
Faster algorithms for finding lowest common ancestors
in directed acyclic graphs

�

Artur Czumaj
�

Mirosław Kowaluk
�

Andrzej Lingas
�

Abstract

We present two new methods for finding a lowest common ancestor (LCA) for each pair
of vertices of a directed acyclic graph (dag) on� vertices and� edges.

The first method is surprisingly natural and solves the all-pairs LCA problem for the input
dag on� vertices and� edges in time� ��� �.

The second method relies on a novel reduction of the all-pairs LCA problem to the prob-
lem of finding maximum witnesses for Boolean matrix product.We solve the latter problem
and hence also the all-pairs LCA problem in time� ��	
� �, where� satisfies the equation ��� � � �� � � � � � and ��� � � �� is the exponent of the multiplication of an� � �� matrix
by an�� � � matrix. By the currently best bounds on ��� � � ��, the running time of our
algorithm is� ��	 �

���
�. Our algorithm improves the previously known� ��	 ���� � time-bound

for the general all-pairs LCA problem in dags by Benderet al.
Our additional contribution is a faster algorithm for solving the all-pairs lowest common

ancestor problem in dags of small depth, where the depth of a dag is defined as the length of
the longest path in the dag. For all dags of depth at most� � � �, where� � � �� !, our
algorithm runs in time asymptotically the same as that of multiplying two � � � matrices,
that is,� ��" �; we also prove that this running time is optimal even for dagsof depth�. For
dags with depth� # � �, the running time of our algorithm is at most� ��" $ �% �

&
�� �. This

algorithm is faster than our algorithm for arbitrary dags for all values of� � �% �
&
	 .

'
This paper is the result of merging the ICALP’05 paper [14] with [10].(
Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: Ar-

tur.Czumaj@dcs.warwick.ac.uk. Research supported in part by NSF ITR grant CCR-0313219.)
Institute of Informatics, Warsaw University, Warsaw, Poland. Email: kowaluk@mimum.edu.pl. Research sup-

ported by KBN grant 4T11C04425.*
Department of Computer Science, Lund University, 22100 Lund, Sweden. Email: Andrzej.Lingas@cs.lth.se.

Research supported in part by VR grant 621-2002-4049.

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 111 (2006)

ISSN 1433-8092




1 Introduction

The problem of finding alowest common ancestor (LCA) in a tree, or more generally, in adirected
acyclic graph (dag) is a basic problem in algorithmic graph theory. An LCA of vertices� and� in
a dag is an ancestor of both� and� that has no descendant which is an ancestor of� and� , see
Fig. 1 for example. We consider the problem of preprocessinga dag such that LCA queries can be
answered quickly for any pair of vertices.

This problem has been very extensively studied in the literature in the context of (rooted) trees
(see, e.g., [3, 12, 17]), where it appears naturally in various settings and where it found many
applications in design of efficient algorithms and data structures (e.g., for the problem of computing
maximum matching in graphs and for various string problems). Harel and Tarjan [12] were the first
who showed that in rooted trees, the LCA queries can be answered in constant time after a linear
time preprocessing of the input tree. This work has been later extended in many ways, including
the simplified algorithm from [3] and the recent dynamic algorithm [5].

Recently, Benderet al. initiated investigations of the LCA problem for arbitrary directed
acyclic graphs in [4]. They listed a number of natural applications of the LCA queries in dags
in [4], e.g., in inheritance analysis in programming languages, analysis of genealogical data, and
lattice operations in complex systems (for more details, see e.g., [9, 15, 16], and especially [4]
and the references therein). Benderet al. also observed that the all-pairs LCA problem in dags is
unfortunately not simpler than transitive closure in arbitrary directed graphs and Boolean matrix
multiplication [4]. On the other hand, they were first to design substantially subcubic-time solu-
tion to the all-pairs LCA problem in dags. Their algorithm for the all-pairs LCA problem in dags
runs in time

� �� ��
" ��	 	 
 � �� 	 ���� 	, where� is the number of vertices and� �  ���� is the
exponent of the fastest matrix multiplication algorithm [7].

New contributions. We present two new methods of efficiently preprocessing a directed graph
on � vertices and� edges in order to answer an LCA query for any pair of vertices in constant
time, subsuming the previously known best results from [4].

