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Abstract. In this paper we study the use of spectral techniques for graph partitioning. LetG = (V, E)
be a graph whose vertex set has a “latent” partitionV1, . . . , Vk. Moreover, consider a “density matrix”
E = (Evw)v,w∈V such that forv ∈ Vi andw ∈ Vj the entryEvw is the fraction of all possibleVi-
Vj -edges that are actually present inG. We show that on input(G, k) the partitionV1, . . . , Vk can
(almost) be recovered in polynomial time via spectral methods, provided that the following holds:E
approximates the adjacency matrix ofG in the operator norm, for verticesv ∈ Vi, w ∈ Vj 6= Vi the
corresponding column vectorsEv, Ew are separated, andG is sufficiently “regular” w.r.t. the matrixE .
This result in particular applies tosparsegraphs with bounded average degree asn = #V → ∞, and
it yields interesting consequences on partitioning randomgraphs.
Keywords: graph partitioning, spectral methods, random graphs.

1 Introduction and Results

1.1 Spectral Techniques for Graph Partitioning

To solve various types of graph partitioning problems,spectral heuristicsare in common use. Such heuris-
tics represent a given graph by a matrix and compute its eigenvalues and -vectors to solve the combinatorial
problem in question. Spectral techniques are used either todeal with “classical” NP-hard graph partition-
ing problems such as GRAPH COLORING or MAX CUT, or to solve less well defined problems such as
recovering a “latent” clustering of the vertices of a graph.In the present paper we mainly deal with the
latter problem, which is of relevance, e.g., in informationretrieval [3], scientific simulation [29], or bioin-
formatics [14].

Despite their success in applications (e.g., [28, 29]), formost of the known spectral heuristics there
are counterexamples known showing that these algorithms perform badly in the “worst case”. Thus, under-
standing the conditions that cause spectral heuristics to succeed (as well as their limitations) is an important
research problem. To address this problem, quite a few authors have contributed rigorous analyses of spec-
tral techniques on suitable models ofrandom graphs. For example, Alon and Kahale [1] analyzed a spec-
tral technique for GRAPH COLORING, Alon, Krivelevich, Sudakov [2] dealt with the MAXIMUM CLIQUE

problem, and Boppana [6] and Coja-Oghlan [10] studied random instances of MINIMUM BISECTION. In
addition, Flaxman [18] suggested a spectral technique for random 3-SAT.

While the algorithmic techniques of [1, 2, 6, 10, 18] are really tailored for the concrete problems (and
random graph models) studied in the respective articles, a remarkable paper of McSherry [27] investigates
a more generic spectral partitioning algorithm on a rather general random graph model. McSherry’s result
comprises the main results from [2, 6], but does not encompasssparserandom graphs as studied in [1, 10],
or graphs in which edges do not occur independently as in [18].

The goal of the present work is to devise a new, generic spectral heuristic that does capture all the
previous work [1, 2, 6, 10, 18, 27], and that is indeed applicable to much more general settings. To this end,
we shallnot stick to a specific random graph model (howsoever general this model may be). Instead, we
single out as modest conditions as possible that ensure the success of the spectral algorithm. In order to
come up with such conditions, let us observe (informally) the most important features that the random
graphs in prior work have in common. LetG = (V,E) be a graph whose vertex set has a “latent partition”
V1, . . . , Vk; we think ofk being “small” in comparison ton = #V . For v ∈ V and1 ≤ i ≤ k we let
e(v, Vi) signify the number ofv-Vi-edges inG.
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Low rank structure. Define a matrixE = (Evw)v,w∈V of rank≤ k as follows: ifv ∈ Vi andw ∈ Vj , then
Evw is the fraction of all possibleVi-Vj-edges that are actually present inG. LetA(G) be the adjacency
matrix ofG. Then in [2, 6, 27] the norm‖A(G)− E‖ is “small”. By contrast, this is not exactly true in
thesparsegraphs occurring in [1, 10, 18]. Nonetheless, in [1, 10, 18] the graphG′ obtained by removing
a small number of vertices of “atypically high degree” is such thatA(G′) is well approximated by the
low rank matrixE .

Separation. The low rank matrixE mirrors the latent partition of the graph in the sense that for vertices
u, v ∈ H that belong to different classes the norm‖Eu − Ev‖ should be “large enough”; hereEw
denotes thew-column ofE .

Approximate Regularity. For all verticesv ∈ Vi the numbere(v, Vj) is “close” to the average number
#V −1

i

∑

w∈Vi
e(w, Vj).

Core. The graphG has a “large” subgraphH (which is sometimes called the “core” ofG) such that for all
v ∈ H the vectorEv provides a good description of the “densities”e(v, Vj)/#Vj . More precisely, for
w ∈ Vj we define

d(v, w) = e(v, Vj)/#Vj , and we letd(v) = (d(v, w))w∈V ∈ RV . (1)

Then‖d(v) − Ev‖ should be “small” for allv ∈ H . While in [2, 6, 27] we haveH = G, in [1, 10, 18]
the coreH is actually a proper subgraph ofG.

The main result of this paper is a spectral algorithmPartition that recovers the “latent” partition of
a given graphG, provided that (rigorously formulated versions of) the aforementioned conditions are sat-
isfied (cf. Theorem 1). Hence, the result crystallizes “deterministic” conditions that cause spectral methods
to succeed, and may thus contribute to a better understanding of such techniques.

Moreover, the fact that we deal with a general graph partitioning problem requires new, generic algo-
rithmic ideas. For instance, the algorithmPartition is adaptivein the sense that input of the algorithm
only consists of the graphG and the desired number of vertex classesk. Thus, the algorithm does not
requireany further information about the type of the partition (e.g., no lower bound on the size of the
classes or on the separation of vertices in different classes). Furthermore, also the fact that the present work
encompasses, e.g.,sparsegraphs (constant average degree) requires new algorithmicsolutions.

1.2 The Main Result

To state the four conditions from Section 1.1 rigorously, weneed a bit of notation. Throughout the paper,
we letV = {1, . . . , n} be a vertex set, andG = (V,E) denotes a graph. Moreover, letψ : V → {1, . . . , k},
Vi = ψ−1(v), andnmin = min1≤i≤k #Vi. We think ofV1, . . . , Vk as the “latent” partition ofG that we
are to recover. Moreover, consider a symmetrick × k matrix p = (pij)1≤i,j≤k; the intended meaning
is thatpij should equal the “density” of the pairVi, Vj , i.e., the fraction of all possibleVi-Vj-edges that
are actually present inG. Furthermore, letE = E(ψ,p) = (Evw)v,w∈V be then × n matrix with entries
Evw = pψ(v)ψ(w); note thatE has rank≤ k.

If we think of pij as the density of the pairVi, Vj , then we could interpret the entryEvw as the “proba-
bility” that v, w ∈ V are connected – even though we arenotassuming thatG is a random graph. Moreover,
we could consider the term

∑

w∈V Evw(1 − Evw) the “variance” of the number of neighbors ofv (because
the variance of a Bernoulli experiment with success probability Evw is Evw(1 − Evw)). Thus,

σ∗ = max
v∈V

∑

w∈V

Evw(1 − Evw) (2)

can be interpreted as the “maximum variance” of the vertex degrees ofG.
In addition, we need to partitionG into a “sparse” and a “dense” part. To this end, letΦ = (Φvw)v,w∈V

be the matrix with entries

Φvw = 1 if Evw > 1
2 , andΦvw = 0 otherwise. (3)

Then we define

G1 = (V,E1), where E1 = {{v, w} ∈ E : Φvw = 0}, (4)

G2 = (V,E2), where E2 = {{v, w} 6∈ E : Φvw = 1, v, w ∈ V, v 6= w}. (5)
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Thus,G1 consists of all edgese that are present inG such thatΦe is 0, whileG2 contains alle with Φe = 1
that aremissingin G. LetdG1∪G2(v) denote the degree ofv in the graphG1 ∪G2 = (V,E1 ∪ E2).

If M = (mvw)v,w∈V is a matrix andX ⊂ V , then we letMX be the matrix obtained fromM by
replacing all entriesmvw with (v, w) 6∈ X × X by 0. With this notation, we can state the “low rank
structure” condition as follows.

A1. Let A be the adjacency matrix ofG, and letM = E − A. There is a numberσ∗ ≤ λ ≤ σ∗ ·
min{σ∗, nmin/ lnn} such that for any∆ > 0 the setD(∆) = {v ∈ V : dG1∪G2(v) ≤ ∆} satisfies
‖MD(∆)‖ ≤ c0k

√
λ+∆, wherec0 > 0 is a constant.

Thus,A1 states thatE “approximates”A within c0k
√
λ+∆ on the subgraph ofG obtained by removing

all vertices that have degree> ∆ in G1 ∪ G2. The crucial parameter that measures the quality of the
approximation isλ, and thusλ will play an important role in the “separation” condition aswell. Moreover,
we shall see in Section 2 that the occurrence of∆ in the bound inA1 is actually necessary.

LettingEv = (Evw)w∈V signify thev-column ofE , we state the “separation” condition as follows.

A2. Let ρ = c40
√

k3λ/nmin. Then for allu, v ∈ V such thatψ(u) 6= ψ(v) we have‖Eu − Ev‖ ≥ ρ.

This condition says how much for verticesu, v that belong to different classes the vectorsEu, Ev that
represent the “expected densities” should differ. Note thedependence ofρ onλ: the tighterE approximates
A, the more “subtle” the differences betweenEu andEv can be.

To state the “approximate regularity” condition, for each vertexv ∈ V and each setS ⊂ V we let
e(v, S) denote the number of edges fromv to S in G. Moreover, if we think ofEvw as the “probability”
thatv, w are connected inG, then we can considerµ(v, S) =

∑

v 6=w∈S Evw as the “expected” number of
v-S-edges.

A3. All v ∈ Vj obey the boundmax1≤i≤k |e(v, Vi) − µ(v, Vi)| ≤ 0.1
(

1
kσ

∗ + #VIPij(1 − pij)
)

+ ln2 n.

Hence,A3 requires that any vertexv should have approximately the “expected” numberµ(v, Vi) of neigh-
bors in each class. The error term on the r.h.s. involves the maximum varianceσ∗ and in addition the
“variance” #VIPij(1 − pij) =

∑

w∈Vi
Evw(1 − Evw) of the numbere(v, Vi). Moreover, the additive

ln2 n-term is crucial in the case of sparse graphs (cf. Section 2).
Further, we need a fourth condition that ensures that all classesVi have at least polylogarithmic size.

A4. nmin = min1≤i≤k #Vi ≥ ln30 n.

As a next step, we shall formulate the “core” condition rigorously; intuitively the “core” is a subgraph
H that consists of “well behaved” vertices.

H1. The subgraphH of G satisfies#V \H ≤ λ−4nmin and
∑

v∈V \H dG1∪G2(v)
2 ≤ nmin.

H2. For allv ∈ H the vectord(v) defined in (1) satisfies‖Ev − d(v)‖2 ≤ 0.001ρ2.
H3. All v ∈ H have degree≤ 10σ∗ in the graphG1 ∪G2.
H4. In the graphG1 ∪G2 eachv ∈ H has at most100 neighbors inV \H .

Thus,H1 requires that the coreH constitutes a “large” share ofG, and that the vertices outside ofH are
not incident with an exorbitant number of edges. Furthermore, byH2 for all v ∈ H the vectord(v) should
be close toEv. In addition,H3 requires that the verticesv ∈ H do not have a too high degree inG1 ∪ G2,
andH4 means thatH should be “well separated” fromV \H .

Theorem 1. There are a polynomial time algorithmPartition and a constantC > 0 such that for
eachc0 > C and each integerk ≥ 2 there exists a numbern0 so that the following is true. Suppose
that n ≥ n0 and σ∗ ≥ c0, that A1–A4 hold, and thatH is a subgraph ofG that satisfiesH1–H4.
ThenPartition(G, k) outputs a partition(T1, . . . , Tk) of V such thatTi ∩ H = Vτ(i) ∩ H for some
permutationτ of {1, . . . , k}.
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Hence,A1–A4 andH1–H4 ensure thatPartition can recover the planted partitionV1, . . . , Vk on the
subgraphH . However,Partition cannot recover theentirepartitionV1, . . . , Vk in general. In fact, as
we shall see in Section 2, recovering the partitionV1, . . . , Vk perfectly isimpossiblein general; the reason
basically is that we only assume thatd(v) is close toEv for v ∈ H . Thus, loosely speaking Theorem 1 says
that ifG has a “nice” low rank structureE , then we can recover a large piece ofE in polynomial time.

Furthermore, we emphasize that the input ofPartition onlyconsists of the graphG and the desired
numberk of classes;no other parameters of the partition (e.g.,E , ρ, nmin) are revealed to the algorithm.
Thus,Partition is adaptivein the sense that the algorithm finds out on its own what “type”of partition
it is actually searching for. Indeed, this adaptivity requires new algorithmic ideas, and it is one of the main
achievements of this paper; it also seems to be an important feature in applications.

1.3 Random Graphs

We shall apply Theorem 1 to obtain a rather general result on partitioning random graphs. While the scope
of Theorem 1 is not limited to the type of random graphs we are considering in this section, the model is
interesting because it encompasses the random graphs studied in prior work [1, 2, 6, 10].

Let ψ, p, andE be as in Section 1.2. Then we can define a random graphGn,k(ψ,p) as follows: the
vertex set ofGn,k(ψ,p) is V = {1, . . . , n}, and any two verticesv, w ∈ V are connected with probability
Evw independently. We say thatGn,k(ψ,p) has some propertexP with high probability(“w.h.p.”) if the
probability thatP holds tends to1 asn→ ∞. As we shall see in Section 2,Gn,k(ψ,p) comprises various
random graph models for specific partitioning problems suchas GRAPH COLORING or MAX CUT.

Theorem 2. Letk be a number independent ofn, and suppose thatψ andp satisfy the following.

R1. for the quantityσ∗ defined in (2) we haveσ∗ ≥ ln2(n/nmin),
R2. nmin ≥ ln30 n, and
R3. for all u, v ∈ V such thatψ(u) 6= ψ(v) the inequality

‖Eu − Ev‖2 ≥ ρ2 =
c0k

3σ∗

nmin
+ c0 ln

(

σ∗ +
n

nmin

)

max
1≤i≤k

k
∑

j=1

pij(1 − pij) (6)

holds, wherec0 is a large enough constant.

Then w.h.p.G = Gn,k(ψ,p) has the propertiesA1–A4 stated in Theorem 1, andG has a subgraph
H = core(G) that satisfiesH1–H4. Furthermore, w.h.p. all components of the graph(G1 ∪G2)−H have
at mostlnn vertices.

Letting d(v, w) andd(v) be as in (1), we haveE(d(v, w)) = Evw. The subgraphcore(G) basically
consists of those vertices for whichd(v) is close to its meanEv. Thus,core(G) is actually a “canonically”
defined subgraph, and not an artefact produced by the algorithm (cf. Section 8.2 for a precise definition).
Moreover, as(G1 ∪G2)−H just consists of components of logarithmic size, the graphG−H has a very
simple structure.

To explain (6), we note thatEvw = E(d(v, w)), so thatE(‖Ev − dv‖2) quantifies the “variance” of
d(v). Forv ∈ Vi we can bound this byE(‖Ev − d(v)‖2) ≤ σ∗/nmin.Furthermore,‖Ev − Ew‖2 quantifies
how much the planted partition influencesd(v) − d(w). Hence, (6) basically says thatPartition can
(almost) recover the planted classesV1, . . . , Vk if the influence‖Ev−Ew‖2 exceeds the boundσ∗/nmin on
the “random noise” by a certain amount.

1.4 Related Work

The conditionsA1–A4 in Theorem 1 are reminiscent of the work on quasi-random graphs due to Chung
and Graham [9], who investigate the connection between spectral and combinatorial graph properties.
Moreover, several authors have investigated the applicability of spectral techniques under various other
types of conditions: Bilu and Linial [4] studied stable instances, the work of Frieze and Kannan [19] applies
to dense graphs (average degreeΩ(n)), Kannan, Vempala, and Vetta [25] considered a bicriteria measure
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for clustering, and Spielman and Teng [30] investigated planar graphs. In comparison with prior work, the
new aspect of the present paper is that our goal is not to optimize some objective function, but to detect and
recover a “latent low rank structure” of a given graph. Thus,Theorem 1 is the first result that provides a
generaldeterministicformulation of this problem that ensures that the low rank structure can be computed
in polynomial time.

