Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 111 (2006)

Faster algorithms for finding lowest common ancestors
In directed acyclic graplis

Artur Czumaj Mirostaw Kowaluk Andrzej Linga$

Abstract

We present two new methods for finding a lowest common anc@s@A) for each pair
of vertices of a directed acyclic graph (dag)wwertices andn edges.

The first method is surprisingly natural and solves the aitgpL CA problem for the input
dag onn vertices andn edges in timeD (nm).

The second method relies on a novel reduction of the alsdai¥A problem to the prob-
lem of finding maximum witnesses for Boolean matrix produbke solve the latter problem
and hence also the all-pairs LCA problem in tifdén>™), where\ satisfies the equation
w(1,A,1) =1+ 2N andw(1,A, 1) is the exponent of the multiplication of anx n* matrix
by ann* x n matrix. By the currently best bounds ean(1,A, 1), the running time of our
algorithm isO(n?>73). Our algorithm improves the previously knowa(n?38) time-bound
for the general all-pairs LCA problem in dags by Beneeail.

Our additional contribution is a faster algorithm for solyithe all-pairs lowest common
ancestor problem in dags of small depth, where the depth efjasddefined as the length of
the longest path in the dag. For all dags of depth at rhost n*, wherex = 0.294, our
algorithm runs in time asymptotically the same as that oftiplying two n x n matrices,
that is,O(n); we also prove that this running time is optimal even for daigdepth1. For
dags with deptth > n*, the running time of our algorithm is at moS{n® - h®468), This
algorithm is faster than our algorithm for arbitrary dagsdb values ofh < n®42,

*This paper is the result of merging the ICALP’05 paper [14hwiL0].

tDepartment of Computer Science, University of Warwick, @uvy CV4 7AL, United Kingdom. E-mail: Ar-
tur.Czumaj@dcs.warwick.ac.uk. Research supported irbyadSF ITR grant CCR-0313219.

Hnstitute of Informatics, Warsaw University, Warsaw, Rala Email: kowaluk@mimum.edu.pl. Research sup-
ported by KBN grant 4T11C04425.

SDepartment of Computer Science, Lund University, 22100d,u8weden. Email: Andrzej.Lingas@cs.lth.se.
Research supported in part by VR grant 621-2002-4049.

ISSN 1433-8092

1 Introduction

The problem of finding #owest common ancestor (LCA) in a tree, or more generally, indirected
acyclic graph (dag) is a basic problem in algorithmic graph theory. An LGAi@ticesu andv in

a dag is an ancestor of bothandv that has no descendant which is an ancestar ahdv, see
Fig. 1 for example. We consider the problem of preprocessidag such that LCA queries can be
answered quickly for any pair of vertices.

This problem has been very extensively studied in the liteeain the context of (rooted) trees
(see, e.g., [3, 12, 17]), where it appears naturally in werisettings and where it found many
applications in design of efficient algorithms and datactties (e.g., for the problem of computing
maximum matching in graphs and for various string problermdgsyel and Tarjan [12] were the first
who showed that in rooted trees, the LCA queries can be apsherconstant time after a linear
time preprocessing of the input tree. This work has beem éatiended in many ways, including
the simplified algorithm from [3] and the recent dynamic aitjon [5].

Recently, Bendeket al. initiated investigations of the LCA problem for arbitraryretted
acyclic graphs in [4]. They listed a number of natural amdlans of the LCA queries in dags
in [4], e.g., in inheritance analysis in programming langes analysis of genealogical data, and
lattice operations in complex systems (for more details, esg., [9, 15, 16], and especially [4]
and the references therein). Benedeal. also observed that the all-pairs LCA problem in dags is
unfortunately not simpler than transitive closure in agbly directed graphs and Boolean matrix
multiplication [4]. On the other hand, they were first to dgssubstantially subcubic-time solu-
tion to the all-pairs LCA problem in dags. Their algorithnr tbe all-pairs LCA problem in dags
runs in timeOQ (n3+®)/2) = O(n?%8), wheren is the number of vertices and < 2.376 is the
exponent of the fastest matrix multiplication algorithnp [7

New contributions. We present two new methods of efficiently preprocessingectid graph
onn vertices andn edges in order to answer an LCA query for any pair of verticesonstant
time, subsuming the previously known best results from [4].

