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Abstract

We develop a new technique of proving lower bounds for the randomized communica-
tion complexity of boolean functions in the multiparty ‘Number on the Forehead’ model.
Our method is based on the notion of voting polynomial degree of functions and ex-
tends the Degree-Discrepancy Lemma in the recent work of Sherstov [24]. Using this
technique, we provide the first example of a function in AC0 that has nΩ(1) randomized
k-party communication complexity for any constant k. This proves that depth three cir-
cuits consisting of a MAJORITY gate at the output, gates computing arbitrary symmetric
function at the second layer and arbitrary gates of bounded fan-in at the base layer i.e.
circuits of type MAJ ◦ SYMM ◦ ANYO(1) cannot simulate the circuit class AC0 in sub-
exponential size. This is in contrast to the classical result of Yao and Beigel-Tarui that
shows that such circuits, having only MAJORITY gates, can simulate the class ACC0

in quasi-polynomial size when the bottom fan-in is increased to poly-logarithmic size i.e
ACC0 ∈ qpoly

(

MAJ ◦ MAJ ◦ MAJ(log n)O(1)

)

.

In the second part, we simplify the arguments in the breakthrough work of Bourgain [7]
for obtaining exponentially small upper bounds on the correlation between the boolean
function MODq and functions represented by polynomials of small degree over Zm, when
m, q ≥ 2 are co-prime integers. Our calculation also shows similarity with techniques used
to estimate discrepancy of functions in the multiparty communication setting. This results
in a slight improvement of the estimates of [7, 14]. It is known that such estimates imply
that circuits of type MAJ ◦ MODm ◦ ANDε log n cannot compute the MODq function in
sub-exponential size. It remains a major open question to determine if such circuits can
simulate ACC0 in polynomial size when the bottom fan-in is increased to poly-logarithmic
size.
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1 Introduction

Understanding the computational power of constant depth circuits made of MAJORITY and MOD
counting gates remains a very important and challenging open problem in theoretical computer
science. We do not even completely understand such circuits of depth three. It is however well
known that they have surprising power. A classical result of Allender [1] shows that all functions in
AC0 (circuits using AND and OR gates of constant depth and polynomial size) can be computed
by quasi-polynomial sized circuits of type MAJ ◦ MAJ ◦ MAJ(log n)O(1) i.e. circuits of depth three
having only MAJORITY gates in which the gates at the base layer are restricted to have polylog
fan-in. More surprisingly, the work of Yao [26] and Beigel-Tarui [6] shows that such circuits are
powerful enough to simulate the strictly bigger class ACC0 i.e. functions computable by circuits
of constant depth and poly-size that use MODq gates in addition to AND and OR gates, for any
fixed q > 1.

H̊astad and Goldmann [16] showed that if such depth three circuits were restricted to have
sub-logarithmic fan-in at the bottom layer, then they cannot simulate ACC0 in sub-exponential
size. This left open the question whether such restricted circuits, even when they have constant
fan-in at the bottom, could simulate AC0 in polynomial size. In fact until very recently, it was not
known whether depth two circuits of type MAJ◦MAJ could simulate AC0 in quasi-polynomial size.
Introducing a powerful Degree-Discrepancy Lemma to analyze two party communication games,
Sherstov [24] recently answered the depth two question in the negative. H̊astad and Goldman, on
the other hand, invoked a result of Babai, Nisan and Szegedy [4] for the stronger ‘Number on the
Forehead’ model of multiparty communication (introduced by [10]) to show their lower bound on
the size of depth three circuits computing the generalized inner product function.

The ‘Number on the Forehead’ model is a fascinating but poorly undertstood model of commu-
nication that is under intensive research (see [20]). Obtaining superpolylogarithmic lower bounds on
the number of bits needed to compute a function f by deterministic protocols for poly-logarithmic
number of players is enough to show that f is not in ACC0. The communication complexity of
simple functions like Disjointness or Pointer Jumping (see [5, 9]), is unknown even for three players.

In the first part of this paper, we show for every fixed k ≥ 2, there exists a function that is
computable by almost linear size AC0 circuits in depth three but requires nΩ(1) communication by
k-players in the (public-coin) randomized two sided error model as long as the players are required to
err with probability less that 1/2−ε and ε is quasi-polynomially small. Our construction is based on
the notion of the voting polynomial degree of boolean functions. This notion has ben recently used by
Sherstov [24] and in the past for obtaining circuit lower bounds (see [3, 18, 19]) and in computational
learning theory (see [17]). Let f be any boolean function (called the base function) on inputs of
length m having voting polynomial degree d. Let k > 0 be any number. We will create a function
Fk that takes as input a string x of length somewhat larger than m, and a set of bits that mask every
bit of x except some m bits that are left unmasked. Fk essentially computes f on the unmasked
bits. More precisely, define Fk : X ×S1×· · ·×Sk−1 → {0, 1}, where X ∈ {0, 1}Mk−1

and each Sj is
a m-element subset of [M ], in the following way: Fk(x, S1, . . . , Sk−1) = f(xi11,...,ik−1

1
, . . . , xi1m,...,ik−1

m
),

where Sj = {ij1, . . . , i
j
m}. We partition the inputs of Fk among the k-players in the following way:

Player 1’s forehead is assigned X and each of other k − 1 foreheads receive a distinct set Si. Let
the k-party randomized communication complexity of a function f with error probabilty 1/2 − ε
(in the two-sided error model) be denoted by Rε

k(f). We show the following:

Theorem 1 Let f , defined on inputs of length m, have voting degree d. For any k ≥ 2, define Fk

using f as before on inputs of length n = O(Mk−1), where M ≥ 2k(k − 1)em2. Then, Rε
k

(

Fk

)

=

Ω(d1/2k−1
+ log ε).
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We prove Theorem 1 by developing a new lower bound technique for the multiparty model that
should be of independent interest. The main ingredient of our technique is the following extension
of Sherstov’s Degree-Discrepancy Lemma:

Lemma 2 (Multiparty Degree-Discrepancy Lemma) Let f : {−1, 1}m → {−1, 1} have vot-

ing polynomial degree d. Then for any k ≥ 2, there exists a probability distribution λ such that for

M ≥ m,

(

disck,λ

(

Fk

)

)2k−1

≤
m

∑

j=d

(

(k − 1)m

j

)(

22k−1−1m

M

)j

(1)

Hence, for M ≥ 2k(k − 1)em2 and d > 2,

disck,λ

(

Fk

)

≤ 1

2d1/2k−1 (2)

Here disck,λ

(

Fk

)

denotes the discrepancy of Fk over k-cylinder intersections under the input dis-
tribution λ.

By considering a simple base function that was used by [24], we show that our k-wise masked
function Fk+1 has (nΩ(1)) k-party complexity whenever k is a constant. On the other hand, it is
simple to verify that Fk+1 is in AC0. It is the first example of a function in AC0 that is hard
for randomized mulitparty protocols. Let ANY represent an arbitrary gate and SYMM represent
a gate that computes an arbitrary symmetric function of its inputs. An established argument of
Hastad and Goldmann [16] can then be used to derive the following circuit consequence:

Corollary 3 Circuits of depth three of the type MAJ ◦ SYMM ◦ ANYk, for any fixed k cannot

simulate depth-three AC0 in sub-exponential size.

In particular, the above shows that Allender’s classic construction to simulate AC0 is reasonably
close to being optimal. In fact, Allender’s original construction shows that qpoly size circuits of
type MAJ ◦ MODm ◦ AND(log n)O(1) can simulate ACC0[p] for every prime p that divides m i.e.
circuits with MODp gates in addition to AND/OR gates. A long line of research (see for example
[8, 12, 13, 2]) seeks to show that such depth three circuits cannot simulate ACC0 in quasipoly size.
The so called ε-discriminator lemma of Hajnal et al.[15] implies that obtaining an exponentially
small upper bound on the correlation between a function f and and any boolean function that is
represented by a polynomial of poly-logarithmic degree over Zm, is enough to prove that f cannot
be computed in sub-exponential size by such depth three circuits. It is commonly believed that the
simple function MODq has small correlation with such low degree polynomials over Zm, if m and
q are co-prime.

In the second part of the paper, we simplify Bourgain’s breakthrough method [7, 14] of estimat-
ing the correlation between polynomials of degree d over Zm and MODq when (m, q) = 1. We argue
that the notion of discrepancy, suitably modified, can be used conveniently to obtain this estimate.
This approach also points out the similarities between the techniques used for estimating cylindri-
cal discrepancy in the communication setting and the techniques used for obtaining correlation.
Interestingly, our estimates for correlation are slightly better than previous estimates of [7, 14]. For
the special case of m = 2, they match the recent bounds obtained by Viola and Wigderson [25]. It
is not known if techniques of [25], based on Gower’s norm, can be extended to all m.
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2 Basic Notions

In the k-party ‘Number on the Forehead’ model of communication, k players wish to collaboratively
compute a function f on n input bits. The input bits are partitioned into k sets Y1, . . . , Yk ⊆ [n].
Each player Pi knows the value of all the input bits except the ones in Yi that are written on his
own forehead. In the deterministic model, players communicate (broadcast) bits according to a
fixed protocol by writing them on a public blackboard. The protocol specifies whose turn it is
to speak and what a player communicates is entirely determined by the communication history
until that point and what the player sees written on others’ forehead. The boolean output of the
protocol is just a function of the communication history at its termination. The cost of a protocol
is the number of bits that players communicate for the worst case input. The deterministic k-party
communication complexity of f , denoted by Dk(f) is the cost of the best k-party protocol for f .

In the (public coin) randomized model, players flip some coins and randomly select a determin-
istic protocol. Then they follow the deterministic protocol. Additionally, players are now allowed
to err. This means that some of the protocols that players choose may not produce the correct
output for all input instance. The cost of a randomized protocol is simply the maximum num-
ber of bits communicated by the players over all possible coin flips and over all possible input
instances. The k-party randomized communication complexity of f with error 1/2 − ε, denoted
by Rε

k(f) is the cost of the best protocol P that computes f with error at most 1/2 − ε i.e.
Pr[P(Y1, . . . , Yk) 6= f(Y1, . . . , Yk)] ≤ 1/2 − ε for all input assignments Y1, . . . , Yk.

