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Abstract

We show that a mild derandomization assumption together with the worst-case
hardness of NP implies the average-case hardness of a language in non-deterministic
quasi-polynomial time. Previously such connections were only known for high classes
such as EXP and PSPACE.

There has been a long line of research trying to explain our failure in proving worst-
case to average-case reductions within NP [FF93, Vio03, BT03, AGGM06]. The bot-
tom line of this research is essentially that (under plausible assumptions) black-box
techniques cannot prove such results. Indeed, our proof is not black-box, as it uses a
non-black-box reduction of Gutfreund, Shaltiel and Ta-Shma [GSTS05]. Furthermore,
we prove using the same arguments as the above mentioned negative results, that this
reduction cannot be done in a black-box way (again, under a plausible assumption).
Thus our techniques show a way to bypass black-box impossibility arguments regarding
worst-case to average-case reductions.
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1 Introduction

1.1 Background

Most cryptographic primitives require at least the existence of One-Way Functions (OWFs)
[IL89]. A function f : {0, 1}∗ → {0, 1}∗ is one-way if

• f is computable in (a fixed) polynomial time, and,

• For every constant c > 0, for every polynomial time algorithm A, for all large enough
input lengths,

Pr
y∈f(Un)

[ A(y) ∈ f−1(y) ] <
1

nc

In words, f−1 is an NP search problem that is hard on average against BPP.1 Further-
more, f can be computed by an algorithm that runs in some fixed polynomial time, while
f−1 is hard for all polynomial-time algorithms, i.e., a weak algorithm B fools adversaries
that are much stronger than B itself.

It is a common belief that OWFs exist, and a standard assumption in cryptography. In
fact much more specific assumptions are also often made. Unfortunately, we do not know
today how to prove these assumptions. In particular, it is widely recognized that proving
(or disproving) the OWF conjecture is a fundamental goal (perhaps the fundamental goal)
of cryptography.

Ofcourse, there is some rigorous work addressing these basic issues. In general, this
work goes in two directions: an attempt to isolate parts of the problem (by showing for
example that OWF follow from seemingly weaker or different assumptions), and an attempt
to understand why current techniques fail. Let us start with the first direction. One can
categorize the underlying conjectures as follows:

• (Worst-case hardness conjecture) Some function in NP is worst-case hard for some
class of adversaries (usually BPP).

• (Average-case hardness conjecture) Some function in NP is average-case hard for some
class of adversaries (usually BPP).

• (One-wayness conjecture) Some function in P is hard to invert by some class of ad-
versaries (usually BPP).

• (Pseudo-randomness conjecture) Some function in P generates distributions of low
entropy that are indistinguishable from uniform by some class of adversaries (usually
BPP).

A natural goal of complexity (and foundations of cryptography) is to understand the
relationship between these objects (given that we currently cannot prove any of them), e.g.,
one would like to show that the worst-case hardness conjecture implies the average-case

1Also, by Goldreich and Levin [GL89] it gives rise to an NP decision problem that is hard on average
against BPP.
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hardness conjecture. The only non-trivial relation that is known today is that the one-
wayness conjecture is equivalent to the pseudo-randomness conjecture, when the class of
adversaries is BPP [HILL99].

In all the above conjectures we assume that some function ”fools” some class of ad-
versaries, where the meaning of ”fooling” varies (being worst-case hardness, average-case
hardness, one-wayness or pseudo-randomness). The usual choice in cryptography is that
the function lies in P or NP (according to the conjecture we work with), while the class of
adversaries is BPP (or even BPTIME(t(n)) for some super-polynomial t(n)). Thus, while
the function is computable in a fixed polynomial time, the adversary may run in unbounded
polynomial time, and so has more resources than the algorithm for the function itself. On
the other hand, the standard choice in complexity theory is that computing the function
takes more time than the class it fools, e.g., it may run in time nc fooling algorithms running
in time nb for some b << c.

This difference is a crucial (though subtle) dividing line between cryptography and com-
plexity, and there is no way to overestimate its significance. The canonic example for this
distinction is the cryptographic pseudo-random generators (a.k.a. Blum-Micali-Yao gener-
ators) versus the pseudo-random generators that are used in complexity to derandomize
probabilistic computations (a.k.a. Nisan-Wigderson generators).

Cryptography does indeed use very strong conjectures (often a function computable in
P needs to fool adversaries running in sub-exponential time !) to obtain strong conclusions.
But this only shows how weak is the rigorous basis which cryptography is based on. If the
cryptographic conjectures are true, then the complexity variants of them (which are much
weaker) should also be true. Nonetheless, it is surprising how little is known about these
conjectures.

Let us recall what is known in the complexity setting. One can formulate an exponential-
time analogues of the conjectures we listed above:

• (Worst-case hardness in EXP) Some function in EXP is worst-case hard for BPP.

• (Average-case hardness in EXP) Some function in EXP is average-case hard for BPP.

• (Exponential-time pseudo-random generators) For every constant ε > 0, there exists
a pseudorandom generator G : nε → n fooling BPP, and the generator is computable
in time 2nε

(i.e. exponential in the seed length).

Impagliazzo and Wigderson [IW98] (see also [TV02]) show (building on a long line of
works such as [NW94, BFNW93, IW98, STV99]) that all three conjectures are equivalent.
Their work was done in the context of understanding the power of randomness in compu-
tation, and indeed the equivalence above easily extends to include the following statement
about the ability to reduce the amount of randomness used by efficient probabilistic algo-
rithms.

• (Subexponential-time derandomization) For every probabilistic polynomial-time TM
A, and a constant ε > 0, there exists another probabilistic TM Aε, that runs in time
2nε

, uses at most nε random coins, and behaves essentially the same as A.2

2Here we mean that Aε maintains the functionality of A on the average in the sense of Kabanets [Kab01]
(see Definition 2.3 and Hypothesis 2.1). This notion of derandomization is standard when working with
hardness against uniform TM’s (rather than circuits) and with generators that fool TM’s (rather than
circuits). See [IW98, Kab01, TV02, GSTS03] for discussions.
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These beautiful and clean connections shed light on some of the fundamental questions
in complexity theory regarding randomness and computational hardness of functions. Un-
fortunately, no such connections are known below the exponential level. Thus there is a big
gap between the known results, and the questions about hardness and pseudo-randomness
that we started with (on the cryptographic/polynomial level):

1. We can prove equivalence only in the complexity setting and not in the cryptographic
setting, and,

2. Even in the complexity setting, we can prove equivalence only for the exponential
level, and not for sub-exponential classes.

As an example for an open problem in this gap, consider the following question that lies
in the complexity setting, yet in the sub-exponential regime.

Open Problem 1.1. Does NP 6⊆ BPP imply the existence of a language in ÑP = NTIME(nO(log n))
that is hard on average for BPP?

We believe that a solution to this problem would be a breakthrough result in the field.
In this paper we make a step towards this goal, by showing connections between derandom-
ization, worst-case hardness and average-case hardness in a completely different setting of
parameters to the connections obtained by [IW98, TV02].

1.2 Our main result

Stating our result very informally, we show:

Theorem 1.1. (Informal) If

• NP is worst-case hard, and,

• Weak derandomization of BPP is possible,

Then there exists a language in ÑP that is hard on average for BPP.

We explain what weak derandomization of BPP is, later on. We remark that there is
an almost trivial proof of the theorem if we replace the weak derandomization assumption
by a strong derandomization assumption, namely that BPP = P, or the assumption that
pseudo-random generators exist. However, our result requires none of these assumptions,
and instead uses a much weaker derandomization assumption (we explain this in Section
6).

So while we can not prove Open Problem 1.1 that the worst-case hardness of NP implies
the average-case hardness of ÑP, we are able to prove that the worst-case hardness of NP
together with weak derandomization does the job.3 We believe that this relationship between
worst-case hardness, average-case hardness and derandomization, is intriguing on its own
right, as it shows that highly non-trivial connections between these notions do exist below
the exponential level.

3Our result is actually stronger than the one we state here. It gives a hard on the average language in
the class NTIME(nω(1)) with the additional constraint that membership witnesses are of polynomial length,
i.e. only the verification takes super-polynomial time, making it closer to NP. In particular, this class is
contained in EXP. Also, standard separation techniques (such as the nondeterministic time hierarchy) can
not separate this class from NP.
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Admittedly, this connection is not as clean as the equivalence obtained by [IW98, TV02].
However, since establishing such equivalences below the exponential level is such an impor-
tant task and seems hard to accomplish, we believe that any non-trivial step towards this
goal is highly interesting. In Section 6 we explain why previous techniques do not seem
to imply our result, and where the ideas we develop here (and in [GSTS05]) come into
play. Another strong evidence that this work is in the right direction (or at the very least
suggests a new way to look at the problem) is that the proof technique goes beyond current
limitations in a fundamental way. For that, we now turn to the second line of research made
on the problem, exposing limitations of current techniques.

1.3 Beyond black-box reductions

Let us first recall the definition of (randomized) black-box reductions.