TheGn,k(ψ,p) model was first considered by McSherry [27], who presented a polynomial time al-
gorithm that recovers the planted partition ofG = Gn,k(ψ,p), provided that the following holds. Let
σ2

max = max1≤i,j≤k pij(1 − pij), and letc0 > 0 be a large enough constant; then the assumption reads

‖Eu − Ev‖2 ≥ c0k · max

{

σ2
max,

ln6 n

n

}

·
[

n

nmin
+ lnn

]

if ψ(u) 6= ψ(v). (7)

The two conditions (7) and (6) compare as follows. Due to thelnn-terms occurring in (7), this condi-
tion Gn,k(ψ,p) must have average degree at leastln3 n (and≤ n − ln3 n). By contrast, Theorem 2 also
comprises the following three types of graphs.

Sparse graphs.Condition (6) allows that the meanµ(v, Vj) of the number ofv-Vj-edges may beO(1)
for all v ∈ V and1 ≤ j ≤ k. In this case the average degree ofGn,k(ψ,p) is bounded asn→ ∞.

Massive graphs.Similarly, (6) allows thatµ(v, Vj) = #Vj − O(1) for all v, j. ThenGn,k(ψ,p) is a
massive graph, i.e., the average degree isn−O(1).

Mixtures of both. The most difficult case algorithmically is a “mixture” of theabove two cases: for any
v andj we either haveµ(v, Vj) = O(1) or µ(v, Vj) = #Vj − O(1). In other words, some of the
subgraphs induced on two setsVi, Vj are sparse, while others are massive.

In fact, the algorithm suggested in [27] fails to produce a partition that is even close to the “planted”
one on the three above types of inputs. The reason is essentially that, e.g., sparse random graphs have a
considerably moreirregular degree distributionthan random graphs of average degree� lnn, and that the
tails of the degree distribution affect the spectrum of the adjacency matrix (cf. Section 2).

Furthermore, condition (7) is phrased in terms ofnσ2
max, which may exceed the expressionσ∗ from (2)

significantly if, e.g.,Gn,k(ψ,p) features a “small” part (say, of sizen0.1) of density 1
2 . In this case (6)

can be a considerably weaker assumption than (7). Nevertheless, (6) does not strictly improve (7), because
in (6) there occurs a factor ofk3, while (7) only needs a factork (recall, however, thatk = O(1)).

Finally, the algorithmPartition presented in this paper isadaptivein the sense that it just requires
the graphG and the numberk at the input. By comparison, the algorithm as it is describedin [27] does
require further information about the desired partition (e.g., a lower bound on‖Ev−Ew‖ for v, w in distinct
classes, or onnmin). In summary, Theorem 2 extends [27] in the following respects.

– The most important point is thatPartition can cope with the three types of graphs described above
(sparse, massive, and mixed).

– The new algorithm requires only the graphG and the numberk of classes at the input.
– Partition is purely deterministic, while the algorithm in [27] is randomized.

Dasgupta, Hopcroft, Kannan, and Mitra [13] studied the “second eigenvector technique” onGn,k(ψ,p);
an important point of this work is that it provides a rigorousanalysis of this heuristic that contributes
to explaining its success in practice. For graphs of moderate density (average degree≥ polylog(n) and
≤ n− polylog(n)), the authors obtain a similar result as [27]. Their separation assumption is weaker than
both (6) and (7), as they just need to bound‖Eu − Ev‖ in terms of

∑

w∈V Euw(1 − Euw) + Evw(1 − Evw)
rather than in terms ofσ∗ or σmax. However, to achieve this they need some further conditionssuch as a
lower bound ofΩ(n) onnmin (in [27] and in the present worknmin may be as small as polylog(n)).

While in the present paper we are just dealing with the problem of recovering a “latent” partition of a
given graph, there are a number of papers dealing with spectral heuristics for “classical” NP-hard problems.
For instance, Alon, Krivelevich, and Sudakov [2] studied a “dense” random graph (average degreeΩ(n))
with a “planted” clique of sizeΩ(

√
n); the main result of [2] can be rederived easily from Theorem 2as

well as from [27]. Further related results that involve partitioning sparse random graphs (constant average
degree) include Alon and Kahale [1] (3-coloring), Boppana [6] and Coja-Oghlan [10] (MINIMUM BISEC-
TION), Chen and Frieze [8] (hypergraph2-coloring), Flaxman [18] (3-SAT), and Goerdt and Lanka [21]
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(4-NAE-SAT). These results can only partially be derived using the techniques of [27] (namely, under the
additional condition that the average degree must be at least polylogarithmic). Nonetheless, as we shall
point out in Section 2, the main results of [1, 6, 8, 10, 18, 21]follow rather easily from Theorems 1 and 2.

A few authors have analyzed spectral techniques on random graphs that cannot be described in terms
of theGn,k(ψ,p) model. For instance, Dasgupta, Hopcroft, and McSherry [12]suggested a random graph
model with a “planted” partition featuring a “skewed” degree distribution. This model is very interesting,
because it covers, e.g., random “power law” graphs. Their main result is that the planted partition can be
recovered also in this case w.h.p. under a similar assumption as (7). Thus, it is assumed that the average
degree is≥ polylog(n). Applied to theGn,k(ψ,p) model, [12] yields a similar result as [27].

Moreover, Dasgupta et al. [13] point out that their algorithm can cope with certain veryregular sparse
random graphs. More precisely, they consider random graphswith a “planted” partitionV1, . . . , Vk, such
that for any two verticesv, w ∈ Vi have (exactly) the same number of randomly chosen neighborsin each
classVj . It is shown in [13] that under a certain separation condition and under the assumption that all
classesVj have sizeΩ(n/k) the planted partition can be recovered using the second eigenvector heuristic.
However, this model is incomparable toGn,k(ψ,p). In fact, due to the very regular degree distribution, the
model in [13] behaves actually quite similarly to “dense”Gn,k(ψ,p) graphs (average degree� lnn). We
shall see in Section 2 that Theorem 1 also captures the model introduced in [13].

Though some of the currently best results on partitioning random graphs rely on spectral methods,
there are quite a few further references on different techniques. Some examples are Bollobás and Scott [5]
(randomization), Bui et al. [7] (network flows), Dyer and Frieze [15] (combinatorial methods), Feige and
Kilian [16] (semidefinite programming), Jerrum and Sorkin [23] (Metropolis process), and Subramanian
and Veni Madhavan [31] (breadth first search).

1.5 Techniques and Outline

LetG = Gn,k(ψ,p) be a random graph with adjacency matrixA. To recoverV1, . . . , Vk, McSherry [27]
employs the following “projection method”. Letζ1, . . . , ζk be the eigenvectors ofA with the k largest
eigenvalues in absolute value. LetP be a projection ofRV onto the subspace spanned byζ1, . . . , ζk, and
let Â = PAP . ThenÂ is called arankk approximationofA. Invoking results on the eigenvalues of random
matrices from [20], McSherry shows thatζ1, . . . , ζk mirror the partitionV1, . . . , Vk, and that therefore the
Frobenius norm‖Â−E‖2

F =
∑

v∈V ‖Âv−Ev‖2 ≤ knσ2
max is “small” (hereÂv, Ev denote thev-columns

of Â, E). In effect,Âv is “close” toEv for “most” verticesv. Thus, due to the separation condition (7) it is
possible to recoverV1, . . . , Vk from Â (provided that the algorithm is given a lower bound on‖Eu − Ev‖
for verticesu, v in different classes).

However, this approach breaks down ifG = Gn,k(ψ,p) is asparsegraph such that#Vipij = Θ(1)
asn → ∞ for all i, j. In this case the rankk approximation doesnot approximateE well. The reason is
that w.h.p. the degree distribution ofGn,k(ψ,p) features anupper tail; for instance, the maximum degree
is Ω( lnn

ln lnn ) w.h.p. In fact, vertices of degreed � σ∗ induce eigenvalues that are as large as
√
d in

absolute value, while the assumption (6) just ensures that the eigenvalues corresponding to the partition
V1, . . . , Vk are aboutk

√
σ∗ in absolute value. In other words, vertices of “atypically high” degree jumble

up the spectrum ofA, so that the most outstanding eigenvalues do not correspondto the desired partition
anymore.

Thus, in the situation of Theorems 1 and 2 we need a more sophisticated approach to obtain a matrix
Â that approximatesE well. Following the work [1] on3-coloring sparse random graphs, one could try
to settle the problem by just removing vertices of degree� σ∗ from G. However, the issue is that the
algorithmPartition does not knowσ∗ (it is given justG andk); indeed, it is not easy to compute (or
approximate)σ∗ fromG. To cope with this,Partition employs a subroutineApprox that constructs a
“Cauchy sequence” of matriceŝAt that “converges” toE .

As a next step,Partition uses the matrix̂A to compute an initial partitionS1, . . . , Sk of G. The
basic idea is to putu, v ∈ V into the sameSi iff ‖Âu − Âv‖ ≤ 0.1ρ, say, whereρ is the separation
parameter fromA2. Of course, the problem is thatPartition doesnot get ρ as an input parameter.
Instead,Partition employs a procedureInitial that computes “centers”ξ1, . . . , ξk and a partition
S1, . . . , Sk such that the “squared distance”

∑k
i=1

∑

v∈Si
‖Âv − ξi‖2 is minimized. This partition turns

out to be “close” toV1, . . . , Vk.
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Finally, to home in onV1, . . . , Vk, Partition calls a local improvement heuristicImprove. This
heuristic repeats the following operation: to each vertexv we assign a vectorδ(v) that represents the
densitiese(v, Si)/#Si (reminiscent of (1)). Then,Improve shifts each vertexv into that classSi such
that‖δ(v) − ξi‖ is minimum. While this procedure is purely combinatorial, its analysisrelies on spectral
arguments and may be of independent interest. A crucial issue here is thatImprove has to deal with
classesV1, . . . , Vk of (possibly) vastly different sizes, e.g.,polylog(n) vs.Θ(n).

The paper is organized as follows. In Section 2 we illustrateTheorems 1 and 2 with some examples
of concrete graph partitioning problems. Sections 3–7 contain the description ofPartition and its
subroutines and the proof of Theorem 1. Moreover, in Section8 we apply Theorem 1 to the random graph
Gn,k(ψ,p), thereby proving Theorem 2. Finally, Section 9 contains theproofs of a few technical lemmas.

1.6 Notation and Preliminaries

Throughout the paper we letV = {1, . . . , n}. If G = (V,E) is a graph, thenA(G) denotes its adjacency
matrix. Further, forX,Y ⊂ V we lete(X,Y ) = eG(X,Y ) denote the number ofX-Y -edges inG, and
we sete(X) = eG(X) = eG(X,X). Moreover,dG(v) = eG(v, V ) denotes the degree ofv.

We letµ(X,Y ) denote theexpectednumber ofX-Y -edges in the random graphGn,k(ψ,p). Even in
Section 3–7, where we do not work with random graphs, it is helpful to use this notation. Further, we set
EVi

= Ev for anyv ∈ Vi. Moreover, we always letΦ denote the matrix (3), andG1, G2 denote the graphs
defined in (4), (5).

If M = (mvw)v,w∈V is a matrix andv ∈ V , thenMv = (mwv)w∈V is thev-column ofM . We let
‖M‖ = maxξ:‖ξ‖=1 ‖Mξ‖ denote the operator norm and‖M‖F =

√
∑

v∈V ‖Mv‖2 the Frobenius norm
of M . Further, ifX,Y ⊂ V , thenMX×Y signifies the matrix obtained fromM by replacing all entries
mxy with (x, y) 6∈ X × Y by 0. For brevity we letMX = MX×X . If A a matrix of rank≤ k, then

‖A‖2 ≤ ‖A‖2
F ≤ k‖A‖2. (8)

Furthermore, letA be a symmetric matrix, and letζ1, . . . , ζk denote eigenvectors ofA with thek largest
eigenvalues in absolute value. LetP be the projection onto the space spanned byζ1, . . . , ζk. Then we call
Ã = PAP a rankk approximationof A. This definition ensures that ifB is any rankk matrix, then

‖Ã−A‖ ≤ ‖B −A‖. (9)

2 Applications and Examples

Graph coloring. Alon and Kahale [1] developed a spectral heuristic for coloring 3-colorable graphs gen-
erated according to the following model. Letψ : V → {1, 2, 3} be a random mapping, and letpij = p
if i 6= j andpii = 0 for i, j = 1, 2, 3. ThenV1, V2, V3 is a planted3-coloring ofG = Gn,k(ψ,p). In
this section we observe that the main result of [1] can be derived from Theorem 2 by adding only few
problem specific details (in a similar way one can rederive the results of [6, 10]). We also discuss how the
assumptions (7) from [27] and (6) from Theorem 2 relate to each other.

To satisfy (7), we need thatp ≥ c′(ln3 n)/n for a certain constantc′ > 0. In this case w.h.p.all vertices
v ∈ Vi have(1 + o(1))np/3 neighbors in the other two classesVj , i 6= j (by Chernoff bounds), so thatG
is quite regular. Furthermore, letζi ∈ RV be the characteristic vector ofVi. Then fori 6= j we have

A(G)(ζi − ζj) ∼
np

3
(ζj − ζi), (10)

Moreover, all eigenvectorsξ ⊥ ζ1, ζ2, ζ3 have eigenvalues of orderO(
√
np). Hence, the spectrum of

A(G) is very “clean” in that the three eigenvectors with the “mostoutstanding” eigenvalues correspond to
V1, V2, V3. In fact,V1, V2, V3 can be read off easily from these three eigenvectors w.h.p.

By comparison, the condition (6) of Theorem 2 only requires thatp ≥ c/n for a constantc > 0, which
is exactly the assumption needed in [1]. Let us assume that actually p = c/n. Then the numberse(v, Vj)
for v ∈ Vi 6= Vj are asymptotically Poisson with meanc/3. Therefore, w.h.p.

#{v ∈ Vi : e(v, Vj) = γ} ∼ (c/3)γ exp(−c/3)n/(3γ!) . (11)
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Consequently, it isimpossibleto recover the partitionV1, V2, V3 fromG perfectly. For by (11)G con-
tainsΩ(n) isolated vertices w.h.p., and of courseno algorithm can tell which isolated vertex belongs to
whichVi. This shows that Theorems 1 and 2 are best possible in the sense that in general we can just hope
to recover the correct partition on a subgraphH of G, but not on the entire graphG.

Furthermore, ifp = c/n, then the spectrum ofA(G) does not reflect the planted coloring as nicely as in
the “dense” case. For by (11)G contains a large number of starsK1,d with d � c2. Thus, the eigenvalues
±
√
d� c ofA(K1,d) show up in the spectrum ofA(G). In effect, the “relevant” eigenvalues (10) of order

c are “hidden” among a lot of eigenvalues±
√
d that result from the upper tail of the degree distribution.

Hence, the algorithm from [27] would use eigenvectors merely representing the highest degree vertices,
whence it would fail to recoverV1, V2, V3. (In fact, it has been observed in [26] that the spectrum undergoes
a phase transition asnp ∼ lnn.)

Nonetheless, by Theorem 2Partition can compute setsS1, S2, S3 such thatSi ∩ H = Vi ∩ H ,
whereH = core(G). ThoughS1, S2, S3 do not coincide withV1, V2, V3 perfectly, we can useS1, S2, S3

to 3-colorG. To this end, we follow the strategy of Alon and Kahale: by Theorem 2G −H just consists
of components of size≤ lnn. Hence, for each of these components we can compute in polynomial time a
3-coloring that extends the 3-coloringS1∩H,S2 ∩H,S3∩H ofH . Glueing all these 3-colorings together
yields the desired 3-coloring of all ofG.

Random 3-SAT. Flaxman [18] studied the following model of random 3-SAT. Let x1, . . . , xn be proposi-
tional variables, and letL = {xi, x̄i : 1 ≤ i ≤ n} be the set of literals. Letpi = cin

−3. Moreover, pick a
random assignment ofx1, . . . , xn, letT be the set of literals that evaluate to true, and letF = L \T . Then,
let φ be a random 3-SAT formula obtained by including each possible clause overL that contains exactlyi
literals inT with probabilitypi independently.

Flaxman presents an efficient algorithm that computes a satisfying assignment ofφ, provided (essen-
tially) that c1, c2, c3 exceed a certain large enough constants. The algorithm setsup a graphG with vertex
setL in which each clause is represented as a triangle involving the three literals of the clause. Flaxman
proves that inG the partitionV1 = T , V2 = F enjoys a separation property (similar toA2), and that
therefore a partitionT ′, F ′ of G that coincides withT, F on a large subgraphH of G can be computed
via spectral techniques. Then, he uses a brute force algorithm to assign the literals inG − H so thatφ is
satisfied. The same result can be derived easily by employingthe algorithmPartition from Theorem 1.
Observe, however, that the graphG cannot be described in terms of theGn,k(ψ,p) model, because edges
do not appear independently; thus Theorem 2 does not apply here.