The key combinatorial object that arises in the study of multiparty communication is a cylinder-

intersection. A k-cylinder in the ith dimension is a subset S of {−1, 1}Y1×···×Yk with the property
that membership in S is independent of the ith co-ordinate. A set S is called a cylinder-intersection
if S = ∩k

i=1Si, where Si is a cylinder in the ith dimension. Equivalently, every cylinder-intersection
can be viewed as a function φ : {−1, 1}Y1×···×Yn → {0, 1}, such that it can be factored as φ =
φ1 × · · · × φk, where φi(x1, . . . , xi, . . . , xk) = φi(x1, . . . , x

′
i, . . . , xk) for all x1, . . . , xk and x′

i.
An important measure, defined on boolean functions, is its discrepancy. With respect to any

probability distribution µ over {−1, 1}Y1×···×Yk and cylinder intersection φ, define

discφ
k,µ(f) =

∣

∣

∣

∣

Pr
µ

[

f(Y1, . . . , Yk) = 1 ∧ φ(Y1, . . . , Yk) = 1
]

− Pr
µ

[

f(Y1, . . . , Yk) = −1 ∧ φ(Y1, . . . , Yk) = 1
]

∣

∣

∣

∣

(3)

Since f is -1/1 valued, it is not hard to verify that equivalently:

discφ
k,µ(f) =

∣

∣

∣

∣

∑

Y1,...,Yk

f(Y1, . . . , Yk)φ(Y1, . . . , Yk)µ(Y1, . . . , Yk)

∣

∣

∣

∣

(4)

The discrepancy of f w.r.t µ, denoted by disck,µ(f) is maxφdiscφ
k,µ(f). For removing notational

clutter, we will often drop µ from the subscript when the distribution is clear from the context.
We now state the well-known connection between discrepancy and the randomized communication
complexity of a function:

Theorem 4 (see [4, 20]) Let 0 < ε < 1/2 be any real and k ≥ 2 be any integer. For every boolean

function f and distribution µ on inputs from Y1 × · · · × Yk,

Rε
k(f) ≥ log

(

2ε

disck,µ(f)

)

(5)
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In the first part, we will assume boolean functions are defined from {−1, 1}n into {−1, 1}. For
any S ⊆ [n], let χS represent the multilinear monomial function χS(x) =

∏

i∈S xi. Consider a
polynomial P over the reals i.e. P =

∑

S⊆[n] aSχS , where the coefficients aS are real numbers.

Then P is a voting representation of a boolean function f if f(x) = sign
(

P (x)
)

. For example,
polynomials P1(x) = x1 + · · ·+xn and P2(x) =

∏n
i=1 xi voting represent MAJORITY and PARITY

respectively. It is not hard to verify that all boolean functions can be voting represented by some
polynomial. The degree of a representation is simply the degree of the polynomial P involved
i.e. the largest integer k ≤ n such that there exists a set S of size k for which the coefficient aS

is non-zero. Thus, in our examples before, MAJORITY has a linear representation and that of
PARITY was n. The voting degree of a function f , denoted by deg(f), is the minimum degree
over all possible voting representations of f . [3, 22] are good sources to read about some basic
properties of voting representations. We state below the key result that we need here:

Theorem 5 (see [24]) For any boolean function f : {−1, 1}n → {−1, 1}, precisely one of the

following holds:

• deg(f) ≤ d.

• there exists a distribution µ over {−1, 1}n, such that for all |S| ≤ d, Ex∼µf(x)χS(x) = 0.

In particular, this means that if deg(f) ≥ d, then for any function g that depends on at most d− 1
variables, Ex∼µf(x)g(x) = 0.

A related measure on a pair of boolean functions g and f , called correlation and denoted by
Corr(g, f), was defined by [15]. This measure can be defined w.r.t any distribution over the cube,
but we will be solely interested in the uniform distribution for discussing correlation in this paper.
Let A ⊆ f−1(1) and B ⊆ f−1(0) be two subsets of the cube. Then,

CorrA,B(g, f) =
∣

∣ Pr
x

[g(x) = 1|x ∈ A] − Pr
x

[g(x) = 1|x ∈ B]
∣

∣ (6)

In the literature, g is said to ε-discriminate f , w.r.t. sets A,B if CorrA,B(g, f) ≥ ε. The
usefulness of this measure in proving circuit lower bounds comes from the following connection
made by [15]:

Lemma 6 (Discriminator Lemma) Consider a circuit C with a MAJORITY gate at its output

and s arbitrary sub-circuits, C1, . . . , Cs feeding into it. If C computes the function f , then for every

A ⊆ f−1(1), B ⊆ f−1(0), there exists a sub-circuit Ci that 1/s-discriminates f w.r.t A,B.

3 Multiparty Degree-Discrepancy Lemma

For the sake of exposition, we will prove Lemma 2 (stated in Introduction) for the case of three
players. The argument for the general case of k-players proceeds in an identical fashion and is given
in the Appendix.

Let boolean function f , defined over m input bits, have voting degree d. Then, let µ be
the distribution guaranteed to exist from Theorem 5 so that Ex∼µf(x)g(x) = 0 for any g that
depends on less than d variables. The function that we form out of our ‘base’ function f is
F3 : {−1, 1}M2 ×

(

{1,...,M}
m

)

×
(

{1,...,M}
m

)

→ {−1, 1}, with F3(x, S1, S2) = f(xi1,j1, . . . , xim,jm) where
S1 = {i1, . . . , im}, S2 = {j1, . . . , jm} are each m-element subsets of [M ]. We consider the partition
in which Players 1,2 and 3 get respectively x, S1 and S2 written on their foreheads. The probability
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distibution λ that we consider on the set of inputs is derived out of µ as follows: λ(x, S1, S2) =
µS1,S2(x)

(M
m)

