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Abstract

Let τ(n) denote the minimum number of arithmetic operations sufficient to
build the integer n from the constant 1. We prove that if there are arithmetic
circuits for computing the permanent of n by n matrices having size polynomial
in n, then τ(n!) is polynomially bounded in log n. Under the same assumption
on the permanent, we conclude that the Pochhammer-Wilkinson polynomials∏n

k=1
(X−k) and the Taylor approximations

∑n

k=0

1

k!
Xk and

∑n

k=1

1

k
Xk of exp

and log, respectively, can be computed by arithmetic circuits of size polynomial
in log n (allowing divisions). This connects several so far unrelated conjectures
in algebraic complexity.
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polynomials
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1 Introduction

The investigation of the complexity to evaluate polynomials by straight-line pro-
grams (or arithmetic circuits) is a main focus in algebraic complexity theory. Let
the complexity LK(f) of a polynomial f ∈ K[X1, . . . ,Xm] over a field K be the
minimum number of arithmetic operations +,−, ∗, / sufficient to compute f from
the variables Xi and constants in K. We call a sequence (fn)n∈N of univariate poly-
nomials easy to compute if LK(fn) = (log n)O(1), otherwise hard to compute (usually

n stands for the degree of fn). For example, the sequence (G
(r)
n )n∈N of univariate

polynomials over K = C

G(r)
n :=

n∑

k=1

krXk
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is easy to compute, provided r ∈ N. This is easily seen by computing the derivatives

of the well-known formula G
(0)
n = Xn+1−1

X−1 -1 for the geometric series.
In a landmark paper [22], Strassen proved that various sequences (fn) of specific

polynomials like fn =
∑n

k=1 exp(2π
√
−1/2j) or fn =

∑n
k=1 22k

Xk are hard to com-

pute. Von zur Gathen and Strassen [13] showed that the sequence (G
(r)
n ) is hard to

compute if r ∈ Q \Z. The complexity status of this sequence for negative integers r
has ever since been an outstanding open problem, cf. Strassen [24, Problem 9.2].
More details and references on this can be found in [10, Chapter 9].

In 1994 Shub and Smale [20] discovered the following connection between the
complexity of univariate integer polynomials and the PC 6= NPC-hypothesis in the
Blum-Shub-Smale model [6] over C. For an integer polynomial f ∈ Z[X1, . . . ,Xm],
we define the tau-complexity τ(f) as LQ(f), but allow only the constant 1 and
disallow divisions. Clearly, LQ(f) ≤ τ(f). The τ -conjecture claims the following
connection between the number z(f) of distinct integer roots of an univariate f ∈
Z[X] and the complexity τ(f):

z(f) ≤ (1 + τ(f))c (1)

for some universal constant c > 0 (compare also [24, Problem 9.2]). Shub and
Smale [20] proved that the τ -conjecture implies PC 6= NPC. In fact, their proof
shows that in order to draw this conclusion, it suffices to prove that for all nonzero
integers mn, the sequence (mnn!)n∈N of multiples of the factorials is hard to compute.
Hereby we say that a sequence (a(n)) of integers is hard to compute iff τ(a(n)) is
not polynomially bounded in log n.

It is plausible that (n!) is hard to compute, otherwise factoring integers could be
done in (nonuniform) polynomial time, cf. [23] or [5, p.126]. Lipton [16] strengthened
this implication by showing that if factoring integers is “hard on average” (a common
assumption in cryptography), then a somewhat weaker version of the τ -conjecture
follows.

Resolving the τ -conjecture appears under the title “Integer zeros of a polynomial
of one variable” as the fourth problem in Smale’s list [21] of the most important
problems for the mathematicians in the 21st century. Our main result confirms the
belief that solving this problem is indeed very hard. In fact we prove that the truth
of τ -conjecture (as well as a hardness proof for the other problems mentioned before)
would imply the truth of another major conjecture in algebraic complexity.

A quarter of a century ago, Valiant [26, 28] proposed an algebraic version of
the P versus NP problem for explaining the hardness of computing the permanent.
He defined the classes VP of polynomially computable and VNP of polynomially
definable families of multivariate polynomials over a fixed field K and proved that
the family (Pern) of permanent polynomials is VNP-complete (if charK 6= 2). We
recall that the permanent of the matrix [Xij ]1≤i,j≤n is defined as

Pern =
∑

π∈Sn

X1π(1) · · ·Xnπ(n),
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where the sum is over all permutations π of the symmetric group. Valiant’s com-
pleteness result implies that VP 6= VNP iff (Pern) 6∈ VP. The latter statement is
equivalent to the the hypothesis that LK(Pern) is not polynomially bounded in n,
which is often called Valiant’s hypothesis over K. (For a detailed account we refer
to [7]).

Our main result stated below refers to a somewhat weaker hypothesis claiming
that τ(Pern) is not polynomially bounded in n (compare however Corollary 4.2).

Theorem 1.1 Each of the statements listed below implies that the permanent of
n by n matrices cannot be computed by constant-free and division-free arithmetic
circuits of size polynomial in n: that is, τ(Pern) is not polynomially bounded in n.

1. The sequence of factorials (n!)n∈N is hard to compute.

2. The τ -conjecture of Shub and Smale [20, 4] is true.

3. The sequence of Taylor approximations (
∑n

k=0
1
k!T

k)n∈N of exp is hard to com-
pute.

