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Faster algorithms for finding lowest common ancestors
In directed acyclic graplis

Artur Czumaj Mirostaw Kowaluk Andrzej Lingas

Abstract

We present two new methods for finding a lowest common anc@s@A) for each pair
of vertices of a directed acyclic graph (dag)wowertices andn edges.

The first method is a natural approach that solves the alt-pha&A problem for the input
dag onn vertices andn edges in timed (nm).

The second method relies on a novel reduction of the alsga¥A problem to the prob-
lem of finding maximum witnesses for Boolean matrix produbke solve the latter problem
and hence also the all-pairs LCA problem in tifdén?**), whereA satisfies the equation
w(1,A\, 1) =14+ 21andw(1,A, 1) is the exponent of the multiplication of anx n* matrix
by ann® x n matrix. By the currently best bounds an(1,A, 1), the running time of our
algorithm isO(n?->7>). Our algorithm improves the previously known(n?¢8) time-bound
for the general all-pairs LCA problem in dags by Bendgal.

Our additional contribution is a faster algorithm for salyithe all-pairs LCA problem in
dags of small depth, where the depth of a dag is defined asrigthlef the longest path in
the dag. For all dags of depth at mbs n*, wherex ~ 0.294, our algorithm runs in time
asymptotically the same as that of multiplying teox n matrices, that isD(n®); we also
prove that this running time is optimal even for dags of ddptRor dags with deptih > n%,
the running time of our algorithm is at moStn« - h®#¢8), This algorithm is faster than our
algorithm for arbitrary dags for all values hf< n%42,

1 Introduction

The problem of finding #owest common ancestor (LCA) in a tree, or more generally, indirected
acyclic graph (dag) is a basic problem in algorithmic graph theory. An LGAi@ticesu andv in
a dag is an ancestor of bothandv that has no descendant which is an ancestar ahdv, see

*This paper is the result of merging the ICALP’05 papel [14hL].
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Fig. 1 for example. We consider the problem of preprocessidag such that LCA queries can be
answered quickly for any pair of vertices.

This problem has been very extensively studied in the liteeain the context of (rooted) trees
(see, e.qg.,[13,- 12, 17]), where it appears naturally in werisettings and where it found many
applications in design of efficient algorithms and datacttes (e.g., for the problem of computing
maximum matching in graphs and for various string problermdgsyel and Tarjari [12] were the first
who showed that in rooted trees, the LCA queries can be apsWerconstant time after a linear
time preprocessing of the input tree. This work has beemn éatended in many ways, including
the simplified algorithm from 3] and the recent dynamic aitjon [5].

Recently, Bendeket al. initiated investigations of the LCA problem for arbitraryretted
acyclic graphs inJ4]. They listed a number of natural amdlmns of the LCA queries in dags
in [4], e.g., in inheritance analysis in programming langes analysis of genealogical data, and
lattice operations in complex systems (for more details, esg., [9] 15 16], and especially [4]
and the references therein). Benedeal. also observed that the all-pairs LCA problem in dags is
not simpler than transitive closure in arbitrary directedpips and Boolean matrix multiplication
[4]. On the other hand, they were first to design substaptg@albcubic-time solution to the all-
pairs LCA problem in dags. Their algorithm for the all-paifSA problem in dags runs in time
O(nB+@)/2) = O(n?48), wheren is the number of vertices and < 2.376 is the exponent of
the fastest matrix multiplication algorithrnl [7].

New contributions. We present two new methods of efficiently preprocessingectéd graph
onn vertices andn edges in order to answer an LCA query for any pair of verticesonstant
time, subsuming the previously known best results from [4].

The first method is a natural approach that solves the alsp&lA problem for the input dag on
n vertices andn edges in timé) (nm). For sparse dags, this method is optimal and substantially
faster than the know(j)(n“’T+3 )-time general method fromI[4].

The second method efficiently reduces the all-pairs LCA lemobto the problem of finding
maximum (index) witnesses for Boolean matrix product. Weesthe latter problem and hence
also the all-pairs LCA problem in tim@ (n?**), where) satisfies the equatian(1,A,1) = 1+2A
andw(1, A, 1) is the exponent of the multiplication of anx n* matrix by anmm? x n matrix. By the
currently best bounds an (1, A, 1), the running time of our algorithm i® (n?>">). Our algorithm
improves the previously know® (n?°%8) time-bound for the general all-pairs LCA problem in
dags by Bendeset al. [4].