Regular graphs. Bui et al. [7] suggested the following model for MINIMUM BISECTION: suppose that
d′ > d and thatn is even, and letV1, V2 be a random partition ofV into two pieces of equal size. Then,
letG be a graph chosen uniformly at random in which each vertexv ∈ Vi has exactlyd′ neighbors inVi
and exactlyd neighbors inV3−i (i = 1, 2). Bui et al. show that in this model a minimum bisection (namely
V1, V2) can be computed in polynomial time (via flow techniques), provided (essentially) thatd′ > c and
d = o(1) for a certain constantc > 0.

Using methods from [24], one can show that w.h.p.G has the propertiesA1–A4, and thatH1–H4
actually hold forH = G, provided thatd′ ≥ d+ c(

√
d′ + 1) for a certain constantc > 0. Thus, Theorem 1

shows thatPartition yields an optimal bisection w.h.p. This result improves on [7] considerably, since
the necessary condition on the parameters is much weaker (but of course the flow techniques suggested
in [7] are of independent interest). A similar result was obtained in [13] (via spectral techniques as well).

Once more,G cannot be described in terms of theGn,k(ψ,p) model, because the edges do not occur
independently. However, even thoughG can be a sparse graph, due to its very regular degree distribution it
is much easier to deal with than a sparse random graphGn,k(ψ,p) (e.g., we can setH = G here).

3 The Algorithm Partition

Throughout Sections 3–7, we letG be a graph that satisfiesA1–A4. Moreover, we assume thatH is a sub-
graph ofG that has the propertiesH1–H4. Furthermore, we implicitly assume thatn andc0 are sufficiently
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large. Finally, we use the symbolsΦ, σ∗,G1, andG2 as defined in Section 1.2.Note thatA3 implies that

dG1∪G2(v) ≤ 7σ∗ + ln3 n for all v ∈ V. (12)

In the sequel, we summarize the functioning ofPartition and its subroutines. We will present and
analyze the subroutinesIdentify, Approx, andImprove in detail in Sections 4–7.

Algorithm 3. Partition(G, k)
Input: A graphG = (V,E) and an integerk. Output:A partitionT1, . . . , Tk of G.

1. Run the procedure Identify(G,k).
2. If Identify fails, then let Â be a rank k approximation of A.

otherwise let ϕ = (ϕvw)v,w∈V be the output of Identify, and let Â = Approx(G, ϕ).
3. Let (S1, . . . , Sk, ξ1, . . . , ξk) = Initial(Â, k).
4. Let (T1, . . . , Tk) = Improve(G, S1, . . . , Sk, ξ1, . . . , ξk).

Output (T1, . . . , Tk).

In Steps 1–2 the goal is to compute a matrixÂ that approximatesE well. If σ∗ � lnn is not too small,
thenA1 ensures that we could just let̂A be any rankk approximation ofA(G).

By contrast, ifσ∗ is small (say,σ∗ = O(1) asn → ∞) thenG consists of “extremely sparse” and/or
“extremely dense” parts. Indeed, byA4 the average degree ofG1 ∪ G2 is ≤ 1000σ∗, say. In this case a
rank k approximation ofA(G) doesnot provide a good approximation ofE (cf. Section 2). Instead, to
approximateE , it is instrumental to determine which parts of the graph aresparse and which are dense, i.e.,
to compute the matrixΦ. This is the aim of the procedureIdentify, cf. Section 4.

Proposition 4. Identify either outputs the matrixΦ or “fail”, and if σ∗ ≤ ln3 n, then the output isΦ.

Moreover, in Section 5 we shall establish the following.

Proposition 5. If ϕ = Φ, then the output̂A of Approx(G,ϕ) is a matrix of rankk such that‖Â− E‖ ≤
c20k

√
λ. Furthermore, ifσ∗ > ln3 n, then any rankk approximationA′ ofA satisfies‖A′ − E‖ ≤ c20k

√
λ.

Combining Propositions 4 and 5, we conclude that the matrixÂ computed in Step 2 satisfies

‖Â− E‖ ≤ c20k
√
λ, and thus‖Â− E‖2

F

(8)
≤ c50k

3λ
A2
≤ c−3

0 ρ2nmin. (13)

Consequently, since‖Â − E‖2
F =

∑

v∈V ‖Âv − Ev‖2, for “most” verticesv the distance‖Âv − Ev‖ is

“small” (< 0.01ρ, say). Therefore,Initial partitions the verticesv ∈ V according to the vectorŝAv.
More precisely,Initial computesk “centers”ξ1, . . . , ξk ∈ RV and a partitionS1, . . . , Sk of V such
that essentiallySi consists of those verticesv that are close toξi, cf. Section 6.

Proposition 6. The output ofInitial enjoys the following properties.

1. There is a permutationτ of {1, . . . , k} such that‖ξi − Eτ(i)‖2 ≤ 0.001ρ2 for all i = 1, . . . , k.

2.
∑k

i=1 #Si4Vτ(i) < 0.001nmin.

3.
∑k

a,b=1 #Sa ∩ Vb · ‖Eτ(a) − Eτ(b)‖2 < 0.001ρ2nmin for all 1 ≤ j ≤ k.

While the initial partitionS1, . . . , Sk is solely determined by the matrix̂A, the subroutineImprove ac-
tually investigates combinatorial properties ofG.Improve performs iteratively a local improvement of the
initial partitionS1, . . . , Sk that restricted to the subgraphH converges to the planted partitionV1, . . . , Vk.

Proposition 7. There is a permutationτ such that the outputT1, . . . , Tk of Improve satisfiesTi ∩H =
Vτ(i) ∩H for all i = 1, . . . , k.

A detailed description ofImprove can be found in Section 7. Finally, since all the procedures run in
polynomial time, Theorem 1 is an immediate consequence of Propositions 4–7.
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4 Identifying Sparse/Dense Parts

4.1 The ProcedureIdentify

Algorithm 8. Identify(G, k)
Input: A graphG = (V,E), the integerk. Output:Either a matrixϕ = (ϕvw)v,w∈V or “fail”.

1. Compute a rank k approximation A∗ = (a∗
vw)v,w∈V of A(G).

Let B = (bvw)v,w∈V be the matrix with entries bvw = 1 if a∗
vw ≥ 1

2
and bvw = 0 otherwise.

2. Construct an auxiliary graph B = (V, F ), where {v, w} ∈ F iff ‖Bv − Bw‖ > ln24 n.
Apply the greedy algorithm for graph coloring to B, and let T1, . . . , TR be the resulting color
classes.

3. For all i, j ∈ {1, . . . , R} and each pair v ∈ Ti, w ∈ Tj let

ϕvw =







1 if i 6= j ∧ eG(Ti, Tj) > 0.66#Ti#Tj

1 if i = j ∧ eG(Ti) > 0.66
(

#Ti

2

)

,

0 otherwise.

4. Let G∗
1 be the subgraph of G consisting of all edges {v, w} ∈ E such that ϕvw = 0. Moreover, let

G∗
2 be the subgraph of Ḡ consiting of all edges {v, w} 6∈ E satisfying ϕvw = 1.

If R ≤ k and the maximum degree of G∗
1 ∪ G∗

2 is ≤ ln4 n, then return ϕ. Otherwise output “fail”.

The aim ofIdentify is to compute the matrixΦ defined in (3). Let us call two classesVi, Vj similar
if for all indicesl we havepil ≥ 1

2 ↔ pjl ≥ 1
2 . Moreover, we say that two verticesv, w are similar if they

belong to similar classesVi, Vj .
Identify performs a very coarse spectral partitioning ofG to identify similar vertices. As a first step,

Identify computes a low rank approximationA∗ of A(G). By A1 A∗ should provide at least a “rough”
approximation ofE . Then,Identify constructs a matrixB by rounding the entries ofA∗ to 0/1; as the
desired outputΦ is obtained by rounding the entries ofE ,B should be “close” toΦ. In fact, ifσ∗ is “small”,
then the entries ofE differ from 0/1 only “a little”, so thatB should actually be close toE . In Section 4.2
we shall prove the following lemma to estimates‖B − E‖.

Lemma 9. If σ∗ ≤ ln10 n, then‖B − E‖2
F ≤ log23 n.

Of course, the difficult part aboutIdentify is that we are to compute a matrixϕ that coincidesexactly
with Φ. To this end, Step 2 ofIdentify sets up a graphB in which two verticesv, w are adjacent iff their
columnsBv,Bw are far apart. Hence, two vertices should be adjacent inB iff they arenotsimilar, and thus
B should be a completer-partite graph for somer ≤ k. Now, the algorithm computes a greedy coloring
T1, . . . , TR of B. If B is indeed completer-partite, then clearly the greedy algorithm will useR = r ≤ k
colors. Finally,Identify sets up a matrixϕ that attains the value1 onTi×Tj if the pairTi, Tj is “dense”,
and0 otherwise. In Section 4.3 we shall prove that this yields thedesired output ifσ∗ ≤ ln3 n.

Lemma 10. If σ∗ ≤ ln10 n, thenIdentify either fails or outputsϕ = Φ. Furthermore, ifσ∗ ≤ ln3 n,
then actuallyIdentify outputsϕ = Φ.

In the light of Lemmas 9 and 10, to complete the proof of Proposition 4 we just need to show that in
the caseσ∗ > ln10 n the algorithm outputs “fail” (but does not return a “wrong” matrixϕ 6= Φ).

Lemma 11. If σ∗ > ln10 n, thenIdentify outputs “fail”.

The proof of Lemma 11 can be found in Section 4.4. Finally, Proposition 4 is an immediate consequence
of Lemmas 9–11.

4.2 Proof of Lemma 9

To prove the lemma, we shall establish the two estimates

‖Φ− E‖2
F ≤ ln22 n, (14)

‖Φ−B‖2
F ≤ ln22 n. (15)
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Then the assertion follows immediately by applying the triangle inequality.
SinceΦ, E both have rank≤ k, (8) yields

‖Φ− E‖F ≤
√

2k‖Φ− E‖ ≤
√

2k

k
∑

i,j=1

‖ΦVi×Vj
− EVi×Vj

‖

=
√

2k
∑

i,j:pij≤
1
2

pij‖JVi×Vj
‖ +

√
2k

∑

i,j:pij>
1
2

(1 − pij)‖JVi×Vj
‖

≤
√

2k

k
∑

i,j=1

2pij(1 − pij)
√

#Vi#Vj ≤
√

8k

k
∑

i,j=1

pij(1 − pij)#Vj ≤ (2k)3/2σ∗ ≤ ln11 n,

because we are assuming thatσ∗ ≤ ln10 n. Hence, we obtain (14).
Finally, to establish (15) we note thatmaxv∈V dG1∪G2(v) ≤ 11 ln10 n by (12). Therefore,A1 yields

‖A∗ − E‖2 ≤ c20k
2(σ∗ 2 + 11 ln10 n) ≤ 2c20k

2 ln20 n. Hence, as bothA∗, E have rankk, (8) entails

‖A∗ − E‖2
F ≤ 2k‖A∗ − E‖2 ≤ ln21 n. (16)

Furthermore, asσ∗ ≤ ln10 n, we havepij(1 − pij) ≤ ln−1 n ≤ 0.01, because#Vj ≥ nmin ≥ ln11 n by
A4 andσ∗ ≥ pij(1 − pij)#Vj for all 1 ≤ i, j ≤ k. Hence, ifBvw 6= Φvw , then|A∗

vw − Evw| ≥ 1
3 , and

thus‖B − Φ‖2
F ≤ 9‖A∗ − E‖2

F . Therefore, (15) follows from (16).

4.3 Proof of Lemma 10

Throughout we assume thatσ∗ ≤ ln10 n. To prove Lemma 10, we need the following observation.

Lemma 12. Let 1 ≤ i, j ≤ k. If pij > 1
2 , then actuallypij > 0.9. Moreover,pij ≤ 1

2 in fact implies that
pij < 0.1.

Proof. By Lemma 9 we have‖B − E‖2
F ≤ log23 n. Suppose thatpij > 1

2 . If pij < 0.9, then for all
v ∈ Vi and allw ∈ Vj we would have|Bvw − Evw| ≥ 0.1, which yields the contradiction‖B − E‖2

F ≥
0.01#Vi#Vj ≥ 0.01n2

min > ln50 n (cf A4). A similar argument establishes the second assertion. ut
Corollary 13. For all v, w ∈ V we have‖Bv −Bw‖2 ≤ ln24 n⇔ v, w are similar.

Proof. Suppose thatv ∈ Vi andw ∈ Vj are not similar. Let1 ≤ l ≤ k be such thatpil > 1
2 andpjl ≤ 1

2 .
Since‖B − E‖2

F ≤ ln23 n by Lemma 9, there are at most2 ln23 n verticesu ∈ Vl such thatBvu = 0.
Similarly, for at most2 ln23 n verticesu ∈ Vl we haveBwu = 1. Hence,‖Bv−Bw‖2 ≥ #Vl− 4 ln23 n >
ln24 n by A4.

Conversely, assume thatv, w ∈ V are similar. Letx = #{u ∈ V : |Buv − Euv| ≥ 1
3} andy = #{u ∈

V : |Buw − Euw| ≥ 1
3}. Since for alli, j we either havepij < 0.1 or pij > 0.9 by Lemma 12, we obtain

‖Bv −Bw‖2 ≤ x+ y ≤ 9‖B − E‖2
F ≤ ln24 n, thereby proving the corollary ut

Corollary 14. For all 1 ≤ i, j ≤ k the following holds:

if pij > 1
2 , thene(Vi, Vj) ≥ 2

3#Vi#Vj (i 6= j), resp.e(Vi, Vj) ≥ 2
3

(

#Vi

2

)

(i = j), (17)

if pij ≤ 1
2 , thene(Vi, Vj) ≤ 1

3#Vi#Vj (i 6= j), resp.e(Vi, Vj) ≥ 1
3

(

#Vi

2

)

(i = j). (18)

Proof. To prove (17), suppose thatpij > 1
2 . Since then we actually havepij > 0.9 by Lemma 12, in

the casei 6= j we getµ(Vi, Vj) > 0.9#Vi#Vj , and if i = j, thenµ(Vi) > 0.9
(

#Vi

2

)

. Therefore,A3
implies (17). A similar argument yields (18). ut
Proof of Lemma 10.Corollary 13 implies that two verticesv, w ∈ V are adjacent in the graphB iff they
are not similar. Hence,B is a completeR-partite graph, whose color classesT1, . . . , TR are exactly the
equivalence classes of the similarity relation. Therefore, (17) and (18) entail thatϕ equalsΦ and thus the
graphsG∗

1,G∗
2 constructed in Step 4 ofIdentify coincide withG1 andG2. Consequently,Identify

either outputs “fail” orϕ = Φ. Furthermore, ifσ∗ ≤ ln3 n, then the maximum degree ofG1∪G2 is≤ ln4 n
by (12), whenceIdentify outputsϕ = Φ. ut



12

4.4 Proof of Lemma 11

The basic idea of the proof is as follows. IfIdentify does not fail, thenR ≤ k and the maximum degree
of G∗

1 ∪G∗
2 is ≤ ln4 n. Thus,G consists of≤ k partsT1, . . . , TR such that the graphs induced on the sets

Ti and the bipartite graphs consistsing of theTi-Tj-edges are eitherextremelysparse (maximum degree
≤ ln4 n) or extremelydense (maximal number of “missing” edges per vertex≤ ln4 n). However, according
to the matrixE of “expectations”,G should feature at least one piece of “moderate” density (of average
degree between≥ 1

2 ln10 n in G1 ∪ G2). Hence, ifIdentify does not fail, thenA(G) must be far apart
from E , which contradictsA1.

