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Abstract

We show that for any > 0, a maximum-weight triangle in an undirected graph with
vertices and real weights assigned to vertices can be found in(Bitne + n?*<), wherew
is the exponent of fastest matrix multiplication algorithm. By the currently beshdmn
w, the running time of our algorithm i€ (n2376). Our algorithm substantially improves the
previous time-bounds for this problem recently established by Vassiletsita(STOC 2006,
O(n?688)) and (ICALP 200600 (n?°7)). Its asymptotic time complexity matches that of the
fastest known algorithm for finding triangle (not necessarily a maximum-weight one) in a
graph.

By applying or extending our algorithm, we can also improve the upper oomdinding
a maximum-weight triangle in a sparse graph and on finding a maximum-weightagilib
isomorphic to a fixed graph established in the papers by Vassilevska et ax&mple, we can
find a maximum-weight triangle in a vertex-weighted graph witledges in asymptotic time
required by the fastest algorithm for findiagytriangle in a graph withn edges, i.e., in time
O(m1'4l).
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1 Introduction

We consider a classical graph problem of finding a fixed sylfgia a graph. The most basic
version of that problem, that of finding a triangle (a cycldesfgth three), is related to the shortest
path problem. It is well known that the asymptotic time coexjtly of finding a triangle in a graph
does not exceed that of matrix multiplication (cf. [10])aths, O(n“), wherew < 2.376 is the
exponent of the fastest matrix multiplication algorithnh (gee also [2]).

The more general problem of finding a maximum-weight triangl a graph with vertex or
edge weights has been widely open for long time. The firsttanbally sub-cubic upper time-
bound for vertex weighted graphs has been established ecéntly by Vassilevska et al. in [12].
It has been later improved by Vassilevska et al. [13], whoeoled that the problem of finding
a maximum weight triangle in a vertex-weighted graph imratgly reduces to the problem of
finding the so-called maximum witnesses of Boolean matrixipeb studied in [7, 11]. Hence, by
the upper time-bound(n?61¢) for the latter problem established in [11] (improved®n>7)
by rectangular matrix multiplication in [6, 7]), they coubtbtain the same upper time-bounds for
finding a maximum-weight triangle in a vertex weighted graph

In this paper, we present a new algorithm for finding a maxirwight triangle in a vertex
weighted graph. It does not rely on computing maximum wiessof Boolean matrix product
and on contrary, it strongly utilizes the fact that the otijputhe problem is a single triangle. By
applying a recursive elimination scheme and fast matrixtiplidation algorithm, we obtain an
algorithm whose running time i©(n*") = O(n*37), wherew* = max{w,2 + ¢} ande can be
chosen an arbitrarily small positive constant. (Obseree tihe running time i€ (n*) assuming
thatw — 2 is a positive constant.) The running time of our algorithmehas that of the fastest
algorithm for findinga triangle (not necessarily one with the maximum-weight) graph.

Next, we study the same problem for sparse graphswidtdges (with the running time being
a function ofm). Previously, Vassilevska et al. [13] designed an algaorithat finds a maximum-
weight triangle in time@(m%) = O(m'*). We use ouiO(n“")-time algorithm for finding
a maximum-weight triangle to design an algorithm runningjrime O(m%) = O(m'*). The
running time of this algorithm matches that of the fastegbathm for findingany triangle in a
graph, due to Alon et al. [1].