The first method is surprisingly natural and solves the all-pairs LCA problem for the input
dag on� vertices and� edges in time

� ��� 	. For sparse dags, this method is optimal and
substantially faster than the known

� �� ���� 	-time general method from [4].
The second method efficiently reduces the all-pairs LCA problem to the problem of finding

maximum (index) witnesses for Boolean matrix product. We solve the latter problem and hence
also the all-pairs LCA problem in time

� �� 	
� 	, where� satisfies the equation� ��� � � �	 
 �� �
and� ��� � � �	 is the exponent of the multiplication of an� �� � matrix by an� � �� matrix. By the
currently best bounds on� ��� � � �	, the running time of our algorithm is

� �� 	 �
��� 	. Our algorithm

improves the previously known
� �� 	 ���� 	 time-bound for the general all-pairs LCA problem in

dags by Benderet al. [4].
In addition, we present a faster algorithm for solving the all-pairs lowest common ancestor

problem in dags of small depth, where thedepth of a dag is defined as the length of the longest
path in the dag1. For all dags of depth at most� � � �, where� �  �!" , our algorithm runs in
time asymptotically the same as that of multiplying two� � � matrices, that is,

� ��" 	; we also

1In [4], an equivalent notion of theheight of a dag is used. We find however the termdepth more intuitive.

1



x y

w
v

q
z

u

Figure 1: A dag with 7 vertices. The LCA of vertices� and� are both, vertex� and vertex�;
vertex� is a common ancestor of� and� but it is not the LCA of� and� . There is no common
ancestor of vertices� and�.

prove that this running time is optimal even for dags of depth
�
. For dags with depth� � � �, the

running time of our algorithm is at most
� ��" � � % �

&
�� 	. This algorithm is faster than our method

for arbitrary dags for all values of� � � % �
&
	 .

Organization. Our paper is structured as follows. In Section 2, we present our natural
� ��� 	-

time method for the all-pairs LCA problem in dags. In Section3, we present several concepts
and facts used by our matrix based methods for the all-pairs LCA problem in dags. In Section
4, we demonstrate the relationships between the problems ofcomputing common ancestors and
LCA in dags and those of finding witnesses and maximum witnesses for Boolean matrix product.
In Section 5, we present our

� �� 	 �
��� 	-time method for the maximum witness problem and the

all-pairs LCA problem for dags. In Section 6, we derive a moreefficient solution to the all-pairs
LCA problem in dags of small depth.

2 Optimal method for sparse dags

First, we shall describe preprocessing for answering queries about existence of a common ancestor
for arbitrary pair of vertices in constant time.

For the input dag, we shall denote by� and� its number of vertices and edges, respectively.
Also for a vertex� in the dag,�� �	
 �� 	 and�� � �	
 �� 	 stand respectively for the in-degree and
out-degree of� . If �� � �	
 �� 	 
  then� is called aterminal vertex and if �� �	
 �� 	 
  then�
is called asource vertex.

We may assume without loss of generality that the input dag isconnected since otherwise we
can decompose it into connected components and solve the problem for each component separately.
For technical reasons, we shall also assume that every vertex is its own ancestor.

The following lemma immediately follows from the definitionof a dag.

Lemma 1 If two vertices have a common ancestor then there is a source vertex that is their com-
mon ancestor.

2



In the first stage of the preprocessing, for each vertex of theinput dag we form a table contain-
ing its descendants. In other words, we create the transitive closure of the dag which obviously can
be done in time

� ��� 	. For the sake of Section 3, we describe this stage in more details below.
We initialize the tables in time

� �� 	 	 and start from the terminal vertices, filling their tables
with single vertices in time

� �� 	. Next we iterate the following step: remove the vertices of out-
degree with incident edges and fill the tables for the new vertices� of out-degree by merging
the information from the tables associated with the removeddirect descendants of� , and taking
into account the set of direct descendants of� . We also add� to its table. For each vertex� such
an operation takes time

� �� 	 � �� � �	
 �� 	. Thus, for the whole graph it takes
� ��� 	 time.

Lemma 2 The tables of descendants for all vertices can be formed in time
� ��� 	.