Let us now carry out this idea in detail. LetM = E − A(G). ThenA1 and (12) entail that‖M‖ ≤
c20k

√

σ∗nmin/ lnn. By contrast, we shall prove that ifIdentify does not fail, then

‖M‖ > 10−4k−3
√
nminσ∗ > c20k

√

σ∗nmin/ lnn, (19)

which is a contradiction.
Thus, assume thatIdentify does not fail and hence outputs some matrixϕ, which is based on a

partitionT1, . . . , TR with R ≤ k. Let 1 ≤ i, j ≤ k be such that#Vjpij(1 − pij) ≥ k−1σ∗ (note that
possiblyi = j). We may assume without loss of generality thatpij ≤ 1

2 (if pij > 1
2 , we just replaceG

by its complement andE by J − E). Clearly, for eachv ∈ Vi there is some1 ≤ γ(v) ≤ R such that
e(v, Vj ∩ Tγ(v)) ≥ R−1e(v, Vj). Indeed, we will show below that

ln9 n ≤ 1

2kR
σ∗ ≤ #Tγ(v) ∩ Vj ≤ e(v, Vj ∩ Tγ(v)) + ln4 n for all v ∈ Vi. (20)

Now, let1 ≤ α ≤ R be such that#γ−1(α) ≥ R−1#Vi. Choose a setS ⊂ γ−1(α) ⊂ Vi of cardinality

s = #S =
⌈

10−4k−3nmin

⌉

(21)

arbitrarily, setT = Tα ∩ Vj \ S, and lett = #T . SincedG1(w) ≤ 11σ∗ for all w ∈ Tγ(α) by (12), and
becauseeG1(γ

−1(α), Tα ∩ Vj) ≥ 1
4kRσ

∗#γ−1(α) by (20), we conclude that

#Tα ∩ Vj ≥
eG1(γ

−1(α), Tα ∩ Vj)
maxw∈Tα

dG1(w)
≥ #γ−1(α)

44k2
≥ #Vi

44k2R
≥ nmin

44k3
≥ 50s. (22)

Therefore,

t = #T ≥ #Tα ∩ Vj − s
(22)
≥ 1

2
#Tα ∩ Vj

(20)
≥ σ∗

4k2
. (23)

Further, combining the right inequality from (20) with (22), we conclude thate(S, T ) ≥ s(t − ln4 n) ≥
0.9st, whileµ(S, T ) ≤ pijst ≤ 1

2st. Hence,

2

5
st ≤ e(S, T )− µ(S, T ) = −〈M1S ,1T 〉 ≤ ‖M‖ · ‖1S‖ · ‖1T ‖ = ‖M‖

√
st. (24)

Thus, combining (21), (23), and (24), we obtain‖M‖ ≥ 2
5

√
st ≥ 10−4k−3

√
nminσ∗, thereby proving (19).

Finally, to prove (20) we first show that

#Tγ(v) ∩ Vj ≥ e(v, Vj ∩ Tγ(v)) ≥ #Tγ(v) ∩ Vj − ln4 n for all v ∈ Vi. (25)

To see this, let1 ≤ β(v) ≤ R be the index such thatv ∈ Tβ(v). If the entries ofϕ on the rectangle
Tγ(v) × Tβ(v) were0, thendG∗

1
(v) ≥ e(v, Tγ(v)) ≥ R−1e(v, Vj). As

e(v, Vj) ≥
1

2
µ(v, Vj) ≥

1

2
#Vjpij ≥

1

2k
σ∗ (26)

by A3 and the choice ofi, j, we conclude thatdG∗

1
(v) ≥ 1

4kRσ
∗ > ln4 n. But thenIdentify would

fail. Consequently,ϕ attains the value1 onTγ(v) × Tβ(v). Therefore,#Tγ(v) ∩ Vj − e(v, Vj ∩ Tγ(v)) ≤
dG∗

2
(v) ≤ ln4 n (because otherwised∗G2

(v) > ln4 n, so thatIdentify would fail), whence (25) follows.
Furthermore, combining (25) and (26) we obtain (20), because e(v, Vj ∩ Tγ(v)) ≥ R−1e(v, Vj) by the
definition ofγ(v).
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5 Approximating the Expected Densities

5.1 The ProcedureApprox

Algorithm 15. Approx(G,ϕ)
Input: A graphG = (V,E) and a matrixϕ = (ϕvw)v,w∈V . Output:A matrix Â.

1. Let G∗
1 be the graph consisting of all edges {v, w} ∈ E such that ϕvw = 0. Further, let G∗

2 consist
of all edges {v, w} 6∈ E satisfying ϕvw = 1.
Let ∆ = n, set R0 = ∅, and let A0 = (a0,vw)v,w∈V = A(G).

2. For t = 1, . . . , log2 ∆ do
3. Let ∆t = 2−t∆ and Rt = {v ∈ V : dG∗

1
∪G∗

2
(v) > ∆t}.

Let At = (at,vw)v,w∈V be the matrix with entries at,vw = ϕvw if (v, w) ∈ Rt × V ∪ V × Rt,
and at,vw = at−1,vw otherwise.
If there is an 0 ≤ s < t such that ‖As − At‖ > 4c0k

√
∆s, then abort the for-loop and go to

Step 4.
4. Let t̂ = max{0, t − 1} and return a rank k approximation of At̂.

The aim ofApprox is to compute a low rank matrix̂A that approximatesE . To this end,Approx
analyses the spectrum ofA. On the one hand, ifλ ≥ ln2 n, then byA1 thek largest eigenvalues in absolute
value ofA yield a good enough approximation of the spectrum ofE (cf. Section 3). On the other hand, if
λ is “small” – e.g.,σ∗ ≤ λ = O(1) – then the “relevant” eigenvalues ofA do not necessarily stand out
anymore but may be hidden among “noise” that is due to fluctuations of the vertex degrees (cf. Section 2).
Indeed, the “relevant” eigenvalues corresponding to the spectrum ofE are in general aboutk

√
λ, while

vertices that have degreed� k2λ in the graphG1 ∪G2 induce eigenvalues
√
d� k

√
λ.

Of course, if the parameterσ∗ were known to the algorithm, then we could just delete all verticesv
such that, say,dG1∪G2(v) > 10σ∗ to “clean” the spectrum ofA(G). We do, however,not assume thatσ∗

is given at the input, but that we are given merelyG andk. Furthermore, it is not feasible to just try all
possible values ofσ∗ either. For the algorithm also does not quite know what kind of partition it is looking
for, and therefore we could in general not tell from the resulting partition which value ofσ∗ was correct.
For instance, for a wrong value ofσ∗ the algorithm may easily miss some small planted classVi but instead
split some other big classVj into two pieces erroneously.

Therefore,Approx pursues the following “adaptive” approach. The algorithm is given the graphG
and the matrixϕ = Φ (cf. Proposition 4). Thus, the two graphsG∗

1, G∗
2 set up in Step 1 coincide with

G1, G2. Proceeding in≤ log2∆ stepst = 1, . . . , log2∆, Step 2 ofApprox computes setsRt of vertices
of degreedG∗

1∪G
∗

2
(v) ≥ ∆t = 2−t∆ and matricesAt. TheAt’s are obtained fromA(G) by replacing

all entries indexed byV × Rt ∪ Rt × V by the corresponding entries ofϕ; the combinatorial meaning is
that all edges incident with vertices inRt get deleted fromG1 ∪ G2. Further, to ensure that actually the
matricesAt “converge” toE , Approx aborts the loop as soon as‖As −At‖ gets too large for somes < t
(reminiscent of Cauchy’s criterion for the convergence of sequences).

Why does this procedure yield a good approximationÂ of E w.h.p.? Suppose that∆t > 50σ∗, say. By
H1 andH3, the setRt consists just of≤ nmin/σ

∗ 4 vertices of atypically high degree inG1 ∪ G2. Thus,
deleting the verticesRt removes the eigenvalues caused by the fluctuations of the vertex degrees> ∆t

while leaving the planted partition essentially intact. Therefore, we can estimate‖At − E‖ as follows.

Lemma 16. Suppose that∆t ≥ 50λ and thatϕ = Φ. Then‖At − E‖ ≤ 2c0k
√
∆t.

Proof. By A1 we have

‖EV \Rt
−AV \Rt

‖ ≤ c0k
√

∆t + λ ≤ 3

2
c0k

√

∆t. (27)

Thus, lettingF = ERt
+ ERt×V \Rt

+ EV \Rt×Rt
andM = ϕRt

+ ϕRt×V \Rt
+ ϕV \Rt×Rt

, we just need
to bound the norm ofF −M = E −At − (EV \Rt

−AV \Rt
). Sinceϕ = Φ, we have

‖F −M‖2
(8)
≤ ‖F −M‖2

F ≤ 2‖ERt×V − ΦRt×V ‖2
F
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= 2
∑

v∈Rt

∑

w∈V

(Φvw − pψ(v)ψ(w))
2 ≤ 8

∑

v∈Rt

∑

w∈V

[

pψ(v)ψ(w)(1 − pψ(v)ψ(w))
]2

= 8
k

∑

a=1

k
∑

b=1

#Va ∩Rt · #Vb · [pab(1 − pab)]
2

≤ 8σ∗
k

∑

a=1

#Va ∩Rt
k

∑

b=1

pab(1 − pab) [becauseσ∗ ≥ #Vbpab(1 − pab)]

≤ 8σ∗ 2

nmin

k
∑

a=1

#Va ∩Rt [becauseσ∗ ≥ ∑

b nminpab(1 − pab)]

=
8σ∗ 2#Rt
nmin

≤ 8σ∗ 2#V \H
nmin

≤ 1 [by H1 andH3]. (28)

Combining (27) and (28), we obtain‖At − E‖ ≤ ‖EV \Rt
−AV \Rt

‖ + ‖F −M‖ ≤ 2c0k
√
∆t. ut

Proof of Proposition 5.If Identify fails, thenσ∗ > ln3 n by Proposition 4, and the matrix̂A defined in
Step 2 ofPartition is a rankk approximation ofA. Sinceσ∗ > ln3 n, (12) implies thatdG1∪G2(v) ≤
20σ∗ for all v ∈ V . Therefore,‖E − Â‖ ≤ ‖E −A‖ + ‖Â−A‖

(9)
≤ 2‖E −A‖

A1
≤ c20k

√
λ, as desired.

Let us now assume thatIdentify did not fail, and thusϕ = Φ. In this case,Partition executes
Approx(G,ϕ). Let s, t be such that∆s ≥ ∆t ≥ 50λ. Then by Lemma 16 we have‖As − At‖ ≤
‖As − E‖ + ‖At − E‖ ≤ 4c0k

√
∆s, and thus Step 3 ofApprox will not abort the loop. Consequently,

∆t̂ ≤ 100λ. Let t∗ be maximal such that∆t∗ ≥ 50λ. Then‖At̂ − At∗‖ ≤ 4c0k
√
∆t∗ , because the exit

condition in Step 3 ofApprox was not satisfied fort = t̂ ands = t∗. Therefore, Lemma 16 entails that

‖At̂ − E‖ ≤ ‖At̂ −At∗‖ + ‖At∗ − E‖ ≤ 6c0k
√

∆t∗ ≤ 60c0k
√
λ. (29)

Finally, if Â is a rankk approximation ofAt̂, then‖Â − At̂‖ ≤ ‖E − At̂‖ by (9). Therefore, (29) implies
‖Â− E‖ ≤ ‖Â−At̂‖ + ‖At̂ − E‖ ≤ 2‖At̂ − E‖ ≤ 120c0k

√
λ ≤ c20k

√
λ. ut

6 Computing an Initial Partition

6.1 The ProcedureInitial

Algorithm 17. Initial(Â, k)
Input: A matrix Â and the parameterk.
Output:A partitionS1, . . . , Sk of V and vectorsξ1, . . . , ξk ∈ RV .

1. For j = 1, . . . , 2 log n do
2. Let ρj = n2−j and compute Q(j)(v) = {w ∈ V : ‖Âw − Âv‖2 ≤ 0.01ρ2

j} for all v ∈ V .

Then, determine sets Q
(j)
1 , . . . , Q

(j)
k as follows: for i = 1, . . . , k do

3. Pick a vertex v ∈ V \
⋃i−1

l=1
Q

(j)
l

such that #Q(j)(v) \
⋃i−1

l=1
Q

(j)
l

is maximum.

Set Q
(j)
i = Q(j)(v) \

⋃i−1

l=1
Q

(j)
l and ξ

(j)
i = 1

#Q
(j)
i

∑

w∈Q
(j)
i

Âw.

4. Partition the entire set V as follows.

– First, let S
(j)
i = Q

(j)
i for all 1 ≤ i ≤ k.

– Then, add each vertex v ∈ V \
⋃k

l=1
Q

(j)
l to a set S

(j)
i such that ‖Âv−ξ

(j)
i ‖ is minimum.

Set rj =
∑k

i=1

∑

v∈S
(j)
i

‖Âv − ξ
(j)
i ‖2.

5. Let J be such that r∗ = rJ is minimum. Return S
(J)
1 , . . . , S

(J)
k

and ξ
(J)
1 , . . . , ξ

(J)
k

.

Initial is given the approximation̂A of E and the parameterk, and its goal is to compute a partition
of V that is “close” toV1, . . . , Vk. If the algorithm knew the parameterρ, then it could partitionG as
follows. Since the numberz = #{v ∈ V : ‖Âv − Ev‖2 > 0.001ρ2} satisfies10−3ρ2z ≤ ‖Â− E‖2

F , (13)
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yieldsz ≤ nmin/c0. Thus, letv ∈ Vi be such that‖Âv − Ev‖2 ≤ 10−4ρ2, and defineQ(v) = {w ∈ V :
‖Âv − Âw‖2 ≤ 0.01ρ2}. SinceEw = Ev for all w ∈ Vi, we have#Q(v) ∩ Vi ≥ #Vi − z ≥ 0.999#Vi.
Moreover,#Q(v)\Vi ≤ z, because of the separation conditionA2. Thus,Q(v) “almost” coincides withVi.
Hence, we could obtain a good approximation ofV1, . . . , Vk by just picking iterativelyk verticesv1, . . . , vk
such thatvi+1 ∈ V \ ⋃i−1

j=1Q(vj) andQ(vi) has maximum cardinality. This is essentially what Steps 2–3
of Initial do, and a similar procedure is at the core of McSherry’s algorithm [27].

However, since here we donot assume thatρ is known to the algorithm,Initial has to estimateρ
on its own. To this end,Initial applies the above clustering procedure for various “candidate” val-
uesρj = n2−j, 1 ≤ j ≤ 2 log2 n. Thus,Initial obtains for eachj a collectionQ(j)

1 , . . . , Q
(j)
k

of pairwise disjoint subsets ofV and vectorsξ(j)i . The idea is thatξ(j)i should approximateEVi
well

if Q(j)
i is a good approximation ofVi. Hence, ifQ(j)

1 , . . . , Q
(j)
k is “close” to V1, . . . , Vk, then rj =

∑k
i=1

∑

v∈S
(j)
i

‖Âv − ξ
(j)
i ‖2 ≈ ‖Â − E‖2

F will be small (cf. (13)). Therefore, the output ofInitial

is just the partitionS(j)
1 , . . . , S

(j)
k with minmalrj . In Section 6.2 we shall derive the following bound on

this minimum.

Lemma 18. If 1
2ρ ≤ ρj ≤ ρ, thenrj ≤ c60k

3λ.

Furthermore, in Section 6.4 we will establish that any partition such thatrj is small yields a good
approximation ofV1, . . . , Vk; Proposition 6 is an immediate consequence of Lemmas 18 and 19.

Lemma 19. LetS1, . . . , Sk be a partition andξ1, . . . , ξk a sequence of vectors such that
∑k

i=1

∑

v∈Si
‖ξi−

A∗
v‖2 ≤ c60k

3λ. Then there is a bijectionγ : {1, . . . , k} → {1, . . . , k} such that the following holds.

1. ‖ξi − EVγ(i)
‖2 ≤ 0.001ρ2 for all i = 1, . . . , k,

2.
∑k

i=1 #Si4Vγ(i) < 0.001nmin, and

3.
∑k

a,b=1 #Sa ∩ Vb · ‖EVγ(a)
− EVγ(b)

‖2 < 0.001nminρ
2 for all 1 ≤ j ≤ k.

6.2 Proof of Lemma 18

Suppose that12ρ ≤ ρj ≤ ρ. To ease up the notation, we omit the superscriptj; thus, we letSi = S
(j)
i ,

Qi = Q
(j)
i for 1 ≤ i ≤ k, andQ(v) = Q(j)(v) for v ∈ V (cf. Steps 2–4 ofInitial). The following

lemma, whose proof we postpone to Section 6.3, shows that there is a permutationγ such thatξi is “close”
to EVγ(i)

for all 1 ≤ i ≤ k, and that the setsQi are “not too small”.

Lemma 20. Suppose that12ρ ≤ ρj ≤ ρ. There is a bijectionγ : {1, . . . , k} → {1, . . . , k} such that for
each1 ≤ i ≤ k we have#Qi ≥ 1

2#Vγ(i) and‖ξi − EVγ(i)
‖2 ≤ 0.1ρ2.

In the sequel, we shall assume without loss of generality that the mapγ from Lemma 20 is just the
identity, i.e.,γ(i) = i for all i. Bootstrapping on the estimate‖ξi − EVi

‖2 ≤ 0.1ρ2 for 1 ≤ i ≤ k from
Lemma 20, we derive the following stronger estimate.

Corollary 21. For all 1 ≤ i ≤ k we have‖ξi − EVi
‖2 ≤ 100#Q−1

i

∑

v∈Qi
‖Âv − Ev‖2.

