
Finding a Heaviest Triangle is not Harder than
Matrix Multiplication ∗

Artur Czumaj
Department of Computer Science

New Jersey Institute of Technology
aczumaj@acm.org

Andrzej Lingas
Department of Computer Science

Lund University
Andrzej.Lingas@cs.lth.se

Abstract

We show that for anyε > 0, a maximum-weight triangle in an undirected graph withn
vertices and real weights assigned to vertices can be found in timeO(nω + n2+ε), whereω
is the exponent of fastest matrix multiplication algorithm. By the currently best bound on
ω, the running time of our algorithm isO(n2.376). Our algorithm substantially improves the
previous time-bounds for this problem recently established by Vassilevskaet al. (STOC 2006,
O(n2.688)) and (ICALP 2006,O(n2.575)). Its asymptotic time complexity matches that of the
fastest known algorithm for findinga triangle (not necessarily a maximum-weight one) in a
graph.

By applying or extending our algorithm, we can also improve the upper bounds on finding
a maximum-weight triangle in a sparse graph and on finding a maximum-weight subgraph
isomorphic to a fixed graph established in the papers by Vassilevska et al. For example, we can
find a maximum-weight triangle in a vertex-weighted graph withm edges in asymptotic time
required by the fastest algorithm for findingany triangle in a graph withm edges, i.e., in time
O(m1.41).

∗Research supported in part by NSF ITR grant CCR-0313219 and by VR grant 621-2005-4085.

Electronic Colloquium on Computational Complexity, Report No. 115 (2006)

ISSN 1433-8092

1 Introduction

We consider a classical graph problem of finding a fixed subgraph in a graph. The most basic
version of that problem, that of finding a triangle (a cycle oflength three), is related to the shortest
path problem. It is well known that the asymptotic time complexity of finding a triangle in a graph
does not exceed that of matrix multiplication (cf. [10]), that is,O(nω), whereω < 2.376 is the
exponent of the fastest matrix multiplication algorithm [4] (see also [2]).

The more general problem of finding a maximum-weight triangle in a graph with vertex or
edge weights has been widely open for long time. The first substantially sub-cubic upper time-
bound for vertex weighted graphs has been established only recently by Vassilevska et al. in [12].
It has been later improved by Vassilevska et al. [13], who observed that the problem of finding
a maximum weight triangle in a vertex-weighted graph immediately reduces to the problem of
finding the so-called maximum witnesses of Boolean matrix product studied in [7, 11]. Hence, by
the upper time-boundO(n2.616) for the latter problem established in [11] (improved toO(n2.575)
by rectangular matrix multiplication in [6, 7]), they couldobtain the same upper time-bounds for
finding a maximum-weight triangle in a vertex weighted graph.

In this paper, we present a new algorithm for finding a maximum-weight triangle in a vertex
weighted graph. It does not rely on computing maximum witnesses of Boolean matrix product
and on contrary, it strongly utilizes the fact that the output to the problem is a single triangle. By
applying a recursive elimination scheme and fast matrix multiplication algorithm, we obtain an
algorithm whose running time isO(nω∗

) = O(n2.376), whereω∗ = max{ω, 2 + ε} andε can be
chosen an arbitrarily small positive constant. (Observe that the running time isO(nω) assuming
thatω − 2 is a positive constant.) The running time of our algorithm matches that of the fastest
algorithm for findinga triangle (not necessarily one with the maximum-weight) in agraph.

Next, we study the same problem for sparse graphs withm edges (with the running time being
a function ofm). Previously, Vassilevska et al. [13] designed an algorithm that finds a maximum-
weight triangle in timeO(m

18−4 ω
13−3 ω) = O(m1.45). We use ourO(nω∗

)-time algorithm for finding

a maximum-weight triangle to design an algorithm running intimeO(m
2 ω∗

1+ω∗) = O(m1.41). The
running time of this algorithm matches that of the fastest algorithm for findingany triangle in a
graph, due to Alon et al. [1].

The problems of finding fixed cliques and more generally subgraphs isomorphic to fixed graph
are natural generalizations of the problem of finding a triangle in a graph. In [12, 13], Vassilevska et
al. considered the vertex-weighted variants of these problems, where the task is to find a maximum
(or, equivalently minimum) weight subgraph isomorphic to afixed graph. The weight of a subgraph
is defined as the total weight of its vertices. Vassilevska etal. obtained non-trivial upper time
bounds for these variants by applying their algorithm for a maximum-weight triangle in [13]. We
improve these bounds by using or extending our algorithm fora maximum-weight triangle. And so,
our algorithm for finding a maximum-weight triangle can be easily extended to find a maximum-
weight cliqueK3 k (or, in general, to find a maximum-weight fixed subgraph (either induced or not)
with 3 k vertices) in timeO(nω∗ k) = O(n2.376 k), for any constantk. For other values of the size
of the graphs, we design two algorithms. The first algorithm finds a maximum-weight cliqueKh

