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Abstract

In the last decade, the notion of metric embeddings with small distortion received wide attention in
the literature, with applications in combinatorial optimization, discrete mathematics, functional analysis
and bio-informatics. The notion of embedding is, given two metric spaces on the same number of points,
to find a bijection that minimizes maximum Lipschitz and bi-Lipschitz constants. One reason for the
popularity of the notion is that algorithms designed for one metric space can be applied to a different
metric space, given an embedding with small distortion. The better the distortion, the better is the
effectiveness of the original algorithm applied to a new metric space. The goal that was recently studied
by Kenyon, Rabani, and Sinclair [14] is to consider all possible embeddings and to try to find the
best possible one, i.e., consider a single objective function over the space of all possible embeddings
that minimizes the distortion. In this paper we continue this important direction. In particular, we
resolve an open problem stated by the previous paper, improve their distortion lower bound for the line,
generalize their method and show its inherent limitation. While the improved distortion differs only
by a constant factor for the line (i.e., we show an improvement from 3 + 2

√
2 to 5 + 2

√
6), it requires

novel techniques and insight into high-distortion patterns. Furthermore, we show an inherent limitation
of this method to be at most 7 + 4

√
3. We also show that previous techniques on general embeddings

apply to a more general class of metrics.

1 Introduction

For a bijection σ : U → V between two n-point metric spaces (U, d) and (V, d′), expansion of σ is defined
as

expansion(σ) = max
x,y∈U,x 6=y

d′(σ(x), σ(y))

d(x, y)

Distortion σ is defined as follows: dist(σ) = expansion(σ) × expansion(σ−1). The minimum distor-

tion problem is to find a bijection σ between two equal-sized finite metric spaces (U, d) and (V, d′) such
that dist(σ) is minimum over all possible bijections.

The minimum distortion problem is interesting to study for both theoretical as well as practical rea-
sons. From complexity theoretic point of view, it has interesting connections to graph isomorphism [10].
In particular, graph isomorphism on two input graphs G and H is trivially reduced to deciding if there
exists an isometric (i.e., distortion 1) bijection between MG and MH , where MX denotes the shortest
path metrics of a graph X.

On the practical side, we note that applications dealing with shape matching and object recognition
(e.g., signature matching, character recognition, matching facial features, pattern matching in complicated
protein structures, and so on) require good measures of similarity. Distortion is an attractive measure of
similarity between two point sets [2, 12]. In fact, among currently known measures of similarity [5, 7],
it seems to be the most sensitive measure. Thus, from the point of view of aforementioned applications,
good algorithms for finding minimum distortion (interchangeably, optimal) bijection are highly desirable.

Kenyon, Rabani, and Sinclair [14] show that the minimum distortion problem is NP-hard even to
approximate (within a factor of 2), and provide two positive results:
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• A polynomial time algorithm for exactly finding the minimum distortion bijection between two line
metrics if the optimal bijection has distortion strictly less than 3 + 2

√
2.

• A parameterized polynomial time algorithm for exactly finding optimal bijection between bounded-
degree tree metric and an arbitrary unweighted graph metric.

In this paper, we improve and generalize the results of Kenyon, Rabani, and Sinclair.

• In particular, we first provide a polynomial time algorithm for exactly finding an optimal bijection
between two line metrics if the optimal bijection has distortion strictly less than 5 + 2

√
6.

Achieving this improvement requires new insights into the problem. In particular, [14] look at a
single “pattern” (partial bijection of size 4) and its inverse. They call this pattern a forbidden
pattern. Optimizing over those bijections that do not contain this forbidden pattern gives rise to the
algorithm of [14] and its analysis. We develop a generalized definition of forbidden patterns. Our
definition classifies patterns of increasing size (depending on a parameter k) with high distortion.
We call these patterns (k, k)-FP. We show that one must exclude all forbidden patterns of size k to
guarantee the correctness of the algorithm for higher distortion. We use this generalized methodology
for constructing parameterized algorithms and analyzing them. Interestingly, the forbidden pattern
(and its inverse) considered by [14] comprises the entire (4, 4)-FP family.

• Next, based on the idea of families of forbidden patterns, we are able to design a dynamic program-
ming algorithm which finds a minimum distortion bijection on more instances than [14]. Thus our
work answers a direct open question posed in [14].

• We also show a limitation of the “forbidden pattern” approach, by showing that there exists arbi-
trarily large families of forbidden patterns with bounded distortion. This lower bound shows the
extent to which this approach will be useful and indicates a new approach must be taken to pass
this bound.

We remark that after the work of [14], most research has focussed on either approximating the distor-
tion [4, 3] or proving the hardness of approximating it [11, 18, 6]. Hall and Papadimitriou in [11], show
that line embeddings are hard to approximate even within large factors when the distortion is high. There
have been no positive results for polynomial time algorithms that exactly find the minimum distortion
bijection; we are the first such improvement.

We also consider the case of embedding a bounded degree unweighted tree metric into an arbitrary
unweighted graph metric. We prove that the algorithm of [14] actually works for a larger class of graphs -
unweighted bounded degree graphs with maximum cycle length 3. That is, we show that their algorithm
finds optimal bijection between a bounded degree graph with maximum cycle length 3 and an arbitrary
unweighted graph metric.

1.1 Related Work

The problem of embedding distance metrics into geometric spaces has been studied extensively [15, 16,
19, 20, 1, 13, 17]. The minimum distortion problem is a natural variant of bi-Lipschitz embeddings
questions that were initially motivated by the study of Banach spaces.