The first method is surprisingly natural and solves the aligpLCA problem for the input
dag onn vertices andm edges in timeO(nm). For sparse dags, this method is optimal and
substantially faster than the kno@{an”)-time general method from [4].

The second method efficiently reduces the all-pairs LCA lemobto the problem of finding
maximum (index) witnesses for Boolean matrix product. Weesthe latter problem and hence
also the all-pairs LCA problem in tim@ (n?*), where) satisfies the equatian(1,A,1) = 1+2A
andw(1, A, 1) is the exponent of the multiplication of arx n* matrix by amm* xn matrix. By the
currently best bounds an (1, A, 1), the running time of our algorithm i® (n?>7?). Our algorithm
improves the previously know® (n?¢8) time-bound for the general all-pairs LCA problem in
dags by Bendeset al. [4].

In addition, we present a faster algorithm for solving thiepalrs lowest common ancestor
problem in dags of small depth, where thepth of a dag is defined as the length of the longest
path in the dag. For all dags of depth at mokt < n*, wherex ~ 0.294, our algorithm runs in
time asymptotically the same as that of multiplying two< n matrices, that isQ(n®); we also

1In [4], an equivalent notion of thiseight of a dag is used. We find however the tedapth more intuitive.

oX Ve

Figure 1: A dag with 7 vertices. The LCA of verticesandy are both, vertexu and vertexz;
vertexw is a common ancestor afandy but it is not the LCA ofx andy. There is no common
ancestor of vertices andq.

prove that this running time is optimal even for dags of ddptRor dags with depth > n%*, the
running time of our algorithm is at mo&t(n® - h%468), This algorithm is faster than our method
for arbitrary dags for all values &f < n%42,

Organization. Our paper is structured as follows. In Section 2, we presenhaturalO (nm)-
time method for the all-pairs LCA problem in dags. In Sect®ynwe present several concepts
and facts used by our matrix based methods for the all-pd@& problem in dags. In Section
4, we demonstrate the relationships between the problerasrmputing common ancestors and
LCA in dags and those of finding withesses and maximum wigsefs Boolean matrix product.
In Section 5, we present o@(n?%7%)-time method for the maximum witness problem and the
all-pairs LCA problem for dags. In Section 6, we derive a meifecient solution to the all-pairs
LCA problem in dags of small depth.

2 Optimal method for sparse dags

First, we shall describe preprocessing for answering gaetout existence of a common ancestor
for arbitrary pair of vertices in constant time.

For the input dag, we shall denote hyandm its number of vertices and edges, respectively.
Also for a vertexv in the dag,indeg(v) andoutdeg(v) stand respectively for the in-degree and
out-degree of. If outdeg(v) = 0 thenv is called aterminal vertex and ifindeg(v) = 0 thenv
is called asource vertex.

We may assume without loss of generality that the input dagisected since otherwise we
can decompose it into connected components and solve thiepréor each component separately.
For technical reasons, we shall also assume that everyusiits own ancestor.

The following lemma immediately follows from the definitiofha dag.

Lemma 1 If two vertices have a common ancestor then thereis a source vertex that is their com-
mon ancestor.

In the first stage of the preprocessing, for each vertex ot dag we form a table contain-
ing its descendants. In other words, we create the traagitbsure of the dag which obviously can
be done in time (nm). For the sake of Section 3, we describe this stage in mordsie&ow.

We initialize the tables in tim@®(n?) and start from the terminal vertices, filling their tables
with single vertices in tim@® (n). Next we iterate the following step: remove the verticesuf o
degre&) with incident edges and fill the tables for the new vertices out-degre& by merging
the information from the tables associated with the remaliegtt descendants of and taking
into account the set of direct descendants.ofVe also add to its table. For each vertexsuch
an operation takes tim@(n) x outdeg(v). Thus, for the whole graph it tak€¥(nm) time.