(or, in general, any fixed subgraph withh vertices) in timeO(nbh/3c·ω∗+(h mod 3)). This algorithm

1

Problem Source Running-time Numerical running-time/Comments

maximum-weight triangle [12] O(B · n
3+ω

2) O(B · n2.688)

[12] O(n
3+ω

2 log n) O(n2.688); randomized

[13] O(n2+1/(4−ω)) O(n2.616)

[13] O(n2.575)

this paper O(nω∗

) O(n2.376)

maximum-weight triangle [13] O(m
18−4 ω
13−3 ω) O(m1.45)

graph withm edges this paper O(m
2 ω∗

1+ω∗) O(m1.41)

Table 1: Summary of results for the problem of finding a maximum-weight triangle. In all results,
n denotes the number of vertices,m number of edges,B is the number of bits of precision of
the input,ω < 2.376 is the exponent of the fastest matrix multiplication algorithm [4], andω∗ =
max{ω, 2+ε}, whereε can be chosen as an arbitrarily small positive constant (hence,ω∗ < 2.376).

improves the running time upon the fastest previously existing algorithms (see [13]) for all values
of h ≥ 6. Our second algorithm uses fast rectangular matrix multiplication (instead of that for
square matrices) and improves the running time even further(for valuesh mod 3 6= 0). And so, if

h = 3 f + 1, then the second algorithm runs in timeO(nf ·ω(1, f+1

f
,1) + nf ·(2+ 1

f
+ε)), whereω(1, r, 1)

is the exponent of the multiplication of ann × nr matrix by annr × n matrix. Forh = 3 f + 2,

the running time isO(n(f+1)·ω(1, f

f+1
,1) + n(f+1)·(2+ε)). By known result aboutω(1, r, 1) [3, 4, 9],

this yields in particular running times ofO(n2.376 f) for h = 3f , O(n2.376·f+1) for h = 3f + 1, and
O(n2.376f+1.844) for h = 3f + 2.

These bounds subsume the corresponding ones from [13] (see Table 2, page 12).

2 Finding a maximum-weight triangle in O(nω∗
) time

In this section, we present our key algorithmHTξ(G, I,K, J) for finding a maximum-weight trian-
gle inO(nω∗

) time. It uses a matrix decomposition method together with fast matrix multiplication
algorithm to recursively reduce the number of possible triangle configurations one has to consider.
The principal algorithm begins with the set of alln3 potential triplets to be considered for the
maximum-weight triangle, and in each recursive call it reduces the number of triplets toO(ξ2) sets
of (n/ξ)3 triplets, whereξ is a parameter for the algorithm. By choosingξ to be an appropriate
constant, the running time of our algorithm isO(nω∗

).

2

procedureHTξ(G, I, K, J)

Input: A graphG = (V, E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from1 to n
subintervalsI, K, andJ of [1, . . . , n], of the same lengthκ assumed to be a power ofξ

Output: Maximum-weight triangle(i, j, k), if any, such thati ∈ I, j ∈ J , andk ∈ K

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle inG then return (i0 + 1, j0 + 1, k0 + 1);
stop

let i0, j0, andk0 be such that
I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κ], andJ = [j0 + 1, j0 + κ]

` = κ/ξ

for all p, r = 1, . . . , ξ do
form an` × ` Boolean matrixApr such that for every1 ≤ i′ ≤ ` and1 ≤ k′ ≤ `:

Apr[i
′, k′] =

{

1 if (i0 + (p − 1)` + i′, k0 + (r − 1)` + k′) ∈ E

0 otherwise.

for all r, q = 1, . . . , ξ do
form an` × ` Boolean matrixBrq such that for every1 ≤ k′ ≤ ` and1 ≤ j′ ≤ `:

Brq[k
′, j′] =

{

1 if (k0 + (r − 1)` + k′, j0 + (q − 1)` + j′) ∈ E

0 otherwise.

for all p, r, q = 1, . . . , ξ do
computeCr

pq = Apr × Brq (using the fast Boolean matrix multiplication algorithm)

T = ∅
for all p, r, q = 1, . . . , ξ do

for all i′, j′ = 1, . . . , ` do
if Cr

pq(i
′, j′) = 1 and (i0 + (p − 1)` + i′, j0 + (q − 1)` + j′) ∈ E then

T = T ∪ {(p, r, q)}

{ Observation 1: (p, r, q) ∈ T iff there is a triangle(i, k, j) with i ∈ [i0 + (p − 1)` + 1, i0 + p`],
k ∈ [k0 + (r − 1)` + 1, k0 + r`], andj ∈ [j0 + (q − 1)` + 1, j0 + q`] }

for every (p, r, q) ∈ T do
if there is a(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′ then

remove(p, r, q) from T

{ Observation 2: (p, r, q) is removed fromT iff there is a(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′. }

for every (p, r, q) ∈ T do
call HTξ(G, [i0 + (p − 1)` + 1, i0 + p`], [k0 + (r − 1)` + 1, k0 + r`], [j0 + (q − 1)` + 1, j0 + q`])

Return the maximum-weight triangle among the triangles returned by these calls

Lemma 1 The procedureHTξ is correct, that is, it returns a maximum-weight triangle(i, j, k), if
any, such thati ∈ I, j ∈ J , andk ∈ K.