A problem closely related to minimum distortion is minimum bandwidth. minimum distor-

tion can be viewed as a variation and generalization of the minimum bandwidth problem [8, 9]. Good
solutions for the minimum bandwidth problem, however, typically incur very large contraction and hence
do not seem useful for solving minimum distortion.

After its introduction, minimum distortion problem has received considerable attention in the re-
search community. Most of the results, however, have been negative showing that the problem is hard
even to approximate. Among such results are the following: Hall and Papadimitriou show that the line
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embeddings problem is hard to approximate even within large factors if distortion is high [11], Papadim-
itriou and Safra show that the general embeddings problem is hard to approximate within a factor of 3 in
three-dimension [18], and some results of Cary, Rudra, and Sabharwal [6].

Due to such results, some of the research work focusses on approximating minimum distortion under
certain circumstances (e.g., see the work in [3, 4]) and considering new definitions of distortion (e.g.
additive distortion [11]). To the best of our knowledge, there have been no positive results on exactly
solving the embeddings problem with multiplicative distortion as the measure of similarity. After [14], our
results are the only positive results for finding optimal embeddings.

2 Line Embeddings

This section proves the following main result.

Theorem 1 Let U = {u1, ...., un} and V = {v1, ...., vn} be two subsets of the real numbers. Let α <
√

5 + 2
√

6. There is a polynomial time algorithm to decide whether there exists a bijection between U and
V with expansion and inverse expansion at most α.

From this, we obtain a polynomial time algorithm for the minimum distortion problem in one dimension
provided the distortion is below the threshold value 5 + 2

√
6.

2.1 Definitions

Let U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn} be the sets of n points on the real line, and let π be a fixed
permutation on {1, 2, . . . , k} (a “pattern”). Following [14], we say that a bijection σ from U to V contains
π if there exists a subset ua1

< ua2
< . . . < uak

such that σ(uai
) < σ(uaj

) iff π(i) < π(j), for 1 ≤ i, j ≤ k.
Otherwise, we say that σ avoids π.

Line. The image of a point x ∈ U is denoted by x′. A line is defined as a point x along with its image
x′. It is denoted by x-x′.

Neighbor. A point that is immediately to the left (right) of x ∈ U is called the left (right) neighbor
of x.

Consecutive Mapping. It is a mapping from m ≥ 2 consecutive points in U to m consecutive points
in V .

By σK , we denote the mapping of the points in the set K. By σK+K ′, we denote the mapping of the
points in the set K ∪K ′. If K ′ = {a}, we write σK+a. Similarly by σK−K ′, we denote the mapping of the
points in the set K − K ′. The size of σK (denoted by |σK |) is defined as the number of lines in σK .

Encompass and Include. Consider the mapping σK . Let K = {u1, u2, . . . , uk} such that u1 <
u2 < . . . < uk. Let the leftmost image of all points in K be u′

ℓ and the rightmost image be u′
r. Then, the

mapping σK encompasses any line x-x′, x /∈ K, such that u1 ≤ x ≤ uk or u′
l ≤ x′ ≤ u′

r. If x ∈ K then we
say that σK includes x-x′.

If σK encompasses (includes) all lines x-x′ ∈ σK ′ , we say that σK encompasses (includes) σK ′ . We
shall sometimes abuse notation by saying σK encompasses (includes) x, when we mean σK encompasses
(includes) x-x′.

Border. We say a line x − x′ from U to V borders a mapping σK if x and x′ are both neighbors of
points in σK , but are not encompassed by σK .

Forbidden Pattern. Consider a bijection σ : U → V . Pick the smallest subsequence S in U of size
i > 1, such that σ(S) is a subsequence of V . Replace subsequences S and σ(S) with single points in their
respective sets U and V .

Repeat the above reduction process until there is only one point in U . If k is the size of the longest
subsequence S in this process, then bijection σ is a (n, k)-forbidden-pattern, denoted by (n, k)-FP, and a
(n, k0)-non-forbidden-pattern for all k0 > k, denoted by (n, k0)-NFP.
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2.2 Structural Properties

Lemma 1 For every (k, k)-FP σK , which is a mapping from U to V with k ≥ 5, with endpoints y′ and
z′ in V , there exists a (k0, k0)-FP with k0 ≥ k − 4 that is contained in σK and includes z − z′ and y − y′.

Proof. Base case: It is easy to see that for every (5, 5)-FP there exists a (4, 4)-FP pattern that is
contained in the (5, 5)-FP which contains both endpoints in V (see appendix A.1).

Assume for induction that the lemma holds up to k − 1. We will show with this inductive hypothesis
that we can prove the lemma for k.

Suppose we are given a (k, k)-FP σK from U to V . Let y′ and z′ be the left and right end points of V
respectively. Also let a be the left most point in U .

Look at the mapping σK−a . Let σK ′ be a consecutive mapping in σK such that |σK ′ | ≥ 2 and |σK ′ |
is minimal (see figure 1). σK ′ will obviously always exist and may equal σK−a .

Any consecutive mapping in σK−a must encompass a′ in the original mapping σK . If these consecutive
mappings did not encompass a′, the original pattern would have < k consecutive points mapping to < k
consecutive points. This is not the case by the definition of a (k, k)-FP. Thus any consecutive mapping
must encompass a′.

Any consecutive mapping that encompasses a′ will include some points in σK ′ . A mapping that includes
any of σK ′ must include all of σK ′ because there is no consecutive mapping in σK ′ of size m < |σK ′ |. Thus
any consecutive mapping in σK−a that includes a point in σK ′ will include all of σK ′ . Since all mappings
must include σK ′ and σK ′ is the smallest such mapping, this implies σK ′ is unique.

