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Abstract

Given a matrix M over a ring K, a target rank r and a bound k, we want to decide
whether the rank of M can be brought down to below r by changing at most k entries of
M . This is a decision version of the well-studied notion of matrix rigidity. We examine
the complexity of the following related problems and obtain completeness results for
small (counting logspace or smaller) classes: (a) computing the determinant, testing
singularity, and computing the rank for matrices with special structure, (b) determining
whether k ∈ O(1) changes to a matrix suffice to bring its rank below a specified
value, and (c) constructing a singular matrix closest (in a restricted sense) to the given
matrix. We then consider bounded rigidity, where the magnitude of individual changes
is bounded by a pre-specified value, and show NP hardness in general, and tighter
bounds in special cases. We also extend the rigidity lower and upper bounds for the
full-1s lower triangular matrices to full-1s extended lower triangular matrices, with a
small gap between the two.

1 Introduction

Many problems in linear algebra fall in NC ; see for instance [All04]. However, corresponding
optimization search problems can be considerably harder. We consider one such instance in
this paper: matrix rank. Over any field, computing rank is known to be in NC [Mul87].
Now consider the following existential search question: Given a matrix M over a ring K, a
target rank r and a bound k, decide whether the rank of M can be brought down to below
r by changing at most k entries of M . Intuitively, one would expect such a question to be
in ∃ · NC: guess k locations where M is to be changed, guess the new entries to be inserted
there, and compute the rank. However, this intuition, while correct for finite fields, does
not directly translate to a proof for Q and Z, since the required new entries may not have
representations polynomially-bounded in the input size. In fact, the best upper bound we can
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Matrix type (over Q) rank bound singular determinant

general C=L-complete C=L-complete GapL -complete
non-negative (even 0-1) C=L-complete C=L-complete GapL -complete
symmetric non-negative C=L-complete C=L-complete ?
symmetric non-negative
diagonally dominant (d.d.) L-complete L-complete ?
symmetric d.d. L -hard even when det ∈ {0, 1} ?

diagonal TC0-complete AC0 TC0-complete

tridiagonal C=NC1 GapNC1

tridiagonal non-negative non-negative perm in planar # BWBP

Table 1: rank bound, singular, and determinant for special matrices

see in the general case is recursive enumerability. In this note, we explore the computational
complexity of several variants of this problem.

The above question is directly related to the notion of rigidity of a matrix, which is the
smallest value of k for which the answer is yes. The notion of rigidity was introduced by
Valiant [Val77] and was independently proposed by Grigoriev [Gri76]. The main motiva-
tion for studying rigidity is that good lower bounds on rigidity give important complexity-
theoretic results in other computational models, like linear algebraic circuits and commu-
nication complexity. Though the question we address is in fact a computational version of
rigidity, it has no direct implications for these lower bounds. However, it provides natural
complete problems based on linear algebra for important complexity classes.

Our question bears close resemblance to the body of problems considered under matrix
completion, see for instance [BFS99, Lau01]. Given a matrix with indeterminates in some
locations, can we instantiate them in such a way that some desired property (e.g. non-
singularity) is achieved? Towards the end of this paper, we briefly discuss how results from
matrix completion can yield upper bounds for our question.

In this paper, we restrict our attention to Z and Q (some extensions to finite fields are
discussed at the end).

Since the computational rigidity question requires a fine understanding of how matrix
rank varies with individual entries, we first consider the complexity of computing the rank
for matrices with special structure. For general matrices, checking if the rank is at most
r is known to be C=L-complete [ABO99]. We consider restrictions which are combinations
of non-negativity, 0-1 entries, symmetry, diagonal dominance, tridiagonal and diagonal sup-
port, and we consider the complexities of three problems: computing the rank, computing
the determinant and testing singularity. These, though intimately related, can have dif-
fering complexities, as Table 1 shows. One of the classes figuring there that needs special
explanation is planar # BWBP . Branching programs as a computational model have been
shown to be surprisingly powerful in the Boolean context; e.g. bounded-width branching
programs ( BWBP ) capture NC1, the class of languages with polynomial-size logarithmic
depth circuits. However, in the arithmetic context, where we are interested in computing
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values rather than determining membership, they are not that well understood. It is still
open ([All04, CMTV98]) whether the containment #BWBP ⊆ #NC1 is in fact an equality.
It is known that width-2 layered planar #BWBP is at least as hard as NC1 [AAB+99]. Our
results concerning tridiagonal and diagonal matrices give a simpler proof of a weaker re-
sult: width-2 layered planar #BWBP is at least as hard as TC0 (constant-depth majority

circuits).
Next we address the computational rigidity question. Since even an upper bound of NP

is not obvious, we would like to restrict the choice available in changing matrix entries. We
consider two variants:

1. In the input, a finite subset S ⊆ K is given. M has entries over S, and the changed
entries must also be from S; rank computation continues to be over K. (For instance,
we may consider Boolean matrices, so S = {0, 1}, while rank computation is over Z.)
It is easy to see that this variant is indeed in NP , and in NC if K is a field and
k ∈ O(1).

2. In the input, a bound θ is given. We require that the changes be bounded by θ; we
may apply the bound to each change, or to the total change, or to the total change
per row/column. (See for instance [Lok95].) This version has close connections with
another well-studied area called linear interval equations which arises naturally in the
context of control systems theory (see [Roh96]).

We obtain tighter lower and upper bounds for some of these questions. We obtain a
completeness result of C=L when k ∈ O(1) in the first variant, of NP when r = n in the
second variant, and of C=L when r = n in the general case. The table below summarizes the
results.

K, S ⊂ K restriction bound
(if –, then S = K)
Z or Q, {0,1} in NP

Z or Q, {0,1} k ∈ O(1) C=L-complete
Z or Q k ∈ O(1) C=L-hard
Q r = n C=L-complete

witness-search in LGapL

Z r = n and k = 1 in LGapL

Z or Q bounded rigidity NP-hard
Z or Q bounded rigidity, r = n NP-complete
Z or Q bounded rigidity, r = n, k = 1 In PL, and C=L-hard

Table 2: Bounds on rigid when k ∈ O(1) or r = n

Obtaining explicit bounds on the rigidity of special matrices is surprisingly elusive, and
thus has received a lot of attention. A rare case where a closed-form expression has been
obtained for rigidity is full-1s lower triangular matrices [PV91]. (The rareness of matching,
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or even close, lower and upper bounds, correlates well with the lack of upper bounds on the
computational version of rigidity.) In Section 6 we consider an extension of this result to
full-1s extended lower triangular (elt) matrices (the first diagonal above the main diagonal
can be non-zero). It is worthwhile noting that this is not as restrictive as it sounds: it is
known that determinant/permanent computation of elt matrices is as hard as the general
case, see [AAM03, Li92]. Even with this small extension in the input structure, we cannot
obtain a closed-form expression; however, we show lower and upper bounds differing by a
small additive factor.