Definition 1.1 (Black-box reductions). Let P, P ′ be two computational problems. We say
that there is a black-box reduction from P to P ′, if there is a probabilistic polynomial-time
oracle machine R, such that for every oracle A that solves P ′, RA solves P . We say that
the reduction is non-adaptive if R queries A non-adaptively.

Bogdanov and Trevisan [BT03] (building on Feigenbaum and Fortnow [FF93]), show
that unless every language in coNP can be decided by a family of polynomial size nonde-
terministic circuits (which implies the collapse of the polynomial-time hierarchy), there is
no non-adaptive black-box reduction from deciding an NP-complete language on the worst-
case to deciding an NP language on the average. Akavia et. al. [AGGM06] show that
a reduction from solving NP in the worst-case to the harder task of inverting a one-way
function (on the average) is even less likely, and under a certain restriction on the family
of functions to invert, they also (conditionally) rule out adaptive black-box reductions. In
Section 5 we present the basic argument that underlies all these results, and explain why it
only rules out black-box reductions.

Let us now relax the notion of a black-box reduction. The following definition is equiva-
lent to Definition 1.1 except that the oracle A is restricted to a class with bounded resources:

Definition 1.2 (Class-specific black-box reductions). Let P, P ′ be two computational prob-
lems, and C a class of algorithms. We say that there is a C-black-box reduction from P to
P ′, if there is a probabilistic polynomial-time oracle machine R such that for every oracle
A ∈ C that solves P ′, RA solves P . If R queries A non-adaptively we say the reduction is
non-adaptive.

One property that is common both to black-box and class-specific black-box reductions is
that the reduction does not need to know the internal working of the oracle A. Conceptually,
this should make these reductions easier to design. The key difference between the two types
of reductions, is that in class-specific black-box reductions, the reduction (or more to the
point, its analysis) needs to use the fact that A comes from some restricted class, while in
black-box reductions, A can be arbitrary. Surprisingly, this makes a whole lot of difference,
as we now explain.

Gutfreund, Shaltiel and Ta-Shma [GSTS05] show a non-trivial worst-case to average-case
reduction within NP. Our result is based on (a derandomized variant of) their reduction.
Using the terminology of class-specific black-box reductions, we can restate informally their
result.
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Theorem 1.2 ([GSTS05]). There exists a distribution D samplable in time nlog n, such that
there is a BPP-black-box and non-adaptive reduction from solving SAT on the worst-case
to solving SAT on the average with respect to D.

On the other hand we can also prove, using the same line of arguments as [BT03],
that general black-box reductions are unlikely to achieve the parameters of the [GSTS05]
reduction.

Theorem 1.3. Suppose that there is a language L ∈ NP and a distribution D samplable in
time nlog n such that there is a black-box and non-adaptive reduction from solving SAT on
the worst-case to solving L on the average with respect to D. Then every language in coNP
can be computed by a family of nondeterministic Boolean circuits of size npolylog(n).

Theorem 1.2 is in sharp contrast to Theorem 1.3. The latter (as well as [FF93, BT03,
AGGM06]) say that the requirement in black-box reductions that they succeed whenever
they are given a ”good” oracle (regardless of its complexity) is simply too strong, i.e. such
reductions are unlikely to exist. Theorem 1.2, on the other hand, says that weakening the
requirement to work only for efficient oracles, but not every oracle, is sufficient for bypassing
the limitation. Thus we believe that the message from this work is that we should not be
intimidated by black-box limitation results such as [FF93, BT03, AGGM06]; there are ways
to overcome such arguments.

1.4 Our approach

In this section we explain the interplay between the complexities of the adversaries, the hard
language and the sampler (that generates instances of the language that the adversaries
cannot solve). We then explain the approach we take here and in our previous work with
Ronen Shaltiel [GSTS05]. To do that we borrow terminology from game theory.

Recall that a language L is average-case hard if there exists a single samplable (in a
fixed polynomial time) distribution over the instances of L, such that every probabilistic
polynomial-time algorithm that attempts to decide the language, errs with high probability
over instances drawn from this distribution. One way to interpret this is to consider the
following game, determined by a given language L, between an algorithms player A, and
a distributions player D. First D proposes a samplable distribution (described by a TM),
then A answers with probabilistic polynomial-time algorithm (attempting to decide L). We
say that D wins if the algorithm that A suggested, fails to decide L correctly with relatively
high probability (say 1/10), over instances drawn from the distribution that D came up
with. Thus the task of showing that L is average-case hard boils down to showing that D
has a pure winning strategy when she plays first.4

Now assume SAT is worst-case hard, and let us try to prove that it is also average-case
hard. Consider the following two step argument:

1. Show that D has a winning strategy when she plays second (on the game defined by
SAT).

2. Apply a min-max argument and argue that one can sample from the (possibly) mixed
winning strategy to derive a pure winning strategy for D when she plays first.

4Indeed, as we explained before, this follows the standard philosophy of cryptography in which a cryp-
tosystem should be usable by parties that run in a fixed polynomial-time and secure against adversaries that
run in arbitrary polynomial-time. For that we also need the NP relation that defines L to be computable in
a fixed polynomial time.
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A similar approach was used (in a non-uniform setting) to prove the hard-core set lemma
of Impagliazzo [Imp95]. In [GSTS05] we were able to prove the first step. We then applied
a ”universal” argument to obtain a mixed winning strategy for D when she plays first.
The strategy gives a single distribution that is hard for every probabilistic polynomial-time
algorithm, but it is only samplable in quasi-polynomial-time. Thus we could not argue
that a weak sampler running in a fixed polynomial-time, beats stronger algorithms running
in arbitrary polynomial-time, which is at the heart of the average-case hardness notion of
[Lev86, Imp95] (Definition 2.1).

In this paper we are able to take the next step and prove that D has a simple pure
winning strategy when she plays first. In fact, the uniform distribution is such a strategy.
However, we can only do that under an unproven derandomization assumption, and fur-
thermore, we have to change the game along the way. I.e. instead of considering the game
defined by SAT, we can only show that the uniform distribution is a winning strategy for
the game defined by some language in ÑP.

Our proof is obtained by using a very unique property of a well known reduction of
Impagliazzo and Levin [IL90], and a careful derandomization of the argument in [GSTS05].
We give a high level description of the proof in Section 3.1.

1.5 Organization

In Section 2 we give the basic definitions and notations that we use throughout the paper. In
Section 3 we formally state our main result and give a top-level description of the proof. The
full proof appears in Section 4. In Section 5 we discuss the issue of black-box vs. non-black-
box reductions. We formally define these notions. We then describe the previous black-box
limitation results and prove that these arguments extend to the reduction of [GSTS05].
Finally, we describe in detail the reduction of [GSTS05] and explain what exactly makes it
non-black-box. In Section 6 we explain why previous techniques (e.g. diagonalization, or
the techniques used for the exponential level) do not seem to imply our main result. We
also suggest directions for further research and where we see the difficulties and hope for
improvements in the future.

2 Preliminaries

We assume that the reader is familiar with standard complexity classes such as NP, BPP
and RP. We need finer definitions of complexity classes where not only the running time
is taken into consideration but other resources as well. BPTIME(t(n), c(n)) is the class
of languages that can be decided by randomized Turing machines that run in time t(n)
and use c(n) random coins. We sometimes abuse notation and use BPTIME(t(n), c(n))
also to denote the class of probabilistic procedures (that may output many bits) with these
resource constraints. NTIME(t(n), w(n)) is the class of languages that can be decided by
nondeterministic Turing machines that run in time t(n), and take witnesses of length w(n).
BPTIME(t(n)) and NTIME(t(n)) stand for BPTIME(t(n), t(n)) and NTIME(t(n), t(n))
respectively.

PPM denotes the class of probabilistic polynomial-time TM’s. When dealing with prob-
abilistic TM’s, we will sometimes be interested in the confidence (over the randomness of the
machine) of getting a correct answer. A confidence level is a function c : N → [1/2, 1]. Given
a machine M ∈ PPM and a confidence level c, we define the function Mc : {0, 1}∗ → {0, 1, ∗}
in the following way: Mc(x) = 1 (Mc(x) = 0) if M accepts (rejects) x with probability at
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least c(|x|) over its coins, otherwise Mc(x) = ∗. We say that M accepts (rejects) x with
confidence c(|x|) if Mc(x) = 1 (Mc(x) = 0), otherwise M is undecided on x with respect to
confidence level c.

2.1 Average-case complexity

For a set S we denote by x ∈R S that x is chosen uniformly from S. An ensemble of
distributions D is an infinite set of distributions {Dn}n∈N

, where Dn is a distribution over
{0, 1}n. We denote by U the uniform distribution. That is, U = {Un}n∈N

, where Un is
the uniform distribution over {0, 1}n. Let A(·; ·) be a probabilistic TM, using m(n) bits
of randomness on inputs of length n. We say that A is a sampler for the distribution
D = {Dn}n∈N

, if for every n, the random variable A(1n, y) is distributed identically to Dn,

where the distribution is over the random string y ∈R {0, 1}m(n). In particular, A always
outputs strings of length n on input 1n. If A runs in time t(n) we say that D is samplable
in time t(n). If t(n) is a fixed polynomial, we simply say that D is samplable. Often we will
need to specify bounds both on the sampling time and the amount of randomness used by
the sampler. To that end we say that D is samplable in BPTIME(t(n), c(n)) if the sampler
for D is in this class of algorithms. We will sometimes abuse notations and use D both to
denote the distribution and its sampler. A distributional problem is a pair (L,D), where L
is a language and D is an ensemble of distributions.

