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Abstract. In this paper we study the use of spectral techniques folhgpaptitioning. LetG = (V, E)
be a graph whose vertex set has a “latent” partifion. . ., V.. Moreover, consider a “density matrix”
&€ = (Evw)v,wev such that forv € V; andw € Vj the entry€,,, is the fraction of all possiblé;-
V;-edges that are actually presentGh We show that on inputG, k) the partitionVi, ..., Vi can
(almost) be recovered in polynomial time via spectral mésh@rovided that the following holds:
approximates the adjacency matrix@fin the operator norm, for verticase V;, w € V; # V; the
corresponding column vectofs, £, are separated, ard is sufficiently “regular” w.r.t. the matrix.
This result in particular applies gparsegraphs with bounded average degre@as #V — oo, and
it yields interesting consequences on partitioning randoaphs.
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1 Introduction and Results

1.1 Spectral Techniques for Graph Partitioning

To solve various types of graph partitioning problespgctral heuristicare in common use. Such heuris-
tics represent a given graph by a matrix and compute its edees and -vectors to solve the combinatorial
problem in question. Spectral techniques are used eithagabwith “classical” NP-hard graph partition-
ing problems such as B\PH COLORING or MAX CuT, or to solve less well defined problems such as
recovering a “latent” clustering of the vertices of a grafshthe present paper we mainly deal with the
latter problem, which is of relevance, e.g., in informatietrieval [3], scientific simulation [29], or bioin-
formatics [14].

Despite their success in applications (e.g., [28, 29]),mast of the known spectral heuristics there
are counterexamples known showing that these algorithnfierpgbadly in the “worst case”. Thus, under-
standing the conditions that cause spectral heuristiasawed (as well as their limitations) is an important
research problem. To address this problem, quite a few emifave contributed rigorous analyses of spec-
tral techniques on suitable modelsrahdom graphsFor example, Alon and Kahale [1] analyzed a spec-
tral technique for ®APH COLORING, Alon, Krivelevich, Sudakov [2] dealt with the MKiIMUM CLIQUE
problem, and Boppana [6] and Coja-Oghlan [10] studied ramghstances of MNIMUM BISECTION. In
addition, Flaxman [18] suggested a spectral techniqueafodom 3-SAT.

While the algorithmic techniques of [1, 2,6, 10, 18] are Isetdilored for the concrete problems (and
random graph models) studied in the respective articlemarkable paper of McSherry [27] investigates
a more generic spectral partitioning algorithm on a rattegregal random graph model. McSherry’s result
comprises the main results from [2, 6], but does not encosgmsserandom graphs as studied in [1, 10],
or graphs in which edges do not occur independently as in [18]

The goal of the present work is to devise a new, generic sgiduuristic that does capture all the
previous work [1, 2, 6,10, 18, 27], and that is indeed applie# much more general settings. To this end,
we shallnot stick to a specific random graph model (howsoever genemahtloidel may be). Instead, we
single out as modest conditions as possible that ensuraitioess of the spectral algorithm. In order to
come up with such conditions, let us observe (informally thost important features that the random
graphs in prior work have in common. Lét= (V, E) be a graph whose vertex set has a “latent partition”
Vi,...,Vi; we think of k being “small” in comparison te = #V. Forv € V and1l < i < k we let
e(v, V;) signify the number of-V;-edges inG.

* Date: July 4, 2006.

ISSN 1433-8092



Low rank structure. Define amatriX = (€4 )v,wev Of rank< k as follows: ifv € V; andw € V}, then
Euw is the fraction of all possibl®;-V;-edges that are actually presentinLet A(G) be the adjacency
matrix of G. Then in [2, 6, 27] the norMA(G) — £|| is “small”. By contrast, this is not exactly true in
thesparsegraphs occurringin [1, 10, 18]. Nonetheless, in [1, 10, h8]draphG’ obtained by removing
a small number of vertices of “atypically high degree” iststitat A(G’) is well approximated by the
low rank matrix&.

Separation. The low rank matrixt mirrors the latent partition of the graph in the sense thavéstices
u,v € H that belong to different classes the nofid@, — &,|| should be “large enough”; he&,
denotes thev-column of €.

Approximate Regularity. For all verticesv € V; the numbee(v, V;) is “close” to the average number
#V ' Y ey, e, V).

Core. The graph has a “large” subgrapH (which is sometimes called the “core” 6f) such that for all
v € H the vectol€, provides a good description of the “densitiegt, V;)/#V;. More precisely, for
w € V; we define

d(v,w) = e(v,V;)/#V;, and we letd(v) = (d(v,w))wev € RY. 1)

Then||d(v) — &,|| should be “small” for aly € H. While in [2,6,27] we have]! = G, in [1, 10, 18]
the coreH is actually a proper subgraph 6f

The main result of this paper is a spectral algoritPam t i t i on that recovers the “latent” partition of
a given graplG, provided that (rigorously formulated versions of) therafoentioned conditions are sat-
isfied (cf. Theorem 1). Hence, the result crystallizes “datristic” conditions that cause spectral methods
to succeed, and may thus contribute to a better understnéisuch techniques.