In addition, we present a faster algorithm for solving thiepalrs lowest common ancestor
problem in dags of small depth, where ttiepth of a dag is defined as the length of the longest
path in the dag. For all dags of depth at mokt < n*, wherex ~ 0.294, our algorithm runs in
time asymptotically the same as that of multiplying twox n matrices, that isQ(n®); we also
prove that this running time is optimal even for dags of ddptRor dags with depth > n%, the
running time of our algorithm is at mo&t(n« - h%%), This algorithm is faster than our method
for arbitrary dags for all values &f < n°42.

In [@], an equivalent notion of thieeight of a dag is used. We find however the tedapth more intuitive.
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Figure 1: A dag with 7 vertices. The LCA of verticesandy are both vertexu and vertexz;
vertexw is a common ancestor afandy but it is not the LCA ofx andy. There is no common
ancestor of vertices andq.

Organization. Our paper is structured as follows. In Sectidn 2, we presenhaturalO (nm)-
time method for the all-pairs LCA problem in dags. In Secfhnwe introduce several concepts
and facts used by our matrix based methods for the all-p&& problem in dags. In Section
4, we demonstrate the relationships between the problernsmputing common ancestors and
LCA in dags and those of finding witnesses and maximum wigsefs Boolean matrix product.
In Section[b, we present o@(n?>7)-time method for the maximum witness problem and the
all-pairs LCA problem for dags. In Secti@h 6, we derive a meffecient solution to the all-pairs
LCA problem in dags of small depth.

2 Optimal method for sparse dags

First, we shall describe preprocessing for answering gqaebout existence of a common ancestor
for arbitrary pair of vertices in constant time.

For the input dag, we denote lyandm its number of vertices and edges, respectively. Also
for a vertexv in the dag,indeg(v) andoutdeg(v) stand respectively for the in-degree and out-
degree ob. If outdeg(v) = 0 thenv is called aerminal vertex and ifindeg(v) = 0 thenv is called
asource vertex.

We may assume, without loss of generality, that the inputisl@gnnected since otherwise we
can decompose it into connected components and solve thiepréor each component separately.
For technical reasons, we also assume that every vertexas/it ancestor.

The following lemma immediately follows from the definitiofha dag.

Lemma 1 If two vertices have a common ancestor then thereis a source vertex that is their com-
mon ancestor.

In the first stage of the preprocessing, for each vertex ot dag we form a table contain-
ing its descendants. In other words, we create the traagitbsure of the dag which obviously can
be done in timé (nm).



Lemma 2 The tables of descendants for all vertices can be formed in time O(nm).

In the second stage of the preprocessing, we determinedbneatexv the set of vertices that
have a common ancestor with\We proceed starting from source vertices. For the sountegs
s, the sets are already computed: they are just the sets ofrldmats ok. Next, we iterate the
following step: remove the vertices of in-degeeith incident edges and fill the tables for the new
verticesv of in-degreed by merging the information from the tables associated wighremoved
direct ancestors of. For each vertex such an operation takes tinidfn) x indeg(v). Thus, for
the entire graph it take® (nm) time.

For any vertex, define thedepth of v in a dag to be the length of the longest path from a source
vertex tov in the dag. Note that the set of vertices having a common &roegh a vertexv is the
union of the sets of vertices having common ancestors wélatitestors of (recall thatv is also
an ancestor of itself). Hence, we obtain the following lenbyianduction on the depth of.

Lemma 3 For all verticesv, the tables of vertices having a common ancestor with v can be com-
putedintime O(nm).

In order to answer LCA queries we need to refine the preproweskghtly. During the second
descending phase of the preprocessing we additionally eraienthe vertices in their visiting
order. Since an ancestor is always visited before its delsegnwe obtain the following lemma.

Lemma 4 A vertex of a higher number cannot be an ancestor of a vertex of a lower number.

For all verticesv, in the table keeping verticas having a common ancestor with we keep
also the maximum of the numbers assigned to the common anse$t’ andw. To achieve this,
when we merge the information from the tables of direct ammeefv, we pick the maximum
number of a common ancestor of a direct ancestor ahdw. Clearly, the refinement can be
accomplished within the same asymptotic ti@émn). By induction, we obtain the following
lemma.

Lemma5 For all vertices v, the tables of vertices w having a common ancestor with v with a
pointer to a lowest common ancestor of v and w can be computed intime O(nm).

Hence, we obtain immediately the following theorem.

