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Abstract

Let m, q > 1 be two integers that are co-prime and A be any subset of Zm. Let P
be any multi-variate polynomial of degree d in n variables over Zm. We show that the
MODq boolean function on n variables has correlation at most exp(−Ω(n/(m2m−1)d))
with the boolean function f defined by f(x) = 1 iff P (x) ∈ A for all x ∈ {0, 1}n. This
improves on the bound of exp(−Ω(n/(m2m)d)) obtained in the breakthrough work of
Bourgain [3] and Green et al. [9]. Our calculation is also slightly shorter than theirs.

Our result immediately implies the bound of exp(−Ω(n/4d)) for the special case of
m = 2. This bound was first reported in the recent work of Viola [11]. [11] states that
it is not clear how to extend their method to general m.

1 Introduction

Understanding the computational power of constant depth circuits made of MAJORITY
and MOD counting gates remains a very important and challenging open problem. Such
circuits of even depth three have surprising power. Allender [1] shows that all functions
in AC0 (circuits using AND and OR gates of constant depth and polynomial size) can
be computed by quasi-polynomial sized circuits of type MAJ ◦ MODm ◦ ANDpolylog(n) i.e.
circuits with a MAJORITY gate at the output, MODm gates at the middle layer and AND
gates of poly-log fan-in at the input layer, where m > 1 is any integer. It is of considerable
interest to determine if such circuits are powerful enough to simulate the class ACC0 i.e.
circuits of constant depth and poly-size that use MODq gates in addition to AND and OR
gates, for any fixed q > 1.

The study of upper bounds on correlation of boolean functions computed by polynomials
of degree d over Zm with a function f is motivated by the fact that such bounds yield a
lower bound on the size of circuits of type MAJ ◦ MODm ◦ ANDd computing f . This is
done by using the so called ε-discriminator lemma of Hajnal et al. [10]. A long line of
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research (see [2, 4, 7, 8, 6]) sought to establish that polynomials of any constant degree d
over Zm have small correlation with MODq if m and q are co-prime. In a breakthrough
work, Bourgain [3] showed an upper bound of exp(−Ω(n/(m2m)d)) on the correlation, for
odd m. Green et al. [9] later modified Bourgain’s proof to show that the bound holds for
general m.

Our results Let m > 1 be any integer, and let P be any multi-linear polynomial of degree
d over Zm in n variables. For any a ∈ Zm, let KP

n (a) = {x ∈ {0, 1}n|P (x) = a}. Further,
for any integers q > 0 and 0 ≤ b < q, let

Mn,q(b) = {x ∈ {0, 1}n|
n

∑

i=1

xi ≡ b (mod q)}

Our main technical lemma is the following :

Lemma 1 Let m, q > 1 be integers that are co-prime. Then, there exists a constant β =
β(m, q) , such that for every polynomial P of degree d over Zm and for each a ∈ Zm and

0 ≤ b < q, the following holds:

∣

∣|KP
n (a) ∩ Mn,q(b)| −

1

q
|KP

n (a)|
∣

∣ ≤ exp(−
βn

(m2m−1)d
) (1)

The above lemma can be used to derive upper bounds on correlation between functions
computed by polynomials over Zm and MODq. A function f is computed by a polynomial
P over Zm if there exists an accepting set A ⊆ Zm, such that for all x ∈ {0, 1}n, f(x) =
1 iff P (x) ∈ A. The MODq boolean function is defined in the following simple way :
MODq(x) = 0 iff x ∈ Mn,q(0). We define the correlation between boolean functions f and
g as the quantity below :

Corr(f, g) =
∣

∣ Pr
x

[f(x) = 1|g(x) = 1] − Pr
x

[f(x) = 1|g(x) = 0]
∣

∣ (2)

where we are considering the uniform distribution over {0, 1}n.

Theorem 2 For every pair of co-prime positive integers m, q > 1 and function f computed

by a polynomial of degree d over Zm, Corr(f,MODq) is at most exp(−Ω( n
(m2m−1)d )).