Definition 2.1 (Average BPP). Let (L,D) be a distributional problem, and s(n) a function
from N to [0, 1]. We say that (L,D) can be efficiently decided on the average with success
s(n), and denote it by (L,D) ∈ Avgs(n)BPP, if there is an algorithm A ∈ PPM such that
for every large enough n, Pr[A(x) = L(x)] ≥ s(n), where the probability is over an instance
x ∈ {0, 1}n sampled from Dn and the internal coin tosses of A.

We mention that the average-case definition that we give here is from [Imp95] (there it
is denoted Heur-BPP). It differs from the original definition of Levin [Lev86]. Generally
speaking, all previous works about hardness amplification and worst-case to average-case
reductions, and in particular those that we use here (e.g. [BT03, IL90, GSTS05]), hold
under Definition 2.1.

We denote the computational problem of deciding (L,D) on the average with success
s by (L,D)s. For a language L defined by a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ (i.e.
L = {x : ∃y s.t. (x, y) ∈ R}), the search problem associated with L, is given x, find y such
(x, y) ∈ R, if such a y exist (i.e. if x ∈ L) and output ’no’ otherwise. The average-case
analogue of solving the search problem of (L,D) with success s, is to solve the search problem
of L with probability at least s, over an instance of L drawn from D (and the internal coins
of the search process). We denote this computational problem by (L,D)search,s.

We need to define a non-standard (and weaker) solution to search problems, by letting
the searching procedure output a list of candidate witnesses rather than one, and not
requiring that the algorithm recognize ’no’ instances. For a langauge L defined by a binary
relation R, the list-search problem associated with L, is given x, find a list y1, . . . , ym (where
m = poly(|x|)) such that ∃i ∈ [m] for which (x, yi) ∈ R, if x ∈ L. Note that for x 6∈ L we
are not required to answer ’no’. We denote by (L,D)list−search,s the average-case analogue.

The reason we need this is that we are going to apply search procedures on languages in
NTIME(nω(1), poly(n)). In this case an efficient procedure cannot check whether a candidate
witness is a satisfying one. We therefore cannot amplify the success probability of such
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procedures. On the other hand when we only require a list that contains a witness, we can
apply standard amplification techniques.

2.2 Reductions

Recall the definition of (randomized) black-box reductions.

Definition 2.2 (Black-box reductions). Let P, P ′ be two computational problems. We say
that there is a black-box reduction from P to P ′, if there is a probabilistic oracle machine
R, such that for every oracle A that solves P ′, RA solves P . We say that the reduction is
non-adaptive if R queries A non-adaptively.

In the reduction above we have not stated the running time of R. The typical choice
is polynomial in the input length. However, we will also consider reductions that run in
super-polynomial time. Thus we will specifically state the running time of each reduction
that we use. If we do not mention the running time then the default is polynomial. Unless
stated otherwise, whenever we say reduction, we mean black-box reduction.

Note that RA is required to solve P according to the parameters of the problem. In
particular if P means solving a problem with some probability of error, then the error intro-
duced by the fact that R is probabilistic cannot exceed the error allowed by the definition of
the problem. In particular if P does not allow error then typically R must be deterministic.

2.3 Indistinguishability

Following Kabanets [Kab01], we say that two probabilistic TM’s are indistinguishable if no
samplable distribution can output with high probability an instance on which the answers
of the machines differ significantly (averaging over their randomness). Below is the formal
definition.

Definition 2.3. Let A1 and A2 be two probabilistic TM’s outputting 0/1, such that on inputs
of length n A1 uses m1(n) random coins and A2 uses m2(n) random coins. For ε, δ > 0,
we say that A1 and A2 are (ε, δ)-indistinguishable, if for every samplable distribution D =
{Dn}n∈N

and every n ∈ N,

Pr
x∈Dn

[∣∣∣∣∣ Pr
r∈R{0,1}m1(n)

[A1(x, r) = 1] − Pr
r′∈R{0,1}m2(n)

[A2(x, r′) = 1]

∣∣∣∣∣ > ε

]
≤ δ

To save on parameters, we will sometimes take ε to be equal to δ and then we will say that
A1, A2 are δ-indistinguishable (meaning (δ, δ)-indistinguishable).

Using the definition above, we can formalize the derandomization hypothesis (statement
(III) from the introduction):

Hypothesis 2.1. For every probabilistic polynomial-time algorithm A, and every constant
ε > 0, there exists another probabilistic polynomial-time algorithm Aε that on inputs of
length n, tosses at most nε coins, and A, Aε are 1

100 -indistinguishable.

We mention that the statement of the hypothesis is exactly the type of derandomization
obtained in [IW98] (under the assumption EXP 6= BPP), with the running time of Aε being
2nε

instead of poly(n).
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3 Main result and top-down overview

We now state Theorem 1.1 in a formal way.

Theorem 3.1. If Hypothesis 2.1 is true and SAT 6∈ RP then there exists a language L ∈
NTIME(t(n), poly(n)), such that, (L,U) 6∈ Avg1/2+1/ logα nBPP, where t(n) = nω(1) is an
arbitrary time-constructible super-polynomial function, and α > 0 is a universal constant.

3.1 Top-down overview

In this section we explain the intuition and give a top-down overview of the proof of Theorem
3.1. The technical details appear in Section 4. Our starting point is a theorem of Gutfreund,
Shaltiel and Ta-Shma [GSTS05] that states that if NP is worst-case hard for BPP, then
there exists a single distribution Dhard that is samplable in slightly super-polynomial time
(for this reason we call it a ”hard” distribution), and no BPP algorithm solves SAT well on
average with respect to Dhard. Recall that our goal is to get a simple samplable distribution
Deasy (e.g. the uniform distribution) such that (SAT,Deasy) is hard on the average for BPP.

Impagliazzo and Levin [IL90] showed that if there exists a polynomial-time samplable
distribution D that is hard on average for some language L ∈ NP, then there exists another
language L′ ∈ NP for which the uniform distribution U is hard on average. Thus, if (L,D)
is hard on average, then so does (L′,U). We would like to use a similar reduction in our
setting, and apply it on SAT and the distribution Dhard.

However we immediately run into a problem because Dhard is only samplable in super-
polynomial time. Let us elaborate on how the complexity of the distribution influences the
reduction of [IL90]. There are several different entities to consider in this reduction: The
language L, The distribution D, The language L′ we reduce to, and the reduction R itself
that solves (L,D) on average given an oracle that solves (L′,U) on average.

We can expect that both the complexity of L′ as well as the complexity of the reduction
R depend on D. Indeed, using the IL reduction, the nondeterministic procedure for the
language L′ involves checking membership in the language L as well as running the sampler
for D. In our case, since D is samplable in super-polynomial-time, this results in L′ having
a super-polynomial non-deterministic complexity (see the statement of Theorem 3.1).

It seems that the same should hold for the reduction R. Indeed the reduction of [IL90] is
from search problems to search problems, which means that R must handle the membership
witnesses for the language L′. As we said above, this involves computing Dhard and in
particular, the complexity of R is at least that of Dhard. This however means that we
can not deduce from the hardness on average of (L,D) the hardness on average of (L′,U),
because the hardness of (L,D) is only against algorithms with complexity smaller than that
of D, and the reduction complexity is at least as that of D. This should make the reduction
of [IL90] useless for us.

The surprising thing, and the main observation of the paper, is that in the Impagliazzo-
Levin argument, the running time of the reduction does not depend on the time complexity
of D ! It only depends on the number of random coins the sampler for D uses: while the
reduction R does look at the membership witnesses for L′, the size of these witnesses is
only a function of the number of random coins the sampler uses. Furthermore, during this
process, R is never required to verify the witnesses and therefore does not need to run the
sampler. We formalize this observation in the following lemma.
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Lemma 3.1. For every Distribution D samplable in BPTIME(t(n), c(n)), a language L ∈
NTIME(tL(n), cL(n)) and 0 < δ(n) < 1, there exists L′ ∈ NTIME(t(n)+tL(n)+poly(n, c(n)), c(n)+
cL(n)) such that there is a probabilistic non-adaptive reduction, R, from (L,D)search,1−O(δ(n)·c2(n))

to (L′,U)list−search,1−δ(n).
Furthermore, the running time of R is poly(n, c(n), tL(n)), and note that it is independent
of t(n).