Proof. By the Cauchy-Schwarz inequality,

‖ξi − EVi
‖ = #Q−1

i

∥

∥

∥

∥

∥

∥

∑

v∈Qi

Âv − EVi

∥

∥

∥

∥

∥

∥

≤ #Q
−1/2
i





∑

v∈Qi

‖Âv − EVi
‖2





1/2

. (30)

Furthermore, as‖ξi − EVi
‖2 ≤ 0.1ρ2 by Lemma 20, for allv ∈ Qi \ Vi we have

‖Âv − EVi
‖2 ≤ 2(‖Âv − ξi‖2 + ‖ξi − EVi

‖2) ≤ ρ2/3, (31)

because the construction ofQi in Step 3 ofInitial ensures that‖Âv − ξi‖2 ≤ 0.01ρ2. Hence, as
‖Ev − EVi

‖2 ≥ ρ2 by A2, (31) implies that‖Âv − Ev‖ ≥ 0.1‖Âv − EVi
‖. Therefore, the assertion follows

from (30). ut
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Corollary 22. For all v ∈ Si \ Vi we have‖Âv − ξi‖ ≤ 3‖Âv − Ev‖.
Proof. Let i 6= l and consider a vertexv ∈ Si ∩ Vl. We shall establish below that

‖Âv − ξi‖ ≤ ‖Âv − ξl‖. (32)

Then by Lemma 20‖Âv− ξi‖ ≤ ‖Âv −Ev‖+ ‖Ev− ξl‖ ≤ ‖Âv −Ev‖+ ρ/3, and thusρ ≤ ‖Ev−EVi
‖ ≤

‖Âv − ξi‖+ ‖ξi−EVi
‖+ ‖Âv −Ev‖ ≤ 2‖Âv −Ev‖+ 2

3ρ. Consequently, we obtain‖Âv −Ev‖ ≥ 1
6ρ, so

that the assertion follows from the estimate

‖Âv − ξi‖
(32)
≤ ‖Âv − ξl‖ ≤ ‖Âv − Ev‖ + ‖Ev − ξl‖

Lemma 20
≤ ‖Âv − Ev‖ +

ρ

3
≤ 3‖Âv − Ev‖.

Finally, we prove (32). Ifv ∈ Si∩Vl\Qi, then the construction ofSi in Step 4 ofInitial guarantees
that‖Âv − ξi‖ ≤ ‖Âv − ξl‖, as claimed. Thus, assume thatv ∈ Qi ∩ Vl. Then

‖Âv − ξi‖ ≤ 0.15ρ [by the definition ofQi in Step 3 ofInitial],

max{‖ξi − EVi
‖, ‖ξl − Ev‖} ≤ 1

3
ρ [by Lemma 20],

‖EVi
− Ev‖ ≥ ρ [by A2].

Therefore, if‖Âv − ξl‖ < ‖Âv − ξi‖, then we would arrive at the contradiction

ρ ≤ ‖EVi
− Ev‖ ≤ ‖EVi

− ξi‖ + ‖Ev − ξl‖ + ‖ξi − ξl‖

≤ 2

3
ρ+ ‖Âv − ξi‖ + ‖Âv − ξl‖ <

2

3
ρ+ 2‖Âv − ξi‖ ≤ 0.99ρ.

Thus, we conclude that‖Âv − ξl‖ ≥ ‖Âv − ξi‖, thereby completing the proof. ut

Proof of Lemma 18.Since#Qi ≥ 1
2#Vi by Lemma 20, we have the estimate

k
∑

i=1

∑

w∈Si∩Vi

‖Âw − ξi‖2 ≤ 2
k

∑

i=1

∑

w∈Si∩Vi

[

‖Âw − Ew‖2 + ‖Ew − ξi‖2
]

Cor. 21
≤ 2‖Â− E‖2

F + 200

k
∑

i=1

#Si ∩ Vi
#Qi

∑

v∈Qi

‖Âv − Ev‖2 ≤ 500‖Â− E‖2
F . (33)

Furthermore, by Corollary 22

k
∑

i=1

∑

v∈Si\Vi

‖Âv − ξi‖2 ≤ 9
k

∑

i=1

∑

v∈Si\Vi

‖Âv − Ev‖2 ≤ 9‖Â− E‖2
F . (34)

Since‖Â− E‖2
F ≤ c50k

3λ by (13), the bounds (33) and (34) imply the assertion. ut

6.3 Proof of Lemma 20

For1 ≤ i ≤ k we chooseγ(i) so that#Qi∩Vγ(i) is maximum. We shall prove below that for all1 ≤ l ≤ k
we have

‖ξl − EVγ(l)
‖2 ≤ 0.1ρ2, (35)

#Ql ≥ max{#Vi : i ∈ {1, . . . , k} \ γ({1, . . . , l − 1})} − 0.01nmin, (36)

#Ql ∩ Vγ(l) ≥ #Ql − 0.01nmin. (37)

These three inequalities imply the assertion. To see thatγ is a bijection, let us assume thatγ(l) = γ(l′)
for two indices1 ≤ l < l′ ≤ k. Indeed, suppose thatl = min γ−1(l). Then#Ql ≥ #Vγ(l) − 0.01nmin

by (36), and thus#Vγ(l) \Ql ≤ 0.1nmin by (37). Therefore, we obtain the contradiction

0.99nmin

(36)
≤ #Ql′

(37)
≤ 1.1#Ql′ ∩ Vγ(l) ≤ 1.1#Vγ(l) \Ql ≤ 0.11nmin.
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Finally, asγ is bijective, (36) entails that#Ql ≥ 0.9Vγ(l) for all 1 ≤ l ≤ k. Hence, due to (37) we obtain
#Ql ∩ Vl ≥ 0.9#Ql ≥ 1

2#Vγ(l), as desired.
The remaining task is to establish (35)–(37). We proceed by induction onl. Thus, let us assume that

(35)–(37) hold for alll < L; we are to show that then (35)–(37) are true forl = L as well. As a first step,
we establish (36). To this end, consider a classVi such thati 6∈ γ({1, . . . , L− 1}) and letZi = {v ∈ Vi :

‖Âv − Ev‖2 ≤ 0.001ρ2}. Then0.001ρ2(#Vi − #Zi) ≤
∑

v∈Vi\Zi
‖Âv − Ev‖2 ≤ ‖Â− E‖2

F

(13)
≤ c50k

3λ,

whence the definitionρ2 = c80k
3λ/nmin of ρ (cf. A2) yields

#Zi ≥ #Vi − 0.01nmin. (38)

Moreover, for allv ∈ Zi we have

Q(v) = {w ∈ V : ‖Âv − Âw‖2 ≤ 0.01ρ2} ⊃ Zi. (39)

In addition, letw ∈ Ql for somel < L; since our choice ofi ensures thatv ∈ Vi 6= Vγ(l), we have

ρ
A2
≤ ‖EVγ(l)

− Ev‖ ≤ ‖Ev − Âv‖ + ‖Âw − Âv‖ + ‖ξl − Âw‖ + ‖ξl − EVγ(l)
‖. (40)

Now, the construction in Step 3 ofInitial ensures that‖Âw−ξl‖ ≤ 0.1ρ. Furthermore,‖ξl−EVγ(l)
‖ ≤

ρ/3 by induction (cf. (35)), and‖Âv−Ev‖ ≤ 0.1ρ, becausev ∈ Zi. Hence, (40) entails that‖Âw− Âv‖ >
0.1ρ, so thatw 6∈ Q(v). Consequently, (39) yields

Zi ∩Ql = ∅ for all l < L. (41)

Finally, let vL signify the vertex chosen by Step 3 ofInitial to constructQL. Then by construction
#QL = #Q(vL) \ ⋃L−1

l=1 Ql ≥ #Q(v) \ ⋃L−1
l=1 Ql. Therefore,

#QL ≥ #Q(v) \
L−1
⋃

l=1

Ql
(39), (41)
≥ #Zi

(38)
≥#Vi − 0.01nmin.

As this estimate holds for alli 6∈ γ({1, . . . , L− 1}), (36) follows.
Thus, we know thatQL is “big”. As a next step, we prove (37), i.e., we show thatQL “mainly” consists

of vertices inVγ(L). To this end, let1 ≤ i ≤ k be such that‖EVi
− ÂvL

‖ is minimum. LetY = QL \ Vi.
Then for allw ∈ Y we have‖Ew − ÂvL

‖ ≥ ‖EVi
− Âv‖. Further, since byA2 ρ ≤ ‖Ew − EVi

‖ ≤
‖Ew − ÂvL

‖+ ‖EVi
− ÂvL

‖ ≤ 2‖Ew − ÂvL
‖, we conclude that‖Ew − ÂvL

‖2 ≥ 1
4ρ

2. On the other hand,

asw ∈ QL, we have‖Âw − ÂvL
‖2 ≤ 0.01ρ2. Therefore, we obtain‖Âw − Ew‖2 ≥ 0.1ρ2 for all w ∈ Y ,

so that

0.1#Y ρ2 ≤
∑

w∈Y

‖Âw − Ew‖2 ≤ ‖Â− E‖2
F

(13)
≤ c50k

3λ. (42)

As ρ2 = c80k
3λ/nmin (cf. A2), (42) yields that#Y < 0.01nmin. Consequently, (36) entails that#Vi ∩

QL ≥ 0.99#QL, so thati = γ(L). Hence, we obtain#QL ∩ Vγ(L) = #QL ∩ Vi = #QL \ Y ≥
#QL − 0.01nmin, thereby establishing (37).

Finally, to show (35), we note that by construction‖ξL− ÂvL
‖2 ≤ 0.01ρ2 and‖Âw− ÂvL

‖2 ≤ 0.01ρ2

for all w ∈ QL ∩ Vγ(L) (cf. Step 3 ofInitial). Therefore,

#QL ∩ Vγ(L)‖Eγ(L) − ξL‖2 ≤ 3
∑

w∈QL∩Vγ(L)

‖ξL − ÂvL
‖2 + ‖Âw − ÂvL

‖2 + ‖Âw − Êγ(L)‖2

≤ 0.06ρ2#QL ∩ Vγ(L) + 3‖Â− E‖2
F

(13)
≤ 0.06ρ2#QL ∩ Vγ(L) + 3c50k

3λ. (43)

Since#QL ∩ Vγ(L) ≥ 0.9nmin due to (36) and (37), and becauseρ2 = c80k
3λ/nmin (cf. A2), (43) entails

that‖Eγ(L) − ξL‖2 ≤ 0.07ρ2 +
6c50k

3λ
nmin

≤ 0.1ρ2. Thus, (35) follows.
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6.4 Proof of Lemma 19

SetSab = Sa ∩ Vb for 1 ≤ a, b ≤ k. Moreover, for each1 ≤ a ≤ k let 1 ≤ γ(a) ≤ k be such that
‖EVγ(a)

− ξa‖ is minimum. Then for allb 6= γ(a) we have

ρ ≤ ‖EVγ(a)
− EVb

‖ ≤ ‖EVγ(a)
− ξa‖ + ‖EVb

− ξa‖ ≤ 2‖EVb
− ξa‖, (44)

so that‖EVb
− ξa‖ ≥ ρ/2. Therefore, by our assumption that

∑k
i=1

∑

v∈Si
‖ξi − Âv‖2 ≤ c60k

3λ, we have

ρ2

4

k
∑

a=1

∑

1≤b≤k:b6=γ(a)

#Sab ≤
k

∑

a,b=1

#Sab‖EVb
− ξa‖2 ≤ 2

k
∑

a,b=1

∑

v∈Sab

‖Ev − Âv‖2 + ‖Âv − ξa‖2

≤ 2‖Â− E‖2
F + 2

k
∑

a,b=1

∑

v∈Sab

‖Âv − ξa‖2
(13)
≤ 4c50k

3λ+ 2c60k
3λ ≤ c70k

3λ. (45)

Hence,A2 entails that

k
∑

a=1

#Sa4Vγ(a) =
∑

1≤a,b≤k:b6=γ(a)

2#Sab ≤
8c70k

3λ

ρ2
≤ 0.001nmin. (46)

Combining (45) and (46), we obtainnmin

2 ‖EVγ(a)
− ξa‖2 ≤ #Sa ∩ Vγ(a)‖Eγ(a) − ξa‖2 ≤ c70k

3λ, whence

‖Eγ(a) − ξa‖2 ≤ 2c70k
3λ

nmin

A2
≤ 0.001ρ2 for all 1 ≤ a ≤ k. (47)

Thus, we have established the first two parts of the lemma. In addition, observe that (46) implies thatγ is
bijective (because the setsS1, . . . , Sk are pairwise disjoint and#Va ≥ nmin for all 1 ≤ a ≤ k). Finally,
the third assertion follows from the estimate

k
∑

a,b=1

#Sab‖EVγ(a)
− EVγ(b)

‖2 ≤ 2

k
∑

a,b=1

#Sab
(

‖EVγ(a)
− ξa‖2 + ‖EVγ(b)

− ξa‖2
)

(44)
≤ 8

k
∑

a,b=1

#Sab‖EVγ(b)
− ξa‖2

(45)
≤ 8c70k

3λ
A2
≤ 0.001ρ2nmin.

7 Local Improvement

7.1 The ProcedureImprove

Having computed the initial partitionS1, . . . , Sk with the “centers”ξ1, . . . , ξk, finally Partition calls
the procedureImprove to home in on the planted partitionV1, . . . , Vk on the subgraphH . In contrast to
the previous steps ofPartition,Improve does not rely on spectral methods anymore but just performs
a “local” combinatorial procedure.

Algorithm 23. Improve(G,S1, . . . , Sk, ξ1, . . . , ξk)
Input: The graphG = (V,E), a partitionS1, . . . , Sk of V , and vectorsξ1, . . . , ξk.
Output:A partition ofG.

1. Repeat the following dlog2 ne times:
2. For all v ∈ V , all l = 1, . . . , k, and all w ∈ Sl compute the numbers δ(v, w) = e(v, Sl)/#Sl.

Let δ(v) = (δ(v,w))w∈V ∈ R
V .

For all v ∈ V pick 1 ≤ γ(v) ≤ k such that ‖δ(v) − ξγ(v)‖ = min1≤i≤k ‖δ(v) − ξi‖ (ties are
broken arbitrarily). Then, update Si = γ−1(i) for i = 1, . . . , k.

3. Return the partition S1, . . . , Sk.
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The basic idea behindImprove is to compare for each vertexv the actual valuese(v, Si) with the
expected valuesµ(v, Vi), where the latter are approximated by the entries ofξi. More precisely, for each
vertexv Improve sets up the vectorδ(v) that encodes the densitiese(v, Si)/#Si. Then,Improve up-
dates the partitionS1, . . . , Sk by putting each vertexv into that classSj such that‖δ(v)− ξj‖ is minimum.

To analyze this procedure, we need a few definitions. For a partition S = (S1, . . . ,Sk) and a vertex
v ∈ V , we define a vectorδS(v) = (δS(v, w))w∈V by letting δS(v, w) = e(v,Sj)/#Sj for all w ∈ Sj
and all1 ≤ j ≤ k; we shall omit the indexS if it is clear from the context. Moreover, we call a partition
R = (R1, . . . ,Rk) an improvementof S if for all i = 1, . . . , k and allv ∈ Ri we have‖δS(v) − ξi‖ =
min1≤j≤k ‖δS(v) − ξj‖. Thus, each step ofImprove just computes an improvementR of the previous
partitionS.

Furthermore, we say thatS is feasibleif 1
2#Vi ≤ #Si ≤ 2#Vi for all i. In addition, we setSij =

Si ∩ Vj and callS tight if
∑

i6=j #Sij‖EVi
− EVj

‖2 ≤ 0.001ρ2nmin. Then Proposition 6 entails that the
initial partition S = (S1, . . . , Sk) given toImprove as an input is both feasible and tight. Therefore,
Proposition 7 will follow from the next two lemmas, which we shall prove in Sections 7.2 and 7.3.

Lemma 24. If S is feasible and tight, then any improvementR of S is tight.

Lemma 25. Suppose thatS is feasible and tight and thatR is an improvement ofS. Then we have
∑

i6=j #Rij ∩H ≤ 1
10

∑

i6=j #Sij ∩H.