4. The sequence (G
(r)
n ) = (

∑n
k=1 krT k)n∈N for a fixed negative integer r is hard to

compute.

This result gives some explanation why the attempts to prove the τ -conjecture
or the hardness of the above specific sequences of integers or polynomials did not
succeed. Astonishingly, the major open problems mentioned in Chapters 9 and 21
of [10] turn out to be closely related!

We remark that Bürgisser [9] proposed a strengthening of the τ -conjecture (L-
conjecture) that claims that the number Nd(f) of distinct irreducible factors of
degree at most d of a polynomial f ∈ K[X] over a number field K is bounded as
Nd(f) ≤ (LK(f) + d)c, where c is a constant only depending on K. Soon after,
Cheng [11] observed that the L-conjecture directly implies a recent deep result in
arithmetic geometry (torsion theorem for elliptic curves [18]) and even stronger
statements, which are not (yet) known to be true. This indicates that a proof of
the τ -conjecture (if true at all) should rely on very deep insights and techniques in
arithmetic algebraic geometry, which are not yet developed and probably won’t be
so in the near future.

Theorem 1.1 was essentially conjectured by Bürgisser in [7, §8.3]. Koiran [15]
proved the following weaker version of the statement regarding the factorials: if
(n!) is hard to compute, then VP0 6= VNP0 or P 6= PSPACE. Hereby, VP0 and
VNP0 denote complexity classes in the constant-free Valiant model, see §2.2 for
definitions. (The statement VP0 6= VNP0 seems a bit weaker than the assumption
that τ(Pern) is not polynomially bounded in n.) Koiran also proved that if either
of the sequences (b2n log nc) or (b2nπc) is hard to compute, then VP0 6= VNP0. He
then asked whether the same conclusion can be drawn for the sequences (b2nec),
(b2n

√
2c), or (b(3/2)nc). We prove that this is indeed the case (Corollary 4.3).
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The main new idea for the proof of Theorem 1.1 is the consideration of the
counting hierarchy CH, which was introduced by Wagner [30]. This is a complexity
class lying between PP and PSPACE that bears more or less the same relationship
to #P as the polynomial hierarchy bears to NP. The key technical ingredient of
our proof is the existence of Dlogtime-uniform threshold circuits of constant depth
for iterated multiplication via Chinese remaindering. Whether Dlogtime-uniformity
can be achieved was an outstanding issue since the paper by Beame et al. [3], that
was finally resolved affirmatively in Hesse et al. [14]. Our statements on sequences
of integers definable in the counting hierarchy, treated in §3, follow from Hesse et
al. [14] in a rather straightforward way by “scaling up to the counting hierachy”,
see also Allender et al. [1].

Acknowledgements. I am very much grateful to Eric Allender for drawing my
attention to the counting hierarchy and answering my questions about it. I thank
Emmanuel Jeandel, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen for dis-
cussions.

2 Preliminaries

2.1 The counting hierarchy

The (polynomial) counting hierarchy was introduced by Wagner [30] with the goal
of classifying the complexity of certain combinatorial problems where counting is
involved. It is best defined by means of a counting operator C· that can be applied
to complexity classes.

We denote by {0, 1}∗ ×{0, 1}∗ → {0, 1}∗, (x, y) 7→ 〈x, y〉 a pairing function (e.g.,
by duplicating each bit of x and y and inserting 01 in between).

Definition 2.1 Let K be a complexity class. We define C · K to be the set of
all languages A such that there exist a language B ∈ K, a polynomial p, and a
polynomial time computable function f : {0, 1}∗ → N such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > f(x). (2)

Remark 2.2 The operators ∃· and ∀· can be introduced in similar way by instead
requiring ∃y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B and ∀y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B, respectively. It
is clear that K ⊆ ∃ · K ⊆ C · K and K ⊆ ∀ · K ⊆ C · K.

By starting with the class K = P of languages decidable in polynomial time and
iteratively applying the operator C· we obtain the counting hierarchy.

Definition 2.3 The k-th level CkP of the counting hierarchy is recursively defined
by C0P := P and Ck+1P := C · CkP for k ∈ N. One defines CH as the union of all
classes CkP.

4



We recall that the classes of the polynomial hierarchy PH are obtained from the
class P by iteratively applying the operators ∃· and ∀·. It follows from Remark 2.2
that the union PH of these classes is contained in CH. Also it is not hard to see that
CH is contained in the class PSPACE of languages decidable in polynomial space.

Modifying Definition 2.1 we define C′ · K of a complexity class K by requiring
the majority condition

x ∈ L ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > 2p(|x|)−1.

instead of (2). It can be shown that this does not change the definition of the classes
of the counting hierarchy CkP, cf. Torán [25]. In particular, we obtain for k = 1 the
definition of the familiar class PP (probabilistic polynomial time).

We recall also that the counting complexity class #P consists of all functions
g : {0, 1}∗ → N for which there exist a language B ∈ P and a polynomial p such that
for all x ∈ {0, 1}∗:

g(x) = |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}|.
Hence functions in #P can by evaluated in polynomial time by oracle calls to PP.