The problems of finding fixed cliques and more generally salgs isomorphic to fixed graph
are natural generalizations of the problem of finding a giain a graph. In[12, 13], Vassilevska et
al. considered the vertex-weighted variants of these prob) where the task is to find a maximum
(or, equivalently minimum) weight subgraph isomorphic foxad graph. The weight of a subgraph
is defined as the total weight of its vertices. Vassilevskaletobtained non-trivial upper time
bounds for these variants by applying their algorithm foraximum-weight triangle in [13]. We
improve these bounds by using or extending our algorithra foaximum-weight triangle. And so,
our algorithm for finding a maximum-weight triangle can bsiaextended to find a maximum-
weight cliqueks,, (or, in general, to find a maximum-weight fixed subgraph éithduced or not)
with 3 k vertices) in timeQ(n*"*) = O(n%37*), for any constant. For other values of the size
of the graphs, we design two algorithms. The first algorithmddia maximum-weight cliqu&’,
(or, in general, any fixed subgraph withvertices) in timeQ (nl?/3l« +(h med 3)y " This algorithm



Problem Source | Running-time | Numerical running-time/Comments

34w

maximum-weight triangle  [12] OB-n72) | O(B-n*%)

[12] O(n"z* logn) | O(n*%#); randomized

[13] | O(*TV/E=)) | O(n?91)

[13] O(n2 575)
(n™")
(m™*)
(m™+)

n2 .616

this paper| O(n“") O(n*37

maximum-weight triangle  [13] O(m13=3v) @)

ml .45

ml 41

graph withm edges | this paper| O(m5) O

Table 1. Summary of results for the problem of finding a maxmweight triangle. In all results,
n denotes the number of vertices, number of edgesB is the number of bits of precision of
the input,w < 2.376 is the exponent of the fastest matrix multiplication alon [4], andw* =
max{w, 2+¢€}, wheree can be chosen as an arbitrarily small positive constantgen < 2.376).

improves the running time upon the fastest previously gstlgorithms (see [13]) for all values
of h > 6. Our second algorithm uses fast rectangular matrix mugagibn (instead of that for
square matrices) and improves the running time even fu(‘tber/aluesh mod 3 # 0). And so, if

— 3 f+ 1, then the second algorithm runs in ti@n’ <71 4 n/ C+5+9) wherew(1, r, 1)
is the exponent of the multlpllcatlon of anx n” matrix by ann™ x n matrix. Forh = 3 f + 2,

the running time ig)(nV 0“0 7D) 4 p(+1-2+)). By known result aboub(1, r, 1) [3, 4, 9],
this yields in particular running times @#(n?37¢/) for h = 3f, O(n?37¢/*1) for h = 3f + 1, and
O(n?376/ 1844 for h = 3f + 2.

These bounds subsume the corresponding ones from [13] ébde 7, page 12).

2 Finding a maximum-weight triangle in O(n*") time

In this section, we present our key algorittT; (G, I, K, J) for finding a maximum-weight trian-
gleinO(n*") time. It uses a matrix decomposition method together wishrfatrix multiplication
algorithm to recursively reduce the number of possiblegia configurations one has to consider.
The principal algorithm begins with the set of alt potential triplets to be considered for the
maximum-weight triangle, and in each recursive call it ithe number of triplets 6(¢£?) sets

of (n/€)? triplets, wheref is a parameter for the algorithm. By choosifigp be an appropriate
constant, the running time of our algorithm@n«").



procedure HT¢(G, I, K, J)
Input: A graphG = (V, E) with vertex weights  is given as adjacency matrix)

vertices are numbered in non-decreasing weight order froom
subintervald, K, andJ of [1, ..., n], of the same length assumed to be a power &f

Output: Maximum-weight triangl€, j, k), if any, such that € I, j € J, andk € K
if k=1 then
if (<0 + 1,70 + 1, ko + 1) is a (non-degenerate) triangledhthen return (ip + 1, jo + 1, ko + 1);

stop
letig, jo, andky be such that

I =lip+ 1,10+ k], K = [ko + 1, ko + ], andJ = [jo + 1, jo + K]
=K/

forall p,r=1,...,£do
form an’ x ¢ Boolean matrix4,, such that for every <’ </andl <k’ < ¢:

y 1 if(io+(p—1)0+d ko+(r—1)0+k)eFE
Ay i K] = ]
0 otherwise.

