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Abstract

Let m,q > 1 be two integers that are co-prime and A be any subset of Z,,,. Let P
be any multi-variate polynomial of degree d in n variables over Z,,. We show that the
MOD,, boolean function on n variables has correlation at most exp(—(n/(m2m~1)%))
with the boolean function f defined by f(z) =1 iff P(x) € A for all z € {0,1}". This
improves on the bound of exp(—Q(n/(m2™)%)) obtained in the breakthrough work of
Bourgain [3] and Green et al. [9]. Our calculation is also slightly shorter than theirs.

Our result immediately implies the bound of exp(—(n/4%)) for the special case of
m = 2. This bound was first reported in the recent work of Viola [I1]. [II] states that
it is not clear how to extend their method to general m.

1 Introduction

Understanding the computational power of constant depth circuits made of MAJORITY
and MOD counting gates remains a very important and challenging open problem. Such
circuits of even depth three have surprising power. Allender [I] shows that all functions
in AC? (circuits using AND and OR gates of constant depth and polynomial size) can
be computed by quasi-polynomial sized circuits of type MAJ o MOD,;, o AND g1y10g(r) i-€-
circuits with a MAJORITY gate at the output, MOD,,, gates at the middle layer and AND
gates of poly-log fan-in at the input layer, where m > 1 is any integer. It is of considerable
interest to determine if such circuits are powerful enough to simulate the class ACCP i.e.
circuits of constant depth and poly-size that use MOD, gates in addition to AND and OR
gates, for any fixed g > 1.

The study of upper bounds on correlation of boolean functions computed by polynomials
of degree d over Z,, with a function f is motivated by the fact that such bounds yield a
lower bound on the size of circuits of type MAJ o MOD,,, o AND,; computing f. This is
done by using the so called e-discriminator lemma of Hajnal et al. [I0]. A long line of
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research (see [2, M [1, 8, [6]) sought to establish that polynomials of any constant degree d
over Z, have small correlation with MOD,, if m and ¢ are co-prime. In a breakthrough
work, Bourgain [3] showed an upper bound of exp(—(n/(m2™)?)) on the correlation, for
odd m. Green et al. [9] later modified Bourgain’s proof to show that the bound holds for
general m.

Our results Let m > 1 be any integer, and let P be any multi-linear polynomial of degree
d over Z,, in n variables. For any a € Z,,, let KF'(a) = {z € {0,1}"|P(z) = a}. Further,
for any integers ¢ > 0 and 0 < b < ¢, let

My, 4(b) = {z € {0,1}"] le = b(mod q)}
i=1

Our main technical lemma is the following :

Lemma 1 Let m,q > 1 be integers that are co-prime. Then, there exists a constant =
B(m,q) , such that for every polynomial P of degree d over Z,, and for each a € Z,, and
0 < b < g, the following holds:

K@) 0 M 0] = I (@) < e~ i) 1)

The above lemma can be used to derive upper bounds on correlation between functions
computed by polynomials over Z,,, and MOD,. A function f is computed by a polynomial
P over Z,, if there exists an accepting set A C Z,,, such that for all x € {0,1}", f(z) =
1 iff P(x) € A. The MOD, boolean function is defined in the following simple way :
MOD,(x) = 0 iff x € M,, 4(0). We define the correlation between boolean functions f and

g as the quantity below :

Corr(f.g) = | Prf(@) = 1lg(a) = 1] - Pr{f(z) = 1lg(z) = 0] @
where we are considering the uniform distribution over {0, 1}".

Theorem 2 For every pair of co-prime positive integers m,q > 1 and function f computed
by a polynomial of degree d over Z,, Corr(f, MOD,) is at most exp(—Q(m)).

2 Proof of bound

Following [B], we will write |KZ'(a) N M, 4(b)| as an exponential sum. Let e,,(y) denote

exp(zﬂ—nzy), where j is the complex square root of —1. Recall the following elementary fact :

% Z;n:_ol em(ay) is 1 if y = 0 and is 0 otherwise. Then, it can be easily verified that



K@ M0 - Y (4 mgem(a(m) ~a))(

z€{0,1}" a=0

Expanding the sum inside the second multiplicand and treating the case of 3 = 0
separately, one gets

1 1= 1 -
®=7 2 <a Zem(aw(az)—a))) toor 2L S8 Plem(—aa)eq(=bB)

vefonyn NS0 "™ e lm) Bela—{0}
(4)

where,

SiUa, B, P) = > em(aP(x)) - eq(B(z1 + - + 2n)) (5)

ze€{0,1}"

Observing that the first sum in (@) is simply %|Kf(a)| and |ep, (—aa)| = |eq(—bB)| =1,
we get :

[IKP (@) N Mg (b)) — §|Kp<a>|| <

n

— > 1S (a, 8, P)| (6)
" aetm pela {0}
Lemma [T gets proved by the bound on |Sy"%(«, 8, P)| provided below.