2 Proof of bound

Following [5], we will write |KP
n (a) ∩ Mn,q(b)| as an exponential sum. Let em(y) denote

exp(2πjy
m ), where j is the complex square root of −1. Recall the following elementary fact :

1
m

∑m−1
a=0 em(ay) is 1 if y = 0 and is 0 otherwise. Then, it can be easily verified that
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|KP
n (a) ∩ Mn,q(b)| =

∑

x∈{0,1}n

(

1

m

m−1
∑

α=0

em

(

α(P (x) − a)
)

)(

1

q

q−1
∑

β=0

eq

(

β(x1 + · · · + xn − b)
)

)

(3)

Expanding the sum inside the second multiplicand and treating the case of β = 0
separately, one gets

(3) =
1

q

∑

x∈{0,1}n

(

1

m

m−1
∑

α=0

em

(

α(P (x) − a)
)

)

+
1

mq

∑

α∈[m],β∈[q]−{0}

Sm,q
n (α, β, P )em(−aα)eq(−bβ)

(4)

where,

Sm,q
n (α, β, P ) =

∑

x∈{0,1}n

em(αP (x)) · eq

(

β(x1 + · · · + xn)
)

(5)

Observing that the first sum in (4) is simply 1
q |K

P
n (a)| and |em(−aα)| = |eq(−bβ)| = 1,

we get :

∣

∣|KP
n (a) ∩ Mn,q(b)| −

1

q
|KP

n (a)|
∣

∣ ≤
1

mq

∑

α∈[m],β∈[q]−{0}

|Sm,q
n (α, β, P )| (6)

Lemma 1 gets proved by the bound on |Sm,q
n (α, β, P )| provided below.

Lemma 3 For each pair of co-prime integers m, q > 1 there exists a constant β = β(q)
such that for every polynomial P of degree d > 0 in Zm and numbers α ∈ [m], β ∈ [q]−{0},
the following holds :

|Sm,q
n (α, β, P )| ≤ exp

(

−
βn

(m2m−1)d

)

(7)

Before we begin our formal calculations, we remind the reader that a slightly weaker
estimate of |Sm,q

n (α, β, P )| was first obtained by Bourgain [3] and later generalized by Green
et al [9]. The case when P is a linear polynomial was essentially dealt with in [4] and forms
our base case just as in [3, 9].

In order to explain the intuition behind our proof of Lemma 3, we develop some def-
initions and notations. Let f : {0, 1}n → Zm be any function. Consider any set I ⊆ [n].
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Note that each binary vector v of length |I| can be thought of as a partial assignment to
the input variables of f by assigning v to the variables in I in a natural way. Let f I(v) be
the subfunction of f on variables not indexed in I induced by the partial assignment v to
variables indexed in I. For any sequence Y = {y1, . . . , yt} having t boolean vectors from
{0, 1}n, let fY be the function defined by fY (x) = f(x) +

∑t
i=1 f(x ⊕ yi), where the sum

is taken in Zm. Let I[Y ] ⊆ [n] be the set of those indices on which every vector in Y is
zero and J [Y ] be just the complement of I[Y ]. Then, the following observation will be very
useful in our calculation :

Observation 4 Let P be a polynomial of degree d in n variables over Zm for any m > 1.

Then, for each sequence Y of m− 1 boolean vectors in {0, 1}n, the polynomial P
J [Y ](v)
Y is a

polynomial of degree d − 1 in variables from I[Y ] for each vector v ∈ {0, 1}|J [Y ]| .

Proof:[of Lemma 3] We drop the superscript from Sm,q
n to avoid clutter in the following

discussion.We shall induce on the degree d of the polynomial. Our IH is that there exists a
positive real constant µd−1 < 1 such that for all polynomials R of degree at most d− 1 and
for all n ≥ 0 we have |Sn(α, β,R)| ≤ 2nµn

d−1. The base case of d = 0 is easily verified and is
dealt with in earlier works on correlation. Note that µ0 depends only on q. Our inductive
step will yield a relationship between µd−1 and µd that will also give us our desired explicit
bound of (7).