Theorem 6 The all-pairs LCA problemfor a dag on n vertices and m edges can be solved in time
O(n(n+m)).

Note that ifm = O(n) then our solution is optimal.



Shortest ancestral distance problem. One of the applications of the all-pairs LCA problem in
dags discussed inl[4] is thshortest ancestral distance problem in daE. For two verticeat andv,
Benderet al. define it as the minimum length of a path betweesndv passing through a common
ancestor oft andv (observe that the common ancestor is not necessarily tm’stom@). They
showed that the all-pairs shortest ancestral distanceBeaamputed in tim® (n?>7>) [4].

We can modify our first method to obtain &{mn)-time algorithm to compute the all-pairs
shortest ancestral distances as follows. In the ascendiagep for each vertex, and for each
descendant of v, we additionally compute the shortest directed distantedrenu andv. This
can be easily accomplished within the same asymptotic @twn). At the beginning of the
descending phase, the previously computed shortest elifeéistances yield the shortest ancestral
distances between sources and their descendants. Whilendisg the shortest ancestral distances
between the parents of the current venteand each other vertaxare increased by one. Next, the
minimum of them and the shortest directed distance betwesrdu (it can be infinite) is taken
as the shortest ancestral distance betweandw.. In this way for all pairs of vertices andu the
shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also mgiéed in timeO(mn). We
conclude with the following theorem.

Theorem 7 For a dag on n vertices and m edges, the all-pairs shortest ancestral distances can
be computed intime O(n(n + m)).

3 Preliminaries for the matrix based methods

In the remaining sections, we will present an efficient athan for the all-pairs LCA problems in
dags that uses the matrix multiplication approach. We begirstudy with introduction of several
facts and concepts related to matrix multiplication, inticatar Boolean matrix product.

We let w to denote the exponent of square matrix multiplicationt thiathe smallest constant
for which the product of twaw x n matrices can be computed@(n®) time. The best asymptotic
upper bound omu currently known isv < 2.376, by Coppersmith and Winograd [7].

The following fact that relates graph problems to fast matrultiplication is folklore.

Fact 1 The transitive closure of any directed graph with n vertices, in particular a dag, can be
computed in time ©(n®).

We also need to define the concept of witnesses and maximunessgitin Boolean matrix
multiplication.

Definition 8 If an entry C[i, j] of the Boolean product of two Boolean matrices A and B is equal
to 1 then any index k such that A[i, k] and B[k, j] areequal to 1 isawitnessfor C[i,j]. If k isthe
maxi mum possible witness for C[i, j] thenit is called the maximum witness for C[i, j].

2 The identification of genes associated with genetic diseases the original motivation for considering the
shortest ancestral distance in sparse dads [9, 16]. It idesswrelevant, see, e.d.] [2].

30ne can also consider the so called shortest ancestral L&andie where the common ancestor is required to be
lowest [4]



The following fact is due to Alon and Nadrl[1].

F;’;(zlta 2 The witnesses of the Boolean product of two n x n Boolean matrices can be computed in
ti O(n<®).

As it has been observed inl [4], the concept of the level of &exen a dag plays an important
role in the study of LCA in dags.

Definition 9 The level i of a dag isthe set of all its vertices of depth i. The depth of a dag is the
maximum depth of its vertices, or equivalently, the number of its non-empty levels decreased by
one.

By using a variant of the Bellman-Ford algorithm for the $@agource shortest path problem
in dags running in tim® (n + m) (see, e.q., Chapter 24.2 [d [8]), we obtain the followinghean

Lemma 10 For adag G withn verticesand m edges, one can compute the partition of the vertices
of G into the levels and the depth of G intime O(n + m).

4 Common ancestors versus Boolean matrix product witnesses

In this section we discuss the relationship between thel@nobof finding common ancestors and
LCA for all pairs of vertices in a dag and the problems of cotmuwitnesses and maximum
witnesses of Boolean product of two Boolearx n matrices.

We begin with a reduction of the problem of computing allrfp@iommon ancestors in a dag to
the problem of computing witnesses of Boolean product ottiveesponding Boolean matrices.

Theorem 11 The problem of computing all-pairs common ancestorsin a dag on n vertices can be
reduced to the problem of computing witnesses of Boolean product of two Boolean n x n matrices
intime O(n®). Smilarly, the problem of computing all-pairs LCA in a dag on n vertices can be
reduced to the problem of computing maxi mum witnesses of Bool ean product of two Booleann x n
matricesintime O(n®).