Lemma 2 The tables of descendants for all vertices can be formed in time O(nm).

In the second stage of the preprocessing, we determinedbneatexv the set of vertices that
have a common ancestor with\We proceed similarly as in the first stage of preprocessantjisg
from source vertices instead of the terminal ones. For tliecsovertices, the sets are already
computed, they are just the sets of descendants bext, we iterate the following step: remove
the vertices of in-degre®with incident edges and fill the tables for the new vertice$in-degree
0 by merging the information from the tables associated withremoved direct ancestorsaf
For each vertex such an operation takes tini®n) x indeg(v). Thus, for the whole graph it
takesO(nm) time.

By thedepth of a vertexv in a dag, we shall mean the length of the longest path from eceou
vertex tov in the dag.

Note that the set of vertices having a common ancestor wietrt@xwy is the union of the sets
of vertices having common ancestors with the ancestots(oécall thatv is also an ancestor of
itself). Hence, we obtain the following lemma by inductiantbe depth ob.

Lemma 3 For all vertices v, the tables of vertices having a common ancestor with v can be com-
putedintime O(nm).

In order to answer LCA queries we need to refine the preprowesbghtly. During the second
descending phase of the preprocessing we additionally eraienthe vertices in their visiting
order. Since an ancestor is always visited before its delsecgnwe obtain the following lemma.

Lemma 4 A vertex of a higher number cannot be an ancestor of a vertex of a lower number.

For all verticesv, in the table keeping verticas having a common ancestor with we keep
also the maximum of the numbers assigned to the common anse$t’ andw. To achieve this,
when we merge the information from the tables of direct almrsefv, we pick the maximum
number of a common ancestor of a direct ancestor ahdw. Clearly, the refinement can be
accomplished within the same asymptotic ti@émn). By induction, we obtain the following
lemma.

Lemma5 For all vertices v, the tables of vertices w having a common ancestor with v with a
pointer to a lowest common ancestor of v and w can be computed in time O (nm).

Hence, we obtain immediately the following theorem.

3

Theorem 6 The all-pairs LCA problemfor a dag on n vertices and m edges can be solved in time
Onm+m)).

Note that ifm = O(n) then our solution is optimal.

The authors of [4] discuss also the so calbhrtest ancestral distance between a pair of
vertices in dag in [4F. For two verticesu andv, they define it as the length of a shortest path
betweenu andv which passes through a common ancestar ahdv (observe that the common
ancestor is not necessarily the lowest dihe Benderet al. showed that the all-pairs shortest
ancestral distances can be computed in da?>">) [4].

We can modify our first method to obtain &{mn)-time algorithm to compute the all-pairs
shortest ancestral distances as follows. In the ascendiagep for each vertex, and for each
descendent of v, we additionally compute the shortest directed distanted®nu andv. This
can be easily accomplished within the same asymptotic @twn). At the beginning of the
descending phase, the previously computed shortest elifecstances yield the shortest ancestral
distances between sources and their descendants. Whilendisg the shortest ancestral distances
between the parents of the current venteand each other vertaxare increased by one. Next, the
minimum of them and the shortest directed distance betwesardu (it can be infinite) is taken
as the shortest ancestral distance betweandw. In this way for all pairs of vertices andu the
shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also msiéed in timeO(mn). We
conclude with the following theorem.

Theorem 7 For a dag on n vertices and m edges, the all-pairs shortest ancestral distances can
be computed intime O (n(n + m)).

3 Preliminaries for the matrix based methods

In the remaining sections, we shall use several facts ancepds related to matrix multiplication,
in particular Boolean matrix product. We shall also consatbegs of bounded depth.

We letw to denote the exponent of square matrix multiplicationt thahe smallest constant
for which the product of twan x n matrices can be computed@n®) time. The best asymptotic
upper bound o currently known isv < 2.376, by Coppersmith and Winograd [7].

The following fact that relates graph problems to fast matrultiplication is folklore.

Fact 1 The transitive closure of any directed graph with n vertices, in particular a dag, can be
computed in time O(n®).

We also need to define the concept of withess and maximum sgiineBoolean matrix multi-
plication.