Proof of Proposition 7.Let S = (S1, . . . ,Sk) be a feasible and tight partition such that
∑k
i=1 #Si4Vi ≤

0.001nmin,and letR be an improvement ofS. Then by Lemma 24R is tight, and by Lemma 25 we
have

∑k
i=1 #Ri4Vi ≤ 0.1

∑k
i=1 #Si4Vi ≤ 10−4nmin, whenceR is feasible. Thus, as the parti-

tion (S1, . . . , Sk) that Improve starts with is feasible and tight by Proposition 6 and in factsatisfies
∑k

i=1 #Si4Vi ≤ 0.001nmin, all the partitions generated byImprove remain feasible and tight. Finally,
let T denote the partition returned byImprove. Then due to Lemma 25 we have

∑

i6=j #Tij ∩ H = 0,
whenceTi ∩H = Vi ∩H for all i = 1, . . . , k. ut

To facilitate the proof of Lemmas 24 and 25, we introduce somenotation. LetA = A(G) and

M = EH −AH . (48)

Then byA1 andH3 we have the bound
‖M‖ ≤ c20k

√
λ. (49)

Moreover, for a setS ⊂ V and a vertexv ∈ V we letµ′(v, S) = 〈Ev,1S〉. Then

‖M1S‖2 =
∑

v∈H

|e(v, S) − µ′(v, S)|2 for all S ⊂ V (H). (50)

The relation betweenµ(v, S) andµ′(v, S) is thatµ′(v, S) = µ(v, S) + pψ(v)ψ(v) if v ∈ S, andµ(v, S) =
µ′(v, S) if v 6∈ S. If S = (S1, . . . ,Sk) is a partition ofV , then forv ∈ Vi andw ∈ Sl we set

δ̄(v, w) =
µ′(v,Sl)

#Sl
andδ̄(v) = (δ̄(v, w))w∈V .

Thus,δ̄(v) ∈ RV basically is the “expectation” ofδ(v).

7.2 Proof of Lemma 24

For v ∈ V andS ⊂ V we letµ′
1(v, S) =

∑

w∈S:Φvw=0 Evw, µ′
2(v, S) =

∑

w∈S:Φvw=1 1 − Evw. We shall
prove that ifS is feasible and tight andR is an improvement ofS, then the two inequalities

k
∑

a,b=1

#Rab‖Ea − Eb‖2 ≤ 9
∑

v∈V

‖δ(v) − δ̄(v)‖2 ≤ 0.001ρ2nmin (51)
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hold, so that Lemma 24 follows. Observe that by the definitions ofδ(v), δ̄(v)

∑

v∈V

‖δ(v) − δ̄(v)‖2 =

k
∑

a=1

#S−1
a (e(v,Sa) − µ′(v,Sa))2. (52)

Lemma 26. LetS be a feasible partition. Then
∑

v∈H ‖δ(v) − δ̄(v)‖2 ≤ 10−4ρ2nmin.

To prove Lemma 26, we need the following estimate.

Lemma 27. For any setS ⊂ V and anyv ∈ V we have

|e(v, S) − µ′(v, S)| ≤ |e1(v, S) − µ′
1(v, S) − (e2(v, S) − µ′

2(v, S))| + 1.

Moreover, ifv 6∈ S, thene(v, S) − µ′(v, S) = e1(v, S) − µ′
1(v, S) − (e2(v, S) − µ′

2(v, S)).

Proof. Let S1 = {w ∈ S : Φvw = 0} andS2 = {w ∈ S : Φvw = 1}. Moreover, letι = 1 if v ∈ S2 and
ι = 0 otherwise. Then by the definition of the graphsG1, G2 we have

e(v, S) − µ′(v, S) = e1(v, S1) − µ′
1(v, S1) + (#S2 − ι− e2(v, S2)) − (#S2 − µ′

2(v, S2))

= e1(v, S) − µ′
1(v, S) − (e2(v, S) − µ′

2(v, S)) − ι,

whence the assertion follows. ut
Proof of Lemma 26.LetA(v) =

∑k
a=1 #S−1

a [e(v,Sa ∩H) − µ′(v,Sa ∩H)]
2
. Then

∑

v∈H

A(v)
(50)
=

k
∑

a=1

#S−1
a ‖M1Sa∩H‖2 ≤ ‖M‖2

k
∑

a=1

‖1Sa∩H‖2

#Sa

≤ k‖M‖2
(49)
≤ c2

0k
3λ

A2
≤ 10−5ρ2nmin. (53)

Furthermore, set

A′(v) =
k

∑

a=1

#S−1
a ((e(v,Sa) − µ′(v,Sa))2 − (e(v,Sa ∩H) − µ′(v,Sa ∩H))2) =

k
∑

a=1

#S−1
a [e(v,Sa) − µ′(v,Sa) + e(v,Sa ∩H) − µ′(v,Sa ∩H)] [e(v,Sa \H) − µ′(v,Sa \H)] . (54)

Then Lemma 27 entails that for allv ∈ H and all1 ≤ a ≤ k we have

|e(v,Sa) − µ′(v,Sa) + e(v,Sa ∩H) − µ′(v,Sa ∩H)| ≤ 2 + 2

2
∑

i=1

eGi
(v,Sa) + µ′

i(v,Sa)

= 2 + 2dG1∪G2(v) + 2(µ′
1(v, V ) + µ′

2(v, V ))
H3
≤ 25σ∗

A1
≤ 25λ, (55)

becauseµ′
1(v, V ) + µ′

2(v, V ) ≤ µ′(v, V ) ≤ 2σ∗ by the definition ofσ∗. Applying Lemma 27 once more,
we obtain

∑

v∈H

k
∑

a=1

|e(v,Sa \H) − µ′(v,Sa \H)| ≤
∑

v∈H

k
∑

a=1

2
∑

i=1

eGi
(v,Sa \H) + µ′

i(v,Sa \H)

=

2
∑

i=1

eGi
(H,V \H) +

∑

v∈H

µ′
i(v, V \H) ≤

2
∑

i=1

eGi
(H,V \H) +

∑

w∈V \H

µ′
i(w, V )

≤ eG1∪G2(H,V \H)+ ≤ 2σ∗ · #V \H +
∑

v∈V \H

dG1∪G2(v)

≤ 2σ∗ · #V \H +

√

#V \H
∑

v∈V \H

dG1∪G2(v) [by Cauchy-Schwarz]

H1
≤ (2σ∗λ−4 + λ−2)nmin

A1
≤ 2λ−2nmin. (56)
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Finally, as(Sa)1≤a≤k is feasible, we have#Sa ≥ 1
2nmin for all a. Therefore, plugging (55) and (56)

into (54), we obtain

∑

v∈H

A′(v) ≤ 75nmin

λ2 min1≤a≤k #Sa
≤ 150

λ2
≤ 1 (57)

by our assumption thatλ ≥ σ∗ ≥ c0 for some large enoughc0 > 0. Combining (52), (53), and (57), we
obtain the desired estimate. ut

Lemma 28. LetS be a feasible partition. Then
∑

v 6∈H

∑k
a=1 #S−1

a (e(v,Sa) − µ′(v,Sa))2 ≤ 2.

Proof. We decomposeV \H into two partsU1 = {v ∈ V \ H : maxi=1,2 eGi
(v, V ) ≤ 100σ∗}, U2 =

{v ∈ V \ H : maxi=1,2 eGi
(v, V ) > 100σ∗}. SinceS is feasible, we have#Sa ≥ 1

2nmin for all a.
Moreover, the definition ofσ∗ ensures thatµ′(v, V ) ≤ 2σ∗ for all v. Therefore,

∑

v∈U1

k
∑

a=1

#S−1
a (e(v,Sa) − µ′(v,Sa))2 ≤

∑

v∈U1

103σ∗ 2

nmin
≤ 103σ∗ 2#V \H

nmin

H1, A1
≤ 1. (58)

Further, by Lemma 27 and the feasibility ofS

∑

v∈U2

k
∑

a=1

#S−1
a (e(v,Sa) − µ′(v,Sa))2 ≤

∑

v∈U2

2dG1∪G2(v)
2

nmin

H1
≤ 2. (59)

Finally, the assertion follows from (58) and (59). ut

Combining Lemmas 26 and 28, we obtain the right inequality in(51). To prove the left one, the follow-
ing lemma is instrumental.

Lemma 29. Let S be any partition. Then for all1 ≤ i ≤ k and all v ∈ Vi we have‖δ̄(v) − Ev‖2 ≤
4

∑k
a,b=1 #Sab(pia − pib)

2.

Proof. Let δ̃(v, w) = pil for all w ∈ Sl, and set̃δ(v) = (δ̃(v, w))w∈V . Then

‖δ̃(v) − Ev‖2 =

k
∑

a,b=1

#Sab(pia − pib)
2. (60)

Moreover,

‖δ̃(v) − δ̄(v)‖2 =

k
∑

a=1

#Sa
[

µ′(v,Sa)#S−1
a − pia

]2
=

k
∑

a=1

#S−1
a [µ′(v,Sa) − #Sapia]2

=

k
∑

a=1

#S−1
a

[

k
∑

b=1

µ′(v,Sab) − #Sabpia
]2

=

k
∑

a=1

#S−1
a

[

k
∑

b=1

#Sab(pib − pia)

]2

≤
k

∑

a,b=1

#Sab(pia − pib)
2 [by Cauchy-Schwarz]. (61)

Combining (60) and (61) completes the proof. ut

Corollary 30. If S is tight, then
∑k
a,b=1 #Rab‖Ea − Eb‖2 ≤ 9

∑

v∈V ‖δ(v) − δ̄(v)‖2.
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Proof. Since‖ξb − Eb‖2 ≤ 0.001ρ2 by Proposition 6, Lemma 29 entails that for allv ∈ Rab

‖δ(v) − ξb‖ ≤ ‖δ(v) − Eb‖ + ‖Eb − ξb‖ ≤ ‖δ(v) − δ̄(v)‖ + ‖δ̄(v) − Eb‖ + ρ/30

≤ ‖δ(v) − δ̄(v)‖ +
ρ

30
+

√

2
∑

α6=β

#Sαβ(pbα − pbβ)2

≤ ‖δ(v) − δ̄(v)‖ +
ρ

30
+

√

2
∑

α6=β

#Sαβ
#Vb

‖Eα − Eβ‖2

≤ ‖δ(v) − δ̄(v)‖ +
ρ

30
+

√

2

nmin

∑

α6=β

#Sαβ‖Eα − Eβ‖2

≤ ‖δ(v) − δ̄(v)‖ +
ρ

20
[becauseS is tight]. (62)

Furthermore, ifv ∈ Rab, thenv ∈ Vb but ‖δ(v) − ξa‖ ≤ ‖δ(v) − ξb‖. Since‖ξa − Ea‖2, ‖ξb − Eb‖2 ≤
0.001ρ2 by Proposition 6 and‖Ea − Eb‖2 ≥ ρ2 by A2, we obtain

ρ ≤ ‖Ea − Eb‖ ≤ ‖Ea − ξa‖ + ‖Eb − ξb‖ + ‖ξa − ξb‖
≤ ρ

15
+ ‖δ(v) − ξa‖ + ‖δ(v) − ξb‖ ≤ ρ

15
+ 2‖δ(v) − ξb‖,

and thus‖δ(v) − ξb‖ ≥ 2
5‖Ea − Eb‖. Hence, (62) yields‖δ(v) − δ̄(v)‖ ≥ 1

3‖Ea − Eb‖. ut

As Corollary 30 implies the left inequality in (51), we have completed the proof of Lemma 24.

7.3 Proof of Lemma 25

For allv ∈ Rab, all α ∈ {1, . . . , k}, and allw ∈ Sα we set

∆(v, w) =
e(v,Sα ∩H)

#Sα
, ∆̄(v, w) =

µ′(v,Sα ∩H)

#Sα
, and we recall that

δ(v, w) =
e(v,Sα)

#Sα
, δ̄(v, w) =

µ′(v,Sα)

#Sα
.

Moreover, we let∆(v) = (∆(v, w))w∈H , ∆̄(v) = (∆̄(v, w))w∈H , and remember thatδ(v) = (δ(v, w))w∈V ,
δ̄(v) = (δ̄(v, w))w∈V .

Lemma 31. Suppose thatS is feasible and tight. LetR be an improvement ofS. Then for allv ∈ Rba∩H
we have‖∆(v) − ∆̄(v)‖2 ≥ 0.1‖EVa

− EVb
‖2 (1 ≤ a, b ≤ k).

Proof. Let δH(v) = (δ(v, w))w∈H andδ̄H(v) = (δ̄(v, w))w∈H , i.e.,δH(v), δ̄H(v) are the restrictions of
δ(v), δ̄(v) toH . We claim that for allv ∈ Rba ∩H we have

‖δH(v) − δ̄H(v)‖ ≥ 0.134‖EVa
− EVb

‖. (63)

For asR is an improvement ofS and because‖ξa − EVa
‖, ‖ξb − EVb

‖ ≤ ρ/33 by Proposition 6, we have

ρ ≤ ‖EVa
− EVb

‖ ≤ ‖δ(v) − ξb‖ + ‖δ(v) − ξa‖ + ‖ξa − EVa
‖ + ‖ξb − EVb

‖ ≤ 2

33
ρ+ 2‖δ(v) − ξa‖

≤ 2

33
ρ+ 2‖ξa − EVa

‖ + 2‖δ(v) − EVa
‖ ≤ 4

33
ρ+ 2‖δ(v) − EVa

‖.

Hence,‖δ(v) − EVa
‖ ≥ 29

66‖EVa
− EVb

‖. Furthermore, by Lemma 29 and becauseS is tight,

‖δ̄(v) − EVa
‖2 ≤ 4

k
∑

α,β=1

#Sαβ(paα − paβ)
2 ≤ 4

k
∑

α,β=1

#Sαβ‖EVα
− EVβ

‖2

#Va
≤ 0.004ρ2.
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Thus,‖δ(v) − δ̄(v)‖ ≥ 0.37‖EVa
− EVb

‖. Therefore, as#V \H ≤ 10−4nmin by H1 and asS is feasible,
we obtain

0.136‖EVa
− EVb

‖2 ≤ ‖δ(v) − δ̄(v)‖2 =

k
∑

α=1

#Sα
(

e(v,Sα) − µ′(v,Sα)

#Sα

)2

≤ 1.01
k

∑

α=1

#Sα ∩H
(

e(v,Sα) − µ′(v,Sα)

#Sα

)2

= 1.01‖δH(v) − δ̄H(v)‖2,

whence (63) follows.
Now, we shall compare the vectorsδH(v)−δ̄H(v) and∆(v)−∆̄(v), so that we can use (63) to bound the

norm of the latter vector. LetΦ1(v) = {w ∈ V : pψ(v)ψ(w) ≤ 1/2}, Φ2(v) = {w ∈ V : pψ(v)ψ(w) > 1/2}.
Then for allv ∈ H we have

‖(δH(v) − δ̄H(v)) − (∆(v) − ∆̄(v))‖2 =
∑

w∈H

(δH(v, w) − δ̄H(v, w) − (∆(v, w) − ∆̄(v, w)))2

=

k
∑

α=1

#S−1
α [e(v,Sα \H) − µ′(v,Sα \H)]

2

≤ 2

k
∑

α=1

#S−1
α [e(v, Φ1(v) ∩ Sα \H) − µ′(v, Φ1(v) ∩ Sα \H)]

2

+#S−1
α [e(v, Φ2(v) ∩ Sα \H) − µ′(v, Φ2(v) ∩ Sα \H)]

2
. (64)

Sincev ∈ H , by H4 we have

e(v, Φ1(v) ∩ Sα \H) ≤ 100, (65)

e(v, Φ2(v) ∩ Sα \H) ≥ #Φ2(v) ∩ Sα \H − 101. (66)

Moreover,H1 entails that

k
∑

α=1

µ′(v, Φ1(v) ∩ Sα \H) ≤ µ′(v,G1 \H) ≤ #V \H · max
1≤α,β≤k:pαβ≤

1
2

pαβ ≤ nmin

λ4
· 2σ∗

nmin
≤ 1

2
,

whence
∑k

α=1 µ
′(v, Φ1(v) ∩ Sα \ H)2 ≤ 1

4 . Consequently, as the fact thatS is feasible implies that
#Sα ≥ 1

2nmin, we obtain

k
∑

α=1

µ′(v, Φ1(v) ∩ Sα \H)2

#Sα
≤ 1

2nmin

A2
≤ 10−4ρ2. (67)

A similar argument shows that

k
∑

α=1

(#Φ2(v) ∩ Sα \H − µ′(v, Φ2(v) ∩ Sα \H))2

#Sα
≤ 10−4ρ2. (68)

Plugging (65)–(68) into (64), we get

‖(δH(v) − δ̄H(v)) − (∆(v) − ∆̄(v))‖2 ≤ 2 · 10−4ρ2 +

k
∑

α=1

105

#Sα
≤ 4 · 10−4ρ2 +

106k

nmin

A2
≤ 10−3ρ2.