Proof. To prove the first part proceed as follows. Compute the tiigaslosure of the input dag.
Number the vertices of the dag according to their topoldgicdering. Form the ancestor matrix
A such that in itgth row there isl on thekth position iff thekth vertex is an ancestor of théh
vertex. Compute the witnesses of the Boolean product of tigixmA and its transposa’. For
any (i,j) entry of the product matrix, if the entry is positive thenwgness is the number of a
common ancestor of thigh andjth vertex.

To prove the second part compute the maximum witnesses Bidblean product of the matrix
A and its transposA " instead of the ordinary ones. Next, observe that a commoesamicof
verticesu andv having the largest number among common ancestotsasfdv is an LCA ofu

4Throughout the paper, the notatiéﬁf(n)) stands folO(f(n) log® n) for some positive constant



andv. By the observation, for anji, j) entry of the product matrix, if the entry is positive then its
maximum witness is the number of an LCA of tith andjth vertex. a

In turn, we consider a reduction of the problem of computirith@sses to the problem of
computing all-pairs common ancestors in a dag of dépth

vV, v, Vel Vn

@ © ccceece O O @ © cccecee O O
b, b, bu-1 by

Figure 2: A scheme of the construction used in the proof ofofém[12.

Theorem 12 The problem of computing witnesses of Boolean product of two Boolean n x n ma-
trices can be reduced to the problem of computing all-pairs common ancestorsin a dag with 3n
vertices and depth 1 intime O(n?).

Proof. Let A andB be two Booleam x n matrices. Construct a two-level d&jwith vertices
v1,V2,...,Vv, ON the zero level and vertices, ay,...,a, andby, by, ..., b, on the first level.
Create an edgb, a;) iff Afi, k] = 1. Analogously, form an edgevy, b;) iff Blk,jl = 1.

Let C be the Boolean product of matricAsandB. By the definition ofG, k is a witness of an
entry C[i, j] iff vy is a common ancestor of the vertiagsandb;. O

Note that the all-pairs common ancestor problem (notdtvest common ancestor one) for an
arbitrary dag can be solved in tin@n®) by computing the transitive closure of the dag, using
Fact[1, and then computing the witnesses of the Boolean ptadihe transitive closure matrix
and its transpose using Fadt 2. This running time is optinmalesTheoreni_12 implies that the
problem of computing all-pairs LCA in a dag withvertices requires tim&(n), even for dags
of depthl.

By slightly modifying the dag constructed in the proof of Bhem[12, we obtain the following
theorem that relates computingaximum witnesses to computing all-pairs LCA in a dag.

Theorem 13 The problem of computing maximum witnesses of Boolean product of two Boolean
n x n matrices can be reduced to the problem of computing all-pairs LCA in a dag on 3 n vertices
intime O(n?).

Proof. Assume the notation from the proof of Theoremh 12. Additiyrlank the verticesvy, vy,
..., vy by the edges$vi, v,), (v, v3), ..., (Vvn1,vn) in the dagG. (For an example, see Figure 3.)
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Figure 3: A scheme of the construction used in the proof ofofé@[LB.

By the construction of the extended d&gs a witness of an entr¢[i, j] iff vy is @ maximum
common ancestor of the verticesandb;. ad

By combining Theoreri 11 with Theorefns [2] 13, we obtain thewdng corollary.

Corollary 14 The problem of computing all-pairs common ancestors in a dag on n vertices and
the problem of computing witnesses of Boolean product of two Booleann x n matricesare O (n®)-
time equivalent. Smilarly, the problem of computing all-pairs LCA in a dag on n vertices and the
problem of computing maximum witnesses of Boolean product of two Boolean n x n matrices are
O(n®)-time equivalent.

Benderet al. [4] showed that the problem of computing all-pairs LCA in gddth n vertices
is not easier than that of computing transitive closure inracted graph withn vertices. This
implies the lower bound of2(n®) for the all-pairs LCA in a dag witm vertices. However,
our result on the relationship between the all-pairs LCAbpgm in dags and that of computing
maximum witnesses of Boolean product of two Boolean matrgtews that these two problems
have asymptotically identical complexity, and thus it giek stronger relationship. Furthermore,
our result (Theoreri12) shows that the problem of computihgairs LCA in a dag withn
vertices requires tim& (n«) even for dags of depth

5 An O(n%°”)-time method for maximum witnesses and the
all-pairs LCA problem in dags

By Corollary[13, it is sufficient to compute maximum witnessé€Boolean product of two Boolean
n x n matrices in order to solve the all-pairs LCA problem in daigsthis section, we present a
substantially subcubic algorithm for the maximum witnessbfem using fast rectangular matrix
multiplication.