Moreover, the fact that we deal with a general graph pantitig problem requires new, generic algo-
rithmic ideas. For instance, the algoritt#ar t i t i on is adaptivein the sense that input of the algorithm
only consists of the grapliy and the desired number of vertex clasged hus, the algorithm does not
requireany further information about the type of the partition (e.go, lower bound on the size of the
classes or on the separation of vertices in different cgsBarthermore, also the fact that the present work
encompasses, e.gparsegraphs (constant average degree) requires new algorigohitions.

1.2 The Main Result

To state the four conditions from Section 1.1 rigorously,need a bit of notation. Throughout the paper,
weletV = {1,...,n} beavertexset, and = (V, E) denotes a graph. Moreover, gt V — {1,... k},

V; = %71 (v), andnyiy, = minj<;< #V;. We think of V4, ..., Vj, as the “latent” partition of7 that we
are to recover. Moreover, consider a symmetrig & matrix p = (pi;)1<i,j<k; the intended meaning
is thatp;; should equal the “density” of the palif;, V;, i.e., the fraction of all possibl&;-V;-edges that
are actually present i&r. Furthermore, le€ = £(v,p) = (Evw)v,wev be then x n matrix with entries
Evw = Py(v)y(w); NOtE thatd has rank< k.

If we think of p;; as the density of the paif;, V;, then we could interpret the entéy,, as the “proba-
bility” that v, w € V are connected — even though we mo¢assuming thats is a random graph. Moreover,
we could consider the terip, ., £, (1 — £40) the “variance” of the number of neighborswo({because
the variance of a Bernoulli experiment with success prdtatsl,,,, is £,.,(1 — Eu4))- Thus,

o= r;lea% Evw(l — Epwy) (2)
weV

can be interpreted as the “maximum variance” of the vertgxeatss ofG.
In addition, we need to partitio into a “sparse” and a “dense” part. To this enddlet (P )y wev
be the matrix with entries

Doy = 1if £y > %, andd,,, = 0 otherwise. (3)
Then we define

G1 = (‘/7 El), where E; = {{U,w} EFE: Dy, = 0}, (4)
G2 = (V,Ey), where Es = {{v,w} € E: ®py = 1, v,w € V, v # w}. (5)



Thus,G, consists of all edgesthat are present i@ such thatp, is 0, while G5 contains alk with @, = 1
that aremissingin G. Letdg, ug, (v) denote the degree ofin the graphG; U G2 = (V, E1 U Es).

If M = (myw)vweyv IS @a matrix andX C V, then we letMx be the matrix obtained frolM by
replacing all entriesn,,, with (v,w) ¢ X x X by 0. With this notation, we can state the “low rank
structure” condition as follows.

Al. Let A be the adjacency matrix @f, and letM = £ — A. There is a numbes* < A < o* -
min{c™*, nyin/ Inn} such that for anyd > 0 the setD(A) = {v € V : dg,ua,(v) < A} satisfies
[ Mpayll < cokvV A+ A, wherecy > 0 is a constant.

Thus,Al states thaf “approximates”A within cok+v/ A + A on the subgraph i obtained by removing
all vertices that have degree A in G; U Gs. The crucial parameter that measures the quality of the
approximation is\, and thus\ will play an important role in the “separation” condition\asll. Moreover,
we shall see in Section 2 that the occurrenceé\df the bound iPAl is actually necessary.
Letting &, = (Evw)wev Signify thev-column of€, we state the “separation” condition as follows.

A2. Letp = c§/k*\/nmin. Then for allu, v € V such that)(u) # ¢(v) we have||E, — || > p.

This condition says how much for verticasv that belong to different classes the vectéis €&, that
represent the “expected densities” should differ. Notedtigendence gf on A: the tighterE approximates
A, the more “subtle” the differences betwegpandé&, can be.

To state the “approximate regularity” condition, for eadrtexv € V and each sef C V we let
e(v, S) denote the number of edges franto S in G. Moreover, if we think ofé,,, as the “probability”
thatv, w are connected i, then we can consider(v, S) = >, e s Evw as the “expected” number of
v-S-edges.

A3. All v € V; obey the bounthax;<;<x |e(v, V;) — (v, V;)] <0.1 (%cr* + #ViP;(1 — pij)) +1n®n.

Hence A3 requires that any vertexshould have approximately the “expected” numper, ;) of neigh-
bors in each class. The error term on the r.h.s. involves tagmum variances* and in addition the
“variance” #ViP;; (1 — pi;) = Zwew Evw(l — &) of the numbere(v, V;). Moreover, the additive
In? n-term is crucial in the case of sparse graphs (cf. Section 2).

Further, we need a fourth condition that ensures that adkelg; have at least polylogarithmic size.

A4, Nmin = minlgigk #V; Z 1n30 n.

As a next step, we shall formulate the “core” condition riyasly; intuitively the “core” is a subgraph
H that consists of “well behaved” vertices.