We prove Lemma 3.1 in Section 4.1. The conclusion of the Lemma is that in order to
keep the reduction efficient, we need to reduce the randomness complexity of the sampler for
Dhard from [GSTS05] to a fixed polynomial, but not its time complexity. This is fortunate
because while in general there is no reason to believe that we can reduce the running time
of algorithms, it is widely believed that randomness can be reduced without paying much
penalty in running time. To that end we use Hypothesis 2.1, and prove:

Lemma 3.2. Assume Hypothesis 2.1 is true. Let t(n) be an arbitrary super-polynomial
function. There is a distribution D samplable in BPTIME(O(t(n), O(n3)) such that,

(SAT,D) ∈ Avg1−1/nBPP ⇒ SAT ∈ RP

We prove Lemma 3.2 in Section 4.3. Note that Hypothesis 2.1 does not seem to deran-
domize general distributions that are samplable in super-polynomial-time. First, Hypothesis
2.1 only derandomizes polynomial-time algorithms and only by polynomial factors. And
second, Hypothesis 2.1 only applies to decision algorithms.5 We show however that the
specific distribution Dhard from [GSTS05] can be derandomized under Hypothesis 2.1. The
proof is quite technical and involves getting into the details of [GSTS05]. It is given in
Section 4.3.

The above two lemmas give us 1− 1/poly(n) hardness on the average for the list-search
version of the problem (given the worst-case hardness and the derandomization assump-
tions). To get 1/2 + 1/ logα n hardness on the average for the decision problem, we use
generalizations of known techniques for average-case hardness amplification [Tre05]. The
tricky part is doing the amplification with a reduction whose running time is poly(n, c(n))
and in particular, independent of t(n). By using careful generalizations of [BDCGL90],
Trevisan’s amplification technique [Tre05] goes through. Combining it with Lemma 3.1,
and the fact that we can restrict ourselves to the setting in which samplers (resp. nonde-
terministic computations) use polynomial amount of randomness (resp. nondeterminism),
we get,

Lemma 3.3. Let D be a distribution samplable in BPTIME(t(n), poly(n)). Let L ∈
NTIME(tL(n), poly(n)), γ(n) ≥ n−Ω(1), and α > 0 some universal constant. There is a
language L′′ ∈ NTIME(t(n) + tL(n) + poly(n), poly(n)) such that there is a probabilistic
non-adaptive reduction R from (L,D)1−γ(n) to (L′′,U)1/2+1/ logα n.
Furthermore, the running time of R is poly(n, tL(n)), and note that it is independent of
t(n).

The proof of Theorem 3.1 now follows by composing the last two lemmas:

5In general, the standard derandomization results (such as [NW94, IW97]) do not apply to probabilistic
procedures that output many bits. See [DI06] (and also [KvM99, GSTS03]) for discussion about derandom-
izing such procedures.
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Proof. (Of Theorem 3.1) Assume Hypothesis 2.1 and SAT 6∈ RP. Let t(n) = nω(1) be
an arbitrary super-polynomial function. Let D ∈ BPTIME(O(t(n), c(n) = O(n3)) be the
distribution from Lemma 3.2. By that Lemma, (SAT,D) 6∈ Avg1−1/nBPP.

Lemma 3.3 tells us that there exists a language L′′ ∈ NTIME(O(t(n)), poly(n)) such that
(SAT,D)1−1/n reduces to (L′′,U)1/2+1/ logα n and the reduction runs in time polynomial in
n. The crucial fact here is that even though t(n) is super-polynomial in n, the reduction is
still polynomial in n. In particular we can conclude that (L′′,U) 6∈ Avg1/2+1/ logα nBPP as
desired.

4 The proof of the lemmas

In this section we give the full details of the proofs of Lemmas 3.1, 3.2, and 3.3 that appear
in Section 3.1.

4.1 The proof of Lemma 3.1

In this section we prove Lemma 3.1. Parts of the proof are only a sketch as they basically
repeat the arguments of [IL90] (see also [BT03]). The reduction of Impagliazzo-Levin is
depicted in Figure 1. We first describe the language L′ and then the reduction to it. The
proof of correctness is identical to the proof of [IL90] (see also [BT03]) so we omit it.

Inputs to L,


Length n


Seeds to D.


Length c.


Hashed pre-image


Length c-k-Delta


Hashed input


Length k+4Delta


X


0


r


Z


h
_
1


h
_
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Figure 1: The Impagliazzo-Levin reduction.
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4.1.1 The language L′

The language L′ has instances of the form (k, h1, h2, z, p) ∈ [c] × Hn,k+4∆ × Hc,c−k−∆ ×
{0, 1}k+4∆ × {0, 1}ck+(n−k)n, where c = c(n), ∆ is a small constant, Ha,b is a 2-universal

family of hash-functions from {0, 1}a to {0, 1}b and each element in Ha,b is described by ab
bits, and p is a padding string to make the input length of L′ depend only on n and c but
not on k. We define L′ to be the set of all (k, h1, h2, z, p) for which there exists r ∈ {0, 1}c

and w ∈ {0, 1}cL such that

• Dn(r) ∈ L and w is a witness for that, and,

• h1(Dn(r)) = z and h2(r) = 0.

Clearly L′ ∈ NTIME(t(n) + tL(n) + poly(n, c(n)), c(n) + cL(n)).

4.1.2 The reduction

Let B be an oracle that solves the list-search problem of (L′,U) with average success 1−δ(n).
The reduction works as follows: on input x ∈ {0, 1}n to L, choose (h1, h2) ∈R Hn,k+4∆ ×
Hc,c−k−∆ and p ∈R {0, 1}ck+(n−k)n. Then for every k ∈ [c] we run B on (k, h1, h2, h1(x), p),
thus obtaining a list (of lists) of witnesses (rk

i , wk
i ) (1 ≤ k ≤ c, 1 ≤ i ≤ poly(n), rk

i ∈ {0, 1}c,
wk

i ∈ {0, 1}cL). The reduction goes through all those witnesses and if for some 1 ≤ k ≤ c,
1 ≤ i ≤ poly(n), wk

i is a satisfying assignment for x, it outputs yk
i and otherwise it outputs

’no’.
Notice that all the reduction has to do is choose h1, h2, p and compute h1(x), and it is

completely oblivious to the specific distribution D it deals with, except for the amount of
randomness it uses. In particular the reduction completely ignores rk

i and how D acts on
it. Thus, the reduction runs in time that is polynomial in n and c(n), and independent of
t(n). Also, the reduction queries B in a black-box manner and non-adaptively.

4.2 Hardness amplification

The hardness amplification technique of Trevisan [Tre05] uses a search to decision reduction
of Ben-David et. al. [BDCGL90]. We need a variant of this result that deals with list-search
to decision reduction:

Lemma 4.1. (list-search to decision reduction) Let L′ ∈ NTIME(t(n), c(n)), and 0 <
δ(n) < 1. There is a language L′′ ∈ NTIME(t(n) + poly(c(n)), c(n)) such that there is a
probabilistic non-adaptive reduction, R, from (L′,U)list−search,1−O(δ(n)·c(n)4) to (L′′,U)1−δ(n).
Furthermore, the running-time of R is poly(n, c(n)).

The crucial point in the lemma is that the reduction runs in time that is polynomial in
n and c(n) but is independent of t(n) !

The proof follows the [BDCGL90] outline, and in particular uses reductions to ”unique
solutions”. The variant that we need for the list-search scenario is:

Definition 4.1. Let L and L′ be two languages defined by the binary relations R and R′

respectively. A function φ : {0, 1}n × {0, 1}m → ({0, 1}n′

)` is a probabilistic reduction from
L to unique solutions of L′ with success probability p, if for every x ∈ {0, 1}n the values
φ(x, r) = (y1, . . . , y`) are such that:
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1. If x 6∈ L then for every r ∈ {0, 1}m and for every 1 ≤ i ≤ `, yi 6∈ L′. And,

2. If x ∈ L then with probability at least p over r ∈R {0, 1}m, there exists an 1 ≤ i ≤ `
such that yi ∈ L′ and has a unique witness for that. I.e. |{w : R′(yi, w)}| = 1.

3. Every witness for yi ∈ L′ (for some 1 ≤ i ≤ `(n)) is also a witness for x ∈ L.

` = `(n) is the list-size of the reduction.

Valiant and Vazirani [VV86] showed the following reduction to unique solutions.

Lemma 4.2. For every language L ∈ NTIME(t(n), c(n)) there exists a language Lunique ∈
NTIME(t(n) + poly(c(n)), c(n)) and a probabilistic non-adaptive poly(c(n))-time reduction
from L to unique solutions of Lunique with success probability 1/8 and list-size ` = c(n).

We can now prove Lemma 4.1.

Proof. (Of Lemma 4.1) Fix L′ ∈ NTIME(t(n), c(n)). By Lemma 4.2 there exists L′
unique ∈

NTIME(t(n) + poly(c(n)), c(n)) and a reduction Runique from L′ to unique solutions of
L′

unqiue with success probability 1/8, list size ` = c(n) and running time poly(c(n)).
Let us define the language L′′ that contains exactly the instances (x, r, i, j) for which

there exists a witness w ∈ {0, 1}c(|x|) such that the following two conditions are satisfied:

1. yi ∈ L′
unique and w is a witness for that, where yi is the i’th element in φ(x, r) =

(y1, . . . , yc(|x|)). And,

2. yi
j = 1.