Therefore, (63) entails that‖∆(v) − ∆̄(v)‖2 ≥ 0.1‖Ea − Eb‖2 for all v ∈ Rba ∩H . ut

Proof of Lemma 7.3.LetM be the matrix defined in (48). We shall prove below that

∑

a6=b

∑

v∈Rab∩H

‖∆(v) − ∆̄(v)‖2 ≤ 0.02
∑

a6=b

ρ2#Rab ∩H +
24‖M‖2

nmin

∑

a6=b

#H ∩ Sab. (69)



24

On the other hand, Lemma 31 implies in combination withA2 that
∑

a6=b, v∈Rab∩H

‖∆(v) − ∆̄(v)‖2 ≥ 0.1
∑

a6=b

#Rab ∩Hρ2. (70)

Combining (69) and (70), we thus get

∑

a6=b

#Rab ∩H ≤ 1000‖M‖2

ρ2nmin

∑

a6=b

#Sab ∩H
(49),A2
≤ 1

10

∑

a6=b

#Sab ∩H,

as desired.
Hence, the remaining task is to establish (69). To this end, we note that for allv ∈ Rab ∩H such that

a 6= b we have

‖∆(v) − ∆̄(v)‖2 ≤ 2
k

∑

a=1

#S−1
a [e(v,H ∩ Sa) − µ′(v,H ∩ Sa)]2

≤ 6 ·
k

∑

a=1

#S−1
a [e(v,H ∩ Va) − µ′(v,H ∩ Va)]2

+6 ·
k

∑

a=1

#S−1
a [e(v,H ∩ Sa \ Va) − µ′(v,H ∩ Sa \ Va)]2

+6 ·
k

∑

a=1

#S−1
a [e(v,H ∩ Va \ Sa) − µ′(v,H ∩ Va \ Sa)]2

≤ 12[‖d(v) − Ev‖2 +

k
∑

a=1

#V −1
a (e(v,H ∩ Va \ Sa) − µ′(v,H ∩ Va \ Sa))2

+

k
∑

a=1

#V −1
a (e(v,H ∩ Sa \ Va) − µ′(v,H ∩ Sa \ Va))2], (71)

where the last inequality follows from our assumption thatS is feasible. Sincev ∈ H , due toH2 we have

‖d(v) − Ev‖2 ≤ 0.001ρ2. (72)

Furthermore,

k
∑

a=1

∑

v∈H

[e(v,H ∩ Va \ Sa) − µ′(v,H ∩ Va \ Sa)]2 (50)
=

k
∑

a=1

‖M1H∩Va\Sa
‖2

≤ ‖M‖2
∑

a

‖1H∩Va\Sa
‖2 = ‖M‖2

∑

a

#H ∩ Va \ Sa,

and analogously
∑k

a=1

∑

v∈H [e(H ∩ Sa \ Va) − µ′(v,H ∩ Sa \ Va)]2 ≤ ‖M‖2
∑k

a=1 #H ∩ Sa \ Va.
Thus,
∑

a 6=b

∑

v∈Rab∩H

[

e(v, Va \ Sa) − µ′(v, Va \ Sa)
]2

+
[

e(Sa \ Va) − µ′(v,Sa \ Va)
]2 ≤ 4‖M‖2

∑

a 6=b

#Sab ∩ H.(73)

Combining (71), (72), and (73), we obtain (69), thereby completing the proof. ut

8 The Random GraphGn,k(ψ, p)

In this section we prove Theorem 2. We start with some preliminaries on random graphs in Section 8.1.
Then, we discuss the construction of the core ofGn,k(ψ,p) in Section 8.2. Finally, in Section 8.4 we
investigate the components ofGn,k(ψ,p) − core(Gn,k(ψ,p)). Throughout this section, we letψ, p, E ,
nmin, andσ∗ be as in Sections 1.2 and 1.3. Furthermore, we always assume thatn is sufficiently large.
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8.1 Preliminaries onGn,k(ψ, p)

We need to bound the probability that a random variable deviates from its mean significantly. To this end,
letφ denote the functionφ : (−1,∞) → R, x 7→ (1+x) ln(1+x)−x. A proof of the following Chernoff
bound can be found in [22, pages 26–29].

Lemma 32. LetX =
∑N

i=1Xi be a sum of mutually independent Bernoulli random variableswith vari-
anceσ2 = Var(X). Then for anyt > 0 we have

max{P(X ≤ E(X) − t),P(X ≥ E(X) + t)} ≤ exp

(

−σ2φ

(

t

σ2

))

≤ exp

(

− t2

2(σ2 + t/3)

)

. (74)

The following bound, whose proof can be found in Section 9.1,is a consequence of Azuma’s inequality.

Lemma 33. LetX be a function from graphs to reals that satisfies the following Lipschitz condition.

Let G = (V,E) be a graph, and letv, w ∈ V . LetG′ be the graph obtained fromG by
removing the edge{v, w} if it is present inG, and letG′′ be the graph obtained by adding
{v, w} toG if it is not present. Then|X(G′) −X(G′′)| ≤ 1.

(75)

ThenP
[

|X(Gn,k(ψ,p)) − E(X(Gn,k(ψ,p)))| >
√
σ∗n ln2 n

]

≤ n−10.

In Section 9.2 we shall use Lemma 33 to derive the following estimate on the upper tail of the degree
distribution ofGn,k(ψ,p).

Lemma 34. LetUi = #{v ∈ V : maxj=1,2 dGj
(v) ≥ 2i+1σ∗}. Then w.h.p.#Ui ≤ exp(−2i−2σ∗)n for

all i = 2, . . . , dlog2 ne.

Furthermore, in Section 9.3 we shall establish that the graphG1 ∪G2 does not contain any “atypically
dense spots” w.h.p.

Lemma 35. W.h.p.G = Gn,k(ψ,p) enjoys the following property.

For all setsT ⊂ V such that#T ≤ n
(

nmin

nσ∗

)2
we haveeG1∪G2(T ) ≤ 10#T . (76)

Furthermore, with probability≥ 1 − exp(− ln3 n) the following holds.

For all T ⊂ V such thatln3 n ≤ #T ≤ n
(

nmin

nσ∗

)2
we haveeG1∪G2(T ) ≤ 10#T . (77)

Finally, we need the following result on the spectrum of the adjacency matrix ofGn,k(ψ,p).

Lemma 36. Let∆ > 0 andX = {v ∈ V : maxi=1,2 dGi
(v) ≤ ∆}. Then‖AX − EX‖ ≤ ck

√
σ∗ +∆.

In Section 9.4 we indicate how Lemma 36 follows from spectralconsiderations of Alon and Kahale [1],
Feige and Ofek [17], and Füredi and Komloś [20].

8.2 The Core

In this section our objective is to construct a subgraphcore(G) ofG = Gn,k(ψ,p) such that for all vertices
v ∈ core(G) the numberse(v, Vi ∩ core(G)) do not deviate from the expectationsµ(v, Vi) “too much”. To
this end, we assign to eachv ∈ V a vectord(v) as in (1), which represents the actual numbers ofe(v, Vi)-
edges. By comparison,Ev represents theexpectednumbers ofv-Vi-edges. The first step of the construction
is as follows.

CR1. Initially, remove all verticesv such that‖d(v) − Ev‖ > 0.01ρ fromG; that is, setH = G − {v ∈
V : ‖d(v) − Ev‖ > 0.01ρ}. (Hereρ2 is the r.h.s. of (6).)
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Moreover, recall the decomposition ofG = Gn,k(ψ,p) into the “sparse” partG1 and the “dense” part
G2 from Section 1.6. ThenE(dG1∪G2(v)) ≤ 2σ∗ for all v ∈ V . Nevertheless, in the caseσ∗ = O(1) as
n → ∞ there may occur vertices such thatdG1∪G2(v) exceeds2σ∗ significantly. Therefore, as a second
step we remove such verticesv.

CR2. Remove all verticesv such thatdG1∪G2(v) > 10σ∗ fromH .

However, in general the resultH of CR1–CR2 will notbe such thate(v, Vi∩H) approximatesµ(v, Vi)
well for all v ∈ H . The reason is that there may occur verticesv ∈ H such that “many” neighbors ofv got
removed. Hence, in the final step of our construction we iteratively remove these verticesv fromH .

CR3. While there is a vertexv ∈ H such thateG1∪G2(v, V \H) > 100, removev fromH .

The outcome of the processCR1–CR2 is core(G) = H . In Section 8.3 we shall prove that w.h.p.
core(G) constitutes a huge fraction ofG.

Proposition 37. Suppose that (6) holds. Then w.h.p.core(Gn,k(ψ,p)) contains≥ n−nminσ
∗−10 vertices.

For all v ∈ core(G) we have‖d(v) − Ev‖ ≤ 0.01ρ, dG1∪G2(v) ≤ 10σ∗, andeG1∪G2(v,G−H) ≤ 100.

In addition, adapting proof techniques from [1], we shall prove in Section 8.4 thatG− core(G) has the
following simple structure w.h.p.

Proposition 38. If (6) holds, then w.h.p. all components of(G1 ∪G2) − core(G) have size≤ lnn.

Proof of Theorem 2.Assuming thatc0 is a sufficiently large constant and lettingλ = σ∗ > c0, we note
that Lemma 36 implies thatGn,k(ψ,p) satisfiesA1 w.h.p. Moreover, our assumptionR3 ensures thatA2
is true. Further, for each vertexv ∈ Vj and each1 ≤ i ≤ k the numbere(v, Vi) has a binomial distribution
with variance#ViPij(1 − pij) ≤ σ∗; therefore, the Chernoff bound (74) entails that

P

[

|e(v, Vi) − µ(v, Vi)| >
σ∗

10k
+ ln2 n

]

≤ 2 exp

[

− σ∗ 2k−2 + ln4 n

300(σ∗ + ln2 n)

]

≤ n−1. (78)

Thus, we conclude that in both casesA3 holds w.h.p. Finally, assumptionR2 yieldsA4.
With respect toH1, lettingH = core(G) we observe that Proposition 37 entails that#V \ H ≤

nminλ
−4. Furthermore, letUi = {v ∈ V : 2i+1σ∗ ≤ maxj=1,2 dGj

(v) ≤ 2i+2σ∗}. Then Lemma 34 and
our assumption thatσ∗ ≥ c0 for a large enough numberc0 entail that w.h.p.

∑

v∈V \H

dG1∪G2(v)
2 ≤ 210σ∗ 2#V \H +

∑

i≥2

22i+4σ∗ 2#Ui

≤ 210nminσ
∗−2 +

∑

i≥2

2i+2σ∗ 2 exp(−2i−2σ∗)n

≤ 1

2
nmin + 8n exp(−σ∗/2)

R1
≤ 1

2
nmin + 8nmin exp(−

√
σ∗/2) ≤ nmin,

whenceH1 follows. Moreover,H2, H3, andH4 follow directly from Proposition 37. ut

8.3 Proof of Proposition 37

To estimate#V (core(G)), we consider the following modification of the processCR1–CR3. Setω =
σ∗ + n

nmin
, and note thatω ≥ n/nmin ≥ k.

K1. Initially, let K be the subgraph ofG obtained by removing all verticesv ∈ V such that

max
1≤i≤k

|e(v, Vi) − µ(v, Vi)| ≥ 104

[

√

#Vipij(1 − pij) lnω + lnω

]

.

K2. While there is a vertexv ∈ K such thateG1∪G2(v, V \K) > 50, removev fromK.



27

To establish Proposition 37, we proceed in two steps. First,we show thatcore(G) ⊃ K. Then, we
bound#V (G−K).

Lemma 39. We havecore(G) ⊃ K.

Proof. Suppose thatv ∈ K. Then

‖d(v) − Ev‖2 =

k
∑

i=1

#Vi

(

e(v, Vi) − µ(v, Vi)

#Vi

)2

=

k
∑

i=1

#V −1
i (e(v, Vi) − µ(v, Vi))

2

≤ 2 · 104
k

∑

i=1

#V −1
i

[

#Vipij(1 − pij) lnω + ln2 ω
]

[due toK1]

≤ 2 · 104

[

k
∑

i=1

pij(1 − pij) lnω +
k

∑

i=1

ln2 ω

#Vi

]

≤ 10−4ρ2,

where the last step follows from (6) andR1. Thus, none of the verticesv ∈ K gets removed byCR1.
Further,K1 ensures thatdG1∪G2(v) ≤ 10σ∗ for all v ∈ K, so thatK is contained in the subgraph ofG
obtained inCR2. Finally, asK2 is more restrictive thanCR3, we conclude thatcore(G) ⊃ K. ut

Our next aim is to bound#V (G−K). We first estimate the number of vertices removed byK1.

Lemma 40. W.h.p. there are at mostnω−198 verticesv such thatmax1≤i≤k |e(v, Vi) − µ(v, Vi)| ≥
103

[

√

#VIPij(1 − pij) lnω + lnω
]

.Moreover, ifω ≤ n1/190, then with probability≥ 1− exp(− ln3 n)

there are at mostnω−90 such vertices.

Proof. By the Chernoff bound (74), for each vertexv ∈ Vj we have

Pij = P

[

|e(v, Vi) − µ(v, Vi)| ≥ 103

(

√

#Vipij(1 − pij) lnω + lnω

)]

≤ 2 exp

[

− 106(#Vipij(1 − pij) + ln2 ω)

2(#Vipij(1 − pij) + 103(
√

#Vipij(1 − pij) lnω + lnω)

]

≤ 2 exp

[

−106#Vipij(1 − pij) lnω + 106 ln2 ω

5 · 103(#Vipij(1 − pij) + lnω)

]

≤ 2ω−200.

Hence, lettingZij = #
{

v ∈ Vj : |e(v, Vi) − µ(v, Vi)| ≥ 103
(

√

#VIPij(1 − pij) lnω + lnω
)}

, we

have
E(Zij) ≤ 2#Vjω

−200. (79)

To obtain a bound onZij that actually holds w.h.p., we consider two cases.

1st case:ω ≥ lnn. Then Markov’s inequality entails that w.h.p.
∑k

i,j=1 #Zij ≤ nkω−199 ≤ nω−198.
2nd case:ω < lnn. As adding or removing a single edgee = {u, v} affects only the numberse(u, Vi)

ande(v, Vi), the random variableZij/2 satisfies the Lipschitz condition (75). Further,σ∗ ≤ ω ≤ lnn,
and#Vj ≥ nmin ≥ n/ω > n/ lnn. Hence, Lemma 33 entails that

P
[

Zij ≥ #Vjω
−199

]
(79)
≤ P

[

Zij − E(Zij) ≥
√
σ∗n ln2 n

]

= o(1),

and thus
∑k

i,j=1 Zij ≤ knω−199 ≤ nω−198 w.h.p.

Now, assume thatω ≤ n1/190. Then the inequalitiesω ≥ σ∗ andω ≥ n/nmin imply that
√
nσ∗ ln2 n ≤√

nω ln2 n ≤ n96/190, whilenω−92 ≥ n98/190. Therefore, Lemma 33 entails

P
[

Zij ≥ nω−92
]

(79)
≤ P

[

Zij − E(Zij) ≥
√
σ∗n ln2 n

]

≤ exp(− ln4 n).

Hence, with probability≥ 1 − exp(− ln3 n) the boundZij < nω−92 holds for all1 ≤ i, j ≤ k simultane-
ously, and thus

∑k
i,j=1 Zij ≤ k2nω−92 ≤ nω−90. ut



28

Lemma 40 implies that w.h.p.K1 removes at mostnω−198 vertices. Finally, we need to bound the
number of vertices that get removed duringK2.

Lemma 41. W.h.p.K2 removes at mostnω−198 vertices.

Proof. LetS be the set of vertices removed byK1. By Lemma 40 we may assume thats = #S ≤ nω−198.
Moreover, letv1, . . . , vq be the vertices removed byK2 (in this order). Assume thatq ≥ s, and letT =
S ∪ {v1, . . . , vs}. We shall prove thatT violates (76), so that Lemma 35 entails that actuallyq < s w.h.p.

To see thatT is an “atypically dense” set inG1 ∪ G2 that violates (76), observe that by construction
eachvi satisfieseG1∪G2(vi, S ∪ {v1, . . . , vi−1}) ≥ 50. Therefore,eG1∪G2(T ) ≥ 50s ≥ 25#T , while
#T = 2s ≤ nω−197. ut

Combining Lemmas 39–41, we obtain the following corollary,which implies Proposition 37.

Corollary 42. W.h.p. we have#V (K) ≥ n(1 − ω−197).

8.4 Proof of Proposition 38

If ω = σ∗ + n
nmin

≥ n1/190, then Lemma 39 and Corollary 42 yield thatcore(G) = G w.h.p., and thus

there is nothing to prove. Hence, we assume in the sequel thatω < n1/200. We shall prove that in this case
w.h.p. the graph(G1 ∪G2)−K does not contain a tree onlnn vertices w.h.p., whereK is the outcome of
the processK1–K2 defined in Section 8.3. Sincecore(G) ⊃ K by Lemma 39, this implies the assertion.