H1. The subgraplif of G satisfies#V \ H < A" *nuin andzvev\H dc,ue, (0)? < Nmin-
H2. For allv € H the vectord(v) defined in (1) satisfie§&, — d(v)||*> < 0.001p>.

H3. All v € H have degree& 100* in the graphz; U Gs.

H4. In the graph; U G2 eachw € H has at most00 neighborsinl” \ H.

Thus,H1 requires that the corf constitutes a “large” share @f, and that the vertices outside Bf are
not incident with an exorbitant number of edges. FurtheembyH2 for all v € H the vectord(v) should
be close t&f, . In addition,H3 requires that the verticase H do not have a too high degreedh U G,
andH4 means thaf{ should be “well separated” frovi \ H.

Theorem 1. There are a polynomial time algorithiarti ti on and a constantC > 0 such that for
eachcy > C and each integek > 2 there exists a number, so that the following is true. Suppose
thatn > ng ando* > ¢, that A1-A4 hold, and thatH is a subgraph ofG that satisfiesH1-H4.
ThenParti tion(G, k) outputs a partition(Ty, ..., Ty) of V such thatl; N H = V,; N H for some
permutationr of {1, ..., k}.



Hence A1-A4 andH1-H4 ensure thaPar t i t i on can recover the planted partitidf, . . ., V;, onthe
subgraphH. However,Par ti ti on cannot recover thentire partitionVy, ..., V. in general. In fact, as
we shall see in Section 2, recovering the partifign. . . , V. perfectly isimpossiblan general; the reason
basically is that we only assume th&b) is close tof, for v € H. Thus, loosely speaking Theorem 1 says
that if G has a “nice” low rank structur&, then we can recover a large piecefoh polynomial time.

Furthermore, we emphasize that the inpuPaf t i t i on onlyconsists of the grapi’ and the desired
numberk of classesno other parameters of the partition (e.§,,p, nmin) are revealed to the algorithm.
Thus,Parti ti on isadaptivein the sense that the algorithm finds out on its own what “tygfgdartition
it is actually searching for. Indeed, this adaptivity reqginew algorithmic ideas, and it is one of the main
achievements of this paper; it also seems to be an impodatirie in applications.

1.3 Random Graphs

We shall apply Theorem 1 to obtain a rather general resulstitipning random graphs. While the scope
of Theorem 1 is not limited to the type of random graphs we aresiglering in this section, the model is
interesting because it encompasses the random graphsdstngtirior work [1, 2, 6, 10].

Let ¢, p, and€ be as in Section 1.2. Then we can define a random gfapk(y, p) as follows: the
vertex set of7,, (¢, p) isV = {1,...,n}, and any two vertices, w € V are connected with probability
Euww independently. We say thét,, (¢, p) has some properteR with high probability(“w.h.p.”) if the
probability thatP holds tends td asn — co. As we shall see in Section &, (¢, p) comprises various
random graph models for specific partitioning problems saxcRAPH COLORING or MAX CuUT.

Theorem 2. Letk be a number independentofand suppose that andp satisfy the following.

R1. for the quantityy* defined in (2) we have* > lnz(n/nmin),
R2. nuyin > In* n, and
R3. for all u,v € V such that)(u) # v (v) the inequality

Cok

[0 = EulI? > p* = - coln ( ) lglggkz:pzy - pij) (6)

min nmln

holds, where is a large enough constant.

Then wh.pG = G, (¢, p) has the properties\1-A4 stated in Theorem 1, an@ has a subgraph
H = core(G) that satisfiesd1-H4. Furthermore, w.h.p. all components of the grdgh U G2) — H have
at mostln n vertices.

Letting d(v,w) andd(v) be as in (1), we hav&(d(v,w)) = Euw. The subgraphkore(G) basically
consists of those vertices for whidlv) is close to its mea#,. Thus,core(G) is actually a “canonically”
defined subgraph, and not an artefact produced by the digofitf. Section 8.2 for a precise definition).
Moreover, agG;, U G2) — H just consists of components of logarithmic size, the gr@ph H has a very
simple structure.

To explain (6), we note tha,,, = E(d(v,w)), so thatE(||€, — d,||*) quantifies the “variance” of
d(v). Forv € V; we can bound this b§(||&, — d(v)]|?) < ¢* /nmin-Furthermore||&, — £, ||? quantifies
how much the planted partition influencé®) — d(w). Hence, (6) basically says thRartiti on can
(almost) recover the planted clas3gs. . ., Vi if the influence|| £, — £, ||? exceeds the boungt /1, ON
the “random noise” by a certain amount.