Torán [25] has obtained the following alternative characterization of the counting
hierarchy, which is quite analogous to the corresponding characterization of the
polynomial hierarchy:

Ck+1P = PPCkP. (3)

We recall the definition of the nonuniform version K/poly of a complexity class K
by polynomial advice functions.

Definition 2.4 The nonuniform version K/poly of a complexity class K consists
of all languages A for which there exists a language B ∈ K and a function α : N →
{0, 1}∗ with α(n) polynomially bounded in n, such that x ∈ A iff 〈x, α(x)〉 ∈ B, for
all x ∈ {0, 1}∗.

Lemma 2.5 The counting hierarchy collapses to P if PP = P. Moreover, PP ⊆
P/poly implies CH ⊆ P/poly.

Proof. Suppose PP ⊆ P/poly. We prove CkP ⊆ P/poly by induction on k. The
start k = 0 being clear, let A ∈ Ck+1P = C′ ·CkP. By definition, there exist B ∈ CkP

and a polynomial p such that for all n ∈ N, x ∈ {0, 1}n,

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(n) | 〈x, y〉 ∈ B}| > 2p(n)−1.

By induction hypothesis, we have B ∈ P/poly. Hence there exists D ∈ P and an
advice function α : N → {0, 1}∗ such that z ∈ B iff 〈z, α(|z|)〉 ∈ D. Hence x ∈ A iff

|{y ∈ {0, 1}p(n) | 〈〈x, y〉, α(n + p(n))〉 ∈ D}| > 2p(n)−1.

It follows that A ∈ PP/poly. Hence A ∈ P/poly. �
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The counting hierarchy is closely tied to the theory of threshold circuits of
bounded depth, cf. [2].

Recall that a majority gate outputs 1 iff the majority of its inputs have the
value 1. A threshold circuit is a Boolean circuit consisting of majority gates only.
The class of languages decidable by a family of threshold circuits of polynomial size
and depth O(1) is denoted TC0. This class is known to characterize the power of
(iterated) integer multiplication. We refer to the textbook by Vollmer [29] for an
introduction to this subject.

Beame et al. [3] presented parallel NC1-algorithms for iterated multiplication
and division of integers. Reif and Tate [19] observed that these algorithms can also
be implemented by constant depth threshold circuits, placing these problems in the
class TC0. The question of the degree of uniformity required for these circuits was
only recently solved in a satisfactory way by Hesse et al. [14], who showed that there
are Dlogtime-uniform circuits performing these tasks. This result will be crucial in
§3 for our study of sequences of integers definable in the counting hierarchy.

2.2 The constant-free Valiant model

An arithmetic circuit over the field Q is an acyclic finite digraph, where all nodes
except the input nodes have fan-in 2 and are labelled by +,−,× or /. The circuit
is called division-free if there are no division nodes. The input nodes are labelled
by variables from {X1,X2, . . .} or by constants in Q. If all constants belong to
{−1, 0, 1}, then the circuit is said to be constant-free. We assume that there is
exactly one output node, so that the circuit computes a rational function in the
obvious way. By the size of a circuit we understand the number of its nodes different
from input nodes.

Definition 2.6 The L-complexity L(f) of a rational polynomial f is defined as the
minimum size of an arithmetic circuit computing f . The τ -complexity τ(f) of an
integer polynomial f is defined as the minimum size of a divison-free and constant-
free arithmetic circuit computing f .

Note that L(f) ≤ τ(f). While L(c) = 0 for any c ∈ Q, it makes sense to consider
the τ -complexity of an integer k. For instance, one can show that log log k ≤ τ(k) ≤
2 log k for any k ≥ 2, cf. [12].

In order to control the degree and the size of the coefficients of f we are going
to put further restrictions on the circuits. The (complete) formal degree of a node
is inductively defined as follows: input nodes have formal degree 1 (also those la-
belled by constants). The formal degree of an addition or subtraction node is the
maximum of the formal degrees of the two incoming nodes, and the formal degree
of a multiplication node is the sum of these formal degrees. The formal degree of a
circuit is defined as the formal degree of its output node.
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Valiant’s algebraic model of NP-completeness [26, 28] (see also [7]) explains the
hardness of computing the permanent polynomial in terms of an algebraic complete-
ness result. For our purposes, it will be necessary to work with a variation of this
model. This constant-free model has been systematically studied by Malod [17]. We
briefly present the salient features following Koiran [15].

Definition 2.7 A sequence (fn) of polynomials belongs to the complexity class VP0

iff there exists a sequence (Cn) of division-free and constant-free arithmetic circuits
such that Cn computes fn and the size and the formal degree of Cn are polynomially
bounded in n.

Clearly, if (fn) ∈ VP0 then τ(fn) = nO(1) . Moreover, it is easy to see that the
bitsize of the coefficients of fn is polynomially bounded in n. When removing in the
above definition the adjective “constant-free”, the original class VP over the field
Q is obtained [17]. The class VP0 is universal in the sense that a family (gn) is in
VP iff there exists a family (fn) in VP0 such that gn can be obtained from fn by
substituting some of the variables by constants in Q.

The counterpart to VP0 is the following class.