Note that in the previous argument we implied that there are no consecutive mappings in σK−K ′−a that
do not encompass σK ′ .

Suppose |σK ′ | ≥ 5, then by inductive hypothesis σK ′ contains at least a (|σK ′ | − 4, |σK ′ | − 4)-FP
that contains both endpoints of σK ′ in V ; call this mapping σKr . Remove all lines in σK ′ that are not in
σKr . Note that since we have kept the endpoints of σK ′ we have certainly kept the endpoints of σK . It
is also obvious that a′ is encompassed by σKr since we have kept both endpoints of σK ′ .

Now look at the mapping σK−K ′+Kr
. We claim that this is the (k0, k0)-FP. Assume it is not a

(k0, k0)-FP. Then there is some consecutive mapping of size less than k0, call this mapping σK ′′ . We have
shown that there are no consecutive mappings in σK−K ′−a that do not encompass σK ′ , σK ′′ must include
either a or σK ′ or both.

If σK ′′ includes a−a′ it must include a neighbor of a′, but both neighbors of a′ are in σKr , since σKr is
a forbidden pattern we must include all points in σKr Similarly if we include any point in σKr in σK ′′ we
must include all points in σKr and thus must include a− a′. Thus σK ′′ must include both a− a′ and σKr .

If we now replace σKr with σK ′ in σK ′′ , the size of σK ′′ has only increased by at most 4, since all
removed points are encompassed by σK ′′ . This consecutive mapping is in σK and is of size less than k
which is a contradiction. Thus σK−K ′+Kr

is a (k0, k0)-FP and includes points y′ and z′.

Now we must handle all cases where |σK ′ | < 5.
Size of σK ′ = 3 or 4. We will construct a mapping that is a (k0, k0)-FP as follows. Start with σK .
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Figure 2: |σK ′ | = 3 or 4

Remove all points in σK ′ keeping the two end points of σK ′ in V . Call these endpoints c′ and d′ such that
c is to the left of d in U . Note that since we have kept the end points of σK ′ we have obviously kept the
endpoints of σK .

There might exist a line p − p′ such that p is the left neighbor of c and p′ is a neighbor of c′, if so
remove c − c′ and rename p − p′ as c − c′ for convenience. Similarly there might exist a line q − q′ such
that q is the right neighbor of d and q′ is the neighbor of d′, if so remove d− d′ and rename q − q′ as d− d′

(see figure 2). Note that we still maintain the endpoints of σK in V .
Note that c does not form a consecutive mapping with its new left neighbor. If it could have then p

would have formed a consecutive mapping with this new neighbor. This would have been a consecutive
mapping in σK−K ′−a that did not encompass σK ′ , which we have shown can not be the case. Similarly d
can not form a consecutive mapping with its new right neighbor.

We now claim that the resulting mapping is a (k0, k0)-FP that includes both end points in V . Clearly
the pattern contains both endpoints in V . Suppose it is not a (k0, k0)-FP then there exists a consecutive
mapping σK ′′ of size less than k0.

• Suppose σK ′′ does not contain both c-c′ and d-d′. Then σK ′′ must contain two points from
σK−K ′−a and hence the mapping must include c− c′ and d−d′ since there is no consecutive mapping
in σK−K ′−a that does not encompass σK ′ . If this is the case then we can put back all the points
which we removed. The lines we removed do not encompass any points not in σK ′′ , because they
are all in σK ′ and σK ′′ encompasses σK ′ . Thus when we put back the removed lines we increase the
size of the consecutive mapping by at most 4. If |σK ′′ | < k0 then this is a consecutive mapping in
σK of size less than k which is a contradiction. Thus if σK ′′ contains two points from σK−K ′−a we
will have reached a contradiction.

• Suppose σK ′′ contains both c − c′ and d − d′. Then we are done by the same argument as above.

• Suppose σK ′′ contains either c − c′ or d − d′. If σK ′′ contains c − c′ and not d − d′ it must include
two points outside of σK ′ . This is because c − c′ can not merge with its left neighbor. If one of
these lines is a − a′, note that we can now include d − d′ without including any more points and we
still have a consecutive mapping. Thus c − c′ and d − d′ are part of a consecutive mapping and we
are done. If one of these lines is not a − a′ then σK ′′ contains two points from σK−K ′−a and we are
done. If σK ′′ contains d − d′ and not c − c′ a similar argument holds.

Size of σK ′ = 2. We will construct a mapping that is a (k0, k0)-FP as follows. Let the lines in σK ′ be
c− c′ and d− d′ respectively from left to right in U . We show that the removal of either line c− c′ or line
d − d′ will result in a mapping that will contain a (k0, k0)-FP.

Let e be the left neighbor of c if one exists. If c does not have a left neighbor then a = c. However
if a = c or a = e then σK ′+a is a consecutive mapping of σK . This can not be the case since σK is a
(k, k)-FP and |σK ′ | = 2. Hence a 6= c and a 6= e. Thus e must exist and not equal a.

Note for later use that c− c′ and e− e′ can not form a consecutive mapping since c and e are neighbors
in σK .

Let f be the right neighbor of d if one exists.
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Figure 3: |σK ′ | = 2

Suppose f does not exist. If this is the case then d is an endpoint in U (see figure 3). d′ can not be an
endpoint in V , since if this was the case then σK−d would have been a consecutive mapping in σK of size
k − 1.