Proof. The correctness of the algorithm follows from the two following observations:

3

1. just before pruningT , (p, r, q) ∈ T if and only if there is a triangle(i, k, j) with i ∈ [i0 +
(p− 1)` + 1, i0 + p`], k ∈ [k0 + (r − 1)` + 1, k0 + r`], andj ∈ [j0 + (q − 1)` + 1, j0 + q`];

2. (p, r, q) is then removed fromT if and only if there is a(p′, r′, q′) ∈ T with p < p′, r < r′,
q < q′.

Indeed, the latter property implies that if there is a triangle (i, k, j) with i ∈ [i0 + (p − 1)` +
1, i0+p`], k ∈ [k0+(r−1)`+1, k0+r`], andj ∈ [j0+(q−1)`+1, j0+q`], then the triple(p, q, r)
representing such triangles(i, k, j) is removed fromT only if there is another triangle(i′, k′, j′)
such that for some(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′, we havei′ ∈ [i0+(p′−1)`+1, i0+p′`],
k′ ∈ [k0 +(r′−1)`+1, k0 + r′`], andj′ ∈ [j0 +(q′−1)`+1, j0 + q′`]. It follows by the properties
of the initial vertex numbering that then such a triangle(i, k, j) cannot be any maximum-weight
triangle. ut

To estimate the running time of the procedureHTξ we shall use the following lemma.

Lemma 2 Let ξ be any positive integer. LetX be any subset of{1, 2, . . . , ξ}3 which does not
contain any twot, t′ such thatt′ has each coordinate greater than the corresponding one int. The
cardinality ofX is at most3(ξ − 1)2 − 3(ξ − 1) + 1.

Proof. Define the relation≺ such that(i, k, j) ≺ (i′, k′, j′) iff i < i′, k < k′, andj < j′. The
relation≺ defines a partial order on{1, 2, . . . , ξ}3. For each(t1, t2, t3) ∈ {1, 2, . . . , ξ}3 that has at
least one coordinate equal to1 definechain((t1, t2, t3)) to be the set of all triples in{1, 2, . . . , ξ}3

of the form(t1+i, t2+i, t3+i) for i = 0, 1, . . . Observe thatchain(t) is indeed a chain in the poset
({1, 2, . . . , ξ}3,≺) and the chainschain(t) cover all the elements in{1, 2, . . . , ξ}3. It follows now
from Dilworth’s lemma [8] that the cardinality of the largest anti-chain in the aforementioned poset
does not exceed the number of the triples with at least one coordinate equal to1, which in turn, is
at mostξ3 − (ξ − 1)3 = 3(ξ − 1)2 − 3(ξ − 1) + 1. ut

Lemma 3 The running time ofHTξ satisfies the recurrence

τ(κ) ≤ (3(ξ − 1)2 − 3(ξ − 1) + 1) · τ(κ/ξ) + O(ξ3−ω · κω + ξ6) . (1)

Proof. Forming the Boolean matricesApr andBrq, computing their productsCr
pq, and computing

T , take timeO(ξ2 · `2), ξ3 · O(`ω) andO(ξ3 · `2 + ξ6), respectively. By Lemma 2, the final size of
T is at most3(ξ − 1)2 − 3(ξ − 1) + 1. Hence, we obtain the following recurrence for the running
time ofHTξ:

τ(κ) ≤ O(ξ2 · `2) + ξ3 · O(`ω) + O(ξ3 · `2 + ξ6) + (3(ξ − 1)2 − 3(ξ − 1) + 1) · τ(`)

= O(ξ3−ω · κω + ξ6) + (3(ξ − 1)2 − 3(ξ − 1) + 1) · τ(κ/ξ) .

ut

As an immediate corollary, for a sufficiently large constantξ, we obtain our main result1.

1Here, let us observe thatlogξ(3(ξ − 1)2 − 3(ξ − 1) + 1) ≤ logξ(3ξ
2) = log 3+2 log ξ

log ξ −→
ξ→∞

2.

4

Theorem 4 A maximum-weight triangle in a vertex weighted graph onn vertices can be found in
timeO(nω∗

) < O(n2.376).