2Their original and not any more actual (cf. [2]) motivatiar Eonsidering the shortest ancestral distance in sparse
dags were applications in the identification of genes aasediwith genetic diseases [9, 16]

30ne can also consider the so called shortest ancestral L&eandie where the common ancestor is required to be
lowest [4]

Definition 8 If an entry C[i, j] of the Boolean product of two Boolean matrices A and B is equal
to 1 then any index k such that A[i, k] and B[k, j] are equal to 1 isawitnessfor C[i,j]. If k isthe
largest possible witness for C[i, j] then it is called the maximum witness for C[i, j].

The following fact is due to Alon and Naor [1].

Fact 2 The witnesses of the Boolean product of two n. x n Boolean matrices can be computed in
time* O(n®).

As it has been observed in [4], the concept of the level of &exén a dag plays an important
role in the study of LCA in dags.

Definition 9 The level i of a dag isthe set of all its vertices of depth i. The depth of a dag isthe
maximum depth of its vertices, or equivalently, the number of its non-empty levels decreased by
one.

By using a variant of the Bellman-Ford algorithm for the $@agource shortest path problem
in dags running in tim®(n + m) (see, e.g., Chapter 24.2 in [8]), we obtain the followinghem

Lemma 10 For adag G withn verticesand m edges, one can compute the partition of the vertices
of G into the levels and the depth of G intime O(n + m).

4 Common ancestors versus Boolean matrix product witnesses

In this section we discuss the relationship between thel@nodbof finding common ancestors and
LCA for all pairs of vertices in a dag and the problems of cotmguwitnesses and maximum
witnesses of Boolean product of two Boolearx n matrices.

We begin with a reduction of the problem of computing allrfp@iommon ancestors in a dag to
the problem of computing witnesses of Boolean product ottiveesponding Boolean matrices.

Theorem 11 The problem of computing all-pairs common ancestorsin a dag on n vertices can be
reduced to the problem of computing witnesses of Boolean product of two Boolean n x n matrices
intime O(n®). Smilarly, the problem of computing all-pairs LCA in a dag on n vertices can be
reduced to the problem of computing maximum witnesses of Boolean product of two Booleann x n
matricesintime O(n®).

Proof. To prove the first part proceed as follows. Compute the tiigaslosure of the input dag.
Number the vertices of the dag by their rank in the topoldgicdering of the transitive closure.
Form the ancestor matriX such that in itdth row there isl on thekth position iff thekth vertex
is an ancestor of thigh vertex. Compute the witnesses of the Boolean producteofrthtrixA and
its transpos@\’. For any(i, j) entry of the product matrix, if the entry is positive theniitiéness
is the number of a common ancestor of ttreandjth vertex.

To prove the second part compute the maximum witnesses Bidblean product of the matrix
A and its transposA instead of the ordinary ones. Next, observe that a commoestmcof

4Throughout the paper, the notatié(f(n)) stands folO(f(n) log® n) for some positive constant

5

verticesu andv having the largest number among common ancestousanfdv is an LCA ofu
andv. By the observation, for anfi, j) entry of the product matrix, if the entry is positive then its
maximum witness is the number of an LCA of tith andjth vertex. O

In turn, we consider a reduction of the problem of computirith@sses to the problem of
computing all-pairs common ancestors in a dag of dépth

Vv v, V. Vael Vn

@ © cccecee O O @ © cccecee O O
a

4, a_,a, b] b2 bn_] bn

n

Figure 2: A scheme of the construction used in the proof oofém 12.

Theorem 12 The problem of computing witnesses of Boolean product of two Boolean n x n ma-
trices can be reduced to the problem of computing all-pairs common ancestorsin a dag with 3n
vertices and depth 1 intime O(n?).

Proof. Let A andB be two Booleam x n matrices. Construct a two-level d&ywith vertices
v1,V2,...,Vvy ON the zero level and vertices, a,,...,a, andby, b, ..., b, on the first level.
Create an edgevy, a;) iff Afi, k] = 1. Analogously, form an edg@y, b;) iff Bk,j] = 1.