In the second stage of the preprocessing, we determine for each vertex� the set of vertices that
have a common ancestor with� . We proceed similarly as in the first stage of preprocessing starting
from source vertices instead of the terminal ones. For the source vertices�, the sets are already
computed, they are just the sets of descendants of�. Next, we iterate the following step: remove
the vertices of in-degree with incident edges and fill the tables for the new vertices� of in-degree
 by merging the information from the tables associated with the removed direct ancestors of� .
For each vertex� such an operation takes time

� �� 	 � �� �	
 �� 	. Thus, for the whole graph it
takes

� ��� 	 time.
By thedepth of a vertex� in a dag, we shall mean the length of the longest path from a source

vertex to� in the dag.
Note that the set of vertices having a common ancestor with a vertex� is the union of the sets

of vertices having common ancestors with the ancestors of� (recall that� is also an ancestor of
itself). Hence, we obtain the following lemma by induction on the depth of� .

Lemma 3 For all vertices � , the tables of vertices having a common ancestor with � can be com-
puted in time

� ��� 	.
In order to answer LCA queries we need to refine the preprocessing slightly. During the second

descending phase of the preprocessing we additionally enumerate the vertices in their visiting
order. Since an ancestor is always visited before its descendant, we obtain the following lemma.

Lemma 4 A vertex of a higher number cannot be an ancestor of a vertex of a lower number.

For all vertices� , in the table keeping vertices� having a common ancestor with� , we keep
also the maximum of the numbers assigned to the common ancestors of� and� . To achieve this,
when we merge the information from the tables of direct ancestors of � , we pick the maximum
number of a common ancestor of a direct ancestor of� and� . Clearly, the refinement can be
accomplished within the same asymptotic time

� ��� 	. By induction, we obtain the following
lemma.

Lemma 5 For all vertices � , the tables of vertices � having a common ancestor with � with a
pointer to a lowest common ancestor of � and � can be computed in time

� ��� 	.
Hence, we obtain immediately the following theorem.

3



Theorem 6 The all-pairs LCA problem for a dag on � vertices and � edges can be solved in time� �� �� � � 		.
Note that if� 
 � �� 	 then our solution is optimal.
The authors of [4] discuss also the so calledshortest ancestral distance between a pair of

vertices in dag in [4]2. For two vertices� and� , they define it as the length of a shortest path
between� and� which passes through a common ancestor of� and� (observe that the common
ancestor is not necessarily the lowest one3). Benderet al. showed that the all-pairs shortest
ancestral distances can be computed in time

� �� 	 �
��� 	 [4].

We can modify our first method to obtain an
� ��� 	-time algorithm to compute the all-pairs

shortest ancestral distances as follows. In the ascending phase, for each vertex� , and for each
descendent� of � , we additionally compute the shortest directed distance between� and� . This
can be easily accomplished within the same asymptotic time

� ��� 	. At the beginning of the
descending phase, the previously computed shortest directed distances yield the shortest ancestral
distances between sources and their descendants. While descending the shortest ancestral distances
between the parents of the current vertex� and each other vertex� are increased by one. Next, the
minimum of them and the shortest directed distance between� and� (it can be infinite) is taken
as the shortest ancestral distance between� and� . In this way for all pairs of vertices� and� the
shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also implemented in time
� ��� 	. We

conclude with the following theorem.

Theorem 7 For a dag on � vertices and � edges, the all-pairs shortest ancestral distances can
be computed in time

� �� �� � � 		.

3 Preliminaries for the matrix based methods

In the remaining sections, we shall use several facts and concepts related to matrix multiplication,
in particular Boolean matrix product. We shall also consider dags of bounded depth.

We let� to denote the exponent of square matrix multiplication, that is, the smallest constant
for which the product of two� �� matrices can be computed in

� ��" 	 time. The best asymptotic
upper bound on� currently known is� �  ����, by Coppersmith and Winograd [7].

The following fact that relates graph problems to fast matrix multiplication is folklore.

Fact 1 The transitive closure of any directed graph with � vertices, in particular a dag, can be
computed in time

� ��" 	.
We also need to define the concept of witness and maximum witness in Boolean matrix multi-

plication.