forall r,¢q=1,...,£do
form an’ x ¢ Boolean matrixB,, such that for every < k' < /andl < j' < ¢:

B [k/ ]/] _ 1 if (kO + (7"— I)E—I—/{/,jo + (q_ 1)€+j/) er
T 0 otherwise.

forall p,r,q=1,...,£do
computeC) = Ay x By, (using the fast Boolean matrix multiplication algorithm)

T=0
forall p,r,q=1,...,£do
forall 7,7/ =1,...,¢do
it Cr.(i',5')=1and (ig+ (p—1)0+7,jo+ (¢—1){+j') € E then
T=TU{(p.rq)}
{ Observation 1: (p,r,q) € T iff there is a triangl€i, k, j) with i € [ig + (p — 1)¢ + 1,40 + p¥],
k€ lko+ (r—1)0+1,ko+rl],andj € [jo+ (¢ — 1)+ 1,50 + qf] }

for every (p,r,q) € T do
if thereis ap/,r’,q') € T withp < p/,r <1/, q < ¢ then
remove(p, r, q) fromT
{ Observation 2: (p,,q) is removed front’ iff there is a(p/, 7', ¢') e Twithp < p',r <r',q¢<¢.}

for every (p,r,q) € T do
call HT: (G, [io + (p — 1)+ 1,i0 + pl), [ko + (r — 1)l + 1, ko + ], [jo + (¢ — 1) + 1, jo + q/])

Return the maximum-weight triangle among the triangles returned by these calls

Lemma 1 The procedurei T is correct, that is, it returns a maximum-weight triangte;, k), if

any,suchthat € I, j € J,andk € K.
Proof. The correctness of the algorithm follows from the two faling observations:
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1. just before pruning’, (p,r,q) € T if and only if there is a triangléi, &, j) with i € [ig +
(p— 1)+ 1do+pl], k € [ko+ (r— 1)l + 1, ko +rl],andj € [jo + (¢ — 1)l + 1, jo + qf];

2. (p,r,q) is then removed fronT" if and only if there is &p’, ', ¢') € T withp < p/, r < 1’,
q<¢q.

Indeed, the latter property implies that if there is a trian(@, &, j) with ¢ € [io + (p — 1){ +
Lyig+pl), k € [ko+ (r—1)0+1, ko+r(],andj € [jo+ (¢—1)(+1, jo+¢f], then the triplgp, ¢, r)
representing such trianglés k, j) is removed froml” only if there is another trianglg’, &', ;')
suchthatforsom@&/’,r’,¢') € Twithp < p',r <1',q < ¢',we have’ € [ig+(p'—1)(+1,io+p'{],

K € [ko+ (r'—1)0+1,ko+r'l],andj’ € [jo+ (¢ — 1){+1, jo + ¢'¢]. It follows by the properties
of the initial vertex numbering that then such a triangle:, j) cannot be any maximum-weight
triangle. O

To estimate the running time of the proceduifé; we shall use the following lemma.

Lemma 2 Let ¢ be any positive integer. LeX be any subset of1,2,...,£}? which does not
contain any twa, ¢’ such that’ has each coordinate greater than the corresponding orie Trne
cardinality of X is at mos3(¢ — 1) — 3(£ — 1) + 1.

Proof. Define the relation< such that(i, k,j) < (¢, k', ;") iff i <, k < k', andj < j'. The
relation< defines a partial order ofll, 2, ..., £}, For each(ty, to, t3) € {1,2,...,£}? that has at
least one coordinate equal taefinechain((ty, s, t3)) to be the set of all triples ifi1,2, ..., £}

of the form(t, +i,to+i,t3+14) fori = 0,1, ... Observe thathain(t) is indeed a chain in the poset
({1,2,...,¢}?%, <) and the chainshain(t) cover all the elements ifil, 2, ..., £}2. It follows now
from Dilworth’s lemma [8] that the cardinality of the largemti-chain in the aforementioned poset
does not exceed the number of the triples with at least onelowie equal td, which in turn, is
atmoste® — (€ —1)3=3(¢—1)> —=3(¢ —1) + 1. O