1.4 Related Work

The conditionsA1-A4 in Theorem 1 are reminiscent of the work on quasi-randomhgae to Chung
and Graham [9], who investigate the connection betweentigpeand combinatorial graph properties.
Moreover, several authors have investigated the appligabf spectral techniques under various other
types of conditions: Bilu and Linial [4] studied stable iastes, the work of Frieze and Kannan [19] applies
to dense graphs (average degfg)), Kannan, Vempala, and Vetta [25] considered a bicritegasare



for clustering, and Spielman and Teng [30] investigatedaiaraphs. In comparison with prior work, the
new aspect of the present paper is that our goal is not to @atisome objective function, but to detect and
recover a “latent low rank structure” of a given graph. Thlisgorem 1 is the first result that provides a
generabeterministidormulation of this problem that ensures that the low rankcttire can be computed
in polynomial time.
The G, (¢, p) model was first considered by McSherry [27], who presentedlgnpmial time al-

gorithm that recovers the planted partition@f = G,, x (¢, p), provided that the following holds. Let
02 . = maxi<; j<k pij (1 — pij), and letcy > 0 be a large enough constant; then the assumption reads

6
6= &u1? 2 cobmax {2 2L [T n] i () £ 0(0) ™
n Mmin
The two conditions (7) and (6) compare as follows. Due tolthe-terms occurring in (7), this condi-
tion G,, (¢, p) must have average degree at ldastr (and< n — In® n). By contrast, Theorem 2 also
comprises the following three types of graphs.

Sparse graphs.Condition (6) allows that the meagu(v, V;) of the number ofv-V;-edges may b€ (1)
forallv € V andl < j < k. In this case the average degre&f (¢, p) is bounded ag — oo.

Massive graphs. Similarly, (6) allows thatu(v,V;) = #V; — O(1) for all v,j. ThenG,, (¥, p) is a
massive graph, i.e., the average degreeisO(1).

Mixtures of both. The most difficult case algorithmically is a “mixture” of tldove two cases: for any
v andj we either havep(v,V;) = O(1) or u(v,V;) = #V; — O(1). In other words, some of the
subgraphs induced on two séfs V; are sparse, while others are massive.

In fact, the algorithm suggested in [27] fails to produce dipan that is even close to the “planted”
one on the three above types of inputs. The reason is edetitat, e.g., sparse random graphs have a
considerably mor&regular degree distributiorthan random graphs of average degseén n, and that the
tails of the degree distribution affect the spectrum of tti@@ency matrix (cf. Section 2).

Furthermore, condition (7) is phrased in terms:iof, ., which may exceed the expressighfrom (2)
significantly if, e.g.,G, x (¢, p) features a “small” part (say, of siz€’-!) of density%. In this case (6)
can be a considerably weaker assumption than (7). Nevesthgb) does not strictly improve (7), because
in (6) there occurs a factor @f, while (7) only needs a factdr (recall, however, that = O(1)).

Finally, the algorithnPar ti t i on presented in this paper @laptivein the sense that it just requires
the graphGG and the numbek at the input. By comparison, the algorithm as it is descriingf@7] does
require further information about the desired partitioig (ea lower bound ofi€,, — &,, || for v, w in distinct
classes, or on,,;,). In summary, Theorem 2 extends [27] in the following respec

— The most important pointis th&ar t i t i on can cope with the three types of graphs described above
(sparse, massive, and mixed).

— The new algorithm requires only the gra@hand the numbek of classes at the input.

— Partitionis purely deterministic, while the algorithm in [27] is raodized.

Dasgupta, Hopcroft, Kannan, and Mitra [13] studied the 6sebeigenvector technique” @, 1 (¢, p);
an important point of this work is that it provides a rigorasalysis of this heuristic that contributes
to explaining its success in practice. For graphs of modedanhsity (average degree polylog(n) and
< n — polylog(n)), the authors obtain a similar result as [27]. Their sef@amassumption is weaker than
both (6) and (7), as they just need to bouidd — &, | interms ofy " v Euw(l — Euw) + Evw(l = Evw)
rather than in terms of* or o,,,,. However, to achieve this they need some further condittuieh as a
lower bound off2(n) onnuy, (in [27] and in the present work,,;, may be as small as polyl¢g)).

While in the present paper we are just dealing with the proliérecovering a “latent” partition of a
given graph, there are a number of papers dealing with spéaturistics for “classical” NP-hard problems.
For instance, Alon, Krivelevich, and Sudakov [2] studieddarise” random graph (average degf¥e.))
with a “planted” clique of size2(y/n); the main result of [2] can be rederived easily from Theoreas 2
well as from [27]. Further related results that involve fimming sparse random graphs (constant average
degree) include Alon and Kahale [1] (3-coloring), Boppaaind Coja-Oghlan [10] (WWiMuM BISEC-
TION), Chen and Frieze [8] (hypergrapkcoloring), Flaxman [18] (3-SAT), and Goerdt and Lanka [21]



(4-NAE-SAT). These results can only partially be derivethgghe techniques of [27] (namely, under the
additional condition that the average degree must be at pedglogarithmic). Nonetheless, as we shall
point out in Section 2, the main results of [1, 6, 8, 10, 18,f21pw rather easily from Theorems 1 and 2.

A few authors have analyzed spectral techniques on randaphgrthat cannot be described in terms
of theG,, 1 (v, p) model. For instance, Dasgupta, Hopcroft, and McSherry $ligpested a random graph
model with a “planted” partition featuring a “skewed” degmistribution. This model is very interesting,
because it covers, e.g., random “power law” graphs. Theinmesult is that the planted partition can be
recovered also in this case w.h.p. under a similar assumptd7). Thus, it is assumed that the average
degree is> polylog(n). Applied to theG,, (1, p) model, [12] yields a similar result as [27].