Thus we will remove d − d′. Let b be the right neighbor of a. If the right neighbor of b is c, |σK |
would be at most 4, but |σK | > 4. b can not form a consecutive mapping with its right neighbor since
in that case b and its right neighbor form a consecutive mapping in σK−K ′−a . It may be the case that
b′ was a neighbor of d′. If this were the case then after the removal of d − d′, a − a′ and b − b′ will form
a consecutive mapping. In this case remove a − a′ and rename b − b′ as a − a′. Note that a′ was not an
endpoint in V and thus we still have both endpoints of V . Now a−a′ can not form a consecutive mapping
with its right neighbor.

Call the remaining mapping σKN
we claim that σKN

is a (k0, k0)-FP that includes both endpoints of
σK in V . Clearly both endpoints in V are included. Suppose σKN

is not a (k0, k0)-FP then there exists a
consecutive mapping, σK ′′ in σKN

of size less than k0.
Suppose σK ′′ contains two points in σK−K ′−a . Then σK ′′ encompasses σK ′ and hence it must include

c− c′. This is because there were no points to the right of d and thus the mapping must encompass σK ′ in
V . This also means that the mapping must include a− a′ because either a− a′ is encompassed by σK ′ or
is a neighbor of σK ′ in V . Thus adding a− a′ to the mapping if it was removed will increase the mapping
size by one. Also adding back d− d′ will increase the mapping by at most one since it is part of σK ′ . By
a similar argument as we used earlier we will reach a contradiction.

Suppose σK ′′ includes c− c′. Thus it must include two points not in σK ′ since c has no right neighbor
and it can not merge with its left neighbor. If one of these points is a then we can again add back all
removed lines without increasing the size of this mapping by more than two. And we can again reach a
contradiction. If neither of the points is a then we have included two points in σK−K ′−a and we have a
contradiction.

Suppose σK ′′ includes a−a′. Since a can not merge with its neighbor then we must include two points
to the right of a. If one of these points is c we are done. If neither of the points is c then we have included
two points in σK−K ′−a and we are done.

Now the only case left is when f (the right neighbor of d) exists. Due to space limitations, the details
of this case are given in appendix A.2. �

Now we can prove the main theorem of this section:

Theorem 2 The minimum distortion over all (n, k)-FP ≥ the minimum distortion over all (k − 4, k −
4)-FP.

Proof. Suppose we are given a (n, k)-FP. By definition, this contains a (k0, k0)-FP (k0 ≥ k). This
pattern contains at least a (k0 − 4, k0 − 4)-FP. Call this forbidden pattern σR. If we add back lines to the
forbidden pattern we only increase the distortion and will never lower it. Thus the minimum distortion
of the original (n, k)-FP ≥ the distortion of σR, which is in turn ≥ the minimum distortion over all
(k0 − 4, k0 − 4)-FP. �
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2.3 The Algorithm

2.3.1 Algorithm Intuition

Our algorithm will guarantee that we solve all inputs whose optimal bijection does not contain a (k0, k0)-FP
for any k0 > k, where k is the parameter. We know that the minimum distortion of all (n, k0)-FP is ≥
the minimum distortion of all (k + 1, k + 1)-FP, (k + 2, k + 2)-FP, (k + 3, k + 3)-FP, (k + 4, k + 4)-FP.
Thus, if the distortion of the optimal bijection is less than the minimum distortion of all (k + 1, k + 1)-FP,
(k + 2, k + 2)-FP, (k + 3, k + 3)-FP, (k + 4, k + 4)-FP, we know that it does not contain a (n, k0)-FP and
we can solve it. So setting k = 5 (see appendix B) would give us a guarantee that we could solve any

pattern with an optimal embedding with distortion less than

q √
5+1

2
+1

q √
5+1

2
−1

≈ 8.352. Our main result comes

from setting k = 8, in which case we get that we can solve any embedding with distortion less than 5+2
√

6.
On an intuitive level our algorithm will solve any (n, k + 1)-NFP as follows. It looks at every possible

subinterval of the points in U against every possible subinterval of the points in V starting with size 2
and working up to size n. It will break the subintervals into every possible k subsubintervals (including
the empty sets). It will then try match these k subsubintervals by trying all k! possible bijections of
the subsubintervals. If a match is found with low enough distortion the match will be saved for future
reference. How the subintervals are mapped is no longer important; the only things we need to know about
the subinterval to continue the process is whether there was a bijection with distortion less than α, and
the image and the preimages respectively of the first and last point of U and the first and last point in
V . The reason we need to keep the mappings of the first and last points in U and V is because when we
try to combine two subintervals we need to check the expansion and inverse expansion between them. We
store this information in a table. When the subinterval is U and V , if we can map U to V by the same
process with distortion less than α we output “yes”.

Another way to think about the algorithm is that the algorithm is looking for mappings that contain a
pattern size k1 for some k1 ≤ k. If it finds such a pattern it now thinks of that entire set as one mapping
that could be part of another pattern of size ≤ k and looks for such a pattern.

2.3.2 Algorithm

The algorithm gets as input, two line metrics (U, d) and (V, d′). It also gets as parameters, α the maximum
expansion and inverse expansion allowed, as well as a parameter k which is related to the bijections that
the algorithm tries.

The algorithm proceeds by building a dynamic programming boolean table T which is indexed by the
following parameters:

• a subinterval I = {um, um+1, . . . , um+c−1} of U and a subinterval J = {vm′ , vm′+1, . . . , vm′+c−1} of
V of the same size c ≥ 1;

• four elements v, v′ ∈ J and u, u′ ∈ I.1 v is the image of the first point in I. v′ is the image of the last
point in I. Similarly u is the preimage of the first point in J. And u′ is the preimage of the last point
in J.