Definition 2.8 A sequence (fn(X1, . . . ,Xu(n))) of polynomials belongs to the com-

plexity class VNP0 iff there exists a sequence (gn(X1, . . . ,Xv(n))) in VP0 such that

fn(X1, . . . ,Xu(n))) =
∑

e∈{0,1}v(n)−u(n)

gn(X1, . . . ,Xu(n), e1, . . . , ev(n)−u(n)).

(Hereby u(n) and v(n) are polynomially bounded functions of n.)

We note that by replacing VP0 by VP in this definition, the original class VNP over
Q is obtained.

Valiant developed the following useful criterion [26, Remark 1] for recognizing
families in VNP0, see also [7, Proposition 2.20] and [15, Theorem 2.3]. For instance,
this criterion easily implies that the sequence (Pern) of permanent polynomials lies
in the class VNP0.

Proposition 2.9 Consider a map a : N × N → N, (n, j) 7→ a(n, j) that lies in the
complexity class #P/poly, when n is encoded in unary and j in binary. Let p : N → N

be a polynomially bounded function and let ji denotes the bit of 0 ≤ j < 2p(n) of
weight 2i−1. Then the following sequence (fn) of polynomials is in VNP0:

fn(X1, . . . ,Xp(n)) =

2p(n)−1∑

j=0

a(n, j)Xj1
1 · · ·Xjp(n)

p(n) .
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Valiant’s algebraic completeness result implies that VP = VNP iff (Pern) ∈ VP.
The latter is equivalent to L(Pern) = nO(1). In the constant-free setting, the
situation seems more complicated. It is not clear that VP0 = VNP0 is equivalent
to the hypothesis τ(Pern) = nO(1). Curiously, it is neither clear whether (Pern) ∈
VP0 and VP0 = VNP0 are equivalent. However, it is known that they become
equivalent when considering arithmetic circuits using the additional constant 1

2 , cf.
Koiran [15, Theorem 4.3] and the result below.

Theorem 2.10 Suppose τ(Pern) = nO(1). Then for any family (fn) ∈ VNP0 there
exists a polyomially bounded sequence (p(n)) in N such that τ(2p(n)fn) = nO(1).

Proof. An inspection of Valiant’s algebraic completeness result (see for instance
[7]) reveals that any family (fn) in VNP0 can be expressed as a projection fn =
Perp(n)(y1, . . . , yp(n)2), where p(n) is polynomially bounded in n and the yi are
either variables or constants taken from {−1,−1/2, 0, 1/2, 1}. By homogeneity of
the permanent we get 2p(n)fn = Perp(n)(2y1, . . . , 2yq(n)2). This shows the first
claim. �

Valiant’s criterion (Proposition 2.9) has been “scaled down” by Koiran [15, The-
orem 6.1] as follows.

Theorem 2.11 Assume the map a : N×N → N, (n, j) 7→ a(n, j) is in the complexity
class #P/poly, where n, j are encoded in binary. Let p : N → N be polynomially
bounded and satisfying p(n) ≥ n for all n. Consider the polynomial

Fn(X1, . . . ,X`(n)) =

p(n)∑

j=0

a(n, j)Xj1
1 · · ·Xj`(n)

`(n) ,

where `(n) = 1 + blog p(n)c and ji denotes the bit of j of weight 2i−1. Then there
exists a family (Gr(X1, . . . ,Xr, N1, . . . , Nr, P1, . . . , Pr))r∈N in VNP0 that satisfies

Fn(X1, . . . ,X`(n)) = G`(n)(X1, . . . ,X`(n), n1, . . . , n`(n), p1, . . . , p`(n)))

for all n, where ni and pi denote the bits of n and p(n) of weight 2i−1, respectively.

We will also need the following observation.

Lemma 2.12 τ(Pern) = nO(1) implies that PP ⊆ P/poly.

Proof. Suppose there is a family (Cn) of constant-free and division-free arithmetic
circuits of polynomial size such that Cn computes the permanent Pern. Let pn be
a prime such that n! < pn ≤ 2nO(1)

(pn is interpreted as a polynomial advice for
input size n). On an input A ∈ {0, 1}n×n, we execute the arithmetic circuit Cn

in the finite field Fpn . This computation can clearly be simulated by a Boolean
circuit of polynomial size. Moreover, the result Per(A) mod pn the integer value of
the permanent of A can be retrieved. Since the computation of the permanent of
matrices with entries in {0, 1} is #P-complete [27], we conclude PP ⊆ P/poly. �
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We reamrk that the proof of the above lemma can be extended to handle also
arithmetic circuits using divisions.

3 Integers definable in the counting hierarchy

We consider sequences of integers a(n, k) defined for n, k ∈ N and 0 ≤ k ≤ q(n),
where q is polynomially bounded, such that

∀n > 1 ∀k ≤ q(n) |a(n, k)| ≤ 2nc

(4)

for some constant c. We shall briefly refer to such sequences a = (a(n, k)) as being
of polynomial bitsize. The falling factorials a(n, k) = n(n − 1) · · · (n − k + 1) are an
interesting example to keep in mind; note that a(n, k) ≤ 2n2

.
We shall write |a| := (|a(n, k)|) for the sequence of absolute values of a. We

assign to a sequence a = (a(n, k)) of polynomial bitsize the following languages with
the integers n, k, j represented in binary (using O(log n) bits):

Sgn(a) := {(n, k) | a(n, k) ≥ 0}
Bit(|a|) := {(n, k, j, b) | the j-th bit of |a(n, k)| equals b }.