2 Preliminaries

The rank of a square matrix (we consider only square matrices in this paper) is the maximum
number of linearly dependent rows or columns in it. For an integer matrix, its rank is the
same whether computed over Z or Q.

L and NL denote languages accepted by deterministic and nondeterministic logspace
classes respectively, and FL is the class of logspace-computable functions. #L is the class
of functions that count the number of accepting paths of an NL machine. GapL is the
class of functions that count the difference between the number of accepting and rejecting
paths of an NL machine. Computing the determinant over Z or Q is complete for GapL .
In contrast, computing the permanent is complete for # P , the class of functions counting
accepting paths of an NP machine.

The exact counting logspace class C=L bears the same relationship to GapL as NL to
# L ; a language L is in C=L iff it consists of exactly those strings where a certain GapL

function is zero. The languages

singular(K) = {M | Over K, M is not full rank}

rank bound(K) = {(M, r) | Over K, rank(M) < r}

for K = Z or Q are complete for C=L [ABO99]. (Note that for any type of matrices, and
any complexity class C, C-hardness of singular implies C-hardness of rank bound.)

We consider the following circuit classes. NC1 is the class of languages with polynomial
size logarithmic depth Boolean circuits. #NC1 is the class of functions computed by similar
arithmetic circuits (gates compute + and ×.) AC0 (TC0) is the class of languages with
polynomial size constant depth unbounded fanin Boolean circuits, where gates compute
and, or, not (and majority). For more details, see [Vol99].

The rigidity function, and its decision version, are as defined below1. (Here support(N) =
#{(i, j) |N(i, j) 6= 0}.) Lemma 1, first observed by Valiant, is folklore.

RM (r)
def
= inf

N
{support(N) : rank(M + N) < r}

rigidK = {(M, r, k) | RM (r) ≤ k}

1In much of the rigidity literature, rank(M +N) ≤ r is required. We use strict inequality to be consistent
with the definition of rank bound from [ABO99].
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Lemma 1. Over any field F, RM(r + 1) ≤ (n − r)2.

3 Computing the rank for special matrices

Computation of rank is intimately related to computation of the determinant. Mulmuley
[Mul87] showed that over arbitrary fields (and also over Z), rank can be computed in NC ,
with the primitives being the field operations.

The following is easy to see: We include a proof for completeness.

Proposition 2. The languages rank bound(Z) and singular(Z) remain C=L-hard even
if the instances are restricted to be symmetric 0-1 matrices.

Proof. Let A′ be the symmetric matrix

[

0 A
AT 0

]

. Since rank(A′) = 2(rank(A)), rank bound(Z)

remains C=L-hard when restricted to symmetric matrices. Further, determinant remains
GapL hard even the matrices are restricted to be 0-1 (see for instance [Tod91]). Thus
singular remains C=L-hard even when restricted to 0-1 matrices. Since M is in singular

if and only if (M, n) is in rank bound if and only if (M ′, 2n) is in rank bound, it follows
that rank bound(Z) remains C=L-hard for symmetric 0-1 matrices as well.

However, we do not know similar hardness for determinant. While it remains GapL

hard for 0-1 matrices, it is not clear that there are GapL -hard symmetric instances.
We now consider an additional restriction. A matrix M is said to be diagonally dominant

if for every i, |mi,i| ≥
∑

j 6=i |mi,j|. (If all the inequalities are strict, then M is said to be
strictly diagonally dominant.) We show:

Theorem 3. singular(Z) and rank bound(Z) restricted to non-negative diagonally dom-
inant symmetric matrices are L-complete. The hardness is via uniform TC0-computable
many-one reductions.

Proof. To show this, we exploit a very nice connection between such matrices and certain
associated graphs defined as follows. For a non-negative symmetric diagonally-dominant ma-
trix M , the support graph GM is the undirected graph GM = (V, EM) where V = {v1, . . . vn},
and EM = {(vi, vj) | i 6= j, mi,j > 0} ∪ {(vi, vi) | mi,i >

∑

i6=j mi,j} The following is shown
in [Dah99] for R, and clearly also holds for Q.

Lemma 4 ([Dah99]). Let M be a non-negative symmetric diagonally dominant matrix of
order n over Q or R. Then rank(M) = n− c, where c is the number of bipartite components
in the support graph GM .

Note: the presence of a self-loop means a component is non-bipartite.
Membership in L : Now, given a matrix M satisfying the stated conditions, it is straight-
forward to construct the support graph GM . By [AG00, NTS95, Rei05], checking whether
two vertices belong to the same component in an undirected graph, counting the number
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of components, and checking bipartiteness of a named component are all in L . Hence, by
Lemma 4, rank(M) can be computed in L .
Hardness: The reduction is from undirected forest accessibility UFA, which is L-complete
and remains L -hard even when the graph has exactly 2 components [CM87].

Let G, s, t be an instance of UFA, where G has two trees. We construct a new graph
G′ = (V ′, E ′) as follows: take two disjoint copies of G. Add two new vertices u and v with
self-loops. Connect u to both copies of t and v to both copies of s.

If there is an s ; t path ρ in G, then G′ has three components: the copies of the
component containing s and t join up, while the copies of the other component remain
disconnected (and hence bipartite). The new joined up component is not bipartite due to
the loops at u and v. Hence G′ has exactly two bipartite components.

If there is no s ; t path in G, then G′ has two components: the copies of the component
containing s join up, as also the copies of the component containing t. Both components are
non-bipartite due to the loops at u and v.

To complete the proof, we need to produce a matrix M such that G′ is its support graph.
We construct M as follows:

For each i 6= j mi,j =

{

1 if (i, j) ∈ E ′

0 otherwise

For each i mi,i =

{

1 +
∑

j 6=i mi,j if (i, i) ∈ E ′

∑

j 6=i mi,j otherwise

M can be constructed from G by a uniform TC0 circuit. From Lemma 4, M is singular if
and only if there is an s ; t path in G.

Note that in the above construction, s ;G t =⇒ rank(M) = n − 2, and s 6;G t =⇒
rank(M) = n. By omitting the self-loop at v, we get one bipartite component when there
is no s, t path in G, and two if there is a path. Thus M is necessarily singular, and testing
whether (M, n − 1) is in rank bound(Q) is L -hard. This shows that the hardness of
rank bound for such matrices is not derived from the hardness of testing singularity alone.

Also note that though rank for these matrices can be computed in L , we do not know
how to compute the exact value of the determinant itself. In a brief digression, we note the
following: if a matrix is to have no trivial (all-zero) rows, and yet be diagonally dominant,
then it cannot have any zeroes on the diagonal. How restrictive is this requirement? In
general, it isn’t too much so, as we show below. However, we do not know of a many-one
reduction.

Lemma 5. For every GapL function f and every input x, f(x) can be expressed as det(M)−
1, where M has no zeroes on the diagonal. Further, M can be obtained from x via projections.