Lemma 3 For each pair of co-prime integers m,q > 1 there exists a constant = [(q)
such that for every polynomial P of degree d > 0 in Z,, and numbers o € [m], 5 € [q] — {0},
the following holds :

5790, 8, P)]| < exp( - L) )

(QO—l )d

Before we begin our formal calculations, we remind the reader that a slightly weaker
estimate of |S;"(«, 3, P)| was first obtained by Bourgain [3] and later generalized by Green
et al [9]. The case when P is a linear polynomial was essentially dealt with in ] and forms
our base case just as in [3, 9.

In order to explain the intuition behind our proof of Lemma Bl we develop some def-
initions and notations. Let f : {0,1}" — Z,, be any function. Consider any set I C [n].



Note that each binary vector v of length |I| can be thought of as a partial assignment to
the input variables of f by assigning v to the variables in I in a natural way. Let f/(*) be
the subfunction of f on variables not indexed in I induced by the partial assignment v to
variables indexed in I. For any sequence Y = {y1,...,y:} having ¢ boolean vectors from
{0,1}", let fy be the function defined by fy () = f(x) + Si_, f(x @ y;), where the sum
is taken in Z,,. Let I[Y] C [n] be the set of those indices on which every vector in Y is
zero and J[Y] be just the complement of I[Y]. Then, the following observation will be very
useful in our calculation :

Observation 4 Let P be a polynomial of degree d in n variables over Z,, for any m > 1.
Then, for each sequence Y of m — 1 boolean vectors in {0,1}", the polynomial P;[Y](U) s a

polynomial of degree d — 1 in variables from I[Y] for each vector v € {0,1}17V1

Proof:[of Lemma B] We drop the superscript from S;"? to avoid clutter in the following
discussion.We shall induce on the degree d of the polynomial. Our IH is that there exists a
positive real constant g1 < 1 such that for all polynomials R of degree at most d — 1 and
for all n > 0 we have |Sy(a, 5, R)| < 2"ul . The base case of d = 0 is easily verified and is
dealt with in earlier works on correlation. Note that g depends only on ¢. Our inductive
step will yield a relationship between pg_1 and pg that will also give us our desired explicit
bound of ().

As in [BL @], we raise S,, to its mth power. Our point of departure from the earlier
techniques, is to write (S,,)™ in a different way.

(Sn)m =

m—1

> > em(P(w)—i- ZP(x@yj)>eq(;xi+i2:;(xi@yil)+"'+2($i@yzm_l)

Yl ey 10,1} 2 (0,1} i=1

Let Y be the sequence of length m — 1 formed by a given set of vectors y',...,y™ 1.

We denote by u and v respectively the projection of x to I[Y] and J[Y]. Let ny and ny be
the cardinality of I[Y] and J[Y] (note that n; + ny =n) . Then, one can verify

®) =
Z Z €m (le,,..,ym—l(v))eq(nJ) Z em (PSI’[Y](U) (u))eq (m A Uz)
(9)

yl,.ym—1e{0,1}" ve{0,1}"J ue{0,1}71 =1



m=1 and polynomial

where lev“"ym_l is some polynomial that is determined by y!,...,y
P.

The key thing to note is that Observation llimplies Pé[Y} @ to be a polynomial of degree
at most d — 1 over u for every sequence Y = y!,...,y™ ! and every vector v. Thus, the
inside sum of (@) over the variable u can be estimated using our inductive hypothesis.
Noting that the number of sequences Y for which |Iy| = k is exactly (})(2™~! —1)""* and

using the triangle inequality with the binomial theorem, we get.

n n
n - —kon— 1 —pg—1
[Sul™ <> <k>(2m B P T 2"m<1—2mi_1> (10)
k=0

The rest of the calulation proceeds exactly as in Green et. al. [9]. We repeat it here for
the sake of self-containment. Taking the mth root of both sides of (), using the inequality
(1—x)Y/™ <1—2/mif 0 <z <1amdm > 1 after rearranging, we obtain

L — prg—1 > 1—M0d (1)
(m2m-1)

Substituting 8 = 1 — ug, one gets g < exp( — %) This immediately yields ()

m2m—1 )d
in Lemma Bl n

We now show that Theorem B follows from Lemma [ easily. Note that the argument we
present has been used in a slightly more general setting in [5] (see proof of their Lemma 3).

Proof: [of Theorem ] Let P be a polynomial of degree d computing f over Z,, with an
accepting set A. Then, using the definition of correlation as given in (), we can write

Corr(f,MOD,) < Z ‘ ljcr[P(x) =alx ¢ My 4(0)] — lzr[P(:C) =alr € Mmq(O)H (12)
acA

Since MOD,, is an almost balanced function i.e. for any b | Pr,[z € M, 4(b)] — %] = 2-0m)
we can rewrite ([2) as

RHS of (@) <

27000 4 (—L0) 37 [Pr{P(@) = aha ¢ May(0)] = (0= DPHP(@) = ana € My (0]
acA
(13)



which implies the following :

RHS of ([I3) <
9~Un) 4 (q_il) Y Y IPr[P(@) =aAw e Myy(b)] - Pr[P(x) = aAa € My (0)]
a€Abe[q]—{0}
(14)
Using the bound of () and the triangle inequality, we get
pn —Q

HS of < (2¢°m) - exp(— —————) + 279 1
RHS of (M) < (2¢"m) - exp( (mzm_l)d)Jr (15)
which gives us our bound. |
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