
∑

i

|Si| + |Ti|)

because of the expansion in ϕ. But we also have

t ≤ 3|Ti| + 1.9
∑

i

|Si|

so
∑

i

|Si| ≤ 21
∑

i

|Ti|

and
k ≤ 4 + 22

∑

i

|Ti| ≤ 4 + 44r

which gives r ≥ k/44 − 1/11.

A Appendix: Proof of Lemma 5

Let β = ln 2
2ε2 + 1. We will first show that with probability 1 − o(1), only 1/2 + ε of the clauses are

satisfied. We will then show that such a formula is a (αn, c) expander with probability 1 − o(1).
Finally, we will show that the probability such a randomly chosen formula has no two clauses which
share two variables is at least some constant. Using a union bound, the proof follows.

Fix an assignment to n variables. Now if we choose, m = βn clauses at random, the probability
that more than a 1/2 + ε fraction of them are satisfied is at most exp(−2ε2m) = exp(−2ε2βn). To
get this, we use the Chernoff Bound that says

Pr[X ≥ E[X] + λ] ≤ exp(−2λ2/m)
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where X is the number of satisfied clauses, E[X] = m/2, λ = εm. Picking a random formula and
random assignment, the probability that more than a 1/2 + ε fraction of the clauses are satisfied is
exp(−2ε2βn). Taking a union bound over all assignments, we get

Pr[any assignment satisfies ≥ (1/2 + ε)m clauses] ≤ exp(−2ε2βn) · 2n

= exp(n(ln 2 − 2ε2β)) = exp(−2ε2n)

by our choice of β.

Now we bound the probability that for a random formula ϕ, Hϕ is not a (αn, c)-expander. The
probability that there is a set of k clauses containing a total of fewer than ck variables can be upper
bounded as (O(1)k/n)(2−c)k and so, as we will later show, it can be made o(1), even after summing
over all k from 1 to αn, for a proper choice of α. We can upper bound the probability that there
is a set of k clauses containing a total of fewer than ck variables by

(

n

ck

)

·

(
(ck

3

)

k

)

· k! ·

(

m

k

)

·

(

n

3

)−k

where
( n
ck

)

is the choice of the variables,
((ck

3 )
k

)

is the choice of the k clauses constructed out of such

variables, k! ·
(m

k

)

is a choice of where to put such clauses in our ordered sequence of m clauses, and
(n
3

)−k
is the probability that such clauses were generated as prescribed.

Using
(N
K

)

< (eN/K)K , k! < kk, m = βn, and we simplify to obtain the upper bound (O(k/n))(2−c)k .
Next, we look at

αn
∑

k=1

(O(k/n))(2−c)k =
ln2 n
∑

k=1

(O(k/n))(2−c)k +
αn
∑

k=ln2 n+1

(O(k/n))(2−c)k

Now
∑∞

k=1 t
k = t/(1 − t) ≤ 2t if t ≤ 1/2. So

ln2 n
∑

k=1

(O(k/n))(2−c)k ≤
∞
∑

k=1

((O(ln2 n/n))2−c)k ≤ 2(O(ln2 n/n))2−c)

for sufficiently large n, which is o(1). Also,

αn
∑

k=ln2 n+1

(O(k/n))(2−c)k ≤ (O(α))(2−c) ln2 n
∞

∑

k=1

(O(α)2−c)k ≤ 2(O(α))(2−c) ln2 n

for sufficiently small α. Also, this is o(1) for a small enough α.

Finally, the probability that there are no two clauses sharing two variables must be at least
∏

k=1,...,m(1 − O(k)/n2) because when we choose the kth clause, by wanting it to not share two
variables with another previously chosen clause, we are forbidding O(k) pairs of variables to occur
together. Each such pair happens to be in the clause with probability O(1/n2). Now we use that
for small enough x, 1 − x > exp(−O(x)) the probability is at least exp(−O((

∑

k=1,...,m k)/n2)) =

exp(−O(m2/n2)) = exp(−O(β2)) which is some positive constant.
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