Let C be the Boolean product of matricAsandB. By the definition ofG, k is a witness of an
entry C[i, j] iff v is @ common ancestor of the vertiagsandb;. O

By combining the first part of Theorem theo: max0 with Theod&nwe obtain the following
corollary.

Corollary 13 The problem of computing all-pairs common ancestors in a dag on n vertices and
the problem of computing witnesses of Boolean product of two Booleann x n matricesare O (n®)-
time equivalent.

Note that the all-pairs common ancestor problem (notdtvest common ancestor one) for an
arbitrary dag can be solved in tin@(n“) by computing the transitive closure of the dag, using
Fact 1, and then computing the witnesses of the Boolean ptaduihe transitive closure matrix
and its transpose using Fact 2. This running time is optinmglesTheorem 12 implies that the
problem of computing all-pairs LCA in a dag withvertices requires tim@(n®), even for dags
of depthl.

By using a dag construction much more sophisticated tharuged in the proof of Theorem
12, we obtain the following theorem that relates computnagi mum witnesses to computing all-
pairs LCA in a dag.

Theorem 14 The problem of computing maximum witnesses of Boolean product of two Boolean
1 x n matrices can be reduced to the problem of computing all-pairs LCA inadag onn? +3n
verticesintime O(n?).

Figure 3: A scheme of the construction used in the proof ofofém 14.

Proof. Let A andB be two Booleam x n matrices . Construct a dag = (V, E) where
V={al <i<nju{afll <i, k<nju {1 <k<nju{bfl <i<n)

and
E={(afa)1<i, k<n&ALK =Tju{(af, a1 <i, k<nju

U{(af, M1 <1, k <n&AlL, K = TTU{(bX 1)1 <1, j <n&Blk,jl =1

Since # =n? + 3n and # = O(n?) hold, the construction can be done in quadratic time.
Our proof relies on the two following observations easiljdaing from the construction.

1. k is a witness for the entr¢[i, j| of the resulting product matri« if and only if there is an
edge froma¥ to a; and a directed path fromaf through(a¥, b*) to b;.

2. If vis a common ancestor af, andb; thenv = a! holds for somd € {1, ...,n} and there
existsl’ € {1,...,n} such that there is an edge froanb' to a; and a directed path from{'
through(al’, b"') to b;.

It follows from the first observation that i is a witness forC[i,j] then a¥ is a common
ancestor ofa; andb;. Furthermore, by the second and first observations, we ihfritk is a
maximum witness thek is a maximum index such thaf is an ancestor of; andb;. Since there
is nol < k such thata! is a descendant aff in G, we conclude by the second observation that if
k is a maximum witness fo€ i, j] thena¥ is a lowest common ancestor of andb;.

Conversely, consider a common ancestaf a; andb;. By both observationsy = a! for
somel € {1,...,n}and there id’ > 1 such thata{' is a common ancestor af, andb; andl’ is
witness forC[i, j|. Next, if v is a lowest common ancestor af andb; thenl = 1’ andl must be
the maximum witness since otherwise we obtain a contradidiy the first observation and the
fact that ifl < k thena! is an ancestor of¥.

A (p-Di+1 pl B

(p-1)i+1

pl q

A

P

Figure 4: Rectangular matricés, andB,,.

We conclude thak is a maximum witness fo€[i,j] if and only if a¥ is a lowest common
ancestor ofa; andb;. It remains to note thati; and b; can have at most one lowest common
ancestor.

O

Note that the dag constructed in Theorem 14 has a quadratibenof vertices. Therefore, by
combining Theorem 11 with Theorem 14, we cannot extend Goyol3 to include arO(n®)-
time equivalence between the problem of computing allsga@A in a dag om vertices and the
problem of computing maximum witnesses of Boolean prodfitsizo Booleanm x n matrices.

Benderet al. [4] showed that the problem of computing all-pairs LCA in gdeith n ver-
tices is not easier than that of computing transitive clesara directed graph witl vertices.
Our reduction of the all-pairs LCA problem in dags to that ofmputing maximum witnesses of
Boolean product of two Boolean matrices (Theorem 11) detnates that the latter problem has
not smaller asymptotic complexity.