2
2M2

−m
, where µS1,S2(x) = µ(xi1,j1, . . . , xim,jm). It is not hard to see that the denominator

in the expression of λ is just the right normalizing factor. Thus, the discrepancy of any cylinder
intersection φ = φ1(x, S1)φ2(x, S2)φ3(S1, S2) w.r.t λ can be represented as follows (using (4)):

discφ
3 (F3) =

∣

∣

∣

∣

∑

x,S1,S2

F3(x, S1, S2)φ1(x, S1)φ2(x, S2)φ3(S1, S2)λ(x, S1, S2)

∣

∣

∣

∣

(7)

Using the definition of λ, we change over to the more convenient expected value notation, with

(x, S1, S2) uniformly distributed over {−1, 1}M2 ×
(

[M ]
m

)2
:

discφ
3 (F3) = 2m

∣

∣

∣

∣

Ex,S1,S2F3(x, S1, S2)φ1(x, S1)φ2(x, S2)φ3(S1, S2)µS1,S2(x)

∣

∣

∣

∣

(8)

Clearly, using the fact that φ1 is 0/1 valued we get RHS of(8) ≤ 2mEx,S1Z where,

Z =

∣

∣

∣

∣

ES2

[

F3(x, S1, S2)φ2(x, S2)φ3(S1, S2)µS1,S2(x)
]

∣

∣

∣

∣

(9)

As in [4], we use Cauchy-Schwartz inequality i.e. (EZ)2 ≤ E(Z)2. Recall that (Ezf(z))2 =
Ez0,z1f(z0)f(z1), where z1, z2 are independent and identical copies of z. Noting that φ2 is 0/1
valued we get:

(discφ
3 (F3))

2 ≤ 22mEx,S2
0 ,S2

1

∣

∣

∣

∣

ES1

[

∏

`∈{0,1}

F3(x, S1, S2
` )µS1,S2

`
(x)φ3(S1, S2

` )

]∣

∣

∣

∣

(10)

where S2
0 , S2

1 are independent and identically distributed as S2. Using another round of Cauchy-
Schwartz and very similar argument, we finally obtain:

(discφ
3 (F3))

4 ≤ 24mES1
0 ,S1

1 ,S2
0 ,S2

1

∣

∣

∣

∣

Ex

[

∏

`,j∈{0,1}

F3(x, S1
j , S2

` )µS1
j ,S2

`
(x)

]
∣

∣

∣

∣

(11)

Consider any fixed S1
0 , S1

1 , S2
0 , S2

1 . The following claim ties in the voting polynomial degree d of f
to our argument. Let r = max{|S1

0 ∩ S1
1 |, |S2

0 ∩ S2
1 |}. Then,

Claim 7 If r is smaller than the voting degree d of f , the following holds:

Ex

[

∏

i,j∈{0,1}

F3(x, S1
i , S2

j )µS1
i ,S2

j
(x)

]

= 0 (12)

Proof: Wlog, let us assume that r = |S1
0 ∩ S1

1 |, t = |S2
0 ∩ S2

1 |, with t ≤ r. Further, again wlog
we assume S1

0 = S2
0 = {1, . . . ,m}, S1

1 = {1, . . . , r,m + 1, . . . , 2m − r} and S2
1 = {1, . . . , t,m +

1, . . . , 2m − t}. We will expand the product in the LHS of (12) in a convenient way. First note
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that F3(x, S1
i , S2

j ) depends on precisely m of the variables in x for each i, j. We will call this set
Zij . We will treat Z00 = {x1,1, · · · , xm,m} separately for reasons that will become clear shortly.

Z01 = {x1,1, · · · , xt,t, xt+1,m+1, · · · , xm,2m−t}
Y01 = {xt+1,m+1, · · · , xm,2m−t}

Z10 = {x1,1, · · · , xr,r, xm+1,r+1, · · · , x2m−r,m}
Y10 = {xm+1,r+1, · · · , x2m−r,m}

Z11 = {x1,1, · · · , xt,t, xt+1,m+1, · · · , xr,m+r−t, xm+1,m+r−t+1, · · · , x2m−r,2m−t}
Y11 = {xr+1,m+r−t+1, · · · , x2m−r,2m−t}

Define

g
(

x1,1, · · · , xr,r

)

=
∏

ij∈{0,1}2−{00}

EYij

[

f
(

Zij

)

µ
(

Zij

)

]

Then, one can easily verify that

LHS of (12) = Ex1,1,··· ,xm,m

[

f(x1,1, · · · , xm,m)µ(x1,1, · · · , xm,m) · g
(

x1,1, · · · , xr,r

)]

where, g is just a function of r variables x1,1, · · · , xr,r. Now invoking the property of µ from
Theorem 5, we immediately see that (12) evaluates to zero.

We make another claim whose short proof, based on the fact that µ is a probability distribution,
is given in the Appendix1:

Claim 8 For all fixed S1
0 , S1, 1, S2

0 , S2
1 and r = max{|S1

0 ∩ S1
1 |, |S2

0 ∩ S2
1 |},

∣

∣

∣

∣

Ex

[

∏

i,j∈{0,1}

F3(x, S1
i , S2

j )µS1
i ,S2

j
(x)

]
∣

∣

∣

∣

≤ 23r

24m
(13)

Claim 7 and Claim 8 shows that the inner expectation in (11) can be upper bounded by a function
of two numbers, namely |Si

0 ∩ Si
1|, for i = 1, 2. Using the definition for the outer expectation, we

obtain:

(discφ
3 (F3))

4 ≤
m

∑

j=d

23j
∑

j1+j2=j

Pr
[

|S1
0 ∩ S1

1 | = j1 ∧ |S2
0 ∩ S2

1 | = j2

]