2Their original and not any more actual (cf. [2]) motivation for considering the shortest ancestral distance in sparse
dags were applications in the identification of genes associated with genetic diseases [9, 16]

3One can also consider the so called shortest ancestral LCA distance where the common ancestor is required to be
lowest [4]

4



Definition 8 If an entry
� �� � �� of the Boolean product of two Boolean matrices � and � is equal

to
�

then any index � such that � �� � �� and � �� � �� are equal to
�

is a witness for
� �� � ��. If � is the

largest possible witness for
� �� � �� then it is called the maximum witness for

� �� � ��.
The following fact is due to Alon and Naor [1].

Fact 2 The witnesses of the Boolean product of two � � � Boolean matrices can be computed in
time4 �� ��" 	.

As it has been observed in [4], the concept of the level of a vertex in a dag plays an important
role in the study of LCA in dags.

Definition 9 The level � of a dag is the set of all its vertices of depth �. The depth of a dag is the
maximum depth of its vertices, or equivalently, the number of its non-empty levels decreased by
one.

By using a variant of the Bellman-Ford algorithm for the single-source shortest path problem
in dags running in time

� �� � � 	 (see, e.g., Chapter 24.2 in [8]), we obtain the following lemma.

Lemma 10 For a dag � with � vertices and � edges, one can compute the partition of the vertices
of � into the levels and the depth of � in time

� �� � � 	.

4 Common ancestors versus Boolean matrix product witnesses

In this section we discuss the relationship between the problems of finding common ancestors and
LCA for all pairs of vertices in a dag and the problems of computing witnesses and maximum
witnesses of Boolean product of two Boolean� � � matrices.

We begin with a reduction of the problem of computing all-pairs common ancestors in a dag to
the problem of computing witnesses of Boolean product of thecorresponding Boolean matrices.

Theorem 11 The problem of computing all-pairs common ancestors in a dag on � vertices can be
reduced to the problem of computing witnesses of Boolean product of two Boolean � �� matrices
in time

� ��" 	. Similarly, the problem of computing all-pairs LCA in a dag on � vertices can be
reduced to the problem of computing maximum witnesses of Boolean product of two Boolean � ��
matrices in time

� ��" 	.
Proof. To prove the first part proceed as follows. Compute the transitive closure of the input dag.
Number the vertices of the dag by their rank in the topological ordering of the transitive closure.
Form the ancestor matrix� such that in its�th row there is

�
on the�th position iff the�th vertex

is an ancestor of the�th vertex. Compute the witnesses of the Boolean product of the matrix� and
its transpose�	 . For any

�
�
� � 	 entry of the product matrix, if the entry is positive then itswitness

is the number of a common ancestor of the�th and
�
th vertex.

To prove the second part compute the maximum witnesses of theBoolean product of the matrix
� and its transpose�	 instead of the ordinary ones. Next, observe that a common ancestor of

4Throughout the paper, the notation
� � �� �� stands for
� � �� � log� � � for some positive constant�.

5



vertices� and� having the largest number among common ancestors of� and� is an LCA of�
and� . By the observation, for any

�
�
� � 	 entry of the product matrix, if the entry is positive then its

maximum witness is the number of an LCA of the�th and
�
th vertex. ��

In turn, we consider a reduction of the problem of computing witnesses to the problem of
computing all-pairs common ancestors in a dag of depth

�
.

v v v v v
i1 2

a a a a b b bb
1 12 2n−1 n−1

n−1

n

n

n

Figure 2: A scheme of the construction used in the proof of Theorem 12.

Theorem 12 The problem of computing witnesses of Boolean product of two Boolean � � � ma-
trices can be reduced to the problem of computing all-pairs common ancestors in a dag with

� �
vertices and depth

�
in time

� �� 	 	.
Proof. Let � and� be two Boolean� � � matrices. Construct a two-level dag� with vertices
� � � � 	

� � � � � �� on the zero level and vertices��
�
�	

� � � � � �� and� �
�
�	

� � � � � �� on the first level.
Create an edge

�� � � �� 	 iff � �� � �� 
 �
. Analogously, form an edge

�� � � �� 	 iff � �� � �� 
 �
.

Let
�

be the Boolean product of matrices� and�. By the definition of�, � is a witness of an
entry

� �� � �� iff � � is a common ancestor of the vertices�� and��. ��

By combining the first part of Theorem theo: max0 with Theorem12, we obtain the following
corollary.