Lemma 3 The running time of{ 7 satisfies the recurrence
T(r) S BE =17 =3(E - 1) +1)-7(r/ + O - £+ &) . (1)

Proof. Forming the Boolean matrice$,. and B,,,, computing their productS; , and computing
T, take timeO (&2 - (2), &3 - O(1~) andO (&3 - 2 + £9), respectively. By Lemma 2, the final size of
T is at most3(¢ — 1)? — 3(£ — 1) + 1. Hence, we obtain the following recurrence for the running
time of HT:

T(k) < O )+ 0) + 0 £ +&)+(3(E—1)° =3(6 = 1) + 1) - 7(¢)
= O w4+ &)+ B(E-1)? =3¢~ 1) +1) - 7(r/€) .

As an immediate corollary, for a sufficiently large constgnie obtain our main result

'Here, let us observe thitg, (3(¢ — 1) — 3(6 — 1) + 1) < log,(3¢?) = ©efthess — o

§—o0
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Theorem 4 A maximum-weight triangle in a vertex weighted graphorertices can be found in
timeO(n*") < O(n*3),

Proof. This result follows from Lemma 3 by solving the recurrenaethe running time of{ 7.

Let us first assume that > 2 + ¢ for some constarti < € < 0.1. Then, let us choosglarge
enough, e.gé > 9%/¢, and solve the recurrence (1) using the Master Theoremésee[5, Chapter
4.3]) to obtainr (k) < O(k*). Indeed, by the Master Theorem, we have to ch@dsege enough
so that (1)s'8BE-D* =30+ < O(x«~</2) and that (2)3(6 —1)2—3(6—1)+1)-(k/E)* < k¥
for some constant < 1 and for large enough.

For the first bound, it is easy to see that it is enough to lfastech thatt > 3%°; indeed, we
havex'0g:(3E-1°-3E-D+1) < O(me=</2)if 3(6—1)2—3(£—1)+1 < €72, Next,3(£—1)2—3(¢—
1) +1 < 3¢2 ande2t/2 < ¢v=</2, Hence, if¢ > 3%/¢, theng!egeBE-1D* =3 D) < O(gw—e/2),
To see the second bound, we note that (2) holds if w8&et’ < c¢. Hence, we can choose any
¢ > 6'/< in order to obtairg¢?~ < 1.

Next, let us consider the case when< 2 + ¢. Then similarly as in the other case, one can
chooset to solve the recurrence (1) (e.g., using the Master Theotewitainr (k) < O(k?14c),

Let us sett = 2!/(29, Then, since < 0.1, we have that > 9, and thus3(¢ — 1)? — 3(¢ —
1) +1 = 3% — 9¢ + 7 > 2£2. With this bound and using the inequality< 2 + ¢, we obtain that
gote < @ < 28?2 < 3(6—1)2 = 3(§ — 1) + 1. Hence, we geb < logg(3(§ — 1) — 3(¢ —
1) 4+ 1) — e. Thereforex® = O (k'8 BE-1*-3E-D+1)-) 'what, by the Master Theorem (see, e.g.,
Case 1 in [5, Theorem 4.1]), yieldgx) = O(x'gE-1°=3¢-D+1)) " Finally, we observe that
loge(3(6 = 1)2 = 3(6 — 1) + 1) < logg(3¢?) = TSRS <94 (2o — 94 25 = 24 de.
Thereforer (k) = O(k?14).

Summarizing, we obtain the running timeax{O(n?*<), O(n*)} = O(n*") for an arbitrarily
small fixede > 0. O

3 Improved bounds for sparse graphs

By arguing analogously as in the proof of Theorem 2 in [13], &e fine the upper bound from
Theorem 4 in the case of sparse graphs as follows.