Proof. This result follows from Lemma 3 by solving the recurrence for the running time ofHTξ.
Let us first assume thatω > 2 + ε for some constant0 < ε ≤ 0.1. Then, let us chooseξ large

enough, e.g.,ξ ≥ 91/ε, and solve the recurrence (1) using the Master Theorem (see,e.g., [5, Chapter
4.3]) to obtainτ(κ) ≤ O(κω). Indeed, by the Master Theorem, we have to chooseξ large enough
so that (1)κlogξ(3(ξ−1)2−3(ξ−1)+1) ≤ O(κω−ε/2) and that (2)(3(ξ−1)2−3(ξ−1)+1)·(κ/ξ)ω ≤ c·κω

for some constantc < 1 and for large enoughκ.
For the first bound, it is easy to see that it is enough to haveξ such thatξ ≥ 32/ε; indeed, we

haveκlogξ(3(ξ−1)2−3(ξ−1)+1) ≤ O(mω−ε/2) if 3(ξ−1)2−3(ξ−1)+1 ≤ ξω−ε/2. Next,3(ξ−1)2−3(ξ−
1) + 1 ≤ 3ξ2 andξ2+ε/2 ≤ ξω−ε/2. Hence, ifξ ≥ 32/ε, thenκlogξ(3(ξ−1)2−3(ξ−1)+1) ≤ O(κω−ε/2).
To see the second bound, we note that (2) holds if we set3ξ2−ω ≤ c. Hence, we can choose any
ξ ≥ 61/ε in order to obtain3ξ2−ω ≤ 1

2
.

Next, let us consider the case whenω ≤ 2 + ε. Then similarly as in the other case, one can
chooseξ to solve the recurrence (1) (e.g., using the Master Theorem)to obtainτ(κ) ≤ O(κ2+4ε).

Let us setξ = 21/(2ε). Then, sinceε ≤ 0.1, we have thatξ ≥ 9, and thus3(ξ − 1)2 − 3(ξ −
1) + 1 = 3ξ2 − 9ξ + 7 ≥ 2ξ2. With this bound and using the inequalityω ≤ 2 + ε, we obtain that
ξω+ε ≤ ξ2+2ε ≤ 2ξ2 ≤ 3(ξ − 1)2 − 3(ξ − 1) + 1. Hence, we getω ≤ logξ(3(ξ − 1)2 − 3(ξ −

1) + 1)− ε. Therefore,κω = O(κlogξ(3(ξ−1)2−3(ξ−1)+1)−ε), what, by the Master Theorem (see, e.g.,
Case 1 in [5, Theorem 4.1]), yieldsτ(κ) = O(κlogξ(3(ξ−1)2−3(ξ−1)+1)). Finally, we observe that
logξ(3(ξ − 1)2 − 3(ξ − 1) + 1) ≤ logξ(3ξ

2) = 2·log2 ξ+log2 3
log2 ξ

≤ 2 + 2
log2 ξ

= 2 + 2
1/(2ε)

= 2 + 4ε.
Therefore,τ(κ) = O(κ2+4ε).

Summarizing, we obtain the running timemax{O(n2+ε),O(nω)} = O(nω∗

) for an arbitrarily
small fixedε > 0. ut

3 Improved bounds for sparse graphs

By arguing analogously as in the proof of Theorem 2 in [13], we can refine the upper bound from
Theorem 4 in the case of sparse graphs as follows.

Corollary 5 A maximum-weight triangle in a vertex weighted graph withm edges and no isolated

vertices can be found in timeO(m
2 ω∗

1+ω∗) < O(m1.41).

Proof. Let G = (V,E) be the input graph and letX be the set of all vertices inV of degree at
mostδ. It follows that |V \ X| ≤ 2 m/δ. In timeO(m δ), we can enumerate all triangles inG
that contain a vertex inX and find a maximum-weight one among them. On the other hand, a
maximum-weight triangle inG that has all vertices inV \X can be found in timeO((m/δ)ω∗

) by

Theorem 4. By settingδ = m
ω∗

−1

1+ω∗ , we obtain the corollary. ut

5

4 Finding a maximum-weight cliqueKh and H-subgraphs

In this section, we present a construction that extends the algorithm for finding a maximum-weight
triangle to include finding a maximum-weight clique or any maximum-weight subgraph isomor-
phic to a given graph.

Theorem 6 A maximum-weight cliqueKh in a vertex weighted graph onn vertices can be found
in time

O(nbh/3c·ω∗+(h mod 3)) .

Proof. Let f = bh/3c. Suppose first thath = 3f . Form a new graphG′ in which each vertex
corresponds one to one to aKf in the original graphG and the weight of such a vertex equals the
total weight of the vertices in thisKf . Two vertices inG′ are connected by an edge if and only
if the corresponding cliques form anK2f clique inG. Observe thatG′ hasO(nf) vertices and it
can be constructed in timeO(n2f). Furthermore, a maximum-weight triangle inG′ corresponds
to a maximum-weightKh clique inG. Therefore, by using Theorem 4 to find a maximum-weight
triangle inG′, we can find a maximum-weight clique inG in timeO(nω∗

).
Next, let us consider the caseh = 3f + 2. Find all cliquesKf andKf+1 that are subgraphs of