The integer j can thus be interpreted as an address pointing to bits of a(n, k).
Because of (4), we have j ≤ nc and thus log j = O(log n).

Definition 3.1 A sequence a of integers of polynomial bitsize is called definable in
the counting hierarchy CH iff Sgn(a) ∈ CH and Bit(|a|) ∈ CH. If both Sgn(a) and
Bit(|a|) lie in CH/poly then we say that a is definable in CH/poly.

This definition and all what follows extends to sequences (a(n, k1, . . . , kt)) with
a fixed number t of subordinate indices k1, . . . kt ≤ nO(1) in a straightforward way.
For the sake of simplifying notation we only state our results for the cases t ∈ {0, 1}.

Remark 3.2 If n 7→ a(n) is computable in polynomial time, then clearly Sgn(a) ∈ P

and Bit(|a|) ∈ P. In particular, a is definable in CH. (Note that in this case
log a(n) = (log n)O(1).)

Our next goal is to find a useful criterion for showing that specific sequences are
definable in CH. Let m mod p ∈ {0, . . . , p − 1} denote the remainder of m upon
division by the prime p. We assign to a = (a(n, k)) and a corresponding constant
c > 0 satisfying (4) the Chinese remainder language

CR(a) := {(n, k, p, j, b) | p prime, p < n2c, the j-th bit of a(n, k) mod p equals b }.

Again, the integers n, k, p, j are to represented in binary with O(log n) bits. (We
suppress the dependence of CR(a) on c to simplify notation.) Note that the absolute
value |a(n, k)| ≤ 2nc

is uniquely determined by the residues a(n, k) mod p for the
primes p < n2c, since the product of these primes is larger than 2nc

(for n > 1).

9



Lemma 3.3 Suppose that the sequence a = (a(n)) of integers is easy to compute
in the sense of Shub and Smale [20], that is, τ(a(n)) = (log n)O(1). Then CR(a) ∈
P/poly.

Proof. By assumption, there are arithmetic circuits Cn of size (log n)O(1) com-
puting a(n). On input (n, k, p, j, b), given the advice Cn, we evaluate Cn in the
finite field Fp to obtain a(n) mod p. This is possible in time polynomial in log n as
log p = O(log n). �

The following criterion for definability in CH turns out to be a rather straight-
forward consequence of the results in Hesse et al. [14] on uniform bounded-depth
threshold circuits for division and iterated multiplication of integers.

Theorem 3.4 Let a be a sequence of integers of polynomial bitsize. Then a is
definable in CH iff Sgn(a) ∈ CH and CR(a) ∈ CH. Moreover, a is definable in
CH/poly iff Sgn(a) ∈ CH/poly and CR(a) ∈ CH/poly.

Proof. We first show that for nonnegative sequences a of polynomial bitsize

a is definable in CH ⇐⇒ CR(a) ∈ CH (5)

and similarly for the nonuniform situation.
By the Chinese Remainder Representation (CRR) of an integer 0 ≤ X ≤ 2n we

understand the sequence of bits indexed (p, j) giving the j-th bit of X mod p, for
each prime p < n2. (The length of this sequence is O(n2).)

It was shown by Hesse et al. [14, Theorem 4.1] that there are Dlogtime-uniform
threshold circuits of polynomial size and depth bounded by a constant D that on
input the Chinese Remainder Representation of 0 ≤ X ≤ 2n compute the binary
representation of X. Let this circuit family be denoted by {Cn}.

Suppose that a is a sequence of nonnegative integers satisfying (4). For d ∈ N

consider the language Ld consisting of the binary encodings of (n, k, F, b), where F
is the name of a gate on level at most d of the threshold circuit Cnc and F evaluates
to b on input the CRR of a(n, k).

Claim. Ld+1 ∈ PPLd for 0 ≤ d < D.

We argue as in [1]. Due to the Dlogtime-uniformity of the circuits we can check in
linear time whether two gates F and G are connected. Let F be a gate at level d+1.
On input (n, k, F, b), we need to determine the majority of the gates G connected
to F such that (n, k,G, 1) ∈ Ld. This is possible in PPLd , which proves the claim.

We can now show the direction from right to left of (5). Suppose that CR(a) is
contained in the s-th level CsP of the counting hierarchy. This means that L0 ∈ CsP.
Using the claim and (3) we conclude that Ld ∈ Cs+dP ⊆ Cs+DP. Applying this to the
output gates of Cnc we see that a is definable in CH. Similarly, if CR(a) ∈ CsP/poly

we obtain Ld ∈ Cs+dP/poly.
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In order to show the direction from left to right of (5) we argue in the same way,
using the fact that the reverse task of computing the CRR of 0 ≤ X ≤ 2n from
the binary representation of X can be accomplished by Dlogtime-uniform threshold
circuits of polynomial size and constant depth, cf. [14, Lemma 4.1].

For completing the proof it now suffices prove that

Sgn(a) ∈ CH and CR(a) ∈ CH ⇐⇒ Sgn(a) ∈ CH and CR(|a|) ∈ CH

and similarly for the nonuniform situation. However, this follows from the fact that
−X mod p can be computed from X mod p in AC0, cf. [29]. �

Corollary 3.5 If a and b are two sequences of nonnegative integers definable in
CH, then so is a − b. Similarly in the nonuniform situation.

