
Space Complexity vs. Query Complexity

Oded Lachish1, Ilan Newman2, and Asaf Shapira3

1 University of Haifa, Haifa, Israel, loded@cs.haifa.ac.il.
2 University of Haifa, Haifa, Israel, ilan@cs.haifa.ac.il. ?

3 School of Computer Science, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel. asafico@tau.ac.il. ??

Abstract. Combinatorial property testing deals with the following re-
laxation of decision problems: Given a fixed property and an input x, one
wants to decide whether x satisfies the property or is “far” from satisfy-
ing it. The main focus of property testing is in identifying large families
of properties that can be tested with a certain number of queries to
the input. Unfortunately, there are nearly no general results connecting
standard complexity measures of languages with the hardness of testing
them. In this paper we study the relation between the space complexity
of a language and its query complexity. Our main result is that for any
space complexity s(n) ≤ log n there is a language with space complexity
O(s(n)) and query complexity 2Ω(s(n)). We conjecture that this expo-
nential lower bound is best possible, namely that the query complexity
of a languages is at most exponential in its space complexity.
Our result has implications with respect to testing languages accepted
by certain restricted machines. Alon et al. [FOCS 1999] have shown that
any regular language is testable with a constant number of queries. It is
well known that any language in space o(log log n) is regular, thus imply-
ing that such languages can be so tested. It was previously known that
there are languages in space O(log n) which are not testable with a con-
stant number of queries and Newman [FOCS 2000] raised the question
of closing the exponential gap between these two results. A special case
of our main result resolves this problem as it implies that there is a lan-
guage in space O(log log n) that is not testable with a constant number
of queries, thus showing that the o(log log n) bound is best possible. It
was also previously known that the class of testable properties cannot be
extended to all context-free languages. We further show that one cannot
even extend the family of testable languages to the class of languages
accepted by single counter machines which is perhaps the weakest (uni-
form) computational model that is strictly stronger than finite automata.

1 Introduction

Basic Definitions: Combinatorial property testing deals with the following
relaxation of decision problems: given a fixed property P and an input x, one

? Research was supported by the Israel Science Foundation (grant number 55/03)
?? Research supported in part by a Charles Clore Foundation Fellowship.

Electronic Colloquium on Computational Complexity, Report No. 103 (2006)

ISSN 1433-8092

II

wants to decide whether x satisfies P or is “far” from satisfying the property.
This notion was first introduced in the work of Blum, Luby and Rubinfeld [5],
and was explicitly formulated for the first time by Rubinfeld and Sudan [16].
Goldreich, Goldwasser and Ron [8] have started a rigorous study of what later
became known as “combinatorial property testing”. Since then much work has
been done, both on designing efficient algorithms for specific properties, and on
identifying natural classes of properties that are efficiently testable. For detailed
surveys on the subject see [6, 15].

In this paper we focus on testing properties of strings, or equivalently lan-
guages 4. In this case a string of length n is ε-far from satisfying a property P if
at least εn of the string’s entries should be modified in order to get a string satis-
fying P . An ε-tester for P is a randomized algorithm that given ε and the ability
to query the entries of an input string, can distinguish with high probability
(say 2/3) between strings satisfying P and those that are ε-far from satisfying it.
The query complexity q(ε, n) is the maximum number of queries the algorithm
makes on any input of length n. Property P is said to be testable with a constant
number of queries if q(ε, n) can be bounded from above by a function of ε only.
For the sake of brevity, we will sometimes say that a language is easily testable
if it can be tested with a constant number of queries 5.

If a tester accepts with probability 1 inputs satisfying P then it is said to
have a 1-sided error. If it may err in both directions then it is said to have 2-sided
error. A tester may be adaptive, in the sense that its queries may depend on the
answers to previous queries, or non-adaptive, in the sense that it first makes all
the queries, and then proceeds to compute using the answers to these queries.
All the lower bounds we prove in this paper hold for the most general testers,
namely, 2-sided error adaptive testers.