Corollary 13 The problem of computing all-pairs common ancestors in a dag on � vertices and
the problem of computing witnesses of Boolean product of two Boolean � �� matrices are

� �� " 	-
time equivalent.

Note that the all-pairs common ancestor problem (not thelowest common ancestor one) for an
arbitrary dag can be solved in time

� ��" 	 by computing the transitive closure of the dag, using
Fact 1, and then computing the witnesses of the Boolean product of the transitive closure matrix
and its transpose using Fact 2. This running time is optimal since Theorem 12 implies that the
problem of computing all-pairs LCA in a dag with� vertices requires time	

��" 	, even for dags
of depth

�
.

By using a dag construction much more sophisticated than that used in the proof of Theorem
12, we obtain the following theorem that relates computingmaximum witnesses to computing all-
pairs LCA in a dag.

6



Theorem 14 The problem of computing maximum witnesses of Boolean product of two Boolean� � � matrices can be reduced to the problem of computing all-pairs LCA in a dag on � 	 � � �
vertices in time

� �� 	 	.

a 1 a n

a n
1

a n
2

a n
3

a n
m−2

a n
m−1

a n
ma m

1

a 1
m−1

a 1
m−2

a 1
2

a 1
3

a 1
1 b 1

b 2

b 3

b m−2

b m−1

b m

b 1 b j b n

..
..

.

..
..

.

..
..

.

...........
.....
.....
.....

.....

.....

.....

.....

Figure 3: A scheme of the construction used in the proof of Theorem 14.

Proof. Let � and� be two Boolean� � � matrices . Construct a dag� 
 �� � � 	where

� 
 ��� �� � � � � � � ���� �� � �
� � � � � � ��� �� � � � � � � ��� �� � � � � �

and � 
 � ���� � �� 	 �� � �
� � � � � � �� � �� 
 �� � � ���� � ��
 �� 	 �� � �

� � � � � �
� � ���� � �� 	 �� � �

� � � � � � �� � �� 
 �� � � ��� � �� 	 �� � �
� � � � � � �� � �� 
 �� �

Since #
� 
 � 	 � � � and #

� 
 � �� 	 	 hold, the construction can be done in quadratic time.
Our proof relies on the two following observations easily following from the construction.

1. � is a witness for the entry
� �� � �� of the resulting product matrix

�
if and only if there is an

edge from��� to �� and a directed path from��� through
�
���

�
�� 	 to ��.

2. If � is a common ancestor of�� and�� then� 
 ��� holds for some� 	 � �� ���� � � and there
exists� 
 	 �� � ���� � � such that there is an edge from�� �� to �� and a directed path from�� ��
through

�
�� �� �

� � � 	 to �� �
It follows from the first observation that if� is a witness for

� �� � �� then ��� is a common
ancestor of�� and�� � Furthermore, by the second and first observations, we infer that if � is a
maximum witness then� is a maximum index such that��� is an ancestor of�� and�� � Since there
is no � � � such that��� is a descendant of��� in � �

we conclude by the second observation that if
� is a maximum witness for

� �� � �� then��� is a lowest common ancestor of�� and�� �
Conversely, consider a common ancestor� of �� and �� � By both observations,� 
 ��� for

some� 	 � �� ���� � � and there is� 
 � � such that�� �� is a common ancestor of�� and�� and � 
 is
witness for

� �� � �� � Next, if � is a lowest common ancestor of�� and�� then� 
 � 
 and� must be
the maximum witness since otherwise we obtain a contradiction by the first observation and the
fact that if � � � then��� is an ancestor of��� �

7



A p

A (p−1)l+1 pl

Bq

B

(p−1)l+1

pl

Figure 4: Rectangular matrices�� and�� .

We conclude that� is a maximum witness for
� �� � �� if and only if ��� is a lowest common

ancestor of�� and �� � It remains to note that�� and �� can have at most one lowest common
ancestor.

��

Note that the dag constructed in Theorem 14 has a quadratic number of vertices. Therefore, by
combining Theorem 11 with Theorem 14, we cannot extend Corollary 13 to include an

� �� " 	-
time equivalence between the problem of computing all-pairs LCA in a dag on� vertices and the
problem of computing maximum witnesses of Boolean product of two Boolean� � � matrices.