Thus, letT = (VT , ET ) be a tree with vertex setVT ⊂ V on t = #VT = dlnne vertices (T is not
necessarily a subgraph ofG, but just a tree whose vertex set is contained inV ). We shall estimate the
probability thatT is contained in(G1 ∪ G2) −K. To this end, we considerIT = {v ∈ VT : dT (v) ≤ 4}
andJT = VT \ IT ; as#ET = t − 1, we have#IT ≥ t/2. Moreover, letKT be the outcome of the
following modification of the processK1–K2 (cf. Section 8.3). Setω = σ∗ + n

nmin
.

K0’. Let G∗ be a graph obtained fromG by replacing the edges inET by fresh random edges. That is,
each edgee = {v, w} ∈ ET is present inG∗ with probabilitypψ(v)ψ(w) independently of all others
and of the choice ofG, andG∗ − ET = G− ET .

K1’. LetKT be the subgraph ofG∗ obtained by removing the vertices

JT ∪
{

v ∈ V : max
1≤i≤k

|eG(v, Vi) − µG(v, Vi)| ≥ 103

[

√

#VIPij(1 − pij) lnω + lnω

]}

.

K2’. While there is a vertexv ∈ KT such thatmaxi=1,2 eGi
(v, V \KT ) > 40, removev fromKT .

Lemma 43. LetK be the result of the processK1–K2 (cf. Section 8.3). ThenKT ⊂ K, regardless of the
outcome of stepK0’ .

Proof. Since every vertexv ∈ IT is incident with≤ 4 edges ofT , the graph defined in stepK1’ is contained
in the graph defined in stepK1. Consequently, all vertices removed byK2 also get removed byK2’ . ut

Let us callG good if for all treesT as above we have#V (G − KT ) ≤ nω−88, regardless of the
outcome of stepK0’ .

Lemma 44. We haveP [G is good] ≥ 1 − 2 exp(− ln3 n).

Proof. Let S be the set of vertices removed byK1’ , and lets = #S. Sinceω ≤ n1/190, Lemma 40
entails that with probability≥ 1 − exp(− ln3 n) we haves ≤ #JT + nω−90 ≤ nω−89. Furthermore,
if K2’ removesq ≥ nω−89 verticesv1, . . . , vq, then consider the setT = S ∪ {v1, . . . , vdnω−89e}. Then
ln3 n ≤ nω−89 ≤ #T ≤ s + nω−89 + 1 ≤ nω−88, but eG1∪G2(T ) ≥ 40#T/2 = 20#T (cf. the proof
of Lemma 41). Hence,T violates (77). Consequently, Lemma 35 entails thatq ≤ nω−89 with probability
≥ 1 − exp(− ln3 n), whence the assertion follows. ut
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Proof of Proposition 38.Since the construction ofKT is independent of the presence of edges ofT in
G1 ∪G2 due toK0’ , Lemma 43 yields

P [T ⊂ G1 ∪G2 ∧ VT ∩K = ∅] ≤ P [T ⊂ G1 ∪G2] · P [IT ∩KT = ∅] . (80)

Given their cardinalities, the setsVi ∩ HT are uniformly distributed random subsets ofVi \ JT , as due
to K0’ the distribution ofG∗ − JT is invariant under permutations of the vertices within the classesVi.
Therefore, lettingti = #IT ∩ Vi andν = dnω−88e, we obtain

P [IT ∩KT = ∅] ≤ P [G is not good] +
k

∏

i=1

(

#Vi−ti
ν−ti

)

(

#Vi

ν

)

Lemma 44
≤ exp(− ln3 n) +

k
∏

i=1

(#Vi − ti)ν−ti(ν)ti
(#Vi)ν−ti(#Vi − ν + ti)ti

≤ exp(− ln3 n) +

k
∏

i=1

(

ν

#Vi − ν

)ti

≤ exp(− ln3 n) +

k
∏

i=1

(

2ν

#Vi

)ti

≤ exp(− ln3 n) + ω−86
∑

k

i=1
ti ≤ exp(− ln3 n) + ω−43t ≤ ω−42t. (81)

To boundP [T ⊂ G1 ∪G2], we note thatP [{v, w} ∈ E(G1 ∪G2)] ≤ 2pψ(v)ψ(w)(1 − pψ(v)ψ(w)) ≤
2σ∗/nmin by the definition ofσ∗ (v, w ∈ V ). Consequently,

P [T ⊂ G1 ∪G2] ≤
(

2σ∗

nmin

)t−1

. (82)

Combining (80), (81), and (82), and recalling thatω = σ∗ + n
nmin

, we conclude

P [T ⊂ G1 ∪G2 ∧ VT ∩K = ∅] ≤
(

2σ∗

nmin

)t−1

ω−42t ≤ n1−tω−39t. (83)

Finally, we are going to apply the union bound to estimate theprobability that thereexistsa treeT as
above such thatT ⊂ G1 ∪ G2 andVT ∩ K = ∅. Since by Cayley’s formula there are

(

n
t

)

tt−2 ways to
choose the treeT , (83) entails that

P [∃T : T ⊂ G1 ∪G2 ∧ VT ∩K = ∅] ≤
(

n

t

)

tt−2n1−tω−39t ≤ exp(t)n2ω−39t ≤ n−36,

becauset ≥ lnn. Hence, w.h.p.(G1 ∪G2) −K contains no tree on≥ lnn vertices. ut

9 Proofs of Auxiliary Lemmas

9.1 Proof of Lemma 33

The proof relies on the following general tail bound, which is a consequence of Azuma’s inequality (cf. [22,
p. 38] for a proof).

Lemma 45. LetΩ =
∏N
i=1Ωi be a product of probability spacesΩ1, . . . , ΩN . Let Y : Ω → R be a

random variable that satisfies the following condition for all 1 ≤ j ≤ N .

If ω = (ωi)1≤i≤N , ω
′ = (ω′

i)1≤i≤N ∈ Ω differ only in thej’th component (i.e.,ωi = ω′
i if i 6= j),

then|Y (ω) − Y (ω′)| ≤ τ .

Further, assume thatE(Y ) exists. ThenP [|Y − E(Y )| ≥ λ] ≤ 2 exp
(

−λ2/(2τ2N)
)

for all λ > 0.
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To derive Lemma 33 from Lemma 45, we letP = {{v, w} : v, w ∈ V, v 6= w} be the set of all
(

n
2

)

possible edges. Further, for eache = {v, w} ∈ P we letΩe denote a Bernoulli experiment with
success probabilitypψ(v)ψ(w). Then we have the product decompositionGn,k(ψ,p) =

∏

e∈P Ωe, because
the edges occur independently inGn,k(ψ,p). However, we cannot apply Lemma 45 to this decomposition
directly, because the number of factors is too large. Therefore, we are going to set up a different product
decompositionGn,k(ψ,p) =

∏K
i=1Ωi, where eachΩi is a product of severalΩe.

To this end, we partitionP intoK ≤ 2σ∗n/ lnn subsetsP1, . . . ,PK such thatE(#E(G1∪G2)∩Pi) =
∑

e∈Pi
P [e ∈ G1 ∪G2] ≤ lnn for all 1 ≤ i ≤ K; hereG1,G2 are the graphs defined in (4), (5). Then we

have the decomposition

Gn,k(ψ,p) =

K
∏

i=1

Ωi, whereΩi =
∏

e∈Pi

Ωe. (84)

Let us callPi critical if #E(G1 ∪ G2) ∩ Pi > 100 lnn. As #E(G1 ∪ G2) ∩ Pi is a sum of mutually
independent Bernoulli variables, the generalized Chernoff bound (74) entails thatP [Pi is critical] ≤ n−21.
Therefore, by the union bound

P [∃i : Pi is critical] ≤ n−19. (85)

Now, forG = Gn,k(ψ,p) we defineG̃ = G−⋃

i:Pi is criticalE(G1)∩Pi+
⋃

i:Pi is criticalE(G2)∩Pi
and setY (G) = X(G̃). Then (85) yields

P [X(Gn,k(ψ,p)) = Y (Gn,k(ψ,p))] ≥ 1 − n−19. (86)

Furthermore, by the Lipschitz condition (75) we have|X(G) − Y (G)| ≤ n2 for all possible outcomes
G = Gn,k(ψ,p). Therefore, (86) entails that

|E (X(Gn,k(ψ,p))) − E (Y (Gn,k(ψ,p)))| ≤ n2−19 ≤ 1. (87)

Moreover, we claim that for all1 ≤ j ≤ K

if G,G′ are such thatG − Pj = G′ − Pj , i.e.,G,G′ differ only on edges corresponding to
the factorΩj , then|Y (G) − Y (G′)| ≤ 200 lnn

(88)

To prove (88), we letG1, G2 andG′
1, G′

2 be the decompositions ofG andG′ into the sparse/dense part as
defined in (4), (5).

1st case: neither inG nor in G′ the setPj is critical. ThenG̃′ can be obtained from̃G by either adding
or removing the edges inPj ∩ (E(G)4E(G′)). SincePj is not critical in bothG andG′, we have
#Pj ∩ (E(G)4E(G′)) ≤ 200 lnn, so that (88) follows from the Lipschitz condition (75).

2nd case:Pj is critical in both G andG′. ThenG̃′ = G̃, so thatY (G) = Y (G′).
3rd case:Pj is critical in G but not in G′. ThenG̃′ is obtained fromG̃ by adding or removing the edges

in Pj ∩E(G′); since#Pj ∩ E(G′) ≤ 100 lnn, the Lipschitz condition (75) implies (88).
4th case:Pj is critical in G′ but not in G. Analogous to the 3rd case.

Due to (88), Lemma 45 applied toY (Gn,k(ψ,p)) and the decomposition (84) yields

P

[

|Y (Gn,k(ψ,p)) − E(Y (Gn,k(ψ,p)))| >
1

2

√
σ∗n ln2 n

]

≤ exp

[

− σ∗ ln4 n

160000K ln2 n

]

≤ n−11,(89)

provided thatn is sufficiently large. Thus, we finally obtain

P
[

|X(Gn,k(ψ,p)) − E(X(Gn,k(ψ,p)))| ≥
√
σ∗n ln2 n

]

≤ P [X(Gn,k(ψ,p)) 6= Y (Gn,k(ψ,p))] + P
[

|Y (Gn,k(ψ,p)) − E(X(Gn,k(ψ,p)))| ≥
√
σ∗n ln2 n

]

(86), (87)
≤ n−19 + P

[

|Y (Gn,k(ψ,p)) − E(Y (Gn,k(ψ,p)))| ≥
1

2

√
σ∗n ln2 n

]

(89)
≤ n−19 + n−11 ≤ n−10,

as desired.
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9.2 Proof of Lemma 34

Since for allv anda = 1, 2 the degreedGa
(v) of v in Ga is a sum of mutually independent Bernoulli

variables with mean≤ 2σ∗, the Chernoff bound (74) entails thatP [v ∈ Ui] ≤ exp
[

− 1
32iσ∗

]

. Hence,
E(#Ui) ≤ exp

[

− 1
32iσ∗

]

n. To obtain a bound on#Ui that actually holds w.h.p., we consider two cases.

1st case:2iσ∗ ≥ 24 ln lnn. By Markov’s inequality, we have

P
[

#Ui > exp
(

−2i−2σ∗
)

n
]

≤ E(#Ui)

exp [−2i−2σ∗]n
≤ exp

[

−2iσ∗/12
]

≤ ln−2 n. (90)

2nd case:2iσ∗ < 24 ln lnn. Thenexp
[

− 1
32iσ∗

]

n ≥ n1−o(1). Therefore, Lemma 33 yields

P

[

#Ui > 2 exp

(

−1

3
2iσ∗

)

n

]

≤ P
[

#Ui − E(#Ui) ≥
√
σ∗n ln2 n

]

≤ n−10. (91)

Finally, combining (90) and (91) and invoking the union bound, we conclude that with probability≥
1 −O(ln−1 n) we have#Ui ≤ exp

(

−2i−2σ∗
)

n for all i = 1, . . . , dlog2 ne.

9.3 Proof of Lemma 35

For any two verticesv, w ∈ V the probability thatv, w are connected inG1 ∪G2 is

P [{v, w} ∈ E(G1 ∪G2)] ≤ 2pψ(v)ψ(w)(1 − pψ(v)ψ(w)) ≤
2σ∗

nmin
. (92)

Let S ⊂ V be a set of cardinalitys = #S ≤ smax = n
(

nmin

nσ∗

)2
. As there are

((s
2)

10s

)

ways to choose
a graph with vertex setS that contains10s edges, the union bound entails in combination with (92) that

P [eG1∪G2(S) ≥ 10s] ≤
((s

2)
10s

)

(

2σ∗

nmin

)10s

≤
(

esσ∗

10nmin

)10s

.Hence, once more due to the union bound we

obtain thatPs = P [∃S ⊂ V : #S ≤ smax ∧ eG1∪G2(S) ≥ 10#S] ≤
(

n
s

)

(

esσ∗

10nmin

)10s

.Consequently, we

can estimatePs as follows:

(

n

s

)

Ps ≤
[

(en

s

)2
(

esσ∗

10nmin

)10
]s

≤
(nmin

nσ∗

)8s

≤ 1. (93)

Thus, for anysmin ≥ 1 we have

P [∃S ⊂ V : smin ≤ #S ≤ smax ∧ eG1∪G2(S) ≥ 10#S] ≤
smax
∑

s=smin

Ps
(93)
≤ 2

(

n

smin

)−1

.

Finally, (94) entails that w.h.p. there is no setS ⊂ V of cardinality1 ≤ #S ≤ smax such thateG1∪G2(S) ≥
10#S, whence the first part of Lemma 35 follows. Furthermore, setting smin =

⌈

ln3 n
⌉

in (94), we obtain
the second assertion.

9.4 Proof of Lemma 36

The proof relies on the following two general lemmas, which are implicit in the work of Alon and Kahale,
Feige and Ofek, and Füredi and Komloś [1, 17, 20]; both lemmas are stated and proved explicitly in [11,
Chapter 5].

Lemma 46. There are constantsc1, c2 such that the following holds. Let(aij)1≤i<j≤ν be a family of
mutually independent Bernoulli random variables with mean0 ≤ p ≤ 1. Setaij = aji for 1 ≤ j < i ≤ ν,
and letaii = 0 for all 1 ≤ i ≤ ν. Moreover, letA = (aij)1≤i,j≤ν andM = pJ − A. Further, let
d ≥ 0, and setX = {i ∈ {1, . . . , ν} :

∑ν
j=1 aij ≤ d}. Then with probability≥ 1 − O(ν−1) we have

‖MX‖ ≤ c2
√

max{νp, d}.
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Lemma 47. There are constantsc1, c2 such that the following holds. Let(aij)1≤i,j≤ν be a family of mu-
tually independent Bernoulli random variables with mean0 ≤ p ≤ 1. Moreover, letA = (aij)1≤i,j≤ν
andM = pJ − A. Further, letd ≥ 0, and setX = {i ∈ {1, . . . , ν} :

∑ν
j=1 aij + aji ≤ d}. Then with

probability≥ 1 −O(ν−1) we have‖MX‖ ≤ c2
√

max{νp, d}.

Proof of Lemma 36.LetA = A(G) be the adjacency matrix, and setM (i,j) = pijJVi×Vj
−AVi×Vj

. Then
by Lemmas 46 and 47 (applied to the matricesAVi×Vj

) for all i, j such thatpij ≤ 1
2 w.h.p. we have

∥

∥

∥
M

(i,j)
X

∥

∥

∥
≤ c

√

max{∆,σ∗} (94)

for a certain constantc > 0. Furthermore, applying Lemmas 46 and 47 toJVi×Vj
−AVi×Vj

, we conclude
that w.h.p. (94) holds for alli, j such thatpij > 1

2 as well.

To bound‖MX‖, let ξ, η ∈ RV be unit vectors. We decomposeξ =
∑k
i=1 ξi, where the entries ofξi

equal the entries ofξ on the coordinates inVi, andξi is 0 onV \ Vi. Similarly, we letη =
∑k

i=1 ηi. Then

|〈MXη, ξ〉| =

∣

∣

∣

∣

∣

∣

k
∑

i,j=1

〈

M
(i,j)
X ηj , ξi

〉

∣

∣

∣

∣

∣

∣

≤
k

∑

i,j=1

∥

∥

∥
M

(i,j)
X

∥

∥

∥
· ‖ξi‖ · ‖ηj‖

(94)
≤ ≤ ck

√

max{∆,σ∗},

because
∑k

i=1 ‖ξ‖2 =
∑k

i=1 ‖ηi‖2 = 1. Thus, w.h.p. we have‖MX‖ = supξ,η:‖ξ‖=‖η‖=1 |〈MXη, ξ〉| ≤
ck

√

max{∆,σ∗}, as desired. ut
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