Moreover, Dasgupta et al. [13] point out that their algaritban cope with certain verggular sparse
random graphs. More precisely, they consider random grajthsa “planted” partitionls, ..., Vi, such
that for any two vertices, w € V; have (exactly) the same number of randomly chosen neigliteech
classVj. It is shown in [13] that under a certain separation condiimd under the assumption that all
classed/; have size2(n/k) the planted partition can be recovered using the secondwger heuristic.
However, this model is incomparabled, ;. (¢, p). In fact, due to the very regular degree distribution, the
model in [13] behaves actually quite similarly to “deng€&; (¢, p) graphs (average degree Inn). We
shall see in Section 2 that Theorem 1 also captures the nadadiuced in [13].

Though some of the currently best results on partitioningdeen graphs rely on spectral methods,
there are quite a few further references on different tephas. Some examples are Bollobas and Scott [5]
(randomization), Bui et al. [7] (network flows), Dyer andézé [15] (combinatorial methods), Feige and
Kilian [16] (semidefinite programming), Jerrum and Sork23] (Metropolis process), and Subramanian
and Veni Madhavan [31] (breadth first search).

1.5 Techniques and Outline

LetG = G,k (¢, p) be a random graph with adjacency matdxTo recoveils, . .., Vi, McSherry [27]
employs the following “projection method”. L&t ..., be the eigenvectors ol with the & largest
eigenvalues in absolute value. LBtbe a projection oR" onto the subspace spanneddy. . ., x, and
let A = PAP. ThenA is called aank k approximatiorof A. Invoking results on the eigenvalues of random
matrices from [20], McSherry shows that, . . ., {; mirror the partitionV, .. ., Vi, and that therefore the
Frobenius nor A — |12 = 3, oy | Av — & ||? < kno?,,, is “small” (hereA,, &, denote the-columns

max

of A, £). In effect, A, is “close” to &, for “most” verticesv. Thus, due to the separation condition (7) it is
possible to recove¥;, . .., Vi from A (provided that the algorithm is given a lower bound|@h, — &,||
for verticesu, v in different classes).

However, this approach breaks dowrf= G, x (1, p) is asparsegraph such thagV;p;; = ©(1)
asn — oo for all 7, 5. In this case the rank approximation doesot approximate€ well. The reason is
that w.h.p. the degree distribution 6%, ;. (v, p) features ampper tait for instance, the maximum degree
is Q(hl‘}fn) w.h.p. In fact, vertices of degre¢ > o* induce eigenvalues that are as largevasin
absolute value, while the assumption (6) just ensures tigatigenvalues corresponding to the partition
Vi,..., Vi are abouk+/o* in absolute value. In other words, vertices of “atypicalight degree jumble
up the spectrum ofi, so that the most outstanding eigenvalues do not corredpathe desired partition
anymore.

Thus, in the situation of Theorems 1 and 2 we need a more smattéxi approach to obtain a matrix
A that approximates§ well. Following the work [1] on3-coloring sparse random graphs, one could try
to settle the problem by just removing vertices of degsees* from GG. However, the issue is that the
algorithmPar ti ti on does not knows™ (it is given justG andk); indeed, it is not easy to compute (or
approximatey* from GG. To cope with thisPar ti t i on employs a subroutin®ppr ox that constructs a
“Cauchy sequence” of matricek that “converges” tc.

As a next stepPar ti t i on uses the matrixd to compute an initial partitiorss, . .., S; of G. The
basic idea is to put,v € V into the sameS; iff |A, — A,|| < 0.1p, say, wherep is the separation
parameter fromA2. Of course, the problem is th&arti ti on doesnot getp as an input parameter.
InsteadPartiti on employs a procedureni ti al that computes “centerq?, ..., & and a partition
S1,...,Sk such that the “squared distancgjf:1 Zvesi ||AU — &||? is minimized. This partition turns
out to be “close” tovy, ..., Vi.




Finally, to home in on/y, ..., V4, Parti ti on calls a local improvement heuristiapr ove. This
heuristic repeats the following operation: to each verewe assign a vectof(v) that represents the
densitiese(v, S;)/#S; (reminiscent of (1)). Then, npr ove shifts each vertex into that classS; such
that||d(v) — & || is minimum. While this procedure is purely combinatoritd,analysisrelies on spectral
arguments and may be of independent interest. A cruciaéibgue is that npr ove has to deal with
classeds, ...,V of (possibly) vastly different sizes, e.g@olylog(n) vs.O(n).

The paper is organized as follows. In Section 2 we illustidteorems 1 and 2 with some examples
of concrete graph partitioning problems. Sections 3—7 aanthe description oPartiti on and its
subroutines and the proof of Theorem 1. Moreover, in Se@iame apply Theorem 1 to the random graph
Gk (¢, p), thereby proving Theorem 2. Finally, Section 9 containgafoefs of a few technical lemmas.