5 O(n%*°)-time method for maximum witnesses and the all-
pairs LCA problem in dags

By Corollary 13, itis sufficient to compute maximum withessé€Boolean product of two Boolean
n x n matrices in order to solve the all-pairs LCA problem in dalgsthis section, we present a
substantially subcubic algorithm for the maximum witnessbpem using fast rectangular matrix
multiplication.

Let { be a positive integer smaller than Partition the matrixA inton x { sub-matrices\,,
and the matrixXB into £ x n sub-matrice$,,, such thal < p < n/{, and the sub-matrid,, covers
the columngp —1) £+ 1 throughp £ of A whereas the sub-matrik, covers the rowsp —1) {41
throughp £ of B. (For an example, see Figure 4.)

Forp =1,...,n/t, let C, be the Boolean product &, andB,,. Then,C,[i,j] > 0 iff there
isanindexk, (p — 1) £ < k < p{, such thatA[i, k] = B[k, j] = 1. Therefore the following claim
follows.

Claim 15 Suppose that a C[i, j] entry of the Boolean product C of A and B is positive. Let p’ be
the maximum value of p such that C,/[i,j] > 0. The maximum witness of C[i,j] belongs to the
interval [(p’ — 1)+ 1,p'L].

By this claim, after computing all the produds = A,,-B,,, 1 < p < n/{, we need(n/{+()
time per positive entry of to find the maximum witnes€) (n/{£) time to determing’ and then
O (&) time to locate the maximum witness.

Let w(1,r,1) denote the exponent of the multiplication of anx n™ matrix by ann™ x n
matrix. It follows that the total time taken by our method feaximum witnesses is

O((n/€) - nwhogn b 4 13 /0 4 n2p) .

By settingr to log, £ our upper bound transforms @(n'~™«(nD 4 13— 4 n247). Note
that by assuming > % we can get rid of the additive>™ term. Hence, by solving the equation
T—A+w(1,A, 1) =2+ AimplyingA > % by w(1,A, 1) > 2, we obtain our main result.

Theorem 16 Let A be such that w(1,A, 1) = T + 2A. The maximum witnesses for all positive
entries of the Boolean product of two n. x n Boolean matrices can be computed in time O (n?+).

Coppersmith [6] and Huang and Pan [13] proved the followany.f

Fact3 [6, 13]Let w = w(1,1,1) < 2.376andlet x = sup{0 <r < 1:w(l,7,1) =240(1)} >
0.294. Then w(1,7,1) < B(r), where (r) =2+ o(1)forr € [0, and B(r) = 2 + %(r—
)+ o(1) forr € [, 1].

Note that by Fact 3, the solutionof the equationv(1,A,1) = 1 4+ 2A is satisfied byA =
% +0o(1) < 0.575. Therefore, we obtain the following concrete corollary.
Corollary 17 The maximum witnesses for all positive entries of the Boolean product of twon x n
Boolean matrices can be computed in time O (n?>73).

By combining Theorem 11 with Theorem 16 and Corollary 17, Wwiaim also arQ (n?°7°)-
time solution to the all-pairs LCA problem in dags.

Theorem 18 Let w(1,A,1) = 1 4+ 2A. The all-pairs LCA problem for an arbitrary dag with n
vertices can be solved in time O (n?*), which is bounded above by O (n?57).

6 All-pairs LCA in dags of bounded depth

In this section we describe an algorithm for solving thepalirs LCA problem for an arbitrary dag
G of depth bounded by.. The algorithm has a similar flavor as that discussed in tegipus
section, but now we will additionally use the fact that thetthds bounded to speed up the process.
First, we compute the transitive closure@fand create the ancestor matAxsimilarly as in
the proof of Theorem 11. Next, using Lemma 10, we partitimto h + 1 levels and extend
the partial order induced by this partition to a linear orded number the vertices according to

9

the linear order so the numbering is increasing with resfmevertex depth. These steps can be
performed in timeD (n®).