Corollary 5 A maximum-weight triangle in a vertex weighted graph witkedges and no isolated
vertices can be found in tim@(m =) < O(m!41).

Proof. LetG = (V, E) be the input graph and lef be the set of all vertices il of degree at
mosté. It follows that|V \ X| < 2m/d. In time O(m ), we can enumerate all triangles h

that contain a vertex itX' and find a maximum-weight one among them. On the other hand, a
maximum-weight triangle il that has all vertices it \ X can be found in tim&((m/§)~") by

Theorem 4. By setting = mTTZ*l, we obtain the corollary. O



4 Finding a maximum-weight clique K; and H-subgraphs

In this section, we present a construction that extendslg¢fogithm for finding a maximum-weight
triangle to include finding a maximum-weight clique or anyxmaum-weight subgraph isomor-
phic to a given graph.

Theorem 6 A maximum-weight cliqué&’, in a vertex weighted graph amvertices can be found
in time
O(nLh/3J-w*+(h mod 3)) )

Proof. Letf = |h/3]|. Suppose first that = 3f. Form a new graplé=’ in which each vertex
corresponds one to one tdg in the original graplG and the weight of such a vertex equals the
total weight of the vertices in thi&’;. Two vertices inG’ are connected by an edge if and only
if the corresponding cliques form aii,; clique inG. Observe tha&’ hasO(n') vertices and it
can be constructed in tim@(n?/). Furthermore, a maximum-weight triangle i corresponds
to a maximum-weight, clique inG. Therefore, by using Theorem 4 to find a maximum-weight
triangle inG’, we can find a maximum-weight clique @& in time O(n*").

Next, let us consider the case= 3 f + 2. Find all cliquesk; and K, that are subgraphs of
G. Divide the K s, subgraphs int@(n) groups of size&)(n/). For each such two groupsandb
(a can be equal té) and theK ; subgraphs form a tripartite graygh, , whose vertices in the first
part, second part and the third part are in one to one comegpae with: the<;; subgraphs in
the first group, the<;,; subgraphs in the second group, and #hesubgraphs ofz, respectively.
The weights of the vertices iy, , are equal to the total weights of the corresponding cliqoes i
G. There is an edge between two verticesdp, if the corresponding cliques are disjoint and
induce the clique iz whose size equals the sum of their sizes. Observe that atbisructions
can be easily done in total tin@®(n>/*2). Now note that a maximum-weight triangle among the
maximum-weight triangles in the grapbs , yields a maximum-weighk’, in G. By Theorem 4,
it takes timeO(n? x (nf)~").

The proof of casé = 3f + 1 is analogous. For each groupf the Ky, ; subgraphs we form a
tripartite graph, whose vertices in the first part are in one to one correspadeith thek .,
subgraphs i, whereas the vertices in each of the two remaining partsraome to one corre-
spondence with th&; subgraphs ofs. The vertex weights and edges are specified analogously as
in case of,,;, and all the constructions take tindgn/*! x n/). Analogously, a maximum-weight
triangle among the maximum-weight triangles in the graghyields a maximum-weighi;, in
G. O

It is easy to extend the result from Theorem 6 to arbitraryigedl subgraphs isomorphic to a
given graphH on h vertices. We use an analogous construction to that in thef mfol heorem
6. We decomposéd into three induced subgraph$; (possibly isomorphic); = 1,2,3, and
for each isomorphism between an induced subgrapfy ahd H;, we form a separate node in
an auxiliary graph. Two such nodes are connected by an edge inion of the corresponding
isomorphisms yields an isomorphism between the subgragirced by the vertices of the two
underlying subgraphs and the subgraphHoinduced by the vertices of th&; images (required



to be different) of the two isomorphisms. (In caBe= K}, it has not been necessary to have
separate nodes for different isomorphisms between an @wisiebgraph ofs and a clique which

is a subgraph of{; because of the symmetry between the vertices in the cligtlke respect to
Kh-)

Furthermore, since any subgraph (not necessarily indwfed)on £ vertices which is isomor-
phic to H is a subgraph of the induced subgraphtbbn the samé vertices, finding (not nec-
essarily induced) subgraphs reduces to finding inducedraphbg of the same size. The induced
subgraphs correspond to all possible super-grapltt @ 4 vertices. This yields the following.