1.6 Notation and Preliminaries

Throughout the paper we 18t = {1,...,n}. If G = (V, E) is a graph, themd(G) denotes its adjacency
matrix. Further, forX, Y C V we lete(X,Y) = e (X,Y) denote the number of -Y-edges inGG, and
we sete(X) = eq(X) = eq(X, X). Moreoverdg(v) = eg(v, V) denotes the degree of

We let (X, Y") denote theexpectechumber ofX-Y-edges in the random graggh, (¢, p). Even in
Section 3-7, where we do not work with random graphs, it ipfaéto use this notation. Further, we set
&y, = &, for anyv € V;. Moreover, we always leb denote the matrix (3), an@, G2 denote the graphs
defined in (4), (5).

If M = (myw)vwey IS amatrixandy € V, thenM, = (myy)wev IS thev-column of M. We let
| M| = maxe. ¢ =1 || ME] denote the operator norm aid/ || = />, [[M,]||? the Frobenius norm
of M. Further, if X, Y C V, thenMx .y signifies the matrix obtained from/ by replacing all entries
Mgy With (z,y) ¢ X x Y by 0. For brevity we letM x = Mx x. If A a matrix of rank< &, then

IAI® < [|AllE < kllA]%. (8)

Furthermore, letd be a symmetric matrix, and l€t, . .., {; denote eigenvectors of with the k largest
eigenvalues in absolute value. Létbe the projection onto the space spannedy. ., ;. Then we call
A = PAP arankk approximatiorof A. This definition ensures that B is any rankk matrix, then

A=Al <||B - Al (9)

2 Applications and Examples

Graph coloring. Alon and Kahale [1] developed a spectral heuristic for dolpB-colorable graphs gen-
erated according to the following model. Let: V' — {1,2,3} be a random mapping, and lgf; = p
if i # jandp; = 0fori,j = 1,2,3. ThenVy, V5, V3 is a planted3-coloring of G = Gy, (¢, p). In
this section we observe that the main result of [1] can bevddrfrom Theorem 2 by adding only few
problem specific details (in a similar way one can rederieeréisults of [6, 10]). We also discuss how the
assumptions (7) from [27] and (6) from Theorem 2 relate thexdher.

To satisfy (7), we need that> ¢ (In® n) /n for a certain constant > 0. In this case w.h.gall vertices
v € V; have(1 + o(1))np/3 neighbors in the other two classEs ¢ # j (by Chernoff bounds), so th&t
is quite regular. Furthermore, Iét € RV be the characteristic vector &f. Then fori £ j we have

AG)(G = ) ~ (G = G, (10)

Moreover, all eigenvectors L (1,(2,(3 have eigenvalues of ord€d(,/np). Hence, the spectrum of
A(G) is very “clean” in that the three eigenvectors with the “mmststanding” eigenvalues correspond to
V1, Vo, Vs. Infact, Vi, V5, V3 can be read off easily from these three eigenvectors w.h.p.

By comparison, the condition (6) of Theorem 2 only requites > ¢/n for a constant > 0, which
is exactly the assumption needed in [1]. Let us assume thaalacp = ¢/n. Then the numbers(v, V;)
for v € V; # V; are asymptotically Poisson with meaf8. Therefore, w.h.p.

#{v e Vi:e(v, V) =7} ~ (¢/3)" exp(—c/3)n/(37}) . (11)



Consequently, it ismpossibleto recover the partitioiv;, V5, V3 from G perfectly. For by (11)7 con-
tains £2(n) isolated vertices w.h.p., and of counse algorithm can tell which isolated vertex belongs to
which V;. This shows that Theorems 1 and 2 are best possible in the #gatsn general we can just hope
to recover the correct partition on a subgrdptof GG, but not on the entire graph.

Furthermore, ip = ¢/n, then the spectrum oA(G) does not reflect the planted coloring as nicely as in
the “dense” case. For by (1) contains a large number of stak§ 4 with d >> ¢?. Thus, the eigenvalues
+v/d > cof A(K, 4) show up in the spectrum of(G). In effect, the “relevant” eigenvalues (10) of order
¢ are “hidden” among a lot of eigenvalugs/d that result from the upper tail of the degree distribution.
Hence, the algorithm from [27] would use eigenvectors nyerepresenting the highest degree vertices,
whence it would fail to recovéry, V, V3. (In fact, it has been observed in [26] that the spectrum tgues
a phase transition ag ~ Inn.)

Nonetheless, by TheoremPartiti on can compute setS;, S, S3 such thatsS; " H = V; N H,
whereH = core(G). ThoughSs, Sa, S5 do not coincide withV;, V4, Vs perfectly, we can usé, Sz, Ss
to 3-color@. To this end, we follow the strategy of Alon and Kahale: by ditteen 2G — H just consists
of components of siz& In n. Hence, for each of these components we can compute in poightime a
3-coloring that extends the 3-colorisg N H, So N H, S3 N H of H. Glueing all these 3-colorings together
yields the desired 3-coloring of all @f.