Observe that the numbering naturally decomposeshntol continuous intervals in one-to-
one correspondence with the levels@f Our approach relies on the following generalization of
the observation that the common ancestor of verticasidv that has the highest number (in the
topological ordering) is a lowest common anceston@indv.

Claim 19 [4] Any common ancestor of vertices u and v which is of highest level among common
ancestors of u and v is a lowest common ancestor of u and v.

Claim 19 implies directly that the maximum witnesses of thedpict of the Boolean matrix
of ancestorsA and its transposA’ yield the solution to the all-pairs LCA problem for a dag.
However, since it is expensive to compute maximum witnesgesnodify this construction and
reduce the problem to that of computimgnesses (instead ofmaximum witnesses).

Relying on Claim 19 and the bounded depthwe decompos@ and its transpos@’ into
h + 1 rectangular sub-matrices in one-to-one correspondertbetiva level intervals and compute
witnesses for the products of the pairs of sub-matriced iand A" corresponding to the same
level interval. Now, similarly as in the previous sectiore abserve that if verticeisandj have a
common ancestor at levé| then if we multiply the sub-matrix oA corresponding to levdl by
the sub-matrix ofAT corresponding to leve], then the resulting matri€, will have C;[i,j] > 0
and the witness fo€,[i, j] > 0 will be a vertex from level that is an ancestor of bothandj.

Let us estimate the time taken by finding the witnesses fohthel products of sub-matrices
of A andAT. Recall the definition of functiof8 in Fact 3 due to Coppersmith, and Huang and
Pan. By using the straightforward reduction of Boolean matultiplication to the arithmetic one
and by generalizing the derandomization method of Alon aadrN1] for withesses of Boolean
matrix multiplication to include rectangular matrices, a#ain the following lemma.

Lemma 20 The witnesses of the Boolean product of two Boolean matrices of sizesn x n"™ and
n" x n can be computed in time O(nfM),

Fork =0,...,h, let{y be the number of vertices on levein the dagG. By Lemma 20, the
total time taken by computing the witnessesHiof 1 sub-matrix products is

0O <i 1 B(log, ﬂk)) . (1)
k=0

Finally, once we determined witnesses for every pair ofisestnumberedlandj and for every
level ¢, it remains to find for each pairandj, the largest witness among the witnesses for the pair
1,7 in the products of the sub-matrices. It takah) time per paiti, j and henceQ (n? h) time in
total.

Next, by straightforward calculations, Jensen inequatitglies that the value of (1) is maxi-
mized if the levels are of equal size/(h -|— 1). (Indeed we observe that the functinA®)—2
concave and therefofE |_,nflo% t) = n2 371 nblog ti)-2 < 2 (4 1) nPlogen/(h+1))-2 —

(h + 1) nBlognn/(h+1)) Hence we obtain the followmg theorem.

10

Theorem 21 Theall-pairs LCA problemfor an arbitrary dag withn vertices and depth n9 can be
solved intime O(n® + na+B-aly,

In particular, for dags of depth at most n® ~ n®2% the running timeis O (n%).

For larger values of the depth n9, the running time of thisalgorithmis

0 (nw—%q(]f‘]"f’i)—l—o(]]) ~ O(n2.376+0.468q)

Remark 22 Note that for all values of g < « = 0.294, the running time of our algorithm from
Theorem 21 is asymptotically optimal due to our result in Theorem 12. Even for larger values of
g, uptoq < 0.42, our algorithm from Theorem 21 is faster than that general from Theorem 18.

7 Final remarks

The problems of finding LCA are classical and central in tleaanf algorithms and data structures
[4, 15, 17]. In spite of the long history of studies devoted @A problems, we have succeeded to
design two quite natural methods for finding LCA in dags cdesbly subsuming the previously
known best results [4].

Our second method relies on the presented close relatphshiveen the problem of comput-
ing the maximum witnesses of Boolean matrix product and ahéinding LCAs for all pairs of
vertices in a dag and the use of fast algorithms for rectamguhtrix multiplication.

It is an intriguing open problem whether the complexity ggtwieen the problems of com-
puting witnesses and computing maximum witnesses of Baatearix product, or similarly, the
problems of finding common ancestors and finding LCAs in a dag be further decreased.