Background: One of the most important questions in the field of property
testing is to prove general testability results, and more ambitiously to classify
the languages that are testable with a certain number of queries. While in the
case of (dense) graph properties, many general results are known (see [2] and
[3]) there are not too many general results for testing languages that can be
decided in certain computational models. Our investigation is more related to
the connection between certain classical complexity measures of languages and
the hardness of testing them, which is measured by their query complexity as
defined above. A notable result in this direction was obtained by Alon et al. [1]
were it was shown that any regular language is easily testable. In fact, it was
shown in [1] that any regular language can be tested with an optimal constant
number of queries Θ(1/ε) (the hidden constant depends on the language). It
has been long known (see exercise 2.8.12 in [14]) that any language that can

4 It will sometimes be convenient to refer to properties P of strings as languages L,
as well as the other way around, where the language associated with the property is
simply the family of strings that satisfy the property.

5 We note that some papers use the term easily testable to indicate that a language is
testable with poly(1/ε) queries.

III

be recognized in space 6 o(log log n) is in fact regular. By the result of [1] this
means that any such language is easily testable. A natural question is whether
it is possible to extend the family of easily testable languages beyond those with
space complexity o(log log n). It was (implicitly) proved in [1] that there are
properties in space O(log n) that are not easily testable, and Newman [13] raised
the question of closing the exponential gap between the o(log log n) positive
result and the Ω(log n) negative result. Another natural question is whether
the family of easily testable languages can be extended beyond those of regular
languages by considering stronger machines. Newman [13] has considered non-
uniform extensions of regular languages and showed that any language that
can be accepted by read-once branching programs of constant width is easily
testable. Fischer and Newman [7] showed that this can not be further extended
even to read twice branching programs of constant width. For the case of uniform
extensions, it has been proved in [1] that there are context-free languages that
are not easily testable.

In this paper we study a relation between the space complexity and the query
complexity of languages. As a special case of this relation we resolve the open
problem of Newman [13] concerning the space complexity of the easily testable
languages. We also show that the family of easily testable languages cannot be
extended to essentially any family of languages accepted by (uniform) machines
stronger than finite state automata.

Main Results: As we have discussed above there are very few known con-
nections between standard complexity measures and query complexity. Our first
and main investigation in this paper is about the relation between the space
complexity of a language and the query complexity of testing it. Our main re-
sult shows that in some cases the relation between space complexity and query
complexity may be at least exponential. As we show in Theorem 2 below, it
can be shown that there are languages, whose space complexity is O(log n) and
whose query complexity is Ω(n). Also, as we have previously noted, languages
whose space complexity is o(log log n) can be tested with Θ(1/ε) queries. There-
fore, the interesting space complexities s(n) that are left to deal with are in the
“interval” [Ω(log log n), O(log n)]. For ease of presentation it will be easier to
assume that s(n) = f(log log n) for some integer function x ≤ f(x) ≤ 2x. As in
many cases, we would like to rule out very “strange” complexity functions s(n).
We will thus say that s(n) = f(log log n) is space constructible if the function f
is space constructible, that is, if given the unary representation of a number x
it is possible to generate the binary representation of f(x) using space O(f(x)).

6 Throughout this paper we consider only deterministic space complexity. Our model
for measuring the space complexity of the algorithm is the standard Turing Machine
model, where there is a read only input tape, and a work tape where the machine
can write. We only count the space used by the work tape. See [14] for the precise
definitions. For concreteness we only consider the alphabet {0, 1}.

IV

Note that natural functions, such as s(n) = (log log n)2 and s(n) =
√

log n are
space constructible 7.

Theorem 1 (Main Result). For any (space constructible) function s(n) there
is a language in space O(s(n)), whose query complexity is 2Ω(s(n)).

We believe it will be interesting to further study the relation between these two
measures. Specifically, we raise the following conjecture claiming that the lower
bound of Theorem 1 is best possible:

Conjecture 1. Any language in space s(n) can be tested with query complexity
2O(s(n)).

As we have mentioned above, one of the steps in the proof of Theorem 1 is the
following result that may be of independent interest.