Benderet al. [4] showed that the problem of computing all-pairs LCA in a dag with � ver-
tices is not easier than that of computing transitive closure in a directed graph with� vertices.
Our reduction of the all-pairs LCA problem in dags to that of computing maximum witnesses of
Boolean product of two Boolean matrices (Theorem 11) demonstrates that the latter problem has
not smaller asymptotic complexity.

5
� ��  ���� �-time method for maximum witnesses and the all-
pairs LCA problem in dags

By Corollary 13, it is sufficient to compute maximum witnesses of Boolean product of two Boolean� � � matrices in order to solve the all-pairs LCA problem in dags.In this section, we present a
substantially subcubic algorithm for the maximum witness problem using fast rectangular matrix
multiplication.

Let � be a positive integer smaller than� . Partition the matrix� into � � � sub-matrices��
and the matrix� into � �� sub-matrices�� , such that

� � � � � ��, and the sub-matrix�� covers
the columns

�� 	 �	 � � �
through� � of � whereas the sub-matrix�� covers the rows

�� 	 �	 � � �
through� � of �. (For an example, see Figure 4.)

For � 
 �� � � � � � ��, let
�� be the Boolean product of�� and�� . Then,

�� �� � �� �  iff there
is an index�,

�� 	 �	 � � � � � �, such that� �� � �� 
 � �� � �� 
 �
. Therefore the following claim

follows.

8



Claim 15 Suppose that a
� �� � �� entry of the Boolean product

�
of � and � is positive. Let � 
 be

the maximum value of � such that
�� �

�� � �� �  . The maximum witness of
� �� � �� belongs to the

interval
��� 
 	 �	 � � ��� 
 ��.

By this claim, after computing all the products
�� 
 �� ��� ,

� � � � � ��, we need
� �� ��� � 	

time per positive entry of
�

to find the maximum witness:
� �� �� 	 time to determine� 
 and then� �� 	 time to locate the maximum witness.

Let � ��� � � �	 denote the exponent of the multiplication of an� � � � matrix by an� � � �
matrix. It follows that the total time taken by our method formaximum witnesses is

� ��� �� 	 � �" �� �log� � ��� � �� �� � � 	 � 	 �
By setting

�
to log� � our upper bound transforms to

� �� ���
" �� �� ��� � � ��� � � 	
� 	. Note
that by assuming

� � �
	 , we can get rid of the additive���� term. Hence, by solving the equation� 	 � � � ��� � � �	 
  � � implying � � �

	 by � ��� � � �	 � , we obtain our main result.

Theorem 16 Let � be such that � ��� � � �	 
 � �  �. The maximum witnesses for all positive
entries of the Boolean product of two � � � Boolean matrices can be computed in time

� �� 	
� 	.
Coppersmith [6] and Huang and Pan [13] proved the following fact.

Fact 3 [6, 13]Let � 
 � ��� �� �	 �  ���� and let � 
 ��� � � � � � � � ��� � � �	 
  �
�
��	� �

 �!" . Then � ��� � � �	 � � �� 	, where
� �� 	 
  �

�
��	 for

� 	 � � �� and
� �� 	 
  � "�	�� �

�� 	
�	 � �

��	 for
� 	 �� � ��

.

Note that by Fact 3, the solution� of the equation� ��� � � �	 
 � �  � is satisfied by� 

�� � �"� ��

	 ��� � �� �"�	 �
�

�
��	 �  ����. Therefore, we obtain the following concrete corollary.

Corollary 17 The maximum witnesses for all positive entries of the Boolean product of two � ��
Boolean matrices can be computed in time

� �� 	 �
��� 	.

By combining Theorem 11 with Theorem 16 and Corollary 17, we obtain also an
� �� 	 �

� �� 	-
time solution to the all-pairs LCA problem in dags.

Theorem 18 Let � ��� � � �	 
 � �  �. The all-pairs LCA problem for an arbitrary dag with �
vertices can be solved in time

� �� 	
� 	, which is bounded above by
� �� 	 �

��� 	.