The problem of finding maximum witnesses of Boolean matrodpict seems to be of interest
in its own rights. At first glance it seems that the recursdam“*¢)-time method of Galil and
Margalit [11] for withesses of Boolean matrix product coblladapted to produce the maximum
witnesses by considering the fragments containing maximiinesses in the subproblems without
substantially altering its asymptotic time. However, tf@@mentioned method may permute rows
or columns in recursive steps which may disturb the searcimBximum witnesses. Thus, the
problem of whether or not ou® (n?>7>)-time method is optimal is open.

It is also an interesting question whether or not the ingard the problem of finding max-
imum witnesses of Boolean matrix product occurring in outuaion from the LCA problem in
dags are computationally easier than the general ones.

8 Acknowledgments

The authors are grateful to Pavel Sumazin for inspiratiohgszek Gasieniec and Martin Wahlén
for some discussions, and to Raphael Yuster for pointingreuincorrectness of the prior proof of
Theorem 14.

11

References

[1] N. Alon and M. Naor. Derandomization, witnesses for Bxaoi matrix multiplication and
construction of perfect hash function&lgorithmica, 16: 434-449, 1996.

[2] A.Becker, D.Geiger and A.A.Schaeffer. Automatic Sélac of Loop Breakers for Genetic
Linkage Analysis.

[3] M. A. Bender and M. Farach-Colton. The LCA problem retasl. Proc. 4th Latin American
Symposiumon Theoretical Informatics (LATIN'00), pp. 88—93, 2000.

[4] M. A. Bender, G. Pemmasani, S. Skiena and P. Sumazin.irkjridast common ancestors in
directed acyclic graphsProc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA'01), pp. 845—-853, 2001.

[5] R. Cole and R. Hariharan. Dynamic LCA queries in tre&AM Journal on Computing,
34(4): 894923, 2005.

[6] D. Coppersmith. Rectangular matrix multiplication isted. Journal of Symbolic Computa-
tion, 13: 42—-49, 1997.

[7] D. Coppersmith and S. Winograd. Matrix multiplicatiom\arithmetic progressiordournal
of Symbolic Computation, 9: 251-290, 1990.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéimroduction to Algorithms. 2nd
edition, McGraw-Hill Book Company, Boston, MA, 2001.

[9] R. W. Cottingham Jr., R. M. Idury, and A. A. Shaffer. Géndinkage computationsAmeri-
can Journal of Human Genetics, 53: 252-263, 1993.

[10] A. Czumaj and A. Lingas. Improved algorithms for the-@dlirs lowest common ancestor
problem in directed acyclic graphblanuscript, 2005.

[11] Z. Galil and O. Margalit. Witnesses for Boolean matrixilitiplication and for transitive
closure.Journal of Complexity, 9: 201-221, 1993.

[12] D. Harel and R. E. Tarjan. Fast algorithms for finding nes&a common ancestorsSSAM
Journal on Computing, 13(2): 338—355, 1984.

[13] X. Huang and V.Y. Pan. Fast rectangular matrix mulaations and applicationgournal of
Complexity, 14: 257-299, 1998.

[14] M. Kowaluk and A. Lingas. LCA queries in directed acydaljraphsProc. 32nd International
Colloguium on Automata, Languages and Programming (ICALP’ 05), pp. 241248, 2005.

[15] M. Nykanen and E. Ukkonen. Finding lowest common atarssn arbitrarily directed trees.
Information Processing Letters, 50(6): 307-310, 1994.

[16] A. A. Shaffer, S. K. Gupta, K. Shriram, and R. W. Cottivegn Jr. Avoiding recomputation in
linkage analysisHuman Heredity, 44: 225-237, 1994.

12

[17] R.E. Tarjan. Applications of path compression on be¢ahtreesJournal of the ACM, 26(4):
690-715, 1979.

[18] U. Zwick. All pairs shortest paths using bridging setslaectangular matrix multiplication.
Journal of the ACM, 49(3): 289-317, 2002.

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