Theorem 2. There is a language in space O(log n), whose query complexity is
Ω(n).

To the best of our knowledge, the lowest complexity class that was previous
known to contain a language, whose query complexity is Ω(n), is P (see [9]). If
Conjecture 1 is indeed true then Theorem 2 is essentially best possible.

As an immediate application of Theorem 1 we deduce the following corollary,
showing that the class of easily testable languages cannot be extended from the
family of regular languages even to the family of languages with space complexity
O(log log n) thus answering the problem raised by Newman in [13] concerning
the space complexity of easily testable languages.

Corollary 1. For any k > 0, there is a language in space O(log log n), whose
query complexity is Ω(logk n).

Corollary 1 rules out the possibility of extending the family of easily testable
languages from regular languages, to the entire family of languages, whose space
complexity is O(log log n).

We turn to address another result, ruling out another possible extension
of regular languages. As we have mentioned before, it has been shown in [1]
that there are context-free languages that are not testable. Hence, a natural
question is whether there exists a uniform computational model stronger than
finite state machines and weaker than stack machines such that all the languages
that are accepted by machines in this model are testable. Perhaps the weakest
uniform model within the class of context-free languages is that of a deterministic
single-counter automaton (also known as one-symbol push-down automaton).
A deterministic single-counter automaton is a finite state automaton equipped
with a counter. The possible counter operations are increment, decrement and
do nothing, and the only feedback from the counter is whether it is currently 0 or
positive (larger than 0). Thus, such an automaton, running on a string ω reads an
input character at a time, and based on its current state and whether the counter

7 We use the standard notion of space constructibility, see e.g. [14]. Note that when
s(n) = (log log n)2 we have f(x) = x2 and when s(n) =

√
log n we have f(x) = 2x/2.

V

is 0, jumps to the next state and increments/decrements the counter or leaves
it unchanged. Such an automaton accepts a string ω if starting with a counter
holding the value 0 it reads all the input characters and ends with the counter
holding the value 0. It is quite obvious that such an automaton is equivalent
to a deterministic push-down automaton with one symbol stack (and a read-
only bottom symbol to indicate empty stack). This model of computation can
recognize a very restricted subset of context free languages. Still, some interesting
languages are recognized by such an automaton, e.g. D1 the first Dyck language,
which is the language of balanced parentheses. Formal definition and discussion
on variants of counter automata can be found in [18].

In this paper we also prove the following theorem showing that the family of
testable properties cannot be extended even to those accepted by single-counter
automata.

Theorem 3. There is a language that can be accepted by a deterministic single-
counter automaton and whose query complexity is Ω(log log n) even for 2-sided
error tests.

Combining Theorem 3 and Corollary 1 we see that the family of testable prop-
erties cannot be extended beyond that of the regular languages in two natural
senses.

Organization: The rest of the paper is organized as follows. In Section 2 we
prove the exponential relation between space complexity and query complexity
of Theorem 1. An important step in the proof is Theorem 2 that we also prove
in this section. Section 3 contains the proof of Theorem 3 showing that there are
languages accepted by counter machines that are not easily testable. Section 4
contains some concluding remarks and open problems. Due to space limitations
several proofs are omitted and will appear in the full version.

2 Space Complexity vs. Query Complexity

In this section we prove that languages in space s(n) may have query complexity
exponential in s(n). We start with an overview containing the important details
of the proof of Theorem 2 stating that there are languages in space O(log n) that
have query complexity Ω(n). We then show how to use Theorem 2 in order to
prove the general lower bound of Theorem 1.