Random 3-SAT. Flaxman [18] studied the following model of random 3-SATt ke, . . . , z,, be proposi-
tional variables, and let = {z;,7; : 1 < i < n} be the set of literals. Lat; = ¢;n~3. Moreover, pick a
random assignment af;, .. ., z,,, letT be the set of literals that evaluate to true, andflet L\ T. Then,
let ¢ be a random 3-SAT formula obtained by including each possilsiuse overL. that contains exactly
literals inT" with probabilityp; independently.

Flaxman presents an efficient algorithm that computes afgaty assignment ob, provided (essen-
tially) thatcy, c2, c3 exceed a certain large enough constants. The algorithnugetgraphG with vertex
setL in which each clause is represented as a triangle involViaghree literals of the clause. Flaxman
proves that inG the partitionlV; = T, Vo = F enjoys a separation property (similar A2), and that
therefore a partitio”, F’ of G that coincides withl", F' on a large subgrapH of G can be computed
via spectral techniques. Then, he uses a brute force digoti assign the literals i6 — H so thato is
satisfied. The same result can be derived easily by empldlgenglgorithmPar t i t i on from Theorem 1.
Observe, however, that the graghcannot be described in terms of t6%, ;. (v, p) model, because edges
do not appear independently; thus Theorem 2 does not appy he

Regular graphs. Bui et al. [7] suggested the following model foriMmMuM BISECTION: suppose that
d’ > d and thatn is even, and le¥;, > be a random partition df into two pieces of equal size. Then,
let G be a graph chosen uniformly at random in which each vertexV; has exactlyl’ neighbors inV;
and exactlyl neighbors inl’z_; (i = 1, 2). Bui et al. show that in this model a minimum bisection (n§me
V1, V2) can be computed in polynomial time (via flow techniquespvpied (essentially) that’ > ¢ and

d = o(1) for a certain constant > 0.

Using methods from [24], one can show that w.iCphas the propertied1-A4, and thatH1-H4
actually hold forH = G, provided that!’ > d + c(+/d’ + 1) for a certain constant > 0. Thus, Theorem 1
shows thaPar ti ti on yields an optimal bisection w.h.p. This result improves jconsiderably, since
the necessary condition on the parameters is much weakeof(lsourse the flow techniques suggested
in [7] are of independent interest). A similar result wasaied in [13] (via spectral techniques as well).

Once more(& cannot be described in terms of t6g, ;. (¢, p) model, because the edges do not occur
independently. However, even thougtcan be a sparse graph, due to its very regular degree digribt
is much easier to deal with than a sparse random gfaph(v, p) (e.g., we can sell = G here).

3 The Algorithm Partition

Throughout Sections 3-7, we l&tbe a graph that satisfies1-A4. Moreover, we assume théat is a sub-
graph ofG that has the propertied1-H4. Furthermore, we implicitly assume thatndc, are sufficiently



large. Finally, we use the symbals o*, G, andG- as defined in Section 1.Rote thatA3 implies that
da,ug,(v) < To* +1nn forallv e V. (12)

In the sequel, we summarize the functionindgafr t i t i on and its subroutines. We will present and
analyze the subroutinéslent i f y, Appr ox, andl npr ove in detail in Sections 4-7.

Algorithm 3. Partition(G,k)
Input: A graphG = (V, E) and an integek. Output: A partitionT1, ..., Ty of G.

1.  Runthe procedure | denti fy(G,k).
2. If 1 dent i fy fails, then let A be a rank k approximation of A.
otherwise let ¢ = (puuw)v,wev be the output of | dent i fy, and let A = Appr ox(G, ¢).
3. Let(Si,...,Sk&,..., &) =1nitial (A k).
4, Let (Th,...,Tx) =l mprove(G, S, ..., Sk, &1, .- -, &k)-
Output (T1,...,T%).

In Steps 1-2 the goal is to compute a mattixhat approximate& well. If ¢* > Inn is not too small,
thenA1l ensures that we could just ldtbe any rank: approximation ofA(G).

By contrast, ifo* is small (sayg* = O(1) asn — oo) thenG consists of “extremely sparse” and/or
“extremely dense” parts. Indeed, By the average degree 6f; U G2 is < 10000*, say. In this case a
rank k£ approximation ofA(G) doesnot provide a good approximation &f (cf. Section 2). Instead, to
approximatet, it is instrumental to determine which parts of the graphspiase and which are dense, i.e.,
to compute the matri®. This is the aim of the procedutalent i f y, cf. Section 4.

Proposition 4. | dent i f y either outputs the matri® or “fail”, and if ¢* < In® n, then the output i.

Moreover, in Section 5 we shall establish the following.

Proposition 5. If ¢ = &, then the outputl of Appr ox (G, ) is a matrix of rankk such that|| A — £|| <
c2k\/\. Furthermore, if* > In® n, then any rank: approximationd’ of A satisfieg|A’ — &|| < cZkvV/\.