6 All-pairs LCA in dags of bounded depth

In this section we describe an algorithm for solving the all-pairs LCA problem for an arbitrary dag
� of depth bounded by�. The algorithm has a similar flavor as that discussed in the previous
section, but now we will additionally use the fact that the depth is bounded to speed up the process.

First, we compute the transitive closure of� and create the ancestor matrix� similarly as in
the proof of Theorem 11. Next, using Lemma 10, we partition� into � � �

levels and extend
the partial order induced by this partition to a linear orderand number the vertices according to

9



the linear order so the numbering is increasing with respectto vertex depth. These steps can be
performed in time

� ��" 	.
Observe that the numbering naturally decomposes into� � �

continuous intervals in one-to-
one correspondence with the levels of�. Our approach relies on the following generalization of
the observation that the common ancestor of vertices� and� that has the highest number (in the
topological ordering) is a lowest common ancestor of� and� .

Claim 19 [4] Any common ancestor of vertices � and � which is of highest level among common
ancestors of � and � is a lowest common ancestor of � and � .

Claim 19 implies directly that the maximum witnesses of the product of the Boolean matrix
of ancestors� and its transpose�	 yield the solution to the all-pairs LCA problem for a dag.
However, since it is expensive to compute maximum witnesses, we modify this construction and
reduce the problem to that of computingwitnesses (instead ofmaximum witnesses).

Relying on Claim 19 and the bounded depth�, we decompose� and its transpose�	 into
� � �

rectangular sub-matrices in one-to-one correspondence with the level intervals and compute
witnesses for the products of the pairs of sub-matrices in� and�	 corresponding to the same
level interval. Now, similarly as in the previous section, we observe that if vertices� and

�
have a

common ancestor at level�, then if we multiply the sub-matrix of� corresponding to level� by
the sub-matrix of�	 corresponding to level�, then the resulting matrix

�
� will have

�
�
�� � �� �  

and the witness for
�

�
�� � �� �  will be a vertex from level� that is an ancestor of both� and

�
.

Let us estimate the time taken by finding the witnesses for the� � �
products of sub-matrices

of � and�	 . Recall the definition of function
�

in Fact 3 due to Coppersmith, and Huang and
Pan. By using the straightforward reduction of Boolean matrix multiplication to the arithmetic one
and by generalizing the derandomization method of Alon and Naor [1] for witnesses of Boolean
matrix multiplication to include rectangular matrices, weobtain the following lemma.

Lemma 20 The witnesses of the Boolean product of two Boolean matrices of sizes � � � � and� � � � can be computed in time �� �� � �� � 	.
For � 
  � � � � � �, let �� be the number of vertices on level� in the dag�. By Lemma 20, the

total time taken by computing the witnesses for� � �
sub-matrix products is

��
� ��
��% � � �log� �� �� � (1)

Finally, once we determined witnesses for every pair of vertices numbered� and
�
and for every

level �, it remains to find for each pair� and
�
, the largest witness among the witnesses for the pair

�
� �

in the products of the sub-matrices. It takes
� �� 	 time per pair�

� �
and hence,

� �� 	 � 	 time in
total.

Next, by straightforward calculations, Jensen inequalityimplies that the value of (1) is maxi-
mized if the levels are of equal size� � �� � �	. (Indeed, we observe that the function� � �� ��	 is
concave and therefore��

��% � � �log� �� � 
 � 	 ��
��% � � �log� �� ��	 � � 	 �� � �	 � � �log� � � ��
 ����	 
�� � �	 � � �log� � � ��
 ���.) Hence, we obtain the following theorem.

10



Theorem 21 The all-pairs LCA problem for an arbitrary dag with � vertices and depth � � can be
solved in time �� �� " � � �
 � ��� � � 	.

In particular, for dags of depth at most � � � � % �	
�&

the running time is �� �� " 	.
For larger values of the depth � �, the running time of this algorithm is

�� ��"
 � ��� ������ �
� ���� � � �� 	 �
��
�
% �

&
�� �	 �

Remark 22 Note that for all values of � � � �  �!" , the running time of our algorithm from
Theorem 21 is asymptotically optimal due to our result in Theorem 12. Even for larger values of
�, up to � �  �", our algorithm from Theorem 21 is faster than that general from Theorem 18.