Theorem 7 Let H be a fixed graph oh vertices. A maximum-weight induced subgraph of a vertex
weighted graph om vertices that is isomorphic t& can be found in time

O(nLh/3J-w*+(h mod 3)) )

In asymptotically the same time complexity one can find ammaxi-weight subgraph (not neces-
sarily induced) isomorphic téf.

5 Refinement by using fast rectangular matrix multiplication

The algorithms and the bounds from Theorems 6 and 7 can bewegbifor2 mod 3 # 0 if we
use fast rectangular matrix multiplication algorithmss{gad of fast square matrix multiplication).
Letw(1, 0, 1) denote the exponent of the multiplication ofiar n” matrix by ann? x n matrix.

In order to improve Theorems 6 and 7 in termsuot, o, 1), we need to generalize the procedure
HT:(G,I, K,J)toinclude the case where the sizes of the interals and.J are not necessarily
equal. We also relax the requirement that vertices are ntedbe non-decreasing weight order
by requiring solely that within each of the three input intds /, K and.J, the numbering has this
property.

For anyo, % <o <2 let HTé‘”(G, I, K, J) denote such an analogous generalized procedure,
where the sizes aof, K, andJ (besides being powers 6j satisfy|/| = |J| and|K| = |I|°. The
key difference in the body off Té” compared with that off T is that since the matrice$,, and
B,, are now of sizes:/¢ x (k/€)7 and (k/€)? x /&, respectively, we use the fast rectangular
Boolean matrix multiplication algorithm with the exponeritl, o, 1) instead of the fast square one
with the exponenb.



procedure HTé"> (G,I,K,J)

Input: A graphG = (V, E) with vertex weights @ is given as adjacency matrix)
vertices are numbered in non-decreasing weight order frtom
subintervald, K, andJ of [1,...,n], of the lengthx, k7, andx, respectively,

wherex, k7, and(x/£)? are powers of

Output: Maximum-weight triangl€, j, k), if any, such that € I, j € J, andk € K

if Kk =1then
if (<0 4+ 1,70 + 1, ko + 1) is a (non-degenerate) triangledhthen return (ip + 1,50 + 1, ko + 1);
stop
letig, ko, andjy be such that
I =1lip+ 1,i0 + k], K = [ko + 1, ko + 7], andJ = [jo + 1, jo + K]
forall p=1,....&r=1,...,£7do
form ang X (g)" Boolean matrixA,, such that for every <’ < ? andl < k' < (g)":
H . K -/ K /
Apr[i/,k/]: 1 if (ZO +(p—1)g+2,k‘o—l—(?“—l)(z)g—Fk’)GE
0 otherwise.
forall r=1,...,£% ¢q=1,...,£do
form an(%)? x % Boolean matrixB,, such that for every < k&’ < ()7 andl < j' <

3
qu [k/v ]/] = {

1 oif(ho+ (r=1(E) +FK.jo+(@—-1g+Jj)€E
forall p,g=1,....,£andr=1,...,£7do

0 otherwise.
computeCy, = A, x By (using the fast rectangular Boolean matrix multiplication algorithm)
T=10
forall p,g=1,...,¢£andr =1,...,£% do
forall 7,5 = 1,...,§do
if Cpo(@,5')=1and (io+(p—1F+i,jo+(¢—1)§+;) € E then
T=TU{(p,r,q)}
{Observation 1: (p,r, q) € T iff there is a triangl€z, k, j) with i € [ig + (p — 1)% + 1,19 +p§],
kelko+ (r=1)(8)7+ 1Lk +r(g)7, andj € [jo+ (¢ — g +1jo+qg] }
for every (p,r,q) € T do
if thereis ap’,r’,¢') € T withp < p/,r <r', ¢ < ¢ then
remove(p, r, q) fromT