(14)

Recalling the fact that S1
0 , S1

1 , S2
0 , S2

1 are being chosen independently, we have:

RHS of (14) ≤
m

∑

j=d

23j
∑

j1+j2=j

(

m

j1

)(

m

j2

)

(M−m
m−j1

)(M−m
m−j1

)

(M
m

)2 (15)

We recall the following fact about binomial coefficients:

1in the Appendix, we directly prove Claim 16 that is a generalization of Claim 8 to k-players.
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Fact 9 For every M ≥ m,
(M−m

m−k

)

(M
m

) ≤
( m

M

)k
(16)

Using (16) with the combinatorial identity
∑

j1+j2=j

(

m
j1

)(

m
j2

)

=
(

2m
j

)

, we get

RHS of (15) ≤
m

∑

j=d

23j

(

2m

j

)

( m

M

)j
(17)

Using
(2m

j

)

≤ (2em
j )j , one sees that for M ≥ 32em2 and for d > 2, the RHS of (17) is less

than 1/2d. Thus, discφ
3 ≤ 1/2d/4, for every cylinder intersection φ proving the Multiparty Degree-

Discrepancy Lemma for three players.
A simple combination of Theorem 4 with the Multiparty Degree-Discrepancy Lemma proves

the bound on randomized communication complexity in Theorem 1.

4 Circuit consequences

Just as in [24], our base function f will the the following function, studied first in [21]: MP(x) =
∨`

i=1 ∧4`2
j=1 xi,j. [21] shows that the voting polynomial degree of MP, defined on 4`3 variables, is

`. We choose m = 4`3 and our base function f(x) = MP(x). Then for each k ≥ 2, we create our
k-wise masked function Fk from MP according to the masking rules prescribed by the Multiparty
Degree-Discrepancy Lemma in Section 1. We can view the domain of function Fk, for any k ≥ 2
as {−1, 1}Mk−1 × {−1, 1}(k−1)M , by naturally encoding each of the k − 1 subsets of [M ] with its
characteristic vector of length M . In the standard definition of Fk, each of the characteristic vector
have Hamming weight m. To make Fk well-defined, we say that Fk outputs zero on inputs in which
not all of the k− 1 characteristic vectors have Hamming weight m. It is easy to show the following
fact:

Fact 10 (follows from [24]) The function Fk : {−1, 1}Mk−1 × {−1, 1}M × · · · (k − 1)times · · · ×
{−1, 1}M → {−1, 1} is in depth-three AC0.

We recall here an established connection between randomized communication complexity of a
function f and the size of depth-three circuits needed to compute f .

Fact 11 (see [16]) If f is computed by a circuit of type MAJ ◦ SYMM ◦ ANYk, of size s, then

R
1/2−1/2s
k+1 (f) ≤ k log s.

The proof is quite simple and we sketch it for sake of completeness in the Appendix. We are now
ready to prove our main result of this section.

Proof:[Of Corollary 3] The k + 1-party randomized communication complexity of Fk+1 with error

1/2 − ε, by Theorem 1, is at least d1/2k
+ log ε. Here d = `, m = 4`3, M = 2k+1kem2 and

n = Mk. Combining this information, we obtain that Rε
k+1(Fk+1) ≥ (1/α)n1/(6k2k) − log

(

1
2ε

)

,

where α = (4
√

2k+1ke)1/3·2k
. Let Fk+1 be computed by a circuit of type MAJ ◦ SYMM ◦ ANYk

with size s. Then, applying Fact 11 on the randomized complexity of Fk+1, we get that

(1/α)n1/6k2k − log s ≤ k. log s (18)

From this follows that if k is a constant, then s = 2Ω(n1/6k2k
).
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5 Correlation

Let P be any multi-linear polynomial of degree d over Zm in n variables. For any q ≥ 2, the boolean
function MODq is defined to be 1 iff the sum of the input bits is non-zero nodulo q. Let Lq be the
linear polynomial x1 + · · · + xn evaluated over Zq. Let f : {0, 1}n → Zq. Consider a distribution
µ such that f is almost balanced under µ i.e. Prx[f(x) = b] = 1/q + 2−Ω(n). For example, Lq is
almost balanced under the uniform distribution for every q. Let the mod-m polynomial discrepnacy

of f w.r.t. P and a under µ, denoted by PdiscP,a
µ,m(f), be the following:

PdiscP,a
µ,m(f) = maxb∈Zm

∣

∣

∣

∣

Pr
x∼µ

[

f(x) = b ∧ P (x) = a
]

− (1/q) Pr
x∼µ

[

P (x) = a
]

∣

∣

∣

∣

(19)

The Mod-m Polynomial Discrepancy of f under µ for degree d, denoted by Pdiscd,µ,m(f) is simply
max{PdiscP,a

µ,m(f)|deg(P ) = d, a ∈ Zm}. In this paper, for polynomial discrepancy the default
distribution is uniform. Hence we will drop the subscript denoting the distribution explicitly.

Our main technical lemma, in this section, is the following :

Lemma 12 (Polynomial Discrepancy Lemma) Let m, q > 1 be integers that are co-prime and

d ≥ 1. Then, there exists a constant β = β(m, q) , such that the following holds:

Pdiscd,m(Lq) ≤ exp(− βn

(m2m−1)d
) (20)

In words, (20) shows that P−1(a), for each a, looks uniform to a MODq counter i.e. every L−1
q (b)

is almost equally represented in the set, provided the size of the set is large compared to the size of
the cube. We identify the similarities between the calculation of polynomial discrepancy of the Lq

function and the method used by [4] to estimate the discrepancy for the generalized inner product.
In both estimates, the key technical ingredient is to raise the sum in question to its appropriate
power.