Clearly, L′′ ∈ NTIME(t(n) + poly(c(n)), c(n)), and we assume here w.l.o.g. that |yi| ≥
|x|. We claim that indeed (L′,U)list−search,1−O(δ(n)·c(n)4) reduces to (L′′,U)1−δ(n).

Let B be an oracle that decides (L′′,U) with average success 1 − δ(n) on every input
length. The reduction works as follows: on instance x ∈ {0, 1}n, choose r ∈ {0, 1}m at
random. For every 1 ≤ i ≤ ` = c(n), for every 1 ≤ j ≤ c(n) set wi

j := 1 if B(x, r, i, j) = 1

and 0 otherwise. Output w1, . . . , wc(n).
We now prove that the reduction works. We say that x ∈ {0, 1}n is good if for every

i, j ∈ [c(n)],

Pr
r

[B(x, r, i, j) = L′′(x, r, i, j)] > 1 − 1

16c(n)2

Let pn be the fraction of good x’s at length n, then,

(1 − pn) · 1

16c(n)2
· 1

c(n)2
≤ δ(n)

So pn ≥ 1 − O(δ(n) · c(n)4). By Lemma 4.2, for every x ∈ L′, with probability at least 1/8
over the choice of r, there exists i ∈ [c(n)], such that yi has a unique witness for yi ∈ L′

unique

(where φ(x, r) = (y1, . . . , yc(|x|))). Furthermore, this witness is also a witness for x ∈ L′ (by
Item 3 in Definition 4.1). Whenever r defines such a yi and B(x, r, i, j) = L′′(x, r, i, j) for
every i, j ∈ [c(n)], then the list w1, . . . , wc(n) contains a witness for x ∈ L′. It follows by
the union bound that when x ∈ L′ is good, with probability at least 1/16, r defines yi with
a unique witness and B(x, r, i, j) answers correctly on every i, j, and so the list contains
a witness for membership. We can amplify this probability by repeating this process with
independent random coins at the price of somewhat increasing the length of the list.
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With that, the amplification technique of Trevisan [Tre05] goes through unchanged and
gives.

Lemma 4.3. Let α > 0 be some universal constant. For every L′ ∈ NTIME(t(n), poly(n)),
and a constant d > 0, there exists L′′ ∈ NTIME(poly(t(n), n), poly(n)) such that there is a
probabilistic non-adaptive reduction, R, from (L′,U)list−search,1−O(n−d·c(n)4) to (L′′,U)1/2+1/ logα n.
Furthermore, the running time of R is poly(n).

We now recall that using the [IL90] reduction, we saw in Lemma 3.1 that for every
distribution D samplable in BPTIME(t(n), c(n)), every L ∈ NTIME(tL(n), cL(n)) and
0 < γ(n) < 1 there exists L′ ∈ NTIME(t(n) + tL(n) + poly(n, c(n)), c(n) + cL(n)) such
that (L,D)1−γ(n) reduces to (L′,U)list−search,1−γ(n)/c2(n), via a reduction that runs in time
poly(n, c(n), tL(n)). Combining it with Lemma 4.3 we get Lemma 3.3 (where c(n), cL(n),
tL(n) and 1/γ(n) are all polynomial in n).

4.3 The proof of Lemma 3.2

The key lemma that we need to prove is the following:

Lemma 4.4. If Hypothesis 2.1 is true and SAT 6∈ RP, then for every constant c′ ≥ 52/100
and an algorithm BSAT ∈ PPM, there is a randomized polynomial-time procedure R and a
polynomial q(·), such that on input 1n, the procedure R tosses O(n3) coins, and outputs at
most three formulae where the length of each formula is either n or q(n). Furthermore, for
infinitely many input lengths n, invoking R(1n) gives with probability at least 1/10 a set F
of formulae such that there exist φ ∈ F with BSATc′(φ) 6= SAT(φ).

Once we have this lemma, we can use the arguments of [GSTS05] to obtain for every
probabilistic polynomial-time algorithm, a samplable distribution that uses O(n3) random
coins, and with a constant probability outputs an instance on which the algorithm errs. We
can then use a ”universal” argument as in [GSTS05] to obtain a single distribution that
is samplable in BPTIME(t(n), O(n3)) (where t(n) = nω(1)) on which every probabilistic
polynomial-time algorithm errs with probability at least 1/n. This gives us the proof of
Lemma 3.2. We refer the reader to [GSTS05] for the details of this part of the proof (exactly
the same arguments work with the additional constraint on the randomness complexity of
the samplers), and continue with the proof of Lemma 4.4. Again, as parts of the proof repeat
[GSTS05] we only give here the parts in which the proofs differ. We strongly encourage the
reader to read both the proof and its intuition as described in [GSTS05].

Proof. [Of Lemma 4.4] We assume that SAT 6∈ RP and that Hypothesis 2.1 is true. Fix
some constant c′ ≥ 52/100 and let c := c′ − 1/100. Let BSAT be an arbitrary algorithm in
PPM. By Hypothesis 2.1, there is an algorithm BSAT1 ∈ PPM that approximates BSAT
well on the average (for every input length), and tosses at most n random coins on inputs of

length n. we define the algorithm BSAT
1

to be the amplified version of BSAT1 as follows.

The algorithm BSAT
1
: When given a formula x of length n, the algorithm BSAT

1
uni-

formly chooses n2 independent strings v1, . . . , vn2 where each of them is of length n.
For every 1 ≤ i ≤ n2, the algorithm applies BSAT1(x, vi) and it outputs the majority
vote of the answers.

Clearly, BSAT
1

runs in polynomial-time and tosses n3 coins on inputs of length n.

We now define the search algorithm SSAT1 that uses the decision algorithm BSAT
1
.
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The Algorithm SSAT1: Given a formula x of length n over the variables v1, . . . , vm, the

algorithm SSAT1 uniformly chooses a string u ∈R {0, 1}n3

. It then searches for a

satisfying assignment for x using BSAT
1
(·, u) as a decision oracle (via the standard

downwards self-reducibility property of SAT). SSAT1 has three possible outputs:

• ’no’, if BSAT
1
(x, u) = ’no’.

• ’yes’ and a Boolean assignment α = α1, . . . , αm, if α satisfies x.

• Three formulas of the form xi = x(α1, . . . , αi, vi+1, . . . , vm) , xi
0 = x(α1, . . . , αi, 0, vi+2, . . . , vm)

and xi
1 = x(α1, . . . , αi, 1, vi+2, . . . , vm) (where α1, . . . , αi, 0/1 is a partial assign-

ment), if the search fails and BSAT
1
(·, u) gives contradicting answers, claiming

that xi is satisfiable while xi
0 and xi

1 are not (this is the only way the search can
fail).

By padding formulae before feeding them to BSAT
1

we can make sure that all formulae
that come up during an execution of SSAT1 are of the length of the initial input x.
We use the notation SSAT1(x, u) to describe the outcome of SSAT1 on x when using
u as random coins.

4.3.1 The first statement

For every integer n and r ∈ {0, 1}n3

we define an NP statement φn,r:

∃x∈{0,1}n [ SAT(x) = 1 and SSAT1(x, r) 6= ’yes’ ]

Note that indeed there is a circuit of size polynomial in n that given a formula x and an
assignment α checks whether it is the case that both α satisfies x and SSAT1(x, r) 6= ’yes’.
Using the Cook-Levin Theorem, we can reduce φn,r into a formula φ′

n,r of length q(n), where

q is some polynomial in n (the degree of q is determined by the running of BSAT1 and the
efficiency of the Cool-Levin reduction). The formula φ′

n,r is over variables x, α and z (where
z is the auxiliary variables added by the reduction) with the property that φ′

n,r is satisfiable
if and only if φn,r is satisfiable. Furthermore the Cook-Levin reduction also gives that for
any triplet (x, α, z) that satisfies φ′

n,r, x satisfies φn,r and α is a satisfying assignment for
x. Let d denote the degree of the polynomial q(n), and set ε := 1/d.

4.3.2 Treating instances of length nd

Let BSATε ∈ PPM be the algorithm that approximates BSAT well on the average (for every
input length), and tosses at most nε random coins on inputs of length n. Again, BSATε

exists by the assumption that Hypothesis 2.1 is true. we define the algorithm BSAT
ε

to be
the amplified version of BSATε as follows.

The algorithm BSAT
ε
: When given a formula x of length n, the algorithm BSAT

ε
uni-

formly chooses dn2εe independent strings v1, . . . , vn2ε where each of them is of length
dnεe. For every 1 ≤ i ≤ dn2εe, the algorithm applies BSATε(x, vi) and it outputs the
majority vote of the answers.