Proof. Consider Toda’s proof [Tod91] for showing that determinant is GapL hard (see also
[ABO99, MV97]). Given any GapL function f and input x, it constructs a directed graph
G with self-loops at every vertex except a special vertex s. G also has the property that
every non-trivial cycle (not a self-loop) in G passes through s. If A is the adjacency matrix
of G, then the construction satisfies f(x) = det(A). Now consider the matrix B obtained
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by adding a self-loop at s. What additional terms does det(B) have that were absent in
det(A)? Such terms must correspond to cycle covers using the self-loop at s; i.e. cycle covers
in G \ {s}. But G \ {s} has no non-trivial cycles, so the only additional cycle cover is all
self-loops, contributing a 1. Thus det(B) = 1 + det(A), and B is the required matrix.

In Theorem 3, if we relax the condition of non-negativity, then the hardness of course
continues to hold (but we do not know how to show membership in L ). Via a somewhat
different reduction, we show that for such matrices, L -hardness of singular holds even for
matrices whose determinant is known to be in {0, 1}.

Theorem 6. singular(Z) for symmetric diagonally dominant matrices is L -hard, even
when restricted to instances with 0-or-1 determinant.

Proof. As in the proof of Theorem 3, we begin with an instance (G, s, t) of UFA where G has
exactly two components. Add edge (s, t) to obtain graph H . By the matrix-tree theorem,if
A is the Laplacian matrix of H (defined below), and B is obtained by deleting the topmost
row and leftmost column of A, then det(B) equals the number of spanning trees of H .

ai,i = the degree of vertex i in H
ai,j = −1 if i 6= j and (i, j) is an edge in H
ai,j = 0 if i 6= j and (i, j) is not an edge in H

Clearly, A is diagonally dominant (in fact, for each i, the constraint is an equality); also,
since H is an undirected graph, A is symmetric.

Now the number of spanning trees in H is 1 if s 6;G t (H itself is a tree) and is 0 if
s ;G t (H still has two components).

Continuing further along restricting matrices, we consider the simplest form of the ma-
trices considered in Theorem 3, namely non-negative diagonal matrices. Clearly, the rank is
now the number of non-zero entries. Checking whether an entry is zero can be done by a sin-
gle AND gate which looks at the negated literals in that entry. Since polylog thresholds are
in AC0 [RW91], it follows that not just singularity, but also instances (M, r) of rankbound

where r is within a polylog additive (subtractive) factor of 0 (or n, respectively) are in fact
in AC0. rank bound(Z) itself, for such matrices, is in TC0. Also, the determinant can
be computed in TC0 since it merely involves iterated multiplication. On the other hand, an
instance x1 . . . xn of the TC0-complete problem co -majority can be written as the instance
(D(x), n/2) of rank bound(Z). (D(x) is the matrix obtained by placing the vector x on
the diagonal and placing zeroes elsewhere.) Similarly, an instance a1, . . . , an of iterated mul-
tiplication (n n-bit numbers) can be recast as such a determinant by placing the numbers
on the diagonal. Thus

Theorem 7. rank bound(Z) and determinant, restricted to diagonal matrices, are TC0-
complete. The hardness does not require negative entries.

This is another instance where rank bound does not derive its hardness from the sin-
gularity threshold; it is in fact (provably) harder than singular. (The first instance is in
the Note after Theorem 3; however, in that case, singular is also equally hard.)
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Another restriction we consider is tridiagonal matrices: mi,j 6= 0 =⇒ |i − j| ≤ 1.
While we do not know the complexity of rank bound or singular here, we can show
that determinant and permanent are in GapNC1. It is known that #BWBP ⊆ #NC1 ⊆
GapNC1 = GapBWBP, see [CMTV98]. We obtain bounded width branching programs which
are also layered planar, and hence are exactly the G-graphs referred to in [AAB+99]. Count-
ing paths in G-graphs may be simpler than GapNC1 due to planarity. However [AAB+99]
(see also [All04]) shows that it is hard for NC1.

Theorem 8. Computing the permanent of a non-negative tridiagonal matrix over Z can
be reduced to counting paths in a planar BWBP . The permanent and determinant of a
tridiagonal matrix over Z can be computed in GapNC1.

Proof. Let Ai be the top-left submatrix of A of order i, and let Xi and Yi denote its permanent
and determinant respectively. We have the following recurrences:

X0 = Y0 = 1 X1 = Y1 = a1,1

Xi = ai,iXi−1 + ai−1,iai,i−1Xi−2 Yi = ai,iYi−1 − ai−1,iai,i−1Yi−2

When all entries are 0-1, then the branching program for Xn has width 2 and can be drawn
in a layered planar fashion (see Figure 1). When the entries are larger, each edge here can
be replaced by a width-3 gadget with the appropriate number of paths in a standard way,
giving width 5. If there are negative entries, or when we are computing the determinant, we
need to either allow negative weights, or double the width and lose planarity.

◦s 1 //

a11

��1
11

11
11

11
11

1 ◦X0 ◦Xi−2

ai−1,i

//◦
ai,i−1

//◦
1

//◦
Xi

1
//◦

1
//◦

ai+1,i+1

��1
11

11
11

11
11

1
1

//◦
Xi // //◦

Xn=t

◦
X1

◦
Xi−1

1 //◦ 1 //◦

ai,i

FF 1 //◦
Xi−1

ai,i+1 //◦
ai+1,i //◦ 1 //◦

Xi+1

Figure 1: Width-2 branching program for tridiagonal 0-1 permanent

4 Complexity results on rigidity

We now study the decision version of rigidity rigidK, and also its restriction rigidK,S

defined below, where the matrices can have entries only from S ⊆ K.

rigidK,S =

{

(M, r, k) |
M over S, ∃M ′ over S :

rank(M ′) < r ∧ support(M − M ′) ≤ k

}
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We will mostly consider S to be either all of K, or only B = {0, 1}. We also consider the
complexity of rigid when k is fixed, via the following language:

rigidK,S(k) = {(M, r) | (M, r, k) ∈ rigidK,S}

The language rigidZ(0) is nothing but rank bound(Z), and hence by [ABO99] is com-
plete for C=L. When k > 0, we can still obtain some bounds provided S is finite. We have
the following completeness result for one such case.

Theorem 9. For each k, rigidZ,B(k) is complete for C=L.

Proof. Membership: We show that for each k, rigidZ,B(k) is in C=L. An instance
(M, r) is in rigidZ,B(k) if there is a set of 0 ≤ s ≤ k entries of M , which, when flipped,

yield a matrix of rank below r. The number of such sets is bounded by Σk
s=0

(

n

s

)

= t ∈

nO(1). Let the corresponding matrices be denoted M1, M2 . . .Mt; these can be generated
from M in logspace. Now (M, r) ∈ rigidZ,B(k) ⇐⇒ ∃i : (Mi, r) ∈ rank bound(Z). Hence

rigidZ,B(k) ≤log
dtt rank bound(Z). Since rank bound(Z) is in C=L, and since C=L is closed

under logspace disjunctive truth-table reductions [AO96], it follows that rigidZ,B(k) is in
C=L.
Hardness: To show a corresponding hardness result, we first need the following lemma,
which is folklore. we put down a self-contained proof here for completeness.