We set the table entry T [I, J, v, v′, u, u′] to true if there is a bijection σ : I → J such that σ(um) =
v, σ(um+c−1) = v′, σ−1(vm′) = u and σ−1(vm′+c−1) = u′, and with expansion and inverse expansion at
most α.

The algorithm runs from c = 1 to n. The base case c = 1 is trivial, with all entries set to true. For
c > 1, compute every entry T [I, J, v, v′, u, u′] with |I| = c and |J | = c as follows: consider all partitions
of I and J into 2 ≤ k0 ≤ k subintervals I =

⋃k0

a=1 Ia, J =
⋃k0

b=1 Jb. Try all possible combinations of pairs
of Ia, Jb (σ(Ia) = Jb) over all a,b and set T [I, J, v, v′, u, u′] to true if and only if in at least one of the
combinations, the following conditions hold:

1Here, v
′ and u

′ do not denote images. They are just normal points. The same will hold throughout this subsection and
we will specifically mention the images.
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• ∀a, b T [Ia, Jb, vb, v
′
b, ua, u

′
a] is true, where σ(Ia) = Jb.

• Let Jb1 = σ(Ia), Jb2 = σ(Ia+1), Ia1
= σ−1(Jb), Ia2

= σ−1(Jb+1). Then,

d(vb2 , v
′
b1

) ≤ α · d(min(Ia+1),max(Ia))

d(ua2
, u′

a1
) ≤ α · d(min(Jb+1),max(Jb))

These inequalities ensure that the edges connecting the subintervals have expansion and inversion
expansion at most α.2

Once the table is prepared, the algorithm just checks that T [U, V, v, v′, u, u′] is true for some (v, v′, u, u′).

2.3.3 Analysis

Correctness For the correctness of this algorithm we must show that we can solve any bijection whose
optimal mapping is a (n, k + 1)-NFP. By definition the (n, k + 1)-NFP can be reduced iteratively to a
single point, where at each iteration the maximum size of the subsequence will be at most k. Thus the
algorithm will try each of these partial mappings and return a value of true for them.

Now that we have shown that our algorithm can solve any (n, k + 1)-NFP, it will only fail when the
optimal bijection contains a (k0, k0)-FP for any k0 > k. It follows directly from Theorem 2 that the
algorithm is guaranteed to solve any instance with optimal distortion less than the minimum distortion of
all (k + 1, k + 1)-FP, (k + 2, k + 2)-FP, (k + 3, k + 3)-FP, (k + 4, k + 4)-FP, since if the distortion is less
than the minimum distortion of all (k +1, k +1)-FP, (k +2, k +2)-FP, (k +3, k +3)-FP, (k +4, k +4)-FP,
it does not contain a (n, k0)-FP. Note that with k = 8, we can solve any embedding with distortion less
than 5 + 2

√
6.

Running Time The running time of the algorithm is easy to bound. Notice that the table size is just
O(n7). Computing each entry T [I, J, v, v′, u, u′] of the table is polynomial in n: the sets I and J can be split
into k0 ≤ k sets in O(nk−1) ways and for each such possible splitting we store 4(k0 − 2) + 2 + 2 ≤ 4(k − 1)
mappings, which can be done in O(n4k−4); and finally there are k! possible ways of mapping various Ia

to various Jb. Thus computing each entry takes O(n4k−4 · nk−1 · k!) = O(n5k−5) time. So, computing the
whole table takes O(n5k−5 · n7) = O(n5k+2).

This also completes the proof of theorem 1. �
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C
C
C
C
CW

�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
CW

�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
AU?

A
A
A
A
A
A
A
A
AU?

C
C
C
C
C
C
C
C
CW

�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
CW

�
�
�
�
�
�
�
�
��

Filling in the table: a possible case

2.4 Limitations of the Line Embeddings Algorithm

Let β be such that the distortions of all forbidden patterns of sizes k + 1, k + 2, k + 3, and k + 4 are all at
least β. Then, given the guarantee that the optimal bijection between two line metrics is less than β, we

2Note that we only need to consider the expansion and inverse expansion of edges [14].
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y x y x y x y

a b a b a b a b a

Figure 4: An arbitrarily large pattern with distortion approaching 7 + 4
√

3

can find it. One might hope that the value of β can be made an arbitrarily large constant. However, this
is not true. Figure 4 shows a forbidden pattern of arbitrarily large size that has distortion approaching
7 + 4

√
3. This shows that using our algorithm, we cannot achieve a better guarantee than 7 + 4

√
3.

Using the tightness property of edges in this pattern, we get the following equations3

αa = 2x + 3y ; αb = x + 2y
αx = 2a + 3b ; αy = a + 2b

⇒ α(2b − a) = y ; α(2a − 3b) = x
α2(2a − 3b) = 2a + 3b ; α2(2b − a) = a + 2b

From which we get α2 = 7 + 4
√

3 ≈ 13.928

3 Embeddings for Bounded Degree Graphs with Short Cycles

Theorem 3 Let (U, d) be the shortest-path metric of an unweighted graph G of maximum degree b. Let
(V, d′) be the shortest-path metric of an arbitrary unweighted graph G′. Then, the problem of finding an
optimal bijection between U and V is NP-Hard.

Proof. See appendix C.1.
In this section, we prove the following in a very similar manner to the algorithm presented in [14].