G. Divide theKf+1 subgraphs intoO(n) groups of sizeO(nf). For each such two groupsa andb
(a can be equal tob) and theKf subgraphs form a tripartite graphGa,b whose vertices in the first
part, second part and the third part are in one to one correspondence with: theKf+1 subgraphs in
the first group, theKf+1 subgraphs in the second group, and theKf subgraphs ofG, respectively.
The weights of the vertices inGa,b are equal to the total weights of the corresponding cliques in
G. There is an edge between two vertices inGa,b if the corresponding cliques are disjoint and
induce the clique inG whose size equals the sum of their sizes. Observe that all theconstructions
can be easily done in total timeO(n2f+2). Now note that a maximum-weight triangle among the
maximum-weight triangles in the graphsGa,b yields a maximum-weightKh in G. By Theorem 4,
it takes timeO(n2 × (nf)ω∗

).
The proof of caseh = 3f +1 is analogous. For each groupa of theKf+1 subgraphs we form a

tripartite graphGa whose vertices in the first part are in one to one correspondence with theKf+1

subgraphs ina, whereas the vertices in each of the two remaining parts are in one to one corre-
spondence with theKf subgraphs ofG. The vertex weights and edges are specified analogously as
in case ofGa,b and all the constructions take timeO(nf+1×nf). Analogously, a maximum-weight
triangle among the maximum-weight triangles in the graphsGa yields a maximum-weightKh in
G. ut

It is easy to extend the result from Theorem 6 to arbitrary induced subgraphs isomorphic to a
given graphH on h vertices. We use an analogous construction to that in the proof of Theorem
6. We decomposeH into three induced subgraphsHi (possibly isomorphic),i = 1, 2, 3, and
for each isomorphism between an induced subgraph ofG andHi, we form a separate node in
an auxiliary graph. Two such nodes are connected by an edge ifthe union of the corresponding
isomorphisms yields an isomorphism between the subgraph induced by the vertices of the two
underlying subgraphs and the subgraph ofH induced by the vertices of theHi images (required

6

to be different) of the two isomorphisms. (In caseH = Kh, it has not been necessary to have
separate nodes for different isomorphisms between an induced subgraph ofG and a clique which
is a subgraph ofKh because of the symmetry between the vertices in the clique with respect to
Kh.)

Furthermore, since any subgraph (not necessarily induced)of G onh vertices which is isomor-
phic to H is a subgraph of the induced subgraph ofG on the sameh vertices, finding (not nec-
essarily induced) subgraphs reduces to finding induced subgraphs of the same size. The induced
subgraphs correspond to all possible super-graphs ofH onh vertices. This yields the following.

Theorem 7 LetH be a fixed graph onh vertices. A maximum-weight induced subgraph of a vertex
weighted graph onn vertices that is isomorphic toH can be found in time

O(nbh/3c·ω∗+(h mod 3)) .

In asymptotically the same time complexity one can find a maximum-weight subgraph (not neces-
sarily induced) isomorphic toH.

5 Refinement by using fast rectangular matrix multiplication

The algorithms and the bounds from Theorems 6 and 7 can be improved forh mod 3 6= 0 if we
use fast rectangular matrix multiplication algorithms (instead of fast square matrix multiplication).

Letω(1, σ, 1) denote the exponent of the multiplication of ann×nσ matrix by annσ×n matrix.
In order to improve Theorems 6 and 7 in terms ofω(1, σ, 1), we need to generalize the procedure
HTξ(G, I,K, J) to include the case where the sizes of the intervalsI, K andJ are not necessarily
equal. We also relax the requirement that vertices are numbered in non-decreasing weight order
by requiring solely that within each of the three input intervalsI, K andJ , the numbering has this
property.

For anyσ, 1
2
≤ σ ≤ 2, let HT

〈σ〉
ξ (G, I,K, J) denote such an analogous generalized procedure,

where the sizes ofI, K, andJ (besides being powers ofξ) satisfy|I| = |J | and|K| = |I|σ. The
key difference in the body ofHT

〈r〉
ξ compared with that ofHTξ is that since the matricesApr and

Brq are now of sizesκ/ξ × (κ/ξ)σ and(κ/ξ)σ × κ/ξ, respectively, we use the fast rectangular
Boolean matrix multiplication algorithm with the exponentω(1, σ, 1) instead of the fast square one
with the exponentω.

7

procedureHT
〈σ〉
ξ (G, I, K, J)

Input: A graphG = (V, E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from1 to n
subintervalsI, K, andJ of [1, . . . , n], of the lengthκ, κσ, andκ, respectively,

whereκ, κσ, and(κ/ξ)σ are powers ofξ

Output: Maximum-weight triangle(i, j, k), if any, such thati ∈ I, j ∈ J , andk ∈ K

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle inG then return (i0 + 1, j0 + 1, k0 + 1);
stop

let i0, k0, andj0 be such that
I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κσ], andJ = [j0 + 1, j0 + κ]

for all p = 1, . . . , ξ, r = 1, . . . , ξσ do
form an κ

ξ × (κ
ξ)σ Boolean matrixApr such that for every1 ≤ i′ ≤ κ

ξ and1 ≤ k′ ≤ (κ
ξ)σ:

Apr[i
′, k′] =

{

1 if (i0 + (p − 1)κ
ξ + i′, k0 + (r − 1)(κ

ξ)σ + k′) ∈ E

0 otherwise.