mIx
mIR

{Observation 2: (p,, q) is removed front’ iff there is a(p/, ', ¢') € Twithp < p/',r <7, ¢ <.}
for every (p,r,q) € T do

call HT{ (G, [io + 222 + 1,0 + 2], [ko + T 41, ko + 277, [jo + L% 41, jo + %))

return the maximum-weight triangle among the triangles returned by these calls

By performing an analysis Q‘ErifTé"> analogous to that o/ 7, we obtain the following lemma.



Lemma 8 For anye > 0, there is a sufficiently largé such that the procedurHTé”([, K,J)
returns a maximum-weight trianglg, j, k), if any, wherei € I, j € J, andk € K, in time
O(|]|w(1,a,1) 4 |I|2+e + |I|1+0+€).

Proof. We proceed as in the proof of Lemma 3, but this time to comfhagematrices”;, we
use fast rectangular matrix multiplication. Forming the Bam matrices,, and B,, takes time
O §-(§)7) = O(k'"7), computing their products;, takes timeO(£** - (k/€)*0o), and
computing” takes timeO(£° - k2 + £4729). Using the arguments from Lemma 2, the final size of
Tisatmostg*t? — (£ — 1)%(£7 — 1) = 2617 4 &2 — 2¢ — €7 + 1. Since we considef > 1, this
is always bounded from above By'*” + £2. Hence, we obtain the following recurrence for the
running time ofHTé‘”:

7(k) O(R'7) + O(E17 - (/€)1 D) + O(E7 - w2 4+ €1727) + (26117 + €2) - 7(w/€)

<
< O gl 4 €6) 4 (26117 + €Y 7 (K/E)

with the base case(1) = O(1).

Since we have assumed tl‘@tg o < 2 and sincef is a parameter that we can set as an
arbitrary integer constant, one can solve this recurrenatgously as in the proof of Theorem 4
to conclude that the running time of the algorithmrig) = O(k“1:oD 4 g2+e 4 gltote),

Indeed, the recurrence fot(x) can be simplified tar(k) < O(k“1oD) 4 (2817 + £2) .
7(k/€). Furthermore, by using the Master Theorem and by settingah@metet appropriately,
we can bound-(x) from above by the maximum of the bound coming from the firamntere.,
by O(k<(.=1)), and the bound coming from the other term, i@(x'"°2( ™" +£)) where¢ is
an arbitrary integer parameter. Next , let us simplify thigelabound. Ifc < 1 then we have
O(k1022ET7HE)) < O (02 (38)) = O(k2Ho8e3); otherwise, ifc > 1 thenO (kg7 +8)) <
O(K18eBET7)) = O(k'totlo8e3) holds. Therefore, for any positive constantby setting¢ to
an appropriately large constant we haé:°z( (261++) )) < O(k¥e + g1tot9), This yields the
lemma. O

Equipped with Lemma 8, we can improve the bound form Theordon 6 £ 3 f as follows.

Consider first the case wheén= 3 f + 2. Find all cliquesk; and K, that are subgraphs of
G. Next, form a new grapliz”, where vertices are in one to one correspondence with thedfou
cligues and their weight equals the total weight of the gpoading clique. Two vertices i&”
are adjacent if the corresponding cliques induce a cligue’iwhose size equals the sum of their
sizes. Next, number the vertices Gf such that the vertices corresponding to fig,; cliques
occur in a continuous interval in non-decreasing weigheoes well as those corresponding to the
K cliques occur in a continuous interval in non-decreasiniglateorder.