Combining Propositions 4 and 5, we conclude that the matromputed in Step 2 satisfies

" R (8) A2
|A—&| <@kVA, andthus|A — &||% < kA < ¢5° p*Mmin.- (13)

Consequently, sincgA — &[[% = 3,y |4, — &]|%, for “most” verticesv the distance|A, — &,|| is
“small” (< 0.01p, say). Therefore, ni ti al partitions the vertices € V according to the vectord,.
More precisely] ni ti al computest “centers’¢y, ..., & € RY and a partitionSy, . . ., Sy of V such
that essentiallys; consists of those verticesthat are close tg;, cf. Section 6.

Proposition 6. The output of ni ti al enjoys the following properties.

1. There is a permutationof {1,..., k} such that|¢; — £.(;)[|> < 0.001p* forall i = 1,... k.
2. Z§:1 #Si AV iy < 0.001nmin.
3. Yk oy #8a N Vo [|Er(a) — Ex(y 2 < 0.001p*npmin forall 1 < j < k.

While the initial partitionSy , . . . , Sy, is solely determined by the matrik, the subroutiné npr ove ac-

tually investigates combinatorial propertiegafl npr ove performs iteratively a local improvement of the
initial partition Sy, ..., Sy that restricted to the subgraph converges to the planted partitidf, . . . , Vj.

Proposition 7. There is a permutation such that the outpufy, . .., T, of | npr ove satisfiesl; N H =
VeyNHforalli=1,... k.

A detailed description of mpr ove can be found in Section 7. Finally, since all the proceduuesin
polynomial time, Theorem 1 is an immediate consequenceagditions 4—7.
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4 ldentifying Sparse/Dense Parts

4.1 The Procedurel denti fy

Algorithm 8. I denti fy(G, k)
Input: A graphG = (V, E), the integelk. Output: Either a matrixp = (py)v,wev OF “fail”.

1.  Compute arank k approximation A* = (ay,,)v,wev 0f A(G).
Let B = (byw)v,wev be the matrix with entries by, = 1if a3, > 1 and b,., = 0 otherwise.
2. Construct an auxiliary graph B = (V, F), where {v,w} € F iff || B, — By| > In** n.
Apply the greedy algorithm for graph coloring to 5, and let T1,...,Tr be the resulting color

classes. _
3. Foralli,j e {1,...,R}andeach pairv € T;, w € Tj let

1 ifi#j Aea(Ti, Tj) > 0.66#T;#T;
ow =14 1 ifi=jAeq(T:) > 0.66(%)"),
0 otherwise.

4. LetG7 be the subgraph of G consisting of all edges {v, w} € E such that ¢,., = 0. Moreover, let
G5 be the subgraph of G consiting of all edges {v, w} ¢ E satisfying @, = 1.
If R < k and the maximum degree of G5 U G3 is < In* n, then return . Otherwise output “fail”.

The aim ofl dent i f y is to compute the matri& defined in (3). Let us call two class&s, V; similar
if for all indices! we havep;; > % — pj > % Moreover, we say that two verticesw are similar if they
belong to similar classéls;, V;.

I dent i fy performs a very coarse spectral partitioning-oto identify similar vertices. As a first step,
| dent i f y computes a low rank approximatiett of A(G). By A1 A* should provide at least a “rough”
approximation of. Then,I dent i fy constructs a matri¥3 by rounding the entries of* to 0/1; as the
desired outpu® is obtained by rounding the entries&f B should be “close” t@. In fact, if o* is “small”,
then the entries of differ from 0/1 only “a little”, so thatB should actually be close . In Section 4.2
we shall prove the following lemma to estimatgB — £||.

Lemma 9. If o* < In'"n, then||B — £||% < log** n.

Of course, the difficult part abotident i f y is that we are to compute a mattixhat coincidegxactly
with @. To this end, Step 2 dfdent i f y sets up a grapB in which two vertices, w are adjacent iff their
columnsB,, B,, are far apart. Hence, two vertices should be adjacefitffthey arenotsimilar, and thus
BB should be a complete-partite graph for some < k. Now, the algorithm computes a greedy coloring
Ti,...,Tr of B. If Bis indeed complete-partite, then clearly the greedy algorithm will uBe= r < k&
colors. Finallyl dent i f y sets up a matrip that attains the valueonT; x T} if the pairT;, T} is “dense”,
and0 otherwise. In Section 4.3 we shall prove that this yieldsd@sired output it < In® n.

Lemma 10. If o* < In'"n, thenl dent i f y either fails or outputss = &. Furthermore, ifo* < In®n,
then actuallyl dent i f y outputsy = .

In the light of Lemmas 9 and 10, to complete the proof of Prdjmrs4 we just need to show that in
the caser* > In'" n the algorithm outputs “fail” (but does not return a “wrongatrix ¢ # &).

Lemma 11. If o* > In'" n, thenl dent i f y outputs “fail”.

The proof of Lemma 11 can be found in Section 4.4. FinallypBsition 4 is an immediate consequence
of Lemmas 9-11.

4.2 Proofof Lemma9

To prove the lemma, we shall establish the two estimates

|® - E&||% < In*?n, (14)
|& — B3 < In*n. (15)
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Then the assertion follows immediately by applying