Let { be a positive integer smaller than Partition the matriXA into n x { sub-matrices\,,
and the matrixXB into £ x n sub-matrice®,,, such thal < p < n/{, and the sub-matril, covers
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Figure 4: Rectangular matricés, andB,,.

the columngp —1) £+ 1 throughp £ of A whereas the sub-matrB, covers the rowsp —1) £+ 1
throughp ¢ of B. (For an example, see Figlre 4.)

Forp =1,...,n/t, let C, be the Boolean product &, andB,,. Then,C,li,j] > 0 iff there
isanindexk, (p — 1) £ < k < p{, such thatA[i, k] = B[k, j] = 1. Therefore the following claim
follows.

Claim 15 Suppose that a C[i, j] entry of the Boolean product C of A and B is positive. Let p’ be
the maximum value of p such that C,,/[i,j] > 0. The maximum witness of C[i, j] belongs to the
interval [(p’ — 1) ¢+ 1,p" L.

By this claim, after computing all the producis = A,-B,,, 1 < p < n/{, we need(n/{+{)
time per positive entry of to find the maximum witnesgD(n/{) time to determing’ and then
O(%) time to locate the maximum witness.

Let w(1,r,1) denote the exponent of the multiplication of anx n"™ matrix by ann™ x n
matrix. It follows that the total time taken by our method feaximum witnesses is

O((n/e) - n@hogn & 4 13 /0 4 n2p) .

By settingr to log,, ¢ our upper bound transforms @(n'"+®(hnl) 4 n3— 4 1247 Note
that by assuming > % we can get rid of the additive> " term. Hence, by solving the equation
1T—A+w(1,A 1) =2+ AimplyingA > % by w(1,A, 1) > 2, we obtain our main result.

Theorem 16 Let A be such that w(1,A,1) = 1 + 2A. The maximum witnesses for all positive
entries of the Boolean product of two n. x n Boolean matrices can be computed in time O (n?*).

Coppersmithll6] and Huang and Panl[13] proved the followadd.f
Fact3 [6,[13]Let w = w(1,1,1) < 2.376andlet x = sup{0 <r < 1:w(l,7,1)=2+0(1)} >

0.294. Then w(1,r,1) < Bir), where 3(r) =2+ o(1)forr € [0,l and B(r) = 2 + ‘;’T_i(r—
)+ o(1) for r € [a, 1].



Note that by Fadfl3, the solutionof the equationuv(1,A,1) = 1 + 2A is satisfied byA =
% + o(1) < 0.575. Therefore, we obtain the following concrete corollary.
Corollary 17 The maximum witnesses for all positive entries of the Boolean product of twon x n
Boolean matrices can be computed in time O (n?°7°).

By combining TheorerfiZ11 with Theoreml16 and Corollardy 17, Weaim also arO(n?57)-
time solution to the all-pairs LCA problem in dags.

Theorem 18 Let w(1,A, 1) = 1+ 2A. The all-pairs LCA problem for an arbitrary dag with n
vertices can be solved in time O (n?**), which is bounded above by O(n?57°).

6 All-pairs LCA in dags of bounded depth

In this section we describe an algorithm for solving thepalirs LCA problem for an arbitrary dag
G of depth bounded by. The algorithm has a similar flavor as that discussed in tegipus
section, but now we will additionally use the fact that thetthds bounded to speed up the process.

First, we compute the transitive closure@fand create the ancestor matAxsimilarly as in
the proof of Theoreri11. Next, using Lemind 10, we parti®imto h + 1 levels and extend
the partial order induced by this partition to a linear orded number the vertices according to
the linear order so the numbering is increasing with resfmegertex depth. These steps can be
performed in timeD (n®).

Observe that the numbering naturally decomposeshtol continuous intervals in one-to-
one correspondence with the levels@f Our approach relies on the following generalization of
the observation that the common ancestor of verticandv that has the highest number (in the
topological ordering) is a lowest common anceston@ndv.

Claim 19 [4] Any common ancestor of vertices u and v that is of highest level among common
ancestors of u and v is a lowest common ancestor of u and v.