Theorem 4 Let (U, d) be the shortest-path metric of an unweighted graph G of maximum degree b and
largest cycle length 3. Let (V, d′) be the shortest-path metric of an arbitrary unweighted graph G′. Then,
for any fixed constants b and α, there is an O(n2) algorithm that decides whether there exists a bijection
between U and V with expansion and inverse expansion at most α.

3.1 Structural properties

The following lemma is shown (in [14]) in the case where (U, d) is the shortest-path metric of an unweighted
tree T of maximum degree b.

Let B(u, l) (resp., B′(u, l)) denote the closed ball of radius l around any vertex u in T (resp., in G′).
For a subset of vertices A ⊆ T (resp., in G′), let Γ(A) (resp., Γ′(A)) denote the set of neighbors of A that
lie outside A. Assume that T is rooted at an arbitrary vertex r0. The subtree rooted at any vertex r of T
is denoted by Tr.

Lemma 2 ([14]) Let σ : U → V be a bijection with expansion and inverse expansion at most α. Then

1. G′ has maximum vertex degree at most bα.

2. For any vertex r ∈ T , each connected component of G\B′(σ(r), α2) lies either entirely in σ(Tr) or
entirely in G′\σ(Tr).

3These equations hold only when the shown pattern extends to infinity. In the case of a finite pattern of this type, since
this pattern will be contained in the infinite pattern, its distortion is at most the distortion of the infinite pattern.
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3. For any r ∈ T , for any adjacent pair (u′, v′) in G′ with u′ ∈ σ(Tr) and v′ /∈ σ(Tr), both σ−1(u′) and
σ−1(v′) are in B(r, α − 1)

We claim that this lemma is true even in the case where (U, d) is the shortest-path metric of an
unweighted graph G of maximum degree b and largest cycle length 3. In other words, T is replaced by G
with bounded degree b and maximum cycle length 3 and Tr is replaced by Gr (defined below).

Definition 1 We say that a graph is graphrooted at vertex r0 by the following definition:

1. Vertex r0 is at level 0 of the graph. In other words level(0) = r0.

2. Level i of the graph is defined recursively as level(i) =
⋃

v∈level(i−1) Γ(v)\⋃

j<i level(j)

Since the graph is connected, every vertex is present at some level of the graph. Hence, the definition
covers all nodes in the graph. It is also clear that level(i) ∩ level(j) = ∅ for i 6= j. This follows from the
iterative definition of level(i).

Definition 2 Gr is the subgraph rooted at vertex r according to the following definition:

1. Let lr be such that r ∈ level(lr). If ∃ a path from r to v such that for every vertex v′ (including v)
in this path, v′ ∈ level(k) where k > lr, then v′ is a vertex of Gr

2. If (v1, v2) is an edge in G, and both v1 and v2 are ∈ Gr, then the edge (v1, v2) is an edge in Gr

Now we continue with the proof.
Proof.

We note that the following statement is true. If u ∈ Gr and v 6∈ Gr, then the shortest path from u to v
goes through r. Suppose the shortest path from u to v does not go through r. In this case, this path has
to go through a node (r′) that is at least as low as the level in which r is present (otherwise, v is a vertex
of Gr). Note that there is a path from r to r′ that goes through nodes only at a level less than that of r.
Hence, there is a path from r to r′ of length at least 2 that does not overlap with the paths from u to r
and u to r′. Now, consider the non-overlapping part of the paths from u to r and u to r′. The lengths of
these parts are at least 1 each and hence we get a cycle of length at least 4 (by joining the path from r to
r′ completely at lower levels and the path from r to r′ completely at higher levels). This is a contradiction
to the maximum cycle length restriction of 3 on G. Hence, the shortest path from u to v goes through r.

Using this, the proof of the above lemma follows as in [14]. For completeness sake, we have provided
the proof in appendix C.2 �

For the algorithm, its analysis, and proof of theorem 4, see appendix C.3.
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Appendix

A Proofs of Section 2

A.1 Proof of base case for Lemma 1

Figure 5 is the list of (5, 5)-FP. By removing the dotted line in each of the forbidden patterns, we obtain
a (4, 4)-FP that contains both end points in V . This proves the base case of Lemma 1.
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′
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′
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′
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′

a b c d e

c
′

e
′

a
′

d
′

b
′

Figure 5: Base case: (5, 5)-FP

A.2 Case |σK ′| = 2 continued

We will now show the existence of the (k0, k0)-FP by separating two cases of c′,d′ containing four cases of
e′,f ′.

The argument in all cases will go as follows. We will remove either c − c′ or d − d′ from the map-
ping and obtain a new mapping σKN

. Assume that σKN
is a (|σKN

|, |σKN
|)-NFP. Then there exists

a consecutive mapping σK ′′ with |σK ′′ | < |σKN
|. We will show that such a σK ′′ must encompass σK ′ ,

a− a′ and all the removed lines or that the removed lines will border σK ′′ . At this point we will be done,
due to the following observation.

Adding back all of σK ′ and the removed lines to σK ′′ would give us a consecutive mapping in σK that
will increase the size by at most the number of removed lines since all lines border or encompass σK ′′ .
If this map is of size less than k then this contradicts σK being a (k, k)-FP. If this map is of size k then
σK ′′ is all of σKN

and hence σKN
is a forbidden pattern. |σKN

| is equal to |σK | minus the total number
of lines removed. The total number of lines we removed is at most 4. Thus we get that |σKN

| ≥ k − 4.
To obtain σKN

we will first remove either c− c′ or d − d′ (depending on the case). Call the remaining
line r − r′.