Clearly, BSAT
ε
runs in polynomial-time and tosses dn3εe coins on inputs of length n. Finally,

we will need the following algorithm SSATε, which is a non-standard search algorithm that
uses BSATε, and is tailored to the specific formulas φ′

n,r specified above.
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The algorithm SSATε: We are given a string r ∈ {0, 1}n3

and the formula φ′
n,r of length

nd, over the variables x, α, z as defined above. Recall that x contains n Boolean
variables, α contains at most n Boolean variables and z some polynomial number of

Boolean variables. The algorithm SSATε uniformly chooses a string u′ ∈R {0, 1}n3

(recall that n3 = (nd)3ε). It then searches for a satisfying assignment for φ′
n,r using

BSAT
ε
(·, u′) as a the decision oracle. It has exactly the same three possible outputs as

SSAT1. The only difference is that SSATε does not look for a full satisfying assignment
for φ′

n,r, but rather for an assignment to the variables in x and α that satisfies the
statement φn,r (since the algorithm receives r as an input, this can be checked given
assignment to x and α).

As before, by padding formulae before feeding them to BSAT
ε
we can make sure that

all formulae that come up during an execution of SSATε are of length nd. We use the
notation SSATε(φ′

n,r, u
′) to describe the outcome of SSATε on φ′

n,r when using u′ as
random coins.

SSATε runs in polynomial-time, and on instance φ′
n,r (of length nd) tosses n3 random

coins. The reason that we needed this special type of a search algorithm that only searches
for the partial assignment x, α ignoring the variables in z, is the following: BSAT

ε
on

inputs of length nd is an amplification of BSATε upto confidence level 1 − 2−O(n), and not
1−2−nd

(we do not have enough coins for that). Therefore, we cannot apply Adelman-type
arguments [Ade78] (as it is done in [GSTS05]) on the whole set of nd-long inputs. However,
the number of possible instances that come up in an execution of SSATε is 2−O(n) and
therefore we can apply such arguments.

4.3.3 Finding hard instances

We are now ready to describe the procedure R. On input 1n, R chooses at random a string

r ∈R {0, 1}n3

. It then creates the formula φ′
n,r, and feeds it to SSATε, with a random string

u′ ∈R {0, 1}n3

. There are a few cases to consider:

• SSATε declares an error during the run and outputs three (or one) formulae. In this
case the procedure outputs these formulae.

• SSATε outputs ’no’. In this case the procedure outputs φ′
n,r.

• SSATε outputs ’yes’ and a satisfying assignment (x, α) for the statement φn,r. The
procedure then runs SSAT1(x, r). There are three cases:

– SSAT1 declares an error during the run and outputs three (or one) formulae. In
this case the procedure outputs these formulae.

– SSAT1 outputs ’no’. In this case the procedure outputs x.

– SSAT1 outputs ’yes’. In this case the procedure outputs 0n.

4.3.4 Correctness

Clearly, R runs in polynomial-time and uses O(n3) random coins on input 1n. We now
prove its correctness. The following lemma is proven exactly as in [GSTS05], and we refer
the reader to their proof for details. The only difference from their setting is that they
consider one algorithm for both input lengths n and nd, while here, BSAT1 works on length
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n and BSATε on nd. Keeping this in mind, one can follow their argument to verify the
correctness of the lemma.

Lemma 4.5. For infinitely many input lengths n, with probability at least 1 − 1/n the
following event occurs: R(1n) outputs a set F of at most three formulae and exactly one of
the following holds,

1. F contains only formulae of length nd and there exists y ∈ F such that BSATε
c(y) 6=

SAT(y).

2. F contains only formulae of length n and there exists y ∈ F such that BSAT1
c(y) 6=

SAT(y).

We call an input length n useful if Lemma 4.5 holds with respect to it. We now use
the fact that it is infeasible to come up with instances on which BSAT1 and BSATε behave
very different than BSAT to conclude the proof of Lemma 4.4.

Lemma 4.6. For infinitely many input lengths n, with probability at least 1/10, R(1n)
outputs a set F of at most three formulae (of lengths either n or nd) such that there exists
y ∈ F such that BSATc′(y) 6= SAT(y) (recall that c′ = c + 1/100).

which completes the proof of Lemma 4.4.

We now turn to proving Lemma 4.6:

Proof. We say that an input length n is useful for BSATε (resp. BSAT1) if with probability
at least 1

2(1−1/2n), R(1n) outputs a set F of at most three formulae each of length nd (resp.
n) and there exists y ∈ F such that BSATε

c(y) 6= SAT(y) (resp. BSAT1
c(y) 6= SAT (y)). By

Lemma 4.5 every useful length is either useful for BSATε or for BSAT1. So for at least one
of the two, there are infinitely many useful lengths. Let us assume without loss of generality
that it is BSATε.

Consider the following samplable distribution G = {Gn}: on input 1n, check whether
there exists n′ such that (n′)d = n. If so, run R(1n′

). If it outputs a set F of formulae of
length n, choose a formula from F at random and output it. Otherwise output 0n.

Whenever n′ is useful for BSATε, with probability at least 1
2(1− 1/2n′), R(1n′

) outputs
a set F of at most three formulae each of length (n′)d = n and there exists y ∈ F such that

BSATε
c(y) 6= SAT(y) (1)

Also, except for probability 3/100, R(1n) outputs a set F such that for all y ∈ F ,

Pr[BSAT(y) = 1] − Pr[BSATε(y) = 1]| ≤ 1/100 (2)

This is because G is a samplable distribution, and by Hypothesis 2.1, no samplable distri-
bution can output with probability greater than 1/100 an instance on which the acceptance
probabilities of BSAT and BSATε differ by more than 1/100.

By the definition of confidence level and the fact that c′ = c + 1/100, for every y for
which both Equations 1 and 2 hold, BSATc′(y) 6= SAT(y).

Altogether, with probability at least 1/3, the set F that R(1n) outputs contains y ∈ F
such that BSATc′(y) 6= SAT(y).
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5 Black-box vs. non-black-box reductions

In this section we consider the worst-case to average-case reduction from [GSTS05]. We
show that under standard assumptions, their result cannot be proven via black-box and
non-adaptive reductions. On the other hand [GSTS05] gives an unconditional non-black-
box reduction which, as we explain below, can be preformed non-adaptively. This isolates
the non-black-box property of the [GSTS05] reduction as the key ingredient in bypassing
negative results along the line of [FF93, BT03, AGGM06]. With this understanding, we
take a closer look at this reduction and discover that it is of a very particular form which
makes it almost black-box and therefore convenient to work with.

5.1 Black-box limitations

We start by reviewing previous results about the impossibility to obtain worst-case/average-
case equivalence for NP under black-box reductions. Bogdanov and Trevisan [BT03], build-
ing on Feigenbaum and Fortnow [FF93], show that unless every language in coNP can be
decided by a family of polynomial size nondeterministic circuits (which implies the col-
lapse of the polynomial-time hierarchy), there is no non-adaptive black-box reduction from
deciding an NP-complete language in the worst-case to deciding an NP language on the
average (recall Definition 2.2 in Section 2.2 of non-adaptive black-box reductions). Akavia
et. al. [AGGM06] show that a reduction from solving NP in the worst-case to the harder
task of inverting a one-way function on the average is even less likely, and under a certain
restriction on the family of functions to invert, they also rule out (conditionally) adaptive
black-box reductions.

The Feigenbaum-Fortnow protocol. Let us briefly explain the argument of Feigen-
baum and Fortnow [FF93] on which the later arguments of [BT03, AGGM06] are based.
The proof of [FF93] does not address general reductions. Instead, it deals with non-adaptive
reductions that on input x make q non-adaptive queries. Furthermore, it assumes that for
every 1 ≤ i ≤ q, the i’th query is uniformly distributed. Such a reduction implies a worst-
case to average-case reduction (with average-case hardness of 1 − 1/4q with respect to the
uniform distribution). Let us call this type of reductions special.

The [FF93] result, generalized to arbitrary time bounds, says the following. Assume
there is a language L ∈ NTIME(tL(n)) and a special reduction R from SAT to L, such
that R is computable in time tR(n). Then SAT has an Arthur-Merlin protocol in which
Arthur uses non-uniform advice and runs in time poly(tL(tR(n))). This implies that every
language in coNP can be computed by a family of nondeterministic Boolean circuits of size
poly(tL(tR(n))).

The protocol is as follows. On input x, Arthur runs k = Θ(q3) independent copies of R
and thus generates qk queries (recall that R is non-adaptive). It sends all these queries to
Merlin, who provides for each query an answer whether it is in L or not. Merlin also ac-
companies every ”yes” answer with a membership witness (recall that L ∈ NTIME(tL(n))).
Arthur checks that all the certificates for the ”yes” instances are correct and it then checks
that all the k runs of the reduction with Merlin’s answer reject x (recall that the aim is to
prove that x is not in SAT). Finally it checks that for every 1 ≤ i ≤ q, the number of ”yes”
answers on the i’th query in all the k executions is not significantly lower than a certain
threshold. Specifically, Arthur rejects if for some 1 ≤ i ≤ q, the number of ”yes” answers
on the i’th query (summing over all the k executions) is smaller than pk − 2

√
qk. Where p

18



is the fraction of ”yes” instances of L for the relevant input length. This value is given to
Arthur as a non-uniform advice.