Proof. By Theorem 3.4 we know that CR(a),CR(b) ∈ CH. Using [14, Lemma 4.3]
and proceeding as in the proof of Theorem 3.4 we conclude that Sgn(a − b) ∈ CH.
Moreover it is obvious that CR(a− b) ∈ CH. Now apply again Theorem 3.4. In the
nonuniform case similar arguments apply �

Corollary 3.6 If the sequence a = (a(n)) of integers is easy to compute, then a is
definable in CH/poly.

Proof. Lemma 3.3 tells us that CR(a) ∈ P/poly ⊆ CH/poly if a is easy to compute.
The nonnegative sequence ã(n) := a(n) + 2dn

ce is also easy to compute. We have
a(n) ≥ 0 iff ã(n) ≥ 2dn

ce. Corollary 3.5 thus implies that Sgn(a) ∈ CH/poly. (For
a more precise statement we refer to Allender et al. [1].) The assertion follows with
Theorem 3.4. �

From the above criterion we can derive the following closure properties with
respect to iterated addition, iterated multiplication, and integer division.

Theorem 3.7 1. Suppose a = (a(n, k))n∈N,k≤q(n) is definable in CH, where q is
polynomially bounded. Consider

b(n) :=

q(n)∑

k=0

a(n, k), d(n) :=

q(n)∏

k=0

a(n, k).

Then b = (b(n)) and d = (d(n)) are definable in CH. Moreover, if a is is definable
in CH/poly, then so are b and d.

2. Suppose (s(n))n∈N and (t(n))n∈N are definable in CH and t(n) > 0 for all n.
Then the sequence of quotients (bs(n)/t(n)c)n∈N is definable in CH. The analogous
assertion holds for CH/poly.
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Proof. 1. Iterated addition is the problem to compute the sum of n integers
0 ≤ X1, . . . ,Xn ≤ 2n in binary. This problem is well known to be in Dlogtime-
uniform TC0, cf. [29]. By scaling up this result as in the proof of Theorem 3.4, we
obtain the claim for b in the case where a(n, k) ≥ 0.

The general case for b follows by applying this to each of two sums in

b(n) =

q(n)∑

k=0

a(n, k) · 1{a(n,k)≥0} −
q(n)∑

k=0

(−a(n, k)) · 1{a(n,k)<0}

and by using Corollary 3.5.
The claim for the iterated multiplication will follow by scaling up the arguments

in Hesse at al. [14] to the counting hierarchy. Those arguments are similar as in
Beame et al. [3], except that the much stronger Dlogtime-uniformity condition was
achieved in [14]. We need this uniformity condition for obtaining our result.

Suppose that a is definable in CH. First note that we can check for given n in CH

whether all a(n, k) are nonzero. We therefore assume w.l.o.g. that a(n, k) 6= 0 and
write a(n, k) = (−1)e(n,k)|a(n, k)| with e(n, k) ∈ {0, 1}. By definition, the sequence
(e(n, k)) is definable in CH. We have

d(n) = (−1)s(n)
∏

k

|a(n, k)| where s(n) =

q(n)∑

k=0

e(n, k).

According to the first claim of the theorem, (s(n)) is definable in CH. Hence it
suffices to prove the second claim for a nonnegative sequence a.

By Theorem 3.4 we know CR(a) ∈ CH and it suffices to prove that CR(d) ∈ CH.
Suppose d satisfies (4) with the constant c > 0. Let a prime p ≤ n2c be given.
We can find the smallest generator g of the cyclic group F×

p in PPH by bisecting
according to the following oracle in Σ2 (u < p):

∃ 1 ≤ g < u ∀ 1 ≤ i < p gi 6= 1.

Note that gi can be computed by repeated squaring in polynomial time.
Similarly, for a given u ∈ F×

p , we can compute the discrete logarithm 0 ≤ i < p

defined by u = gi in PNP.
For given k ≤ q(n) let α(n, k) denote the discrete logarithm of a(n, k) mod p.

By the previous reasonings we see that (α(n, k)) is definable in CH. By part one of

the theorem we conclude that (δ(n)) defined by δ(n) =
∑q(n)

k=0 α(n, k) is definable in
CH. Hence d(n) mod p = gγ(n) is computable in CH. Similar arguments apply in
the nonuniform case.

2. The claim for integer division follows as before by scaling up the arguments
in Beame et al. [3] and Hesse et al. [14] to the counting hierarchy. �
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Corollary 3.8 The sequence of factorials (n!) is definable in CH. More generally,
the falling factorials (n(n − 1) · · · (n − k + 1))k≤n are definable in CH.

Proof. This follows from Theorem 3.7 and Remark 3.2. �

We denote by σk(z1, . . . , zn) the k-th elementary symmetric function in the vari-
ables z1, . . . , zn (0 ≤ k ≤ n).

Corollary 3.9 The sequence (σk(1, 2, . . . , n))n∈N,k≤n is definable in CH.

Proof. Starting from (X + 1) · · · (X + n) =
∑n

k=0 σk(1, . . . , n)Xn−k and substi-

tuting T by 2n2
we get

d(n) := (2n2
+ 1) · · · (2n2

+ n) =
n∑

k=0

σk(1, . . . , n)2n2(n−k).