This easily leads to an upper bound of exp(−Ω(n/(m2m−1)d)) on correlation between the MODq

function and functions represented by polynomials of degree d over Zm. In particular, this implies
the bound of exp(−Ω(n/4d)) for the special case of m = 2 that was first reported in the recent work
of [25]. Let em(y) denote exp(−2πjy/m), where j is the square root of −1. Recall the elementary
identity for roots of unity:

∑m−1
a=0 em(ay) = 1 if y is a multiple of m and is zero otherwise. We

start by estimating, using complex roots of unity, the quantity Prx[P (x) = a ∧ Lq(x) = b] for any
polynomial P over Zm and for any a ∈ Zm, b ∈ Zq as follows:

Pr
x

[

P (x) = a ∧ Lq(x) = b
]

= Ex

[(

1

m

m−1
∑

α=0

em

(

α(P (x) − a)
)

)(

1

q

q−1
∑

β=0

eq

(

β(x1 + · · · + xn − b)
)

)]

(21)

Expanding the sum inside the second multiplicand and treating the case of β = 0 separately,
one gets

(21) =
1

q
Ex

[

1

m

m−1
∑

α=0

em

(

α(P (x) − a)
)

]

+
1

mq

∑

α∈[m],β∈[q]−{0}

Sm,q
n (α, β, P )em(−aα)eq(−bβ) (22)

where,
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Sm,q
n (α, β, P ) = Ex

[

em(αP (x)) · eq

(

β(x1 + · · · + xn)
)

]

(23)

Observing that the first term in (22) is simply (1/q) Pr[P (x) = a] and |em(−aα)| = |eq(−bβ)| =
1, we get :

PdiscP,a
m (Lq) ≤

1

mq

∑

α∈[m],β∈[q]−{0}

|Sm,q
n (α, β, P )| (24)

It is simple to verify that the Polynomial Discrepancy Lemma gets established by the bound
on |Sm,q

n (α, β, P )| provided below.

Lemma 13 For each pair of co-prime integers m, q > 1 there exists a constant β = β(q) such that

for every polynomial P of degree d > 0 over Zm and numbers α ∈ [m], β ∈ [q] − {0}, the following

holds :

|Sm,q
n (α, β, P )| ≤ exp

(

− βn

(m2m−1)d

)

(25)

Before we begin our formal calculations, we remind the reader that a slightly weaker estimate of
|Sm,q

n (α, β, P )| was first obtained in [7, 14]. The case when P is a linear polynomial was essentially
dealt with in [8].

Observe that the quantity Sm,q
n , defined in (23), looks very similar to the sum that was obtained

in Babai, Nisan and Szegedy [4] to calculate the discrepancy of GIP. There, they were interested
in bounding discrepancy of GIP w.r.t k-cylinder intersections. Here, we are interested in bounding
the discrepancy of Lq w.r.t to a set that is the image of a polynomial. The key idea, introduced in
[4], is that squaring the sum is effective in dealing with cylinder intersections. This is something
that we adapted to our proof of the Degree-Discrepancy Lemma in the previous section. Here, the
analogue of the BNS trick will be to raise the sum in (23) to its mth power.

In order to further explain the intuition behind our proof of Lemma 13, we introduce some
definitions and notations. Let f : {0, 1}n → Zm be any function. Consider any set I ⊆ [n]. Note
that each binary vector v of length |I| can be thought of as a partial assignment to the input
variables of f by assigning v to the variables in I in a natural way. Let f I(v) be the subfunction
of f on variables not indexed in I induced by the partial assignment v to variables indexed in I.
For any sequence Y = {y1, . . . , yt} having t boolean vectors from {0, 1}n, let fY be the function
defined by fY (x) = f(x) +

∑t
i=1 f(x ⊕ yi), where the sum is taken in Zm. Let I[Y ] ⊆ [n] be the

set of those indices on which every vector in Y is zero and J [Y ] be just the complement of I[Y ].
Then, the following observation will be very useful in our calculation :

Observation 14 Let P be a polynomial of degree d in n variables over Zm for any m > 1. Then,

for each sequence Y of m− 1 boolean vectors in {0, 1}n, the polynomial P
J [Y ](v)
Y is a polynomial of

degree d − 1 in variables from I[Y ] for each vector v ∈ {0, 1}|J [Y ]| .

A point worth mentioning is that, PY behaves almost like a discrete derivative of polynomial P .
In fact, if m = 2, then this operation coincides with the notion of discrete derivative as used in the
work of [11, 23].
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Proof Sketch:[of Lemma 13] We drop the superscript from Sm,q
n to avoid clutter in the following

discussion.We shall induce on the degree d of the polynomial. Our IH is that there exists a positive
real constant µd−1 < 1 such that for all polynomials R of degree at most d− 1 and for all n ≥ 0 we
have |Sn(α, β,R)| ≤ 2nµn

d−1. The base case of d = 0 is easily verified and is dealt with in earlier
works on correlation. Note that µ0 depends only on q. Our inductive step will yield a relationship
between µd−1 and µd that will also give us our desired explicit bound of (25).

As in [7, 14], we raise Sn to its mth power. Our point of departure from the earlier techniques,
is to write (Sn)m in a different way.