Lemma 10. Over any field F, for any two matrices M and N of the same order,

support(M − N) = 1 =⇒ |rank(M) − rank(N)| ≤ 1

Proof. Let rank(M) = r and let V be a set of r linearly independent row vectors of M . Let
M and N differ at position (i, j). There are two possibilities.
Case (vi /∈ V ): Changing vi does not change V , so rank(N) ≥ k. The change could leave vi

dependent on V , or make it independent; the dependence of other rows on V is unaffected.
So rank(N) ≤ k + 1.
Case (vi ∈ V ): If all row vectors outside V are spanned by V \ {vi}, then changing vi cannot
increase rank, and can decrease it by at most 1. So k − 1 ≤ rank(N) ≤ k. If there is a row
vector v outside V that is independent of V \ {vi}, then V ′ = (V ∪{v}) \ {vi} spans all rows
outside V ′. (This property requires a field as we may need to invert an element to make V ′

a basis.) Now, vi /∈ V ′, so by the previous case, k ≤ rank(N) ≤ k + 1.

Though this Lemma may not hold for rings in general, it does hold for Z.
The hardness for rigidZ,B(0) holds because singular remains C=L-hard even when

restricted to 0-1 matrices. Hardness for all the languages mentioned in the lemma also
follows from this fact, and from the following claim:

(1) M ∈ singular(Z) =⇒ (M ⊗ Ik+1, n(k + 1) − k) ∈ rigidZ,B(0) ⊆ rigidZ,B(k)

(2) M 6∈ singular(Z) =⇒ (M ⊗ Ik+1, n(k + 1) − k) 6∈ rigidZ(k)
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Here ⊗ denotes tensor product. Note that rank(M ⊗ Ik+1) = (k + 1)rank(M). To see the
claim, observe that if M ∈ singular(Z), then rank(M) ≤ n − 1 and so rank(M ⊗ Ik+1) ≤
(k + 1)(n− 1) < n(k + 1)− k. If M 6∈ singular(Z), then rank(M ⊗ Ik+1) = n(k + 1). Thus
we want to reduce the rank by at least k + 1. By Lemma 10, we need to change at least
k + 1 entries.

Observe that this result also holds for any finite S, even if S is not fixed a priori but
supplied explicitly as part of the input. The ≤log

dtt reduction will range over, for each choice
of s changes as described above, a set of s choices from S, and produce the corresponding
matrix. (For implicit representations of S, this may not work, even if S is finite, since we
need the changed entries to have polynomial sized representation in terms of the input size.)

The hardness results above were obtained essentially by exploiting the hardness of testing
singularity. Therefore we now consider the complexity of rigid at the singular-vs-non-
singular threshold, i.e. when r = n.

From Lemma 1 we know that over any field F, (M, n, k) is in rigid whenever k ≥ 1. And
(M, n, 0) is in rigid if and only if M ∈ singular(F). So the complexity of deciding this
predicate over Q is already well understood. We then address the question of how difficult
it is to come up with a witnessing matrix.

Theorem 11. Given a non-singular matrix M over Q, a singular matrix N satisfying
support(M − N) = 1 can be constructed in LGapL.

Proof. For each (i, j), let M(i, j) be the matrix obtained from M by replacing mi,j with an
indeterminate x. Then det(M(i, j)) is of the form ax + b, and a and b can be determined
in GapL (see for instance [AAM03]). Since RM(n) = 1, there is at least one position (i, j)
where the determinant is sensitive to the entry, and hence a 6= 0. Setting mi,j to be −b/a
gives the desired N .

Another question that arises naturally is the complexity of rigid at the singularity thresh-
old over rings. Note that Lemma 1 does not necessarily hold for rings. For instance, changing
one entry of a non-singular rational matrix M suffices to make it singular. But even if M is
integral, the changed matrix may not be integral, and over Z, RM (n) may well exceed 1. (It

does, for the matrix

[

2 3
5 7

]

.) Thus, the question of deciding RM (n) over Z is non-trivial.

We show:

Theorem 12. Given M ∈ Zn×n, deciding if (M, n, k) is in rigid(Z) is (1) trivial for k ≥ n,
(2) C=L complete for k = 0, and (3) in LGapL for k = 1.

Proof. The first part holds because zeroing out an entire row always gets singularity. The
second part merely says that singular(Z) is C=L-complete. The third part follows from
the proof of Theorem 11 and additionally checking the integrality of b/a.

In particular, the third result in this theorem implies that if over Z, RM(n) = 1 for a
non-singular matrix M , and if N is the witnessing matrix, then the single non-zero entry
in N has size polynomially bounded in that of M . However, if RM(n) > 1 we do not know
such a size bound.
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5 Computing Bounded Rigidity

We now consider the bounded norm variant of rigidity described in Section 1. Namely,
changed matrix entries can differ from the original entries by at most a pre-specified amount
θ. Note that over Q, this still does not imply an a priori polynomial-size bound on the
changed entries.

First, we formally define the functions / languages of interest. The norm rigidity ∆M(r)
and bounded rigidity RM (r, θ),as defined in [Lok95], and the decision version, are

∆M (r)
def
= inf

N

{

∑

i,j

|ni,j|
2 : rank(M + N) < r

}

RM (r, θ)
def
= inf

N
{support(N) : rank(M + N) < r, ∀i, j : |ni,j| ≤ θ}

b-rigidK = {(M, r, k, θ) | RM(r, θ) ≤ k}

The following lemma shows that the bounded rigidity functions can behave very differently
from the standard rigidity function.

Lemma 13. For any ε ≥ 0, any n, and any (sufficiently large) m, there is an n × n
matrix with m-bit entries such that RM(n) = 1, ∆M(n) = Θ(4m), and the bounded rigidity
RM(n, mε) is undefined.

Proof. Let M be an n×n diagonal matrix M with mi,i = 2m and mi,j = 0 for i 6= j. Clearly,
RM(n) = 1; just zero out any diagonal entry. This involves a norm change of 4m. Can M be
made singular by a smaller norm-change, even allowing more entries to be changed? Recall
the definition of strict diagonal dominance from Section 3. We invoke the Levy-Desplanques
theorem (see for instance Theorem 2.1 in [MM64]) that says that the determinant of a
strictly diagonally dominant matrix is non-zero. Now, a total norm-change less than 4m will
not destroy strict diagonally dominance, and the matrix will remain non-singular. Hence
∆M(n) = 4m, and RM (n, mε) is undefined.