Since σk(1, 2, . . . , n) < 2n2
there is no overlap of the bit representations, hence the

bits of σk(1, 2, . . . , n) can be read off the bit vector of d(n). It is therefore sufficient
to show that (d(n)) is definable in CH.

Using Theorem 3.7, it is enough to prove that the sequence c(n, k) = 2n2
+ k for

k ≤ n, n ∈ N is definable in CH. However, it is clear that Bit(c) ∈ P. �

4 Connecting Valiant’s model to integers and univariate

polynomials

We establish now the announced connection between Valiant’s constant-free model
and sequences of polynomials having coefficient sequences that are definable in the
counting hierarchy.

Theorem 4.1 Consider a sequence (a(n))n∈N of integers definable in CH/poly and
sequences

fn =

q(n)∑

k=0

b(n, k)Xk ∈ Z[X], gn =
1

d(n)
fn ∈ Q[X]

of integer and rational polynomials, respectively, such that (b(n, k))n∈N,k≤q(n) and
(d(n))n∈N are definable in CH/poly (in particular, q is polynomially bounded).

If τ(Pern) = nO(1), then the following holds:

1. τ(a(n)) = (log n)O(1).

2. τ(2e(n)fn) = (log n)O(1) for some polynomially bounded sequence (e(n)) in N.

3. L(gn) = (log n)O(1).
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Proof. We assume that τ(Pern) = nO(1). By Lemma 2.12 this yields PP ⊆
P/poly. According to Lemma 2.5, this implies that CH ⊆ P/poly.

1. Let a(n) =
∑p(n)

j=0 a(n, j)2j be the binary representation of a(n). Without
loss of generality we may assume that the polynomially bounded function p satisfies
p(n) ≥ n. By assumption, we can decide a(n, j) = b in CH/poly, where n, j are
given in binary. Because of the assumed collapse of the counting hierarchy we can
decide a(n, j) = b in P/poly.

Consider the polynomial

An(Y1, . . . , Y`(n)) =

p(n)∑

j=0

a(n, j)Y j1
1 · · ·Y j`(n)

`(n) ,

where `(n) = 1 + blog p(n)c and ji denotes the bit of j of weight 2i−1. Note that

An(220
, 221

, . . . , 22`(n)−1
) = a(n)

By Theorem 2.11 there is a family (Gr(Y1, . . . , Yr, N1, . . . , Nr, P1, . . . , Pr)) in VNP0

that satisfies for all n

An(Y1, . . . , Y`(n)) = G`(n)(Y1, . . . , Y`(n), n1, . . . , n`(n), p1, . . . , p`(n)),

where ni and pi denote the bits of n and p(n) of weight 2i−1, respectively.
By Theorem 2.10 there exists a polynomially bounded sequence (s(r)) in N such

that τ(2s(r)Gr) = rO(1). This implies τ(2e(n)G`(n)) = (log n)O(1), where e(n) =

s(`(n)) = (log n)O(1). We conclude from the above that

2e(n)a(n) = 2e(n)G`(n)(2
20

, 221
, . . . , 22`(n)−1

, n1, . . . , n`(n), p1, . . . , p`(n)),

hence
τ(2e(n)a(n)) ≤ τ(2e(n)G`(n)) + `(n) ≤ (log n)O(1).

Lemma 4.4 in Koiran [15] implies τ(a(n)) ≤ (2e(n)+3)τ(2e(n)a(n)). Altogether, we
obtain τ(a(n)) = (log n)O(1).

2. Let b(n, k) =
∑p(n)

j=0 b(n, k, j)2j be the binary representation of b(n, k) for
k ≤ q(n). As before we assume p(n) ≥ n without loss of generality. Consider the
polynomial

Bn(Y1, . . . , Y`(n), Z1, . . . , Zλ(n)) =

p(n)∑

j=0

q(n)∑

k=0

b(n, k, j)Y j1
1 · · ·Y j`(n)

`(n) Zk1
1 · · ·Zkλ(n)

λ(n) ,

where `(n) = 1 + blog p(n)c , λ(n) = 1 + blog q(n)c, and ji, ki denote the bit of j, k
of weight 2i−1, respectively. Note that

Bn(220
, 221

, . . . , 22`(n)−1
,X20

,X21
, . . . ,X22λ(n)−1

) =

q(n)∑

k=0

b(n, k)Xk = fn.
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By Theorem 2.11 there is a family (Gr((X1, . . . ,Xr), (N1, . . . , Nr), (P1, . . . , Pr))) in
VNP0 that satisfies for all n

Bn(Y,Z) = G`(n)+λ(n)((Y,Z), (n1, . . . , n`(n)+λ(n)), (p1, . . . , p`(n), q1, . . . , qλ(n))),

where (Y,Z) = (Y1, . . . , Y`(n), Z1, . . . , Zλ(n)) and ni, pi, and qi denote the bits of
n, p(n), and q(n) of weight 2i−1, respectively. By Theorem 2.10 there exists a
polynomially bounded sequence (s(r)) in N such that τ(2s(r)Gr) = rO(1). This
implies τ(2e(n)G`(n)+λ(n)) = (log n)O(1), where e(n) := s(`(n) + λ(n)) = (log n)O(1).
We conclude from the above that

τ(2e(n)fn) ≤ τ(2e(n)G`(n)+λ(n)) + `(n) + λ(n) ≤ (log n)O(1).