(Sn)m =

Ey1,...,ym−1Ex

[

em

(

P (x) +

m−1
∑

j=1

P (x ⊕ yj)

)

eq

( n
∑

i=1

xi +

n
∑

i=1

(xi ⊕ y1
i ) + · · · +

n
∑

i=1

(xi ⊕ ym−1
i )

)]

(26)

Let Y be the sequence of length m−1 formed by a given set of vectors y1, . . . , ym−1. We denote
by u and v respectively the projection of x to I[Y ] and J [Y ]. Let nI and nJ be the cardinality of
I[Y ] and J [Y ] (note that nI + nJ = n) . Then, one can verify

(26) =

Ey1,...,ym−1Evem

(

Qy1,...,ym−1
(v)

)

eq(nJ)Euem

(

P
I[Y ](v)
Y (u)

)

eq

(

m

nI
∑

i=1

ui

)

(27)

where Qy1,...,ym−1
is some polynomial that is determined by y1, . . . , ym−1 and polynomial P .

The key thing to note is that Observation 14 implies P
I[Y ](v)
Y to be a polynomial of degree at

most d − 1 over u for every sequence Y = y1, . . . , ym−1 and every vector v. Hence, the inside sum
of (27) over the variable u can be estimated using our inductive hypothesis. Note that raising
to the mth power in (26) has achieved a degree reduction of the polynomial in a manner that is
very reminiscent of how [4] does dimension reduction of cylinder intersections in the proof of their
Lemma 2.5.

The rest of the calulation proceeds exactly as in Green et. al. [14], which again is very similar
to the series of final steps in the proof of Lemma 2.5 in [4]. We repeat them in the Appendix for
the sake of self-containment.

Consider A = L−1
q (1) and B = L−1

q (0). Then using the estimate on the mod-m polynomial
discrepancy of Lq, it gets easily verified that for every circuit C of type MODm ◦ ANDd,

CorrA,B(C,MODq) ≤ exp

(

− βn

(m2m−1)d

)

(28)

Combining the Discriminator Lemma (Lemma 6) with (28) leads to super-polynomial lower bounds
on the fan-in of the output gate in circuits of type MAJ ◦MODm ◦ANDd for computing MODq, if
m, q are co-prime and d = ε log n for some constant ε > 0.
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Appendix

k-player Degree Discrepancy Lemma

The argument for 3-players naturally extends to k players in general. We define Fk : {−1, 1}Mk−1 ×
(

[M ]
m

)k−1 → {−1, 1}. The partition of inputs is again the natural extension of the three player case:
Player 1 gets a binary string of length Mk−1 and each of the other k−1 players receives a subset of

[M ]. The distribution λ that we choose on our inputs is
µ

S1,...,Sk−1(x)

(M
m)

k−1
2Mk−1

−m
. We sketch the argument

below.
The starting point is to write the expression for discrepancy w.r.t an arbitrary cylinder inter-

section φ, generalizing (7)

discφ
k(Fk) =

∣

∣

∣

∣

∑

x,S1,...,Sk−1

Fk(x, S1, . . . , Sk−1)φ1(x, S1, . . . , Sk−2) · · · φk(S1, . . . , Sk−1)λ(x, S1, . . . , Sk−1)

∣

∣

∣

∣

(29)

This changes to the more convenient expected value notation as follows:

discφ
k(Fk) = 2m

∣

∣

∣

∣

Ex,S1,...,Sk−1Fk(x, S1, . . . , Sk−1)φ1(x, S1, . . . , Sk−2) · · · φk(S1, . . . , Sk−1)µS1,...,Sk−1

(

x
)

∣

∣

∣

∣

(30)

where, as before, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}Mk−1 ×
(

[M ]
m

)k−1
. Then,

we use very similar argument of combining triangle inequality with Cauchy-Schwarz as was used in
the three player case for going from (9) to (11). Applying this k − 1 times, (11) generalizes to the
following:

(discφ
k(Fk))2

k−1 ≤ 22k−1mE
S1

0 ,S1
1 ,...,Sk−1

0 ,Sk−1
1

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

(31)

where,

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

E
x∈{0,1}Mk−1

∏

u∈{0,1}k−1

Fk(x, S1
u1

, . . . , Sk−1
uk−1

)µS1
u1

,...,Sk−1
uk−1

(x)

∣

∣

∣

∣

(32)
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As before we look at a fixed Si
0, S

i
1, for i = 1, . . . , k− 1. Let r = max{|S1

0 ∩S1
1 |, . . . , |Sk−1

0 ∩Sk−1
1 |}.

We now generalize Claim 7 and Claim 8:

Claim 15 Let r < d. Then,

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

= 0 (33)

Proof: The proof is almost identical to the proof of the analogous claim for three players that has
been given in the paper. Let ri = |Si

0 ∩ Si
1|, and r = max{ri|1 ≤ i ≤ k − 1}. Then wlog, for each

i, one can assume Si
0 = {1, . . . ,m} and Si

1 = {1, . . . , ri,m + 1, . . . , 2m − ri}. It can then be easily
verified that

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

Ex1,...,1,··· ,xm,...,m

[

f(x1,...,1, · · · , xm,...,m)µ(x1,,...,1, · · · , xm,...,m) · g(x)
]

∣

∣

∣

∣

(34)

where g(x) is a function of at most r variables, namely x1,...,1, · · · , xr,··· ,r. Thus, recalling that
Ex∼µf(x)g(x) = 0 for any g that depends on less than d variables, we see that (34) evaluates to
zero.