Thus there are cases when RM(r, θ) is undefined. This motivates the following question.
Given a matrix M , a rank r and θ how difficult is it to check whether RM(r, θ) is defined?
We show the following:

Theorem 14. Given a matrix M ∈ Qn×n, and a rational number θ > 0,

1. Testing if RM(n, θ) is defined is NP-complete.

2. Given k, testing if RM(n, θ) is at most k is NP-complete.

(In other words, deciding b-rigidK is NP -hard, even when r = n and k = n2, and is in
NP when r = n.)
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Proof. To begin with, notice that, RM(r, θ) is defined if and only if RM(r, θ) ≤ n2. Therefore
it suffices to show hardness for (1) and an NP algorithm for (2).

We use notation and some results from the linear interval equations literature. For two
matrices A and B, we say that A ≤ B if for each i,j, Aij ≤ Bij . For A ≤ B, the interval of
matrices [A, B] is the set of all matrices C such that A ≤ C ≤ B. An interval is said to be
singular if it contains at least one singular matrix; otherwise it is said to be regular.
Membership: Theorem 2.8 of [PR93] establishes that checking singularity of a given inter-
val matrix is in NP.

Now given M , θ and k, we want to test whether RM(n, θ) is at most k. In NP , we
guess k positions (p1, q1), (p2, q2), . . . (pk, qk) and define ∆pmqm

= θ for all 1 ≤ m ≤ k and 0
elsewhere. Now let A = M − ∆ and A = M + ∆. Then the interval [A, A] is singular iff
RM(n, θ) ≤ k, and this singularity can be tested in NP .
Hardness: We start with the maximum bipartite subgraph problem: Given an undirected
graph G = (V, E), with n vertices and m edges and a number k, check whether there is
bipartite subgraph with at least k edges. This problem is known to be NP-complete (see
[GJ79]). In [PR93], there is a reduction from this problem to computing the radius of non-
singularity, defined as follows: Given a matrix A, its radius of non-singularity d(A) is the
minimum ε > 0 such that the interval [A − εJ, A + εJ ] is singular, where J is the all-1s
matrix. We sketch the reduction of [PR93] below and observe that it yields NP -hardness
for our problem as well.

Given an instance G, k of the maximum bipartite subgraph problem, we define the matrix
N as,

Nij =







−1 if i 6= j and i and j are adjacent in G
2m + 1 if i = j

0 otherwise

Notice that since N is diagonally dominant, by Levy-Desplanques theorem (see for instance
Theorem 2.1 in [MM64]), N is invertible. Let M = N−1.

By Theorems 2.6 and 2.2 of [PR93],
(G, k) is a Yes instance ⇐⇒ 1/d(M) ≥ (2m + 1)n + 4k − 2m

⇐⇒ d(M) ≤ θ = 1
(2m+1)n+4k−2m

⇐⇒ the interval [M − θJ, M + θJ ] is singular
⇐⇒ RM (n, θ) is defined.

In the appendix, we give a self-contained proof of these implications, specialising the
proofs of Theorems 2.1, 2.2 and 2.6 from [PR93] to this case.

Unravelling the NP algorithm described in the membership part above, and its proof of
correctness, is illuminating. Essentially, what is established in [Roh94] and used in [PR93]
is the following:

Lemma 15 ([Roh94]). If an interval [A, B] is singular, i.e. the determinant vanishes for
some matrix C within the bounds A ≤ C ≤ B, then the determinant vanishes for a matrix
D ∈ [A, B] which, at all but at most one position, takes an extreme value (dij is either aij

or bij).
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In particular, this implies that there is a matrix in the interval whose entries have rep-
resentations polynomially long in that of A and B. This is because let D be the matrix
claimed to exist as above, and let k, l be the (only) position where akl < dkl < bkl. The
other entries of D match those of A or B and hence are polynomially bounded anyway. Now
put a variable x at k, l to get matrix Dx. Its determinant is a univariate linear polynomial
αx + β which vanishes at x = dkl. Now α and β can be computed from Dx in GapL , and
hence are polynomially bounded. If α = 0, then β = 0 and the polynomial is identically
zero. Otherwise, the zero of the polynomial is −β/α. Either way, there is a zero with a
polynomially long representation.

In [Roh94], the above lemma is established as part of a long chain of equivalences con-
cerning determinant polynomials. However, it is in fact a general property of arbitrary
multilinear polynomials, as we show below.

Lemma 16 (Zero-on-an-Edge Lemma). Let p(x1 . . . xt) be a multilinear polynomial over
Q. If it has a zero in the hypercube H defined by [`1, u1], . . . [`t, ut], then it has a zero on an
edge of H, i.e. a zero (a1, . . . , at) such that for some k, ∀(i 6= k), ai ∈ {`i, ui}.

Proof. The proof is by induction on the dimension of the hypercube. The case when t = 1
is vacuously true, since H is itself an edge. Consider the case t = 2. Let p(x1, x2) be
the multilinear polynomial which has a zero (z1, z2) in the hypercube H ; `i ≤ zi ≤ ui for
i = 1, 2. Assume, to the contrary, that p has no zero on any edge of H . Define the univariate
polynomial q(x1) = p(x1, z2). Since q(x1) is linear and vanishes at z1, p(`1, z2) and p(u1, z2)
must be of opposite sign. But the univariate linear polynomials p(`1, x2) and p(u1, x2) do not
change signs on the edges either, and so p(`1, u2) and p(u1, u2) also have opposite sign. By
linearity of p(x1, u2), there must be a zero on the edge x2 = u2, contradicting our assumption.

Let us assume the statement for hypercubes of dimension less than t. Consider the
hypercube of dimension t and the polynomial p(x1, . . . xt). Let (z1 . . . zt) be the zero inside
the hypercube. The multilinear polynomial r corresponding to p(x1, . . . xn−1, zt) has a zero
inside the (t − 1)-dimensional hypecube H ′ defined by intervals [`1, u1], . . . [`t−1, ut−1]. By
induction, r has a zero on an edge of H ′. Without loss of generality, assume that this zero
is (z′1, α2 . . . αt−1) where αi ∈ {`i, ui}. Thus the polynomial q(x1, xt) = p(x1, α2 . . . αt−1, xt)
has a zero in the hypercube defined by intervals [`1, u1], [`t, ut]. Hence the base case applies
again, completing the induction.

The hard instance that we get in Theorem 14 is a matrix with a rational entries and the
bound θ is also a rational number. If M is such a matrix, we can produce a matrix N with
the same rank by multiplying each entry by ` where ` is the lcm of the denominators of the
entries. RM(r, θ) = RN(r, `θ). Thus, theorem 14 hold for integer matrices too.

The matrices that are produced in the above reduction are all symmetric. Rohn [Roh94]
considered the case when the interval of matrices under consideration is symmetric; that is
both the boundary matrices are symmetric. Notice that the interval can still contain non-
symmetric matrices. He proved that in such an interval, if there is a singular matrix, then
there must be a symmetric singular matrix too.