Overview of the Proof of Theorem 2: The construction of the language L
in Theorem 2 is based on dual-codes of asymptotically good linear codes over
GF (2), which are based on Justesen’s construction [10]. We begin with some brief
background from Coding Theory (see [12] for a comprehensive background). A
linear code C over GF (2) is just a subset of {0, 1}n that forms a linear subspace.
The (Hamming) distance between two words x, y ∈ C, denoted d(x, y), is the
number of indices i ∈ [n] for which xi 6= yi. The distance of the code, denoted
d(C) is the minimum distance over all pairs of distinct words of C, that is

VI

d(C) = minx 6=y∈C d(x, y). The size of a code, denoted |C| is the number of words
in C. The dual-code of C, denoted C⊥ is the linear subspace orthogonal to C, that
is C⊥ = {y : 〈x, y〉 = 0 for all x ∈ C}, where 〈x, y〉 =

∑n

i=1 xiyi (mod 2) is the
dot product of x and y over GF (2). The generator matrix of a code C is a matrix
G whose rows span the subspace of C. Note, that a code is a family of strings of
fixed size n and our interest is languages containing strings of unbounded size.
We will thus have to consider families of codes of increasing size. The following
notion will be central in the proof of Theorem 2:

Definition 1. An infinite family of codes C = {C1, C2, . . .}, where Cn ⊆ {0, 1}n,
is said to be asymptotically good if there exist positive reals d and r such that

lim infn→∞
d(Cn)

n
≥ d and lim infn→∞

log(|Cn|)
n

≥ r.

We turn to discuss the main two Lemmas needed to prove Theorem 2. The first
is the following:

Lemma 1. Suppose C = {C1, C2, . . .} is an asymptotically good family of linear
codes. Then, for any infinite S ⊆ N , the language L =

⋃

n∈S C⊥
n has query

complexity Ω(n).

Lemma 1 is essentially a folklore result. Its (simple) proof relies on the known
fact that if C is a code with distance t then C⊥ is a t-wise independent family,
that is, if one uniformly samples a string from C⊥ then the distribution induced
on any t coordinates is the uniform distribution. Such families are sometimes
called in the coding literature orthogonal array of strength t, see [12]. The fact

that the codes in C satisfy
log(|Cni

|)

ni

≥ r implies that a random string is with high

probability far from belonging to C⊥
ni

. These two facts allow us to apply Yao’s
principle to prove that even adaptive testers must use at least Ω(n) queries in
order to test L for some fixed ε0. As pointed to us by Eli Ben-Sasson, Lemma 1
can also be proved by applying a general non-trivial result about testers for
membership in linear codes (see Theorem 3.3 in [4] for more details).

A well known construction of Justesen [10] gives an asymptotically good
family of codes. By exploiting the fact that for appropriate prime powers n, one
can perform arithmetic operations over GF (n) in space O(log n), one can use
the main idea of [10] in order to prove the following:

Lemma 2. There is an asymptotically good family of linear codes C = {C1, C2, . . .}
and a space O(log n) algorithm, with the following property: Given integers n, i
and j, the algorithm generates entry i, j of the generator matrix of Cn.

Apparently this result does not appear in any published paper. However, most
details of the construction appear in Madhu Sudan’s lecture notes [17]. Lemma 2
immediately implies that the language C⊥ = ∪C⊥

i is recognizable in O(log n)
space. Theorem 2 will follow by applying the above two lemmas. The proofs of
the above Lemmas will appear in the full version of the paper.

Proof of Theorem 1: In this subsection we apply Theorem 2 in order to
prove Theorem 1. To gain intuition for the construction, let us consider the case

VII

s(n) = log log n. Consider the following language Ls: a string x ∈ {0, 1, #}n is
in Ls if it is composed of n/ logn blocks of size log n each, separated by the #
symbol, such that each block is a word of the language of Theorem 2. It can
be shown that the query complexity of testing Ls is Ω(log n). As the language
of Theorem 2 is in space O(log n) it is clear that if the blocks of an input are
indeed or length O(log n), then we can recognize Ls using space O(log log n);
we just run the space O(log n) algorithm on each of the blocks, whose length is
O(log n). Of course, the problem is that if the blocks are not of the right length
then we may be “tricked” into using too much space. We thus have to add to
the language some “mechanism” that will allow us to check if the blocks are of
the right length. This seems to be difficult as we need to initiate a counter that
will hold the value n, but we need to do so without using more than O(log log n)
space, and just holding the value n requires Θ(log n) bits.