Set] andJ to the first of the aforementioned intervals alidio the second one, and run the
procedureHé‘”(I, K, J) for G" ando = log; |K|, wherel < o < 1.2 Observe that by Lemma 8

and by the definitions af”, 7, K and.J, the triangle returned b&[é”([, K, J), if any, corresponds

2The simplifying assumption about the sizes of the interagimg the power of can be achieved by increasing
the sizes by a multiplicative factor less thawmia adding dummy vertices.



to a maximum-weight(;, in G. By Lemma 8, monotonicity of the time taken by the multiplioat
of ann x n? matrix by anmn? x n matrix with respect ta ando, and straightforward calculations,
HE'(I, K, J) takes timeO((n/*+1)*(" 7l 4 (nf+1)2+) for sufficiently large constargt

The proof in caséh = 3 f + 1 is analogous with the exception that ndwand .J are set to
the interval of vertices corresponding 6, cliques whereads is set to the interval of vertices
corresponding td<,, cliqgues. By analogous arguments, we conclude that in thiswascan find
a maximum-weights), in time O((n/)* ) 4 pf @549,

By combining our improvements with Theorem 6, we obtain tHiefang theorem.

Theorem 9 Let h be a positive integer, and lgt = |h/3]|. A maximum-weight cliqu&’, in a
vertex weighted graph om vertices can be found in tinig,(n), where

O(nf") if hmod3=0
Th(n) = O(nf'“(l’%’l) +n' (2+%+6)) if hmod3 =1
O(n(fﬂ)w(l’#’l) + U+ if hmod 3 =2 .

Similarly as in the previous section, the results from Tleeo® can be extended to finding a
maximum-weight fixed graph.

Theorem 10 For any fixed integeh, let H be any graph o vertices. A maximum-weight induced
subgraph of a vertex weighted graph oarvertices that is isomorphic té/ can be found in time
Ty (n), where the functiofi},(n) is defined in Theorem 9.

In asymptotically the same time complexity one can find a maxi-weight subgraph (not
necessarily induced) isomorphic .

Coppersmith [3] and Huang and Pan [9] proved the followingsfac
Fact 11 [3, 9]Letw = w(1,1,1) < 2.376 and letax = sup{0 < r < 1:w(l,r, 1) =2+0(1)} >
0.294. Thenw(1,r,1) < B(r), wheres(r) = 2+o(1) forr € [0,a] and3(r) = 24+ <=2 (r —a) +
o(1) forr € [a, 1].

(Observe a useful fact, that if our goal is to compftetr 1) w(l, f , 1), then the bounds in

Fact 11 simplify itto(f +1) - w (1,ffH,1) (f+1)-2++= (m—@) o(1)) =2- %JF

frwto(f) <1844+ f-w+o(f).)
Fact 12 [9, Section 8.1]Jw(1,2,1) < 3.334, and for every- > 1, we havev(1,r,1) < w +r — 1.

(Section 8.1 in [9] contains some discussion about strobgands for w(1,r, 1) for other
valuesr > 2.)
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Therefore, for example, by using the bounds from Facts 111@ndie have (see also Table 2):

T3(n) O(n*") < O(n2%)
Ty(n) = Om“E2D 43ty < On*33) |
Ts(n) = O(n**" 1) + it < O(n*220) |
Ts(n) = O@*) < Om*™%) |
Tyi(n) = On/*") < Om>¥7)
Tspia(n) = O/ 1) < O30
Tsp40(n) = O(nf“’ 1844y O(n2.376f+1‘844) .

Note that, for example, this bound subsumes the upper bouhdemrem 6 fork,, K5, and
for K3, for everyf > 1.

6 Conclusions

We have shown that finding a maximum-weight triangle is adptigally not more difficult than
matrix multiplication. Consequently, we could substahtiahprove prior upper time-bounds on
finding a maximum-weight clique of sizZ8(1) and a maximum-weight subgraph isomorphic to a
fixed graph.

A natural question arises whether or not our result for wenteighted triangles is asymptoti-
cally optimal.
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