Analogous to Theorem 9, we consider the complexity of b-rigidK when k ∈ O(1).

13



Theorem 17. b-rigidK is C=L-hard for each fixed choice of k, and remains hard when r
is restricted to be n. When k = 1 and r = n, it is in PL .

Proof. For any k, (M, n, k, 0) ∈ b-rigidK ⇐⇒ M is singular; hence C=L-hardness.
To see the PL upper bound, let θ = p

q
. For each element (i, j), define the the (i, j)th

element as variable x and then write the determinant as ax + b. Thus, if |x| = | b
a
| ≤ p

q
for at

least one such (i, j) pair, we are done. This is equivalent to checking if (bq)2 ≤ (ap)2. a and
b can be written as determinants, hence (ap)2 and (bq)2 are GapL functions, and comparison
of two GapL functions can be done in PL. Since PL is closed under disjunction, the entire
computation can be done in PL.

6 Rigidity of full-1s ELT matrices

In this section, we consider the result of Pudlak and Vavrin [PV91] giving a closed-form
expression for the rigidity of full-1s lower triangular matrices, and attempt to extend it to full-
1s extended lower triangular (elt) matrices. (An elt matrix is one where mi,j 6= 0 =⇒ j ≤ i+1.
A full-1s elt matrix ELm of order m is an elt matrix satisfying j ≤ i + 1 =⇒ mi,j = 1. )
While our upper and lower bounds do not match, they differ only by a small additive factor.

Theorem 18. Given n and r such that r ≤ n − 2, define the following quantities: k =
⌊

n−r−1
2r+1

⌋

; δ = n − r − k(2r + 1); Γ = (k+1)
2

(n − r + δ); ` =
⌊

n−r
2r+1

⌋

. Now, over any field F,

1. If n ≤ 3r, then RELn
(r + 1) = n − r − 1.

2. If n ≥ 3r + 1, then Γ ≤ RELn
(r + 1) ≤ Γ + ` − 1.

Proof. Our lower bound proof has two phases: the first follows the lower bound proof of
[PV91], using the fact that deleting row i and column i + 1 of ELm yields ELm−1 provided
i 6= m, and the second phase raises this lower bound by 1 when n = 3r + 1. Our upper
bound proof directly mimics that of [PV91].

Upper Bound: Recall that ` =
⌊

n−r
2r+1

⌋

; now define τ = n − r − (2r + 1)`. We will show
that

RM(r) ≤
(` + 1)

2
(n − r + τ) + ` − 1

From this, we can obtain the upper bound claimed in the theorem. When n ≤ 3r, it is
obvious. When n ≥ 3r + 1, consider two cases:

Case 1: ` = k. In this case, τ = δ. Then Γ = (k+1)
2

(n − r + δ) = (`+1)
2

(n − r + τ).

Case 2: ` = k + 1. In this case, τ = 0, δ = 2r + 1, and n = 2r` + r + ` = δ` + r. Then

Γ = (k+1)
2

(n − r + δ)

= (`+1)
2

(n − r + δ) − 1
2
(n − r + δ)

= (`+1)
2

(n − r + τ) + (`+1)
2

(δ) − 1
2
(δ` + δ)

= (`+1)
2

(n − r + τ)

14



Now we establish the upper bound in terms of ` and τ .
We start with a full-1 ELT matrix ELn×n. The rank of the matrix is n−1 to begin with.

We identify r linearly independent rows Rj1, . . . Rjr
which we will keep intact, so the rank of

the resulting matrix is still at least r. We will change each of the other rows to one of these
rows by changing some entries. But to minimise the number of entries changed, we adopt
the following general strategy used in [PV91] for Tn. Let n0 be the first set of rows which
we will explicitly make zero. Similarly, n2i−1 is the number of rows just above Rji

which are
changed to Rji

by changing the appropriate 0s to 1s, and n2i is the number of rows below
the row Rji

which are changed to Rji
by changing the appropriate 1s to 0s. Now the total

number of changes is a function of these ni’s, as described below, and the natural idea for
minimizing the number of changes is to make the contribution of each ni roughly equal. In
particular, this evenly spaces out the rows to be preserved. In detail:

# of changes in n0-block =
∑n0

t=1(t + 1) = n0(n0+3)
2

# of changes in n2i−1-block =
∑n2i−1

t=1 t = n2i−1(n2i−1+1)
2

# of changes in n2i-block =
∑n2i

t=1 t = n2i(n2i+1)
2

)

# of changes in n2r-block = n2r − 1 +
∑n2r−1

t=1 t = (n2r+2)(n2r−1)
2

and we want to minimize the total number of changes.
It can be seen that the optimal choice to achieve this would be to make all the ni’s equal,

except n0 which should be one less. This can happen when τ = 2r; we set n0 = `, ni = ` +1
for i ≥ 1. When τ < 2r, some of the blocks other than n0 will also have size ` rather than
` + 1. Thus the last τ blocks will have size ` + 1, and the first (2r + 1 − τ) will be of size `.
Thus,

Total number of changes = `(`+1)
2

(2r + 1) + ` − 1 + (` + 1)τ

= (`+1)
2

[n − r + τ ] + ` − 1

Lower Bound: The lower bound of (1) (when n ≤ 3r) is easy to see. For decreasing the
rank of any matrix, at least one entry has to be changed.

The lower bound when n ≥ 3r + 1 is a little more tricky. In [PV91], the corresponding
lower bound for lower triangular matrices Tn is obtained by first showing that if Tn + Bn

has rank bounded by r, then some row of Bn has at least k + 1 non-zero entries. Deleting
this row and column yields Tn−1 + Bn−1 also of rank bounded by r. Applying this argument
repeatedly, the total number of changes is bounded by a certain sum, yielding the result.
Our proof follows the same outline, and differs in essentially two places: (a) deleting any
row i and column i + 1 of ELn yields ELn−1. (b) at n = 3r + 1 a tighter bound is possible.

Given r, for each n we define

kn,r =

⌊

n − r − 1

2r + 1

⌋

δn,r = n − r − kn,r(2r + 1)

Thus kn,r(2r + 1) + r + 1 ≤ n ≤ kn,r(2r + 1) + 3r + 1. The value of kn,r remains unchanged
for 2r + 1 successive values of m, during which δm,r ranges over 1 to 2r + 1.
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Notice that if r + 2 ≤ n ≤ 3r + 1, there is a row with at least 1 change. Now, for a
general n, assuming that ELn + Bn has rank bounded by r, the following lemma shows that
Bn has reasonable row-wise density.

Lemma 19. Let r ≤ n − 2, and let Bn be a matrix such that rank(ELn + Bn) ≤ r. Let
k = kn,r, δ = δn,r. Then there exists a row in Bn with at least (k + 1) non-zeroes.