As in [3, 9], we raise Sn to its mth power. Our point of departure from the earlier
techniques, is to write (Sn)m in a different way.

(Sn)m =

∑

y1,...,ym−1∈{0,1}n

∑

x∈{0,1}n

em

(

P (x) +

m−1
∑

j=1

P (x ⊕ yj)

)

eq

( n
∑

i=1

xi +

n
∑

i=1

(xi ⊕ y1
i ) + · · · +

n
∑

i=1

(xi ⊕ ym−1
i )

)

(8)

Let Y be the sequence of length m − 1 formed by a given set of vectors y1, . . . , ym−1.
We denote by u and v respectively the projection of x to I[Y ] and J [Y ]. Let nI and nJ be
the cardinality of I[Y ] and J [Y ] (note that nI + nJ = n) . Then, one can verify

(8) =

∑

y1,...,ym−1∈{0,1}n

∑

v∈{0,1}nJ

em

(

Qy1,...,ym−1

(v)
)

eq(nJ)
∑

u∈{0,1}nI

em

(

P
I[Y ](v)
Y (u)

)

eq

(

m

nI
∑

i=1

ui

)

(9)
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where Qy1,...,ym−1

is some polynomial that is determined by y1, . . . , ym−1 and polynomial
P .

The key thing to note is that Observation 4 implies P
I[Y ](v)
Y to be a polynomial of degree

at most d − 1 over u for every sequence Y = y1, . . . , ym−1 and every vector v. Thus, the
inside sum of (9) over the variable u can be estimated using our inductive hypothesis.
Noting that the number of sequences Y for which |IY | = k is exactly

(n
k

)

(2m−1 − 1)n−k and
using the triangle inequality with the binomial theorem, we get.

|Sn|
m ≤

n
∑

k=0

(

n

k

)

(2m−1 − 1)n−k2n−k2kµk
d−1 = 2nm

(

1 −
1 − µd−1

2m−1

)n

(10)

The rest of the calulation proceeds exactly as in Green et. al. [9]. We repeat it here for
the sake of self-containment. Taking the mth root of both sides of (10), using the inequality
(1 − x)1/m ≤ 1 − x/m if 0 ≤ x < 1 amd m > 1 after rearranging, we obtain

1 − µd ≥
1 − µd−1

m2m−1
≥

1 − µ0
(

m2m−1
)d

(11)

Substituting β = 1 − µ0, one gets µd ≤ exp
(

− β
(m2m−1)d

)

. This immediately yields (7)

in Lemma 3.

We now show that Theorem 2 follows from Lemma 1 easily. Note that the argument we
present has been used in a slightly more general setting in [5] (see proof of their Lemma 3).

Proof: [of Theorem 2] Let P be a polynomial of degree d computing f over Zm with an
accepting set A. Then, using the definition of correlation as given in (2), we can write

Corr(f,MODq) ≤
∑

a∈A

∣

∣Pr
x

[P (x) = a|x /∈ Mn,q(0)] − Pr
x

[P (x) = a|x ∈ Mn,q(0)]
∣

∣ (12)

Since MODq is an almost balanced function i.e. for any b |Prx[x ∈ Mn,q(b)] −
1
q | = 2−Ω(n),

we can rewrite (12) as

RHS of (12) ≤

2−Ω(n) +
( q

q − 1

)

∑

a∈A

∣

∣ Pr
x

[P (x) = a ∧ x /∈ Mn,q(0)] − (q − 1)Pr
x

[P (x) = a ∧ x ∈ Mn,q(0)]|

(13)
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which implies the following :

RHS of (13) ≤

2−Ω(n) +
( q

q − 1

)

∑

a∈A

∑

b∈[q]−{0}

|Pr
x

[P (x) = a ∧ x ∈ Mn,q(b)] − Pr
x

[P (x) = a ∧ x ∈ Mn,q(0)]|

(14)

Using the bound of (1) and the triangle inequality, we get

RHS of (14) ≤ (2q2m) · exp(−
βn

(m2m−1)d
) + 2−Ω(n) (15)

which gives us our bound.
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