7 Final remarks

The problems of finding LCA are classical and central in the area of algorithms and data structures
[4, 15, 17]. In spite of the long history of studies devoted toLCA problems, we have succeeded to
design two quite natural methods for finding LCA in dags considerably subsuming the previously
known best results [4].

Our second method relies on the presented close relationship between the problem of comput-
ing the maximum witnesses of Boolean matrix product and thatof finding LCAs for all pairs of
vertices in a dag and the use of fast algorithms for rectangular matrix multiplication.

It is an intriguing open problem whether the complexity gap between the problems of com-
puting witnesses and computing maximum witnesses of Boolean matrix product, or similarly, the
problems of finding common ancestors and finding LCAs in a dag,can be further decreased.

The problem of finding maximum witnesses of Boolean matrix product seems to be of interest
in its own rights. At first glance it seems that the recursive

� �� "
 
 	-time method of Galil and
Margalit [11] for witnesses of Boolean matrix product couldbe adapted to produce the maximum
witnesses by considering the fragments containing maximumwitnesses in the subproblems without
substantially altering its asymptotic time. However, the aforementioned method may permute rows
or columns in recursive steps which may disturb the search for maximum witnesses. Thus, the
problem of whether or not our

� �� 	 �
��� 	-time method is optimal is open.

It is also an interesting question whether or not the instances of the problem of finding max-
imum witnesses of Boolean matrix product occurring in our reduction from the LCA problem in
dags are computationally easier than the general ones.

8 Acknowledgments

The authors are grateful to Pavel Sumazin for inspiration, to Leszek Ga̧sieniec and Martin Wahlén
for some discussions, and to Raphael Yuster for pointing outthe incorrectness of the prior proof of
Theorem 14.

11



References

[1] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions.Algorithmica, 16: 434–449, 1996.

[2] A.Becker, D.Geiger and A.A.Schaeffer. Automatic Selection of Loop Breakers for Genetic
Linkage Analysis.

[3] M. A. Bender and M. Farach-Colton. The LCA problem revisited. Proc. 4th Latin American
Symposium on Theoretical Informatics (LATIN’00), pp. 88–93, 2000.

[4] M. A. Bender, G. Pemmasani, S. Skiena and P. Sumazin. Finding least common ancestors in
directed acyclic graphs.Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’01), pp. 845–853, 2001.

[5] R. Cole and R. Hariharan. Dynamic LCA queries in trees.SIAM Journal on Computing,
34(4): 894–923, 2005.

[6] D. Coppersmith. Rectangular matrix multiplication revisited.Journal of Symbolic Computa-
tion, 13: 42–49, 1997.

[7] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression.Journal
of Symbolic Computation, 9: 251–290, 1990.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. 2nd
edition, McGraw-Hill Book Company, Boston, MA, 2001.

[9] R. W. Cottingham Jr., R. M. Idury, and A. A. Shäffer. Genetic linkage computations.Ameri-
can Journal of Human Genetics, 53: 252–263, 1993.

[10] A. Czumaj and A. Lingas. Improved algorithms for the all-pairs lowest common ancestor
problem in directed acyclic graphs.Manuscript, 2005.

[11] Z. Galil and O. Margalit. Witnesses for Boolean matrix multiplication and for transitive
closure.Journal of Complexity, 9: 201–221, 1993.

[12] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.SIAM
Journal on Computing, 13(2): 338–355, 1984.

[13] X. Huang and V.Y. Pan. Fast rectangular matrix multiplications and applications.Journal of
Complexity, 14: 257–299, 1998.

[14] M. Kowaluk and A. Lingas. LCA queries in directed acyclic graphs.Proc. 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), pp. 241–248, 2005.

[15] M. Nykänen and E. Ukkonen. Finding lowest common ancestors in arbitrarily directed trees.
Information Processing Letters, 50(6): 307–310, 1994.

[16] A. A. Shäffer, S. K. Gupta, K. Shriram, and R. W. Cottingham Jr. Avoiding recomputation in
linkage analysis.Human Heredity, 44: 225–237, 1994.

12



[17] R.E. Tarjan. Applications of path compression on balanced trees.Journal of the ACM, 26(4):
690–715, 1979.

[18] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3): 289–317, 2002.

13
 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