Proof. Assume to the contrary that every row of Bn (possibly other than row n) has fewer
non-zeroes than required. Let An = ELn + Bn. The idea is to choose a set S of r + 1 rows
which exclude row n, are linearly independent in ELn, and are linearly dependent in An,
and to then show that one of the rows from S in Bn has many non-zeroes. We choose S as
follows:

S = {k, k + (2k + 1), . . . , k + r(2k + 1)}

Since rank(An) ≤ r, the rows indexed by S are linearly dependent in An; hence for some
non-empty subset S ′ of S, we have non-zero αj ’s satisfying

∑

j∈S′

αjaj = 0

and hence
∑

j∈S′

αjlj = −
∑

j∈S′

αjbj

Here aj , lj, bj refer to the jth row vectors of An, ELn and Bn respectively. By our as-
sumption, the vector on the RHS has at most s′k non-zero entries (s′ = |S ′|). Exploiting
the special structure of the matrix, we show that the LHS has more non-zero terms than
the RHS and get a contradiction. Due to the structure of ELn, the LHS is of the form
(c1, c1 . . . c1, c2, c2 . . . c2, . . . cs′ . . . c s′, 0 . . . 0). Each section ci is of size at least 2k + 1, except
the c1 section, which has size at least k + 1. Two consecutive sections cannot be zeros since
αj 6= 0 for all j. And the last section necessarily has cs′ 6= 0.

Case 1: s′ is odd; s′ = 2`+1. Now consider the LHS. There are at least `+1 blocks of non-
zeroes. At most one of these (the first) is of size k+1; all the rest have size 2k+1. Hence
the number of non-zero elements is at least (2k+1)`+k+1 = (2`+1)k+`+1 > (2`+1)k.

Case 2: s′ is even; s′ = 2` with ` 6= 0. There are at least ` blocks of non-zeros. Furthermore,
if the first block is a non-zero block, then in fact there must be ` + 1 non-zero blocks.
Thus there are at least ` blocks of non-zeros of size 2k + 1. Thus the number of
non-zeroes is at least `(2k + 1) > 2`k.

Lemma 20. RELn
(r + 1) ≥ 2r + 1 when n = 3r + 1.
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Proof. Suppose not; assume that 2r changes suffice to bring the rank of E = EL3r+1 to r or
less. That is, there is a matrix B with at most 2r non-zero entries such that A = B + E has
rank r or less. Since there are 3r + 1 rows, at least r + 1 of them are left unchanged. These
must be linearly dependent to achieve rank(A) ≤ r, so they must include rows n − 1 and n
of E (all other rows of E are linearly independent) and exactly r − 1 other rows.

Let S be the set of preserved rows; |S| = r + 1 and {n − 1, n} ⊆ S. Let S ′ = [n] \ S;
then |S ′| = 2r. Each row of B in S ′ has at least one non-zero. But since there are only 2r
non-zeroes overall, each row in S ′ has, in fact, exactly one non-zero.

For each i ∈ S ′, row i is dependent on S and on S \ {n}. (With a single change per row,
no row cannot be zeroed out.) Let U = S \ {n} ∪ {i}. Then, as in the proof of Lemma 19,
there exists U ′ ⊆ U : i ∈ U ′, and for each u ∈ U ′, ∃αu 6= 0 such that

∑

u∈U ′

αueu = −
∑

u∈U ′

αubu.

The RHS has a single non-zero in row i since rows of B from S are zero. The LHS is of the
form is of the form (c1, c1 . . . c1, c2, c2 . . . c2, . . . cu′ . . . cu′ , 0 . . . 0) where cu′ 6= 0. To get just
one non-zero on the LHS, cu′ must be a block of size 1, and all other cj ’s must be zero. Thus
∃k : U ′ = {k − 1, k}, and αk + αk−1 = 0. But, we know that αi must be non-zero, since
this is the row we are expressing as a combination of rows in S. Hence U ′ must be either
{i − 1, i} or {i, i + 1}. Thus, for each row i ∈ S ′, either row i − 1 or row i + 1 is in S. So
rows in S can be separated by at most 2 rows of S ′. Since rows n = 3r + 1 and n − 1 = 3r
are in S, the 3rd last row of S is at least 3r − 3, the 4th last row of S is at least 3r − 6, and
so on; the first row of S is at least row 3. But then row 1 does not have a neighbouring row
in S, a contradiction.

Using these lemmas we can establish the lower bound. When n ≥ 3r+2, apply Lemma 19
repeatedly, eliminating one dense row each time, preserving the ELT structure, until n comes
down to 3r +1. Now Lemma 20 says that 2r +1 more changes are necessary. Thus the total
number of changes is at least δ(k + 1) + (2r + 1)k + (2r + 1)(k − 1) + . . . + (2r + 1)3 + (2r +

1)2 + (2r + 1) = (k+1)
2

(n − r + δ), giving the lower bound.

7 Discussion

The matrix rigidity problem over Z and Q is not even known to be in NP in general;
we have looked at various restricted cases. Over finite fields, however, as mentioned in the
introduction, even the general problem is in NP. One can also prove analogous results for
the restricted cases over finite fields. It is known [BDHM92] that singular(Fp) is complete
for ModpL (In fact, computing the exact value of the determinant over Fp is in ModpL.), and
that (see for instance [All04]), for any prime p, rank bound(Fp) is in ModpL. Using this,
and closure properties of ModpL, we can obtain analogues of Theorem 9 and 11 for finite
fields; (1) for each k, and each prime p, rigidFp

(k) is complete for ModpL, and (2) given a
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non-singular matrix, a singular matrix can be obtained by changing just one entry, and the
change can be computed in ModpL.

A major open problem here is to obtain a better upper bound (e.g., even decidability is
not known) for the computational rigidity question. A related question is that of minimum
rank completion, see for instance [BFS99]. Given a matrix with indeterminates at some
positions, find the smallest rank achievable under all possible instantiations of these variables.
1-MinRank is the special case of MinRank where each variable occurs at most once. The
rigidity question is easily seen to lie in NP(1-MinRank). However, the best known upper
bound for 1-MinRank is recursive enumerability.

We can also consider the complementary question to matrix rigidity, namely, computing
the number of entries that need to be changed to increase the rank above a given value.
Using arguments similar to the case of decreasing rank, we can obtain similar complexity
results in this case also. However, notably in this case, we not only have decidability, we also
have an upper bound of NP . This follows from the framework of maximum rank matrix
completion, which is known to be in P [Gee99, Mur93].
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Appendix

Detailed Proof for Hardness in Theorem 14

The hardness result in Theorem 14 is proved by using Theorems 2.1, 2.2 and 2.6 of [PR93].
For clarity, we present here a self-contained proof, obtained by specialising the results of
[PR93].