The following language comes to the rescue: consider the language B over
the alphabet {0, 1, ∗}, which is defined as follows: for every integer r ≥ 1, the
language B contains the string sr = bin(0) ∗ bin(1) ∗ . . . ∗ bin(2r − 1)∗, where
bin(i) is the binary representation of the integer i as a word of length r (that
is, including leading 0’s). Therefore, for every r there is precisely one string in
B of length (r + 1)2r. This language is the standard example for showing that
there are languages in space O(log log n) that are not regular (see [14] exercise
2.8.11).

Note that after verifying that a string x ∈ B we have an implicit representa-
tion of a number very close to log(|x|): this is just the number of entries before
the first ∗ symbol. This also gives us a value close to log log n, which we needed
in the previous example. The main idea for the proof of Theorem 1 is to “in-
terleave” the language B with a language consisting of blocks of length 2s(n) of
strings from the language of Theorem 2. For ease of presentation the language
we construct to prove Theorem 1 is over the alphabet {0, 1, #, ∗}. It can easily
be converted into a language over {0, 1} with the same asymptotic properties by
encoding each of the 4 symbols using 2 bits. The details follow.

Let L2 be the language of Theorem 2 and let s(n) satisfy s(n) = f(log log n)
for some space constructible function n ≤ f(n) ≤ 2n (recall the discussion
before the statement of Theorem 1). In what follows we will use the notation
Lk to denote the strings of some language L whose lengths is k, that is Lk =
L∩ {0, 1, #, ∗}k. Given the function f , we define a language Lf that we need in
order to prove Theorem 1 as the union of families of strings Xr of length n(r),
where for any r ≥ 1 we define

n(r) = 2(r + 1)2r.

A string x ∈ {0, 1, #, ∗}n(r) belongs to Xr if it has the following two properties:

1. The odd entries of x form a string from B (thus the odd entries are over
{0, 1, ∗}).

2. In the even entries of x, substrings between consecutive # symbols 8 form
a string from Lk

2 , where k = 2f(blog rc). The only exception is the last block

8 The first # symbol is between the first block and the second block.

VIII

for which the only requirement is that it would be of length at most k (thus
the even entries are over {0, 1, #}).

Note that the words from L2, which appear in the even entries of strings belong-
ing to Xr all have length 2f(blog rc). We now define

Lf =

∞
⋃

r=1

Xr . (1)

and
Kf = {2f(blog rc) : r ∈ N}. (2)

Observe that the words from L2, which appear in the even entries of strings
belonging to Lf , all have lengths that belong to the set Kf . With a slight abuse

of notation we now define the language Lf
2 as the subset of L2 consisting of

words with lengths from Kf . By Theorem 2, when taking Kf as the set S in the
statement of the theorem, we get the following claim:

Claim 1. For some ε0 > 0, every ε0-tester of Lf
2 has query complexity Ω(n).

We now turn to prove the main claims needed to obtain Theorem 1.

Claim 2. The language Lf has space complexity O(s(n)) = O(f(log log n)).

Proof: To show that Lf is in space O(f(log log n)) we consider the following
algorithm for deciding if an input x belongs to Lf . We first consider only the
odd entries of x and use the O(log log n) space algorithm for deciding if these
entries form a string from B. If they do not we reject and if they do we move
to the second step. Note, that at this step we know that the input’s length n is
2(r+1)2r for some r ≤ log n. In the second step we initiate a binary counter that
stores the number blog rc ≤ log log n. Observe, that the algorithm can obtain r
by counting the number of odd entries between consecutive ∗ symbols, and that
we need O(log log n) bits to hold r. We then construct a counter that holds the
value k = 2f(blog rc), using space O(f(blog rc)) by exploiting the fact that f is
space constructible 9. We then verify that the number of even entries between
consecutive # symbols is k, besides the last block for which we check that the
length is at most k. Finally, we run the space O(log n) algorithm of L2 in order
to verify that the even entries between consecutive # symbols form a string from
L2 (besides the last block).