3. We know already that τ(2e(n)fn) = (log n)O(1). By the first assertion, we have
τ(d(n)) = (log n)O(1). Using one division, we conclude that L(gn) = (log n)O(1). �

We can also prove a conditional implication refering to the original Valiant hy-
pothesis VP 6= VNP over C (dealing with arithmetic circuits using divisions and
arbitrary complex constants).

Corollary 4.2 Assuming the generalized Riemann hypothesis, LC(Pern) = nO(1)

implies that LC(gn) = (log n)O(1), where gn is as in Theorem 4.1.

Proof. Suppose that LC(Pern) = nO(1). In Bürgisser [8] it was shown that this
implies PP ⊆ NC/poly ⊆ PP/poly, assuming the generalized Riemann hypothesis.
Since (Pern) is VNP-complete, we have LC(fn) = nO(1) for any (fn) ∈ VNP. Now
we can argue as in the proof of Theorem 4.1 with LC instead of τ . �

It is now easy to complete the proof our main result stated in the introduction.

Proof of Theorem 1.1. We suppose that τ(Pern) = nO(1). 1. The sequence of
factorials a(n) = n! is definable in CH according to Corollary 3.8. By Theorem 4.1(1)
we get τ(n!) = (log n)O(1).

2. Consider the Pochhammer-Wilkinson polynomial

fn =

n∏

k=1

(X − k) =

n∑

k=0

(−1)kσk(1, 2, . . . , n)Xn−k,

which has exactly n integer roots. Corollary 3.9 implies that its coefficient sequence
is definable in CH. By Theorem 4.1(2) we have τ(2e(n)fn) = (log n)O(1) for some
(e(n)). The polynomial 2e(n)fn violates the τ -conjecture.

3. We have gn =
∑n

k=0
1
k!T

k = 1
n!

∑n
k=0 n(n − 1) · · · (k + 1) Xk. According to

Corollary 3.8 both the coefficient sequence and the sequence (n!) of denominators
are definable in CH. Theorem 4.1(3) implies that L(gn) = (log n)O(1).

4. Similar to 3. �
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We proceed with further applications of Theorem 4.1. The following result an-
swers some questions posed by Koiran [15] in the affirmative. From the very general
proof technique, it becomes obvious that this result actually holds for a large class
of integer sequences, so the choice of the sequences below is for illustration and just
motivated by Koiran’s question. Of course, one could as well consider expansions
in radix different from 2, like (b10nec)n∈N.

Corollary 4.3 If one of the following integer sequences is hard to compute, then
then τ(Pern) is not polynomially bounded in n:

(b2nec)n∈N, (b2n
√

2c)n∈N, (b(3/2)nc)n∈N.

Proof. 1. A straightforward estimation shows that e =
∑∞

k=0
1
k! =

∑n+1
k=0

1
k! + εn

with 0 < εn < 2−n. It follows that b(n) ≤ b2nec ≤ b(n) + n + 3, where

b(n) :=
n+1∑

k=0

b2n

k!
c.

Hence b2nec = b(n) + r(n) where r(n) is an integer sequence satisfying 0 ≤ r(n) ≤
n + 3.

The sequence (r(n)) is easy to compute since τ(m) ≤ 2 log m for m ≥ 1, cf. [5].
Hence (b2nec)n∈N is hard to compute iff (b(n)) is hard to compute. By Theorem 4.1
it is enough to prove that (b(n)) is definable in CH/poly. We already know that
(2n) and (k!) are definable in CH (cf. Corollary 3.8). By applying Theorem 3.7 first
for the division and then for the iterated sum, we conclude that (b(n)) is indeed
definable in CH.

2. The binomial expansion (3/2)n = (1 + 1
2)n =

∑n
k=0

(
n
k

)
2−k yields

b(3/2)nc =

n∑

k=0

b n(n − 1) · · · (n − k + 1)

k!2k
c + r(n)

for some integers r(n) satisfying 0 ≤ r(n) ≤ n + 1. The assertion follows by arguing
as for the first claim.

3. We start with the binomial series expansion

3

4

√
2 =

√
18

16
=

√
1 +

1

8
=

∞∑

k=0

(1
2

k

)
8−k =

n−1∑

k=0

(1
2

k

)
8−k + εn.

The error εn can be expressed with Lagrange’s formula for the function f(x) =
(1 + x)1/2 as follows: for some ξn ∈ (1, 9/8) we have (using n! ≥ (n/e)n)

|εn| =
1

n!
|f (n)(ξn)| 8−n =

1

n!

1 · 3 · 5 · · · (2n − 3)

2n

1

(1 + ξ)
2n−1

2

8−n ≤
(e

8

)n
<

3

4
2−n.
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This implies, for some integer r(n) satisfying 0 ≤ r(n) ≤ n + 1,

b2n
√

2c =

n−1∑

k=0

b4

3

(1
2

k

)
2n

8k
c + r(n).

The sequence 4
3

( 1
2
k

)
2n

8k = 1·3·5···(2n−3)·4·2n

k!·3·8k is definable in CH by Theorem 3.7. The
assertion follows now as before. �
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