for all r = 1, . . . , ξσ, q = 1, . . . , ξ do
form an(κ

ξ)σ × κ
ξ Boolean matrixBrq such that for every1 ≤ k′ ≤ (κ

ξ)σ and1 ≤ j′ ≤ κ
ξ :

Brq[k
′, j′] =

{

1 if (k0 + (r − 1)(κ
ξ)σ + k′, j0 + (q − 1)κ

ξ + j′) ∈ E

0 otherwise.

for all p, q = 1, . . . , ξ andr = 1, . . . , ξσ do
computeCr

pq = Apr × Brq (using the fast rectangular Boolean matrix multiplication algorithm)

T = ∅
for all p, q = 1, . . . , ξ andr = 1, . . . , ξσ do

for all i′, j′ = 1, . . . , κ
ξ do

if Cr
pq(i

′, j′) = 1 and (i0 + (p − 1)κ
ξ + i′, j0 + (q − 1)κ

ξ + j′) ∈ E then
T = T ∪ {(p, r, q)}

{Observation 1: (p, r, q) ∈ T iff there is a triangle(i, k, j) with i ∈ [i0 + (p − 1)κ
ξ + 1, i0 + pκ

ξ],
k ∈ [k0 + (r − 1)(κ

ξ)σ + 1, k0 + r(κ
ξ)σ], andj ∈ [j0 + (q − 1)κ

ξ + 1, j0 + q κ
ξ] }

for every (p, r, q) ∈ T do
if there is a(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′ then

remove(p, r, q) from T

{Observation 2: (p, r, q) is removed fromT iff there is a(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′. }

for every (p, r, q) ∈ T do

call HT
〈σ〉
ξ (G, [i0 + (p−1)κ

ξ + 1, i0 + pκ
ξ], [k0 + (r−1)κσ

ξσ + 1, k0 + rκσ

ξσ], [j0 + (q−1)κ
ξ + 1, j0 + qκ

ξ])

return the maximum-weight triangle among the triangles returned by these calls

By performing an analysis ofHT
〈σ〉
ξ analogous to that ofHTξ, we obtain the following lemma.

8

Lemma 8 For any ε > 0, there is a sufficiently largeξ such that the procedureHT
〈σ〉
ξ (I,K, J)

returns a maximum-weight triangle(i, j, k), if any, wherei ∈ I, j ∈ J , and k ∈ K, in time
O(|I|ω(1,σ,1) + |I|2+ε + |I|1+σ+ε).

Proof. We proceed as in the proof of Lemma 3, but this time to computethe matricesCr
pq we

use fast rectangular matrix multiplication. Forming the Boolean matricesApr andBrq takes time
O(ξ1+σ · κ

ξ
· (κ

ξ
)σ) = O(κ1+σ), computing their productsCr

pq takes timeO(ξ2+σ · (κ/ξ)ω(1,σ,1)), and
computingT takes timeO(ξσ · κ2 + ξ4+2σ). Using the arguments from Lemma 2, the final size of
T is at mostξ2+σ − (ξ − 1)2(ξσ − 1) = 2ξ1+σ + ξ2 − 2ξ − ξσ + 1. Since we considerξ ≥ 1, this
is always bounded from above by2ξ1+σ + ξ2. Hence, we obtain the following recurrence for the
running time ofHT

〈σ〉
ξ :

τ(κ) ≤ O(κ1+σ) + O(ξ2+σ · (κ/ξ)ω(1,σ,1)) + O(ξσ · κ2 + ξ4+2σ) + (2ξ1+σ + ξ2) · τ(κ/ξ)

≤ O(ξ2+σ · κω(1,σ,1) + ξ6) + (2ξ1+σ + ξ2) · τ(κ/ξ) ,

with the base caseτ(1) = O(1).
Since we have assumed that1

2
≤ σ ≤ 2 and sinceξ is a parameter that we can set as an

arbitrary integer constant, one can solve this recurrence analogously as in the proof of Theorem 4
to conclude that the running time of the algorithm isτ(κ) = O(κω(1,σ,1) + κ2+ε + κ1+σ+ε).

Indeed, the recurrence forτ(κ) can be simplified toτ(κ) ≤ O(κω(1,σ,1)) + (2ξ1+σ + ξ2) ·
τ(κ/ξ). Furthermore, by using the Master Theorem and by setting theparameterξ appropriately,
we can boundτ(κ) from above by the maximum of the bound coming from the first term, i.e.,
by O(κω(1,σ,1)), and the bound coming from the other term, i.e.,O(κlogξ(2ξ1+σ+ξ2)), whereξ is
an arbitrary integer parameter. Next , let us simplify the latter bound. Ifσ ≤ 1 then we have
O(κlogξ(2ξ1+σ+ξ2)) ≤ O(κlogξ(3ξ2)) = O(κ2+logξ 3); otherwise, ifσ > 1 thenO(κlogξ(2ξ1+σ+ξ2)) ≤
O(κlogξ(3ξ1+σ)) = O(κ1+σ+logξ 3) holds. Therefore, for any positive constantε, by settingξ to
an appropriately large constant we haveO(κlogξ(2ξ1+σ+ξ2)) ≤ O(κ2+ε + κ1+σ+ε). This yields the
lemma. ut