The algorithm clearly accepts a string if and only if it belongs to Lf . Re-
garding the algorithm’s space complexity, recall that we use an O(log log n)
space algorithm in the first step (this algorithm was sketched at the beginning
of this section). Note, that after verifying that the odd entries form a string

9 More precisely, given the binary encoding of blog rc we form an unary representation
of blog rc. Such a representation requires O(log log n) bits. We then use the space
constructibility of f to generate a binary representation of f(blog rc) using space
O(f(blog rc)). Finally, given the binary representation of f(blog rc) it is easy to
generate the binary representation of 2f(blog rc) using space O(f(blog rc)).

IX

from the language B, we are guaranteed that r ≤ log n. The number of bits
needed to store the counter we use in order to hold the number k = 2f(blog rc) is
f(blog rc) ≤ f(log log n) as needed. Finally, as each block is guaranteed to be of
length 2f(blog rc), the O(log n) algorithm that we run on each of the blocks uses
space O(log(2f(blog rc))) = O(f(blog rc)) = O(f(log log n)) as needed.

Claim 3. The language Lf has query complexity 2Ω(f(log log n)) = 2Ω(s(n)).

Proof: By Claim 1, for some fixed ε0 every ε0-tester for Lf
2 has query complexity

Ω(n). We claim that this implies that every ε0
3 -tester for Lf has query complexity

2Ω(f(log log n)). Consider any ε0
3 -tester Tf for Lf and consider the following ε0-

tester T2 for Lf
2 : Given an input x, the tester T2 immediately rejects x in case

there is no integer r for which |x| = 2f(blog rc). Recall that the strings of Lf
2

are all taken from Kf as defined in (2). In case such an integer r exists, set
n = 2(r + 1)2r. The tester T2 now implicitly constructs the following string x′

of length n. The odd entries of x′ will contain the unique string of B of length
(r + 1)2r. The even entries of x′ will contain repeated copies of x separated by

the # symbol (the last block may contain some prefix of x). Note that if x ∈ Lf
2

then x′ ∈ Lf . On the other hand, observe that if x is ε-far from Lf
2 then x′ is

(ε
2 − o(1))-far from Lf , because in the even entries of x′, one needs to change

an ε-fraction of the entries in the substring between consecutive # symbols, in
order to get a words from Lf

2 (the o(1) term is due to the fraction of the string
occupied by the # symbols that need not be changed). This means that it is
enough for T2 to simulate Tf on x′ with error parameter ε0

3 and thus return
the correct answer with high probability. Of course, T2 cannot construct x′ “for
free” because to do so T2 must query all entries of x. Instead, T2 only answers
the oracle queries that Tf makes as follows: given a query of Tf to entry 2i − 1
of x′, the tester T2 will supply Tf with the ith entry of the unique string of B of
length (r + 1)2r. Given a query of Tf to entry 2i of x′, the tester T2 will supply
Tf with the jth entry of x, where j = i (mod |x| + 1). To this end, T2 will have
to perform a query to the entries of x.

We thus get that if Lf has an ε0
3 -tester making t queries on inputs of length

2(r+1)2r, then Lf
2 has an ε0-tester making t queries on inputs of length 2f(blog rc).

We know by Claim 1 that the query complexity of any ε0-tester of Lf
2 on inputs of

length 2f(blog rc) is Ω(2f(blog rc)). This means that the query complexity of T2 on
the inputs x′ we described must also be Ω(2f(blog rc)). The lengths of these inputs
is n = 2(r+1)2r. This means that r = log n−Θ(log log n) and therefore the query
complexity on these inputs is Ω(2f(blog rc))) = Ω(2f(log log n−2)) = 2Ω(f(log log n)),
where in the last equality we used the fact that f(x) ≤ 2x.

Proof of Theorem 1: Take the language Lf and apply Claims 3 and 2.

3 Testing Counter Machine Languages May Be Hard

In this section we define a language L that is decidable by a deterministic single-
counter machine and sketch an Ω(log log n) lower bound on the query complexity

X

of adaptive, 2-sided error testers for testing membership in L. We start with
defining the language L.