We want to show that deciding whether RM(r, θ) ≤ k, i.e. testing whether it is possible
to bring the rank of a matrix M below r by changing at most k entries, each by at most θ,
is NP-hard. The reduction is from the maximum bipartite subgraph problem which is known
to be NP-complete (see [GJ79]), and which is stated as follows: Given an undirected graph
G = (V, E), with n vertices and m edges, decide whether G has a bipartite subgraph with
at least k edges. Without loss of generality, assume that G has no isolated vertices.

Define the matrix N as,

Nij =







−1 if i 6= j and i and j are adjacent in G
2m + 1 if i = j

0 otherwise

Notice that since N is diagonally dominant, by Levy-Desplanques theorem (see for instance
Theorem 2.1 in [MM64]), N is invertible. Let M = N−1. We establish hardness by showing
the following:

Lemma 21. G has a bipartite subgraph of size k ⇐⇒ RM (n, 1
(2m+1)n+4k−2m

) ≤ n2.

We first show the =⇒ direction.
For any y, z ∈ {−1, +1}n, let N ′ = NyzT . Let λ be a non-zero eigen-value of N ′, with a

corresponding eigenvector x; thus N ′x = NyzT x = λx.

Claim 1: λ = zT Ny. Thus if N is rational, so is λ.
Proof: Since λx 6= 0, the scalar zT x is also non-zero. Premultiplying both sides by zT

and dividing by zT x, we get λ = zT Ny.

Claim 2: RM(n, 1/λ) ≤ n2, where M = N−1.
Proof: By Claim 1, (λI − NyzT )x = 0. Premultiplying by N−1 = M gives (λM −
yzT )x = 0 and hence (M − (1/λ)yzT )x = 0. Since y, z have only ±1 entries, changing
each entry of M by at most 1/λ suffices to reach the singular matrix M − (1/λ)yzT .

Claim 3: Vectors y ∈ {−1, +1}n are in bijection with cuts (S, S) in G, where S = {i | yi =
+1}. When N is obtained from G as above, then yTNy = 4δ(S) + (2m + 1)n − 2m,
where δ(S) is the size of the cut (S, S).
Proof:

yTNy =
∑

ij nijyiyj

=
∑

ij(−
1
2
nij)((yi − yj)

2 − 2)

= −1
2

∑

ij nij(yi − yj)
2 +

∑

ij nij

= 4(δ(S)) + (2m + 1)n − 2m
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The =⇒ direction of the lemma is immediate from Claims 1,2,3: a bipartite subgraph or
a cut with at least k edges corresponds to a vector y with yTNy ≥ 4k + (2m + 1)n − 2m
(Claim 3), yTNy is an eigenvalue of NyyT (Claim 1), so RM(n, 1/(yTNy)) ≤ n2 (Claim 2).
But RM(r, α) ≤ RM (r, β) for all α ≥ β, giving the implication.

Now we consider the ⇐= direction. Again, the proof is broken into several steps. Let
α = 1

4k+(2m+1)n−2m
.

Claim 4: If RM (n, α) ≤ n2, then there exist t ∈ [−1, +1]n, z ∈ {−1, +1}n such that M−αtzT

is singular.
Proof: Since RM(n, α) ≤ n2, there is a singular matrix A in the interval [M −Jα, M +
Jα], where J is the all-ones matrix. And there is a non-zero vector x such that
Ax = 0. Define vector z as zi = sgn(xi). (sgn(a) = +1 if a > 0, −1 otherwise.)
Define vector t as follows: ti = (Mx)i/αX where X =

∑

j |xj| =
∑

j zjxj . To see

that M − αtzT is singular, note that for each i, the ith element of (M − αtzT )x is
(Mx)i − αti

∑

j zjxj = 0. Next, let us see why each |ti| ≤ 1. Since A is in the
interval [M − Jα, M + Jα], there is a B such that A = M − B and each |bij| ≤ α.
Since Ax = 0, Mx = Bx. Now ti = (Mx)i/αX = (Bx)i/αX =

∑

j bijxj/αX. So
|ti| ≤

∑

j |bij||xj |/αX ≤
∑

j α|xj|/αX = 1.

Claim 5: If M −αtzT is singular for t, z as in Claim 4, then there is a y ∈ {−1, +1}n and a
β ∈ (0, 1] such that M − αβyzT is singular.
Proof: Consider n variables w1, . . . , wn and consider the the symbolic matrix M−αwzT .
Its determinant is a multilinear polynomial p(w1, . . . , wn), with a zero at t. Since
ti ∈ [−1, +1] for each i, we can use the Zero-on-an-Edge lemma (Lemma 16) to conclude
that p(.) has a zero a = (a1, . . . , an) on an edge of the corresponding hypercube. i.e.
there is a k ∈ [n] such that for each i 6= k, ai ∈ {−1, +1}, and ak ∈ [−1, +1]. Restricted
to this edge, p(.) is linear in wk, and so is either 0 everywhere on this edge or flips sign
exactly once, at a. Thus p(y)p(y′) ≤ 0, where y, y′ are the the endpoints of this edge
in the hypercube (and hence in {−1, +1}n).

Since M is invertible, det(M) 6= 0. Hence either p(y)det(M) ≤ 0 or p(y′)det(M) ≤ 0;
w.l.o.g. assume that p(y)det(M) ≤ 0. Now define a function φ as follows: φ(s) =
det(M − sαyzT ). Clearly, φ(0) = det(M) 6= 0 and φ(1) = p(y), so φ(0)φ(1) ≤ 0. But
φ is a continuous function, so it must have a zero, say β, in (0, 1]. Then 0 = φ(β) =
det(M − βαyzT ).

Claim 6: If M = N−1 where N is constructed from G as described in the reduction, then
the maximum eigen-value of NyzT , over all choices of y, z ∈ {−1, +1}n, is achieved
when y = z.
Proof: Let y, z ∈ {−1, +1}n with y 6= z. Let i be an index where y, z differ; w.l.o.g.,
let yi = −1, zi = +1. Let y′ be obtained from y by flipping yi to +1. We claim that
Ny′zT has a larger eigenvalue than NyzT . By Claim 1; the eigenvalues in question are
zT Ny and zT Ny′. By the special structure of N , we can see that changing yi from −1
to +1 gives an increase of 2m + 1 from the diagonal entry, and a decrease of at most
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2(n− 1) from the off-diagonal entry. Since G has no isolated vertices, m ≥ n/2 and so
there is an overall gain in going from y to y′.

Now we can establish the ⇐= direction: By Claims 4 and 5, M−αβyTz is singular, hence
(1/(αβ))NM −NyT z is singular, hence there is a non-zero vector x such that 1

αβ
x = NyzT x

and 1
αβ

is an eigenvalue of NyzT . Since 0 < β ≤ 1, this eigenvalue is at least 1/α. By Claim

6, there is a y′ such that y′T Ny ≥ 1/α = 4k + (2m + 1)n − 2m. Now Claim 3 yields the
desired bipartite subgraph.

Note that Claims 1,2,4,5, hold for any invertible matrix.
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