Equipped with Lemma 8, we can improve the bound form Theorem 6for h 6= 3 f as follows.
Consider first the case whenh = 3 f + 2. Find all cliquesKf andKf+1 that are subgraphs of

G. Next, form a new graphG′′, where vertices are in one to one correspondence with the found
cliques and their weight equals the total weight of the corresponding clique. Two vertices inG′′

are adjacent if the corresponding cliques induce a clique inG′′ whose size equals the sum of their
sizes. Next, number the vertices ofG′′ such that the vertices corresponding to theKf+1 cliques
occur in a continuous interval in non-decreasing weight order as well as those corresponding to the
Kf cliques occur in a continuous interval in non-decreasing weight order.

SetI andJ to the first of the aforementioned intervals andK to the second one, and run the
procedureH〈σ〉

ξ (I,K, J) for G′′ andσ = log|I| |K|, where1
2
≤ σ < 1.2 Observe that by Lemma 8

and by the definitions ofG′′, I, K andJ , the triangle returned byH〈σ〉
ξ (I,K, J), if any, corresponds

2The simplifying assumption about the sizes of the intervalsbeing the power ofξ can be achieved by increasing
the sizes by a multiplicative factor less thanξ via adding dummy vertices.

9

to a maximum-weightKh in G. By Lemma 8, monotonicity of the time taken by the multiplication
of ann×nσ matrix by annσ ×n matrix with respect ton andσ, and straightforward calculations,

H
〈σ〉
ξ (I,K, J) takes timeO((nf+1)ω(1, f

f+1
,1) + (nf+1)2+ε) for sufficiently large constantξ.

The proof in caseh = 3 f + 1 is analogous with the exception that nowI andJ are set to
the interval of vertices corresponding toKf cliques whereasK is set to the interval of vertices
corresponding toKf+1 cliques. By analogous arguments, we conclude that in this case we can find

a maximum-weightKh in timeO((nf)ω(1, f+1

f
,1) + nf (2+ 1

f
+ε)).

By combining our improvements with Theorem 6, we obtain the following theorem.

Theorem 9 Let h be a positive integer, and letf = bh/3c. A maximum-weight cliqueKh in a
vertex weighted graph onn vertices can be found in timeTh(n), where

Th(n) =

O(nf ω∗

) if h mod 3 ≡ 0

O(nf ·ω(1, f+1

f
,1) + nf (2+ 1

f
+ε)) if h mod 3 ≡ 1

O(n(f+1)·ω(1, f

f+1
,1) + n(f+1)·(2+ε)) if h mod 3 ≡ 2 .

Similarly as in the previous section, the results from Theorem 9 can be extended to finding a
maximum-weight fixed graph.

Theorem 10 For any fixed integerh, letH be any graph onh vertices. A maximum-weight induced
subgraph of a vertex weighted graph onn vertices that is isomorphic toH can be found in time
Th(n), where the functionTh(n) is defined in Theorem 9.

In asymptotically the same time complexity one can find a maximum-weight subgraph (not
necessarily induced) isomorphic toH.

Coppersmith [3] and Huang and Pan [9] proved the following facts.

Fact 11 [3, 9]Letω = ω(1, 1, 1) < 2.376 and letα = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2 + o(1)} >
0.294. Thenω(1, r, 1) ≤ β(r), whereβ(r) = 2+ o(1) for r ∈ [0, α] andβ(r) = 2+ ω−2

1−α
(r−α)+

o(1) for r ∈ [α, 1].

(Observe a useful fact, that if our goal is to compute(f + 1) · ω(1, f
f+1

, 1), then the bounds in

Fact 11 simplify it to(f + 1) ·ω(1, f
f+1

, 1) = (f + 1) · (2 + ω−2
1−α

(f
f+1

−α) + o(1)) = 2− (ω−2) α
1−α

+

f · ω + o(f) < 1.844 + f · ω + o(f).)

Fact 12 [9, Section 8.1]ω(1, 2, 1) < 3.334, and for everyr > 1, we haveω(1, r, 1) ≤ ω + r − 1.

(Section 8.1 in [9] contains some discussion about strongerbounds for ω(1, r, 1) for other
valuesr > 2.)

10

Therefore, for example, by using the bounds from Facts 11 and12, we have (see also Table 2):

T3(n) = O(nω∗

) < O(n2.376) ,

T4(n) = O(nω(1,2,1) + n3+ε) < O(n3.334) ,

T5(n) = O(n2·ω(1, 1
2
,1) + n4+ε) < O(n4.220) ,

T6(n) = O(n2 ω∗

) < O(n4.752) ,

T3f (n) = O(nf ω∗

) < O(n2.376 f) ,

T3f+1(n) = O(nf ω∗+1) < O(n2.376 f+1) ,

T3f+2(n) = O(nf ω∗+1.844) < O(n2.376 f+1.844) .