Let b be the right neighbor of a. If a − a′ and b − b′ form a consecutive mapping rename a − a′ as
t− t′ and rename b− b′ as a− a′ and remove t− t′. Now a− a′ will not be a consecutive mapping with its
neighbor. Note that V still contains both its endpoints since a′ is not an endpoint in V .

The remaining mapping is now σKN
. Suppose there is a consecutive mapping in σKN

call it σK ′′ . We
will show that if σK ′′ does exist then it must contain r − r′. Suppose σK ′′ lies in σK−K ′−a then it must
encompass σK ′ , thus it must include r− r′. Suppose that σK ′′ includes a−a′. Since a can not merge with
it right neighbor it must include two points to the right of a. If one of these points is r then σK ′′ includes
r. If neither of these points is r then we have two points in σK−K ′−a that are in σK ′′ and by the above
argument we must include r − r′.

Thus in all cases any mapping σK ′′ must include r − r′ (see figure 6 for all subcases).

Case 1: c′ is to the left of a′.

Subcase i: e′ and f ′ lie to the right of a′. Let r − r′ equal c − c′ and remove and rename as
discussed above; the remaining mapping is σKN

. Thus σK ′′ must include c − c′. Now we need to show
that σK ′′ encompasses σK ′ , a− a′ and all the removed lines or that the removed lines border σK ′′ . Since
c − c′ is in σK ′′ , one of e − e′ or f − f ′ must be in σK ′′ (since e and f are the neighbors of c).

If e − e′ is in σK ′′ then a − a′ must be in σK ′′ . Since e′ is to the right of d′, σK ′′ encompasses d − d′

and therefore σK ′ . We can include t − t′ in this set without adding any more lines because t − t′ borders
σK ′′ . Thus we are done.

If f − f ′ is in σK ′′ , then a − a′ must be in σK ′′ , thus σK ′ and any removed lines are encompassed by
(or border) σK ′′ by a similar argument as above.
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a c = r

c
′
= r

′
y
′

d fe

a
′

d
′ f ′ e′ z′

a

y
′ z′

e c = r

e
′ j′ c′ = r′ a′

d f

d′ f ′

e c d f = ca f

f ′
= c

′ d′ e′ z′y
′ f ′ j′ c

′
a
′

Figure 6: Subcases i, iii, and iv

Subcase ii: e′ and f ′ lie to the left of a′. Let r− r′ equal d− d′ and remove and rename as discussed
above; the remaining mapping is σKN

. The remaining mapping is σKN
and the proof is analogous to

subcase i.

Subcase iii: e′ lies to the left of a′ and f ′ lies to the right of a′. Let r− r′ equal c− c′ and remove
and rename as discussed above; the remaining mapping is σKN

. Thus σK ′′ must include c− c′. σK ′′ must
also include one of e − e′ or f − f ′ as discussed in subcase i.

If f − f ′ is in σK ′′ , then a− a′ must be in σK ′′ . Thus σK ′ and any removed lines are encompassed by
(or border) σK ′′ by a similar argument to subcase i.

If e− e′ is in σK ′′ , recall that e− e′ and c− c′ do not form a consecutive mapping. Since e′ and c′ are
not neighbors there exists a point j′ in between that must be part of any mapping including e − e′ and
c − c′. j′ is not in σK ′ . Thus σK ′′ must include at least two points in σK−K ′−a . But every consecutive
mapping in σK−K ′−a encompasses σK ′ . Thus σK ′′ has a point to the right of f in U or to the right of a′

in V . In either case σK ′′ must include a− a′, t− t′ and any other line removed is in σK ′′ or borders σK ′′ .
Thus we have shown that σK ′′ encompasses or is bordered by σK ′ , a − a′ and any lines removed.

Subcase iv: e′ lies to the right of a′ and f ′ lies to the left of a′. Let r − r′ equal c − c′ and
remove and rename as discussed above; the remaining mapping is σKN

. Thus σK ′′ must include c − c′.
f − f ′ and c − c′ may be a consecutive mapping, if so rename c − c′ as m − m′ and remove m − m′ and
rename f − f ′ as c − c′. Notice that m′ was not an endpoint in V because it had two neighbors thus we
still have both endpoints in V in the current mapping. Note that the new c − c′ will be included in any
σK ′′ . Let the right neighbor of the current c be f (if it exists). If f does not exist, then we are exactly
in a case discussed earlier (where the right neighbor of d, f does not exist and the proof technique used
there holds). Note that c− c′ and f − f ′ do not form a consecutive mapping, since they either were not a
consecutive mapping and were never renamed or they were renamed and are both in σK−K ′−a .

Notice that if f ′ and e′ are both to the right of a′, we are in the same position as subcase i. Thus we
must only consider the case where f ′ is to the left of a′. If f ′ is to the left of a′ there must be a point in
between f ′ and c′; call it j′.

Let the current mapping be σKN
. σK ′′ will include c− c′ . Since c− c′ is in σK ′′ one of e− e′ or f − f ′

must be in σK ′′ (since e and f are the neighbors of c).
If e− e′ is in σK ′′ , then a− a′ must be in σK ′′ . Thus σK ′ and any removed lines are encompassed by

(or border) σK ′′ by a similar argument to subcase i.
If f − f ′ is in σK ′′ , then j′ is also in σK ′′ (since j′ is between f ′ and c′). We now have two points (f ′

and j′) that are in σK−K ′−a that must be in σK ′′ . Thus any consecutive mapping that includes these two
points must encompass σK ′ . If σK ′′ encompasses σK ′ then it must contain a point either to the left of e
in U or to the right of a′ in V . In either case we must include a−a′. Hence σK ′′ encompasses (or borders)
σK ′ , a − a′ and any removed lines.