Definition 2. L is the family of strings s ∈ {0, 1}∗ such that s = 0k11k1 . . . 0ki1ki

(The integers ki are arbitrary). For every integer n we set Ln = L ∩ {0, 1}n.

We proceed with the proof of Theorem 3. First note that one can easily see that L
can be accepted by a deterministic counter automaton as defined in Subsection 1.
What we are left with is thus to prove the claimed lower bound on testing L.
Note that any adaptive tester of a language L ⊆ {0, 1}∗ with query complexity
q(ε, n) can be simulated by a non-adaptive tester with query complexity 2q(ε,n).
Therefore, in order to prove our Ω(log log n) lower bound, we may and will prove
an Ω(log n/ log log n) lower bound that holds for non-adaptive testers. To this
end we apply Yao’s minmax principle, which implies that in order to prove a
lower bound of Ω(log n/ log log n) for non-adaptive testers it is enough to show
that there is a distribution D over legitimate inputs (that is, inputs from Ln and
inputs that are 1

120 -far from Ln), such that for any non-adaptive deterministic
algorithm Alg, which makes o(log n/ log log n) queries, the probability that Alg
errs on inputs generated by D is at least 1/3.

One of the key ingredients needed to construct D are the following two pairs
of strings:

BAD` =

{

0` 1` 0` 1` 0` 1` 1` 1` 0` 0` 0` 1`,
0` 0` 1` 1` 0` 0` 0` 1` 0` 1` 1` 1`

}

GOOD` =

{

0` 0` 1` 1` 0` 0` 1` 1` 0` 0` 1` 1`,
0` 1` 0` 1` 0` 1` 0` 1` 0` 1` 0` 1`

}

where ` is a positive integer. Note, that each of the 4 strings is of length 12`. We
refer to strings selected from these sets as ’phrase strings’. We view the phrase
strings as being composed of 12 disjoint intervals of length `, which we refer to as
‘phrase segments’. By the definition of the ‘phrase strings’ each ‘phrase segment’
is an homogeneous substring (that is, all its symbols are the same).

Note that for any `, the 4 strings in BAD` and GOOD` have the following
two important properties: (i) The 4 strings have the same (boolean) value in
phrase segments 1, 4, 5, 8, 9 and 12. (ii) In the other phrase segments, one of the
strings in BAD` has the value 0 and the other has value 1, and the same applies
to GOOD`. The idea behind the construction of D and the intuition of the
lower bound is that in order to distinguish between a string chosen from BAD`

and a string chosen from GOOD` one must make queries into 2 distinct phrase
segments. The reason is that by the above observation, if all the queries belong
to segment i ∈ [12], then either the answers are all identical and are known in
advance (in case i ∈ {1, 4, 5, 8, 9, 12}), or they are identical and have probability
0.5 to be either 0 or 1, regardless of the set from which the string was chosen.

In the construction of the distribution D we select with probability 1/2
whether the string we choose will be a positive instance or a negative instance.
We select a positive instance by concatenating a set of strings uniformly and
independently selected from GOOD` with strings of the form 0t1t. We construct
negative instance in the same manner except that we replace the selection of

XI

strings from GOOD`, by selecting strings from BAD`. Thus, the only way to
distinguish between a positive instance and a negative instance is if at least two
queries are located in the same phrase string, but in different phrase segments.
The distribution D will be such that if the number of queries that is used is
o(log n/ log log n), then with high probability there will be no two queries in two
different phrase segments that belong to the same phrase string. As each phrase
string is selected independently this makes it impossible for the tester to know
whether the string is a positive instance or a negative one.

We assume in what follows that n ≥ 16. Let DN be a distribution over {0, 1}n

that is defined by the following process of generating a string α ∈ {0, 1}n:

1. Uniformly select an integer s ∈ [1, blognc − 3] and set ` = 2s .
2. Independently and uniformly select integers b ∈ [6`], until the first time that

the integers b1, . . . , br selected satisfy
∑r

i=1(2bi + 12`) ≥ n − 24`.
3. Independently and uniformly select r strings β1, . . . , βr ∈ BAD`.
4. For each i ∈ [r] set Bi = 0bi1biβi. We refer to Bi as the ith ‘block string‘.