Note that, for example, this bound subsumes the upper bound of Theorem 6 forK4, K5, and
for K3f+2 for everyf ≥ 1.

6 Conclusions

We have shown that finding a maximum-weight triangle is asymptotically not more difficult than
matrix multiplication. Consequently, we could substantially improve prior upper time-bounds on
finding a maximum-weight clique of sizeO(1) and a maximum-weight subgraph isomorphic to a
fixed graph.

A natural question arises whether or not our result for vertex weighted triangles is asymptoti-
cally optimal.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color-coding.Journal of the ACM, 42: 844-856, 1995.

[2] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix
multiplication.Proc. 46th IEEE Symposium on Foundations of Computer Science(FOCS’05),
pp. 379–388, 2005.

[3] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Symbolic Computa-
tion, 13: 42–49, 1997.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression.Journal
of Symbolic Computation, 9: 251–290, 1990.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms.2nd
edition, McGraw-Hill Book Company, Boston, MA, 2001.

[6] A. Czumaj and A. Lingas. Improved algorithms for the all-pairs lowest common ancestor
problem in directed acyclic graphs.Manuscript, July 2005.

11

Problem Source Running-time Numerical runtime

maximum-weight fixed [13] O(nω+1) O(n3.376)

subgraph with4 vertices this paper O(nω(1,2,1) + n3+ε) O(n3.334)

maximum-weight fixed [13] O(nω+2) O(n4.376)

subgraph with5 vertices this paper O(n2·ω(1, 1
2 ,1) + n4+ε) O(n4.220)

maximum-weight fixed [13] O(n4+2/(4−ω)) O(n5.232)

subgraph with6 vertices this paper O(n2 ω∗

) O(n4.752)

maximum-weight fixed [13] O(n4+3/(4−ω)) O(n5.848)

subgraph with7 vertices this paper O(n2 ω(1, 3
2 ,1) + n5+ε) O(n5.752)

maximum-weight fixed [13] O(n2 ω+2 + n4+ε) O(n6.752)

subgraph with8 vertices this paper O(n3 ω(1, 2
3 ,1) + n6+ε) O(n6.596)

maximum-weight fixed [13] O(n2 ω+3) O(n7.752)

subgraph with9 vertices this paper O(n3 ω∗

) O(n7.128)

maximum-weight fixed [12] O(n
(3+ω) f

2); randomized O(n2.688 f)

subgraph with3f vertices [13] O(n2.575·f)

this paper O(nω∗

·f) O(n2.376·f)

maximum-weight fixed

subgraph with3f + 1 vertices this paper O(nf ω(1, f+1
f

,1) + nf (2+ 1
f
+ε)) O(n2.376·f+1)

maximum-weight fixed

subgraph with3f + 2 vertices this paper O(n(f+1) ω(1, f
f+1 ,1) + n(f+1) (2+ε)) O(n2.376·f+1.844)

Table 2:Summary of results for finding maximum-weight cliques of size greater than3 and fixed induced
subgraphs. In all results,n denotes the number of vertices,m number of edges,B is the number of bits
of precision of the input,ω < 2.376 is the exponent of the fastest matrix multiplication algorithm [4],
ω∗ = max{ω, 2 + ε}, whereε can be chosen as an arbitrarily small positive constant (hence,ω∗ < 2.376),
andω(1, r, 1) is the exponent of the multiplication of ann × nr matrix by annr × n matrix [3, 9].

[7] A. Czumaj, M. Kowaluk, and A. Lingas. Faster algorithms for finding lowest common ances-
tors in directed acyclic graphs. Invited and submitted toTheoretical Computer Science, spe-
cial issue devoted to selected papers from the 32nd International Colloquium on Automata,
Languages and Programming (ICALP’05). This paper is a resultof merging [6] and [11].

[8] R. P. Dilworth. A decomposition theorem for partially ordered sets.Annals of Mathematics
51(1):161–166, January 1950.

[9] X. Huang and V. Y. Pan. Fast rectangular matrix multiplications and applications.Journal of
Complexity, 14: 257–299, 1998.

[10] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.SIAM Journal on Computing,
7(4): 413–423, 1978.

12

[11] M. Kowaluk and A. Lingas. LCA queries in directed acyclicgraphs.Proc. 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), pp. 241–248, 2005.

[12] V. Vassilevska and R. Williams. Finding a maximum weighttriangle in n3−δ time, with
applications.Proc. 38th Annual ACM Symposium on Theory of Computing (STOC’06), pp.
225–231, 2006.

[13] V. Vassilevska, R. Williams, R. Yuster. Finding the smallestH-subgraph in real weighted
graphs and related problems. To appear inProc. 33rd International Colloquium on Automata,
Languages and Programming (ICALP’06), 2006.

13

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