Case 2: c′ is to the right of a′. Each subcase can be shown using the similar arguments as before.
�
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B Minimum Distortion of certain (k, k)-FP

We can now build on Theorem 2 and give the minimum distortions over all (k, k)-FP for some low values
of k.

Following [14] we calculated the distortion where every edge was tight. A tight edge is an edge that
achieves expansion or inverse expansion. When calculating the minimum distortion of a pattern we may
assume that the edges on both lines are tight. This is due to the simple observation that if some edge is
not tight, we could decrease the distance between the endpoints of the edge until it became tight and this
would never increase the distortion.

Thus we can assume that every edge gives expansion or inverse expansion α and solve the system of
equations for the distortion α2.

Solving the system of equation for every (k, k)-FP, we get the following results for k ≤ 12.

k 4 5 6 7 8 9 10 11 12

Minimum Distortion
(upto 3 decimal pts.)

5.828 5.828 8.352 8.352 8.352 9.899 9.899 9.899 10.896

C Proofs of Section 3

C.1 Proof of Theorem 3

Proof. This proof is based on the proof that it is NP-hard to approximate the minimum distortion
problem within a factor better than 2 given in [14]. Let G′ be an unweighted, undirected graph on n
vertices. Construct a metric (V, d′) by setting d′(u, v) = 1 if u, v is an edge of G′, and d′(u, v) = 2
otherwise. Let the bounded degree graph G be the unweighted cycle on n vertices, C. Clearly C is of
bounded degree b = 2 and construct the metric (U, d) in the same manner as (V, d′). It is easy to check that,
if G′ contains a Hamilton cycle, then an optimal bijection between (U, d) and (V, d′) has distortion exactly
2. If G′ does not contain a Hamilton cycle, then any bijection must have distortion at least 4. Hence the
problem of finding an optimal bijection between (U, d) and (V, d′) as described above is NP-Hard. Since
the given instance is a particular case of the metrics in the lemma, the lemma is true.

C.2 Proof of Lemma 2

Proof.

For the first statement, for any v ∈ G′, the expansion of σ−1 implies that σ−1(B′(v, 1)) ⊆ B(σ−1(v), α),
and the cardinality of this ball is at most bα by the degree bound on G.

For the second statement, let v′ = σ(v) be a vertex of Γ′(σ(Gr)) graphrooted at r. By the definition
of Γ′, v′ is adjacent to some vertex u′ = σ(u) of σ(Gr). From the inverse expansion bound, we have
d(u, v) ≤ α. We shall show that d(r, v) is also ≤ α. Since the shortest path from u to v goes through r,
clearly d(r, v) ≤ α. Thus, we have d′(σ(r), v′) ≤ α2. From this we get

Γ′(σ(Gr)) ⊆ B′(σ(r), α2)

from which we get the second statement.
For the third statement, note that by the expansion of σ−1, we get that d(σ−1(u′), σ−1(v′)) ≤ α.

Now, the shortest path from u to v goes through r, which in turn implies that d(r, σ−1(u′)) ≤ α − 1 and
d(r, σ−1(u′)) ≤ α − 1. �

C.3 Algorithm and Proof of Theorem 4

The algorithm is a dynamic programming algorithm in the same way as given in [14]. The graph G is
graphrooted arbitrarily at a node r0. The dynamic programming table T is indexed by the following
parameters
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1. r ∈ {u1, ...., un}, the root of the subgraph Gr (with respect to the graphrooting G)

2. r′ ∈ {v1, ..., vn}

3. An injection τ from B(r, α) ∩ Gr into B′(r′, α2)

4. A subset S of the vertices of G′ with the property that each connected component of G′\B′(r′, α2)
lies entirely within S or entirely outside S.

An entry of the table is true if and only if there exists an injection σ : Gr → G′ such that σ(r) = r′, σ
coincides with r on B(r, α) ∩ Gr, σ(Gr) = S, and expansion of every edge of Gr and inverse expansion of
every edge of σ(Gr) are each at most α.

To compute T (r, r′, τ, S), we run through all combination of entries T (ri, r
′
i, τi, Si)i all of which have

value true. ri are the children of a given root r. We set the result to be true if at least one of these
combinations satisfies the conditions below and false otherwise.

1. The map τ is consistent with all the maps τi, the τis are consistent among themselves, the Si do not
include r′, and S is the union of the Si plus the vertex r′.

2. For each r′i, we have d′(r′, r′i) ≤ αd(r, ri).

3. For each adjacent pair v′, w′ in G′, that belong to different sets Si (or with v′ = r′), both v′ and w′

are in the image of τ and satisfy d(τ−1(v′), τ−1(v′)) ≤ α.

After all entries of the dynamic programming table are computed, the algorithm checks if some table
entry T (r0, ., ., .) is true.

Running time and Correctness.
The degree bound on G′ implies that B′(v, α2) has size at most bα3

for any v. We claim that the size
of the table T is at most

n × n × (bα3

)
bα

× 22bα3

= O(n2)

The two n terms come from the r and r′ in the table. The third factor bounds the number of maps
from B(r, α) to B′(r′, α2). From the second part of the lemma, we get the number of possibilities for the
set S as the fourth factor. Filling the table entries takes constant time and thus the overall running time
is O(n2).

The correctness of the algorithm follows in the same way as in [14] by an induction (bottom-up the
levels in G). This also completes the proof of theorem 4. �
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