Claim[I9 implies directly that the maximum witnesses of thedpct of the Boolean matrix
of ancestorsA and its transpos@ " yield the solution to the all-pairs LCA problem for a dag.
However, since it is expensive to compute maximum witnesgesnodify this construction and
reduce the problem to that of computiwgnesses (instead ofmaximum witnesses).

Relying on Clain{IP and the bounded depthwe decompos@ and its transpos@ ! into
h + 1 rectangular sub-matrices in one-to-one correspondertbetiva level intervals and compute
witnesses for the products of the pairs of sub-matriced iand A" corresponding to the same
level interval. Now, similarly as in the previous sectiore abserve that if verticeisandj have a
common ancestor at levé| then if we multiply the sub-matrix oA corresponding to level by
the sub-matrix ofAT corresponding to leve], then the resulting matri<,; will have C,[i,j] > 0
and the witness fo€,[i, j] > 0 will be a vertex from level that is an ancestor of bothandj.

Let us estimate the time taken by finding the witnesses fohthel products of sub-matrices
of A andA'. Recall the definition of functiof in Factl3 due to Coppersmith, and Huang and
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Pan. By using the straightforward reduction of Boolean matultiplication to the arithmetic one
and by generalizing the derandomization method of Alon aadrN1] for withnesses of Boolean
matrix multiplication to include rectangular matrices, a#ain the following lemma.

Lemma 20 The witnesses of the Boolean product of two Boolean matrices of sizesn x n" and
n" x n can be computed in time O(nfM).

Fork =0,...,h, let{, be the number of vertices on levein the dagG. By Lemmd2D, the
total time taken by computing the witnessesHiof 1 sub-matrix products is

6 <i n Bog, Ek)> ) (1)
k=0

Finally, once we determined witnesses for every pair ofisesthnumberedandj and for every
level ¢, it remains to find for each pairandj, the maximum witness among the witnesses for the
pair i, j in the products of the sub-matrices. It tak@gh) time per pairi, j and henceQ(n?h)
time in total.

Next, by straightforward calculations, Jensen inequatitylies that the value ofl1) is maxi-
mized if the levels are of equal size/(h + 1). (Indeed we observe that the functinA®™—2
concave and therefofE |, nPlo% 6) = n2 571 nBlog 6)=2 < 2 (1 4 1) nPlog, n/(hi1)-2
(h + 1) nRogy n/(ht1)) Hence we obtain the followmg theorem.

Theorem 21 Theall-pairs LCA problemfor an arbitrary dag withn vertices and depth n9 can be
solved intime O (n® 4 na+B-a)),

In particular, for dags of depth at most n* ~ n®2% the running timeis O (n®).

For larger values of the depth n9, the running time of thisalgorithmis

6<nw+q(1f%)+o(1)> ~ O(n2.376+0.468q)

Remark 22 Note that for all values of ¢ < « ~ 0.294, the running time of our algorithm from
Theorem[Z]l is asymptotically optimal due to our result in Theorem[I2. Even for larger values of
g, uptoq < 0.42, our algorithm from TheoremZll is faster than that general from Theorem[I8

7 Final remarks

The problems of finding LCA are classical and central in tleaanf algorithms and data structures
[4,[15,[17]. In spite of the long history of studies devoted @A problems, we have succeeded to
design two quite natural methods for finding LCA in dags cdesbly subsuming the previously
known best results [4].

Our second method relies on the presented close relatphshiveen the problem of comput-
ing the maximum witnesses of Boolean matrix product and ahéinding LCAs for all pairs of
vertices in a dag and the use of fast algorithms for rectamguohtrix multiplication.
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It is an intriguing open problem whether the complexity gapAeen the problems of comput-
ing witnesses and computing maximum witnesses of Booledanxnpaoduct, or alternatively, the
problems of finding common ancestors and finding LCAs in a dag be further decreased.

The problem of finding maximum witnesses of Boolean matrodpict seems to be of interest
in its own rights. At first glance it seems that the recursda*<)-time method of Galil and
Margalit [11] for witnesses of Boolean matrix product coblladapted to produce the maximum
witnesses by considering the fragments containing maximiinesses in the subproblems without
substantially altering its asymptotic time. However, tf@@mentioned method may permute rows
or columns in recursive steps which may disturb the searcimBximum witnesses. Thus, the
problem of whether or not ou® (n?”?)-time method is optimal is open.

It is also an interesting question whether or not the ingard the problem of finding max-
imum witnesses of Boolean matrix product occurring in outuction from the LCA problem in
dags are computationally easier than the general ones.
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