Now, if x ∈ L then by Chernoff and union bounds, with high probability, the number
of ”yes” instances on each query will be above this threshold and an honest prover will
convince Arthur.

On the other hand, if x 6∈ L then a cheating prover must give at least one wrong answer
on every execution, and note that it can only cheat by saying ”no” instead of ”yes”. In
particular there exists a query i for which Merlin cheats at least k/q times. But then the
number of ”yes” instances on i must be at most pk − k/q < pk − 2

√
qk and Arthur rejects.

Next we analyze the running time of the verifier. Since the reduction R runs in time
tR(n), it follows that the length of each query that R makes is also at most tR(n). Therefore
to verify membership in L (given a witness) for an instance of size tR(n), the verifier runs
in time tL(tR(n)). The verifier runs poly(q) = poly(tR(n)) executions of the reduction. It
therefore follows that the running time of the verifier is poly(tL(tR(n))).

Dealing with general reductions. Bogdanov and Trevisan [BT03], showed how to
adapt the above argument to general non-adaptive black-box worst-case to average-case
reductions that are not necessarily special. They do it in two steps. First they show how to
generalize the argument of [FF93] to smooth reductions, in which every query is generated
with probability that is at most polynomially larger than the uniform distribution. Then
they reduce the general case to the smooth case. They do that by modifying the reduction
such that it only asks the oracle ”light” queries, i.e. queries that are not generated with too
high probability. ”Heavy” queries are assumed by the reduction to be ’no’ instances. This
makes the reduction smooth, but it also changes the oracle. However, the point is that the
fraction of ”heavy” queries cannot be too large. Therefore we only change the oracle on
relatively few inputs. So if the original oracle solves the language well on the average, the
new oracle will still solve it well on the average. Since our reduction is from solving SAT
on the worst-case to solving L on the average, the new reduction with the new oracle still
solves L on the worst-case, and we are in position to apply the arguments of the smooth
case. We refer the reader to [BT03] for the technical details.

We want to stress out that in the proofs of [FF93, BT03] the side who is playing the
oracle is Merlin. That is, the oracle has unbounded computational power. This is the reason
that their arguments only rule out black-box reductions.

As in [FF93], the proof of [BT03] generalizes to arbitrary time bounds and in particular
gives the following.

Theorem 5.1 (Implicit in [BT03]). Suppose that there is a language L ∈ NTIME(nO(log n))
and a reduction R from solving SAT on the worst-case, to solving (L,U) on the average
with success 1 − 1/nO(log n). Further suppose that R is non-adaptive and black-box, and is
computable in time npolylog(n). Then every language in coNP can be computed by a family
of nondeterministic Boolean circuits of size npolylog(n).

The reduction of [GSTS05] cannot be black-box. We can now prove that the re-
duction from [GSTS05] cannot be black-box and non-adaptive (under an unproven but
plausible assumption).

Theorem 5.2. Suppose that there is a language L ∈ NP and a distribution D samplable in
time nlog n, such that there is a black-box and non-adaptive reduction from solving SAT on
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the worst-case, to solving (L,D) on the average with success 1− 1/n. Then every language
in coNP can be computed by nondeterministic Boolean circuits of size npolylog(n).

Proof. Using the notation from Section 2, D is samplable in BPTIME(nO(log n)), and L ∈
NTIME(poly(n)). Then by Lemma 3.1, there is a language L′ ∈ NTIME(nO(log n)), and a
reduction R1 from solving (L,D)1−1/n to solving (L′,U)list−search,1−1/nO(log n) (in the state-
ment of the lemma the reduction is from (L,D)search,1−1/n, which in particular implies the
decision version). This reduction is non-adaptive and black-box, and it is computable in
time nO(log n). By Lemma 4.1, there is a language L′′ ∈ NTIME(nO(log n)), and a reduction
R2, from solving (L′,U)list−search,1−1/nO(log n) to solving (L′′,U)1−1/nO(log n) . This reduction

is non-adaptive and black-box, and it is computable in time nO(log n). Combining the re-
duction from the hypothesis of the theorem with R1 and R2, we obtain a reduction from
solving SAT on the worst-case to solving (L′′,U) on the average with success 1−1/nO(log n).
This reduction is non-adaptive and black-box, and it is computable in time npolylog(n) (by
composing three nO(log n) functions). By Theorem 5.1, this implies that every language in
coNP is decidable by a family of nondeterministic circuit of quasi-polynomial size.

5.2 A closer look at the reduction of [GSTS05]

As we said before (Section 1.4) there are two steps in [GSTS05]. First it is shown that as-
suming NP 6⊆ BPP, any probabilistic, polynomial-time algorithm BSAT for SAT has a hard
polynomial-time samplable distribution DBSAT, and then they show one quasi-polynomial
time distribution D that is hard for all polynomial-time, probabilistic algorithms.

We now recall how the first step is achieved. Given BSAT we define the probabilistic
polynomial time algorithm SSAT that tries to solve the search problem of SAT using oracle
calls to BSAT (via the downwards self-reducibility property of SAT), and answers ”yes” if
and only if it finds a satisfying assignment. We then define the SAT formula:

∃x∈{0,1}n [ SAT(x) = 1 and SSAT(x) 6= ’yes’ ] (3)

The assumption NP 6⊆ BPP implies that SSAT does not solve SAT and the sentence is true.
We now ask SSAT to find a satisfying assignment to it. If it fails doing so, then BSAT is
wrong on one of the queries made along the way. Otherwise, the search algorithm finds a
SAT sentence x on which SSAT is wrong. This, again, means that BSAT is wrong on one
of the queries SSAT makes on input x. Things are somewhat more complicated because
SSAT is a probabilistic algorithm and not a deterministic one, and so the above sentence
is not really a SAT formula, but we avoid these technical details and refer the interested
reader to [GSTS05]. In any case, we produce a small set of queries such that on at least
one of the sentences in the set, BSAT is wrong, i.e., we get a polynomial-time samplable
distribution on which BSAT has a non-negligible error probability.

To implement the second step, [GSTS05] define the distribution D that on input 1n

picks at random a machine from the set of probabilistic machines with description size
at most, say, log n and runs it up to, say, nlog n time. We know that for any probabilistic
polynomial-time algorithm BSAT there is a hard distribution DBSAT, and this distribution
is sampled by some polynomial-time algorithm with a fixed description size. Thus, for n
large enough, we pick this machine with probability at least 1/n (because the description
size is log n) and then we output a bad input for BSAT with probability 1/n. The sampling
time for D is nlog n (or, in fact, any super-polynomial function).
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We now ask: Can we interpret the [GSTS05] result as a worst-case to average-case
reduction?

Indeed, given an algorithm BSAT for solving (SAT,D), the reduction is the algorithm

RBSAT = SSAT. The analysis shows that if BSAT indeed solves SAT well on the average
with respect to D, then it also solves it well on the average with respect to DBSAT. This
implies that necessarily the sentence in Eq (3) is true, i.e., SSAT solves SAT in the worst-
case. In other words, the standard search to decision reduction for SAT (that uses the
downwards self-reducibility property of the language) is also a worst-case to average-case
reduction!

Another question is now in place: is the reduction black-box?
Looking back at Definition 2.2 we see that a reduction is called black-box if it has the

following two properties:

1. (Property 1) R makes a black-box use of the adversary A (in our case BSAT). I.e., R
may call A on inputs but is not allowed to look into the code of A.

2. (Property 2) The reduction is correct for any A that solves the problem (in our case
SAT), putting no limitations on the nature of A. E.g. A may not even be computable.

We see that in the reduction of [GSTS05], the first condition is satisfied. R is merely the
standard search-to-decision reduction for SAT which queries the decision oracle on formulas
along a path of the search tree. We can replace the standard search-to-decision reduction
with the one by Ben-David et. al. [BDCGL90]. The latter makes only non-adaptive queries
to the decision oracle. Thus we get a non-adaptive reduction.

However, Theorem 5.2 tells us that there is no non-adaptive, black-box reduction with
the parameters [GSTS05] achieve, so we must conclude that the second condition is violated.
Indeed, the key point in the analysis of [GSTS05] works only for efficient oracles BSAT.
This is so, because the analysis only guarantees that the distribution D is hard on the
average for polynomial-time algorithms. That is, it is shown that if the search algorithm
R that uses BSAT does not solve SAT in the worst-case, then we can encode the failure
of RBSAT as an NP statement. Here the analysis crucially uses the fact that BSAT (and

therefore RBSAT) is in BPP, and therefore its computation has a short description as a
Boolean formula.

So let us now summarize this surprising situation: from the reduction R’s point of
view, it is black-box, i.e. Property 1 holds (R does not rely on the inner working of the
oracle BSAT or its complexity), but for the analysis to work, the oracle BSAT has to be
efficient, i.e. Property 2 is violated.6 This motivates the definition of class-specific black-box
reductions that we gave in the introduction and we now recall.