We refer to the substring 0bi1bi as the ‘buffer string‘ and βi as the ’phrase’.
5. Set α = B1 · · ·Br0

t1t, where t = (n − ∑r

i=1 |Bi|)/2.

Let DP be a distribution over {0, 1}n that is defined in the same manner as DN

with the exception that in the third stage we select independently and uniformly
r strings β1, . . . , βr ∈ GOOD`. In the full version of the paper we use these two
distributions to prove the required lower bound on testing L.

4 Concluding Remarks and Open Problems

Our main result in this paper gives a relation between the space complexity and
the query complexity of a language, showing that the later may be exponential
in the former. We also raise the conjecture that this relation is tight, namely
that the query complexity of a language is at most exponential in its space
complexity. The results of this paper further show that the family of easily
testable languages cannot be extended beyond that of the regular languages in
terms of two natural senses; the space complexity of the accepting machine or
the minimal computational model in which it can be recognized.

An intriguing related question is to understand the testability of languages
with sublinear number of queries, that is poly(logn) or even just o(n) queries. In
particular, an intriguing open problem is whether all the context free languages
can be tested with a sublinear number of queries. Currently, the lower bounds
for testing context-free languages are of type Ω(nα) for some 0 < α < 1. It seems
that as an intermediate step towards understanding the testability of context-
free languages, it will be interesting to investigate whether all the languages
acceptable by single-counter automata can be tested with o(n) queries. We note
that the language we constructed in order to prove Theorem 3 can be tested
with poly(log n, ε) queries. See [11] for the full details.

Acknowledgments: The authors would like to thank Noga Alon, Madhu Sudan
and Eli Ben-Sasson for helpful discussions.

XII

References

1. N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable
with a constant number of queries, SIAM J. on Computing 30 (2001), 1842-1862.

2. N. Alon and A. Shapira, A characterization of the (natural) graph properties
testable with one-sided error, Proc. of FOCS 2005, 429-438.

3. N. Alon, E, Fischer, I. Newman and A. Shapira, A combinatorial characterization
of the testable graph properties: it’s all about regularity, Proc. of STOC 2006,
251-260.

4. E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3-CNF properties are hard
to test, Proc. of STOC 2003, 345-354.

5. M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to
numerical problems, JCSS 47 (1993), 549-595.

6. E. Fischer, The art of uninformed decisions: A primer to property testing, The
Computational Complexity Column of The Bulletin of the European Association
for Theoretical Computer Science 75 (2001), 97-126.

7. E. Fischer, I. Newman and J. Sgall, Functions that have read-twice constant width
branching programs are not necessarily testable, Random Struct. and Alg., in press.

8. O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to
learning and approximation, JACM 45(4): 653-750 (1998).

9. O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties,
Random Structures and Algorithms, 23(1):23-57, 2003.

10. J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE
Transcations on Information, 18:652-656, 1972.

11. O. Lachish and I. Newman, Languages that are Recognized by Simple Counter
Automata are not necessarily Testable, ECCC report TR05-152.

12. F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1997.

13. I. Newman, Testing of functions that have small width branching programs, Proc.
of 41th FOCS (2000), 251-258.

14. C. Papadimitriou, Computational Complexity, Addison Wesley, 1994.
15. D. Ron, Property testing, in: Handbook of Randomized Computing, Vol. II, Kluwer

Academic Publishers, 2001, 597–649.
16. R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applica-

tions to program testing, SIAM J. on Computing 25 (1996), 252–271.
17. M. Sudan, Lecture Notes on Algorithmic Introduction to Coding Theory, available

at http://theory.lcs.mit.edu/∼madhu/FT01/scribe/lect6.ps.
18. L.G. Valiant, M. Paterson, Deterministic one-counter automata, Journal of Com-

puter and System Sciences, 10 (1975), 340–350.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