Claim 16

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

≤ 2(2k−1−1)r

22k−1n
(35)

Proof:[of Claim 16] For any boolean string u, let u[i] denote its ith bit. Since Fk is -1/1 valued, we
have

Gk

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

≤
∣

∣

∣

∣

E
x∈{0,1}Mk−1

[

∏

u∈{0,1}k−1

µS1
u[1]

,...,Sk−1
u[k−1]

(x)

]∣

∣

∣

∣

(36)

Wlog, assume r1 ≤ r2 ≤ · · · ≤ rk−1 = r. Consider any arbitrary total order on points in {0, 1}k−1

that implies x < y if the hamming weight of x is less than that of y. Let u0, . . . , u2k−1−1 be the
enumeration of points in the cube according to increasing order. So, u0 = 00 . . . 0 and u2k−1−1 =
11 . . . 1. Denote by ti, the Hamming weight of ui for 0 ≤ i ≤ 2k−1−1. Let the set of indices at which
ui has a 1 be {j1, . . . , jti}. Let Ai be the set of size m, consisting of k − 1-tuples in Mk−1 indexed
by the k − 1 sets S1

ui[1]
, . . . , Sk−1

ui[k−1]. For any k − 1-tuple w, let w[i] denote its ith co-ordinate. Let,

Yi = {xw

∣

∣w ∈ Ai;∀1 ≤ ` ≤ ti : w[j`] ∈ Sj`
1 − Sj`

0 } (37)

Zi = {xw|w ∈ Ai} (38)

Note that |Zi| = m for all i. For i = 0, t0 = 0 and hence, Y0 = Z0. Thus |Y0| = m. For i > 0,
|Yi| = m − rjti

≥ m − r. Then, for 0 ≤ i < 2k−1 − 1, define

Hui(Zi − Yi, S
1
0 , . . . , Sk−1

1 ) = EYi

[

µ(Zi)Hui+1(Zi+1 − Yi+1, S
1
0 , . . . , Sk−1

1 )

]

(39)
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and for i = 2k−1 − 1, let

Hui(Zi − Yi, S
1
0 , . . . , Sk−1

1 ) = EYi

[

µ(Zi)
]

(40)

It is not hard to verify (recalling that Z0 = X0),

RHS of (36) = H0(S
1
0 , . . . , Sk−1

1 ) (41)

Let γi be the maximal value of function Hui . Then, recalling that µ is just a probability distribution,
one immediately obtains that γi ≤ 2−|Yi|γi+1, for i < 2k−1 − 1. Since |Y0| = m, γ0 ≤ 2−mγ1. For
1 < i < 2k−1 − 1, recall |Yi| ≥ m − r, whence γi ≤ 2−(m−r)γi+1 . Combining all these with the fact

that γ2k−1−1 ≤ 2−(m−r), we obtain γ0 ≤ 2(2k−1−1)r/22k−1m that proves Claim 16.

Application of Claim 15 and Claim 16 generalizes (14) as follows:

(discφ
k(Fk))2

k−1 ≤
m

∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

Pr
[

|S1
0 ∩ S1

1 | = j1 ∧ · · · ∧ |Sk−1
0 ∩ Sk−1

1 | = jk−1

]

(42)

This further generalizes (15) to get:

(discφ
k(Fk))2

k−1 ≤
m

∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

(M−m
m−j1

)

· · ·
( M−m
m−jk−1

)

(M
m

)k−1
(43)

Applying simple combinatorial identities as in the last section, (43) leads to (1), proving the
Multiparty Degree-Discrepancy Lemma.

Proof of Fact 11

Proof: Let C1, . . . , Ct, t ≤ s, be the subcircuits feeding into the output MAJ gate in the circuit C
for computing f . The k+1-player protocol first flips a set of coins to randomly select i ∈ {1, . . . , s}.
Then it outputs the value of Ci on the input instance. By the difinition of a MAJ gate, it is easy
to verify that the error probability is bounded by 1/2 − 1/2s.

The proof is completed by showing that each Ci can be evaluated by communicating at most
k. log s-many bits. The key thing to note is that every ANYk gate at the base of Ci can be evaluated
by at least one of the k+1 players with no communication. The players agree beforehand on the set
of base gates that each player evaluates. Since the output gate of Ci computes a symmetric function,
the k + 1th player can determine the vlaue of Ci, once the remaining players send the number of
base gates that they respectively see evaluating to 1. This clearly takes at most k log s-many bits
of communication.

Finishing the proof of Lemma 13

We continue from (27). Noting that the number of sequences Y for which |IY | = k is exactly
(n
k

)

(2m−1 − 1)n−k and using the triangle inequality with the binomial theorem, we get.

|Sn|m ≤
n

∑

k=0

(

n

k

)

(2m−1 − 1)n−k2n−k2kµk
d−1 = 2nm

(

1 − 1 − µd−1

2m−1

)n

(44)

14



Taking the mth root of both sides of (44), using the inequality (1−x)1/m ≤ 1−x/m if 0 ≤ x < 1
amd m > 1 after rearranging, we obtain

1 − µd ≥ 1 − µd−1

m2m−1
≥ 1 − µ0

(

m2m−1
)d

(45)

Substituting β = 1 − µ0, one gets µd ≤ exp
(

− β
(m2m−1)d

)

. This immediately yields (25) in

Lemma 13.
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