Definition 5.1 (Class-specific black-box reductions). Let P, P ′ be two computational prob-
lems, and C a class of algorithms. We say that there is a C-black-box reduction from P to
P ′, if there is a probabilistic polynomial-time oracle machine R such that for every oracle
A ∈ C that solves P ′, RA solves P . If R queries A non-adaptively we say the reduction is
non-adaptive.

6We mention that very recently, Atserias [Ats06] gave an alternative proof to [GSTS05] where he shows
that even the analysis can be done almost black-box. That is, it does not need to use the description of
BSAT, it only needs to know the running time of BSAT. In contrast, the analysis in [GSTS05] does use the
description of BSAT.
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Note that the definition is only meaningful when the class C is more powerful than R.
Otherwise R can run the oracle by itself. This is indeed the case in [GSTS05] where R runs
in linear time and A runs in arbitrary polynomial time.

Given this definition and the discussion about non-adaptivity above, we can restate the
result of [GSTS05] as follows:

Theorem 5.3. There exists a distribution D samplable in time nlog n, such that there is a
BPP-black-box and non-adaptive reduction from solving SAT on the worst-case to solving
(L,D) on the average with success 1 − 1/n.

Theorem 5.3 is in sharp contrast to Theorem 5.2. Theorem 5.2 (as well as [FF93, BT03,
AGGM06]) say that the requirement in black-box reductions that they succeed whenever
they are given a ”good” oracle (regardless of its complexity) is simply too strong, i.e. such
reductions are unlikely to exist. Theorem 5.3, on the other hand, says that weakening the
requirement to work only for efficient oracles (i.e. to violate Property 2, but not property
1) is enough to bypass the limitation.

Class-specific black-box reductions are non-black-box yet they share some properties
with black-box reductions and they seem to enjoy from all worlds:

• The reduction R makes a black-box use of the oracle A and so R is not required to
”understand” the computation A does from its description.

• The correctness proof holds for every efficient A, and so the reduction has effectively
the same functionality as a standard black-box reduction, and,

• It enables us to bypass black-box limitations.

In light of this we think it is not surprising that such techniques are used in the proof
of Theorem 3.1. We believe such reductions are natural and provide a convenient way
to bypass black-box limitations, and we expect that this methodology would find other
applications.

5.3 Two remarks

We mention that there are other examples of non-black-box reductions in complexity theory
that bypass black-box limitations. The fact that the polynomial-time hierarchy collapses
under the assumption NP = P is proven via a non-black-box reduction from solving NP
efficiently to solving Σ2 efficiently. On the other hand if such a black-box reduction exists
the polynomial-time hierarchy collapses unconditionally.7 It is interesting, however, that in
this argument both the reduction and the proof of correctness are non-black-box, because
the reduction queries the NP-oracle on statements that are encodings of the computation
of the oracle A. I.e. both Properties 1 and 2 are violated.

Second, we want to mention that one should not confuse black-box limitations with non-
relativizing arguments. The proof of [GSTS05] (as well as the collapse of the polynomial-
time hierarchy) can be done in a relativizing way.

7This was pointed out to us by Charlie Rackoff. The argument goes as follows. We will show that

Σ2 ⊆ PNP. Given an instance x of a complete language L in Σ2, run the reduction on it using an NP oracle.
By the correctness of the reduction this decides correctly the membership of x in L. By the efficiency of

the reduction, this is a procedure in PNP. This argument can be easily adapted to the case of randomized
reductions.
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6 Discussion

In this section we discuss our approach and compare it to other possible approaches for
attacking the problem. In particular we explain why standard techniques to separate com-
plexity classes (such as diagonalization) or to prove worst-case to average-case reductions
(such as the techniques that work in the exponential level) do not seem to to imply Theorem
3.1. We then discuss directions for further research, and where we see the difficulties and
hope for improvements.

6.1 Can we remove the worst-case hardness assumption?

One may wonder whether the worst-case hardness of NP plays any role in our statement, or
in other words whether we can prove directly that the derandomization assumption implies
the average-case hardness of ÑP. The first inclination is to try and prove such a result using
diagonlization. Indeed with respect to deterministic polynomial-time algorithms, ÑP (and
even deterministic quasi-polynomial time) is average-case hard by a simple diagonalization
argument. However, with our current state of knowledge, BPP can contain the whole
of NEXP (in the worst-case). And even if our assumption that the randomness of BPP
algorithms can be reduced by polynomial factors is true, it still leaves open the possibility
that BPP contains the whole of NSUBEXP. Thus we cannot use diagonalization directly
to obtain the average-case hardness of ÑP.

We do want to mention that a more sophisticated diagonalization argument together
with a careful hierarchy collapsing argument can show that the derandomization assumption
implies the worst-case hardness of ÑP.8 However this argument does not seem to work in
the average-case setting. This is because it is not known that easiness on the average of,
say NP or ÑP, implies the hierarchy collapse that is needed for the argument. In fact the
question of hierarchy collapses under an easiness on the average assumption is considered
by Impagliazzo [Imp95] as one of the most important questions in the field of average-
case complexity, and it seems to be related back to the question of worst-case/average-case
connections.

Finally, we want to point out that we show hardness on the average of the class
NTIME(t(n), poly(n)) (and not just ÑP). This class is contained in EXP, and currently
cannot be separated (by diagonalization or any other known technique) from NP and even
RP. Thus our result is also meaningful even if we only consider hardness on the average
against probabilistic polynomial-time algorithms with one-sided error.

6.2 Can we remove the derandomization assumption?

As we already mentioned in the introduction, It is known that for high classes such as
EXP and PSPACE, their worst-case and average-case complexities (against small circuits
or efficient probabilistic algorithms) are equivalent [BFNW93, IW97, IW98, STV99, TV02].
We want to briefly explain why the techniques that were used to prove these connections

8Here is a rough sketch of the proof. Assume not. In particular the class NTIME(nlog n, poly(n)) is
contained in BPP. A careful hierarchy collapsing argument (that takes the witnesses sizes into consider-
ation) implies that Σ2(n

log n, poly(n)) (the second level analogue of NTIME(nlog n, poly(n))) is contained
in BPP. Now use the derandomization assumption to conclude that Σ2(n

log n, poly(n)) is contained in
BPTIME(poly(n), n). By Lautemann [Lau83] we get that Σ2(n

log n, poly(n)) ⊆ Σ2(poly(n), n2). But this
contradicts the time hierarchy for the second level of the (alternating) hierarchy.
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cannot be used to remove the derandomization assumption from our statement and prove,
for example, Open Problem 1.1.

All existing proofs of these worst-case/average-case connections work (explicitly or im-
plicitly) by encoding the truth-table of an EXP complete language using a locally-decodable
code. They then argue that if one can solve the encoded language on-average, then using
the local decodability one can solve the EXP complete language on the worst-case. Such
arguments are bound to run in exponential time (or polynomial space) because they encode
the truth table of a language, and the truth table size is exponential in the input length. In
other words, while this argument can start from any worst-case hard language (even, say, in
NP) it only implies that there exist a language in EXP that is average-case hard. In Fact,
Viola [Vio03] showed that a certain family of reductions (that includes the argument above)
cannot prove worst-case to average-case connections below exponential-time. Since this is
currently the only known general technique to prove worst-case to average-case reductions,
we see it as a highly important task to break this exponential-time barrier, and to prove,
for example, Open Problem 1.1.

6.3 Directions for future research

Our proof technique gives us hope that continuing along this line will eventually prove (in
the affirmative) Open Problem 1.1. We obtain our result by using a very unique property
of the reduction of [IL90]. It says that the running time of the reduction only depends
on the randomness complexity of the hard distribution, but not on its running time. Can
we come up with a reduction that establishes the same task (transforming arbitrary hard
distributions to the uniform one), in which the running time of the reduction does not
depend at all on the sampler, and only the (nondeterministic) complexity of the hard-on-
average language depends on the sampler? Plugging such a reduction into our proof (now
without the need to derandomize [GSTS05]) may give worst-case to average-case reductions
below the exponential level.

As we have said before, we believe that proving worst-case/average-case equivalence
within NP requires completely different ideas. This is because [GSTS05] only gives a quasi-
polynomial time sampler, and we don’t expect a reduction, transforming arbitrary hard
distributions to the uniform one, in which the complexity of both the reduction and the
hard-on-average language are independent of the sampler.

Finally, we want to mention another question that is related to our work. It is well
known that pseudorandom generators do imply average-case hardness (almost by definition).
Note however, that in Theorem 3.1, we only use a derandomization assumption, which
is seemingly weaker than the existence of pseudorandom generators (e.g. it is possible
that one can show how to derandomize probabilistic algorithms without constructing a
pseudorandom generator along the way). This brings us to the question of the connections
between derandomization and pseudorandom generators. Does efficient deranodmization
imply efficient pseudorandom generators? We know that the answer is yes when we remove
the efficiency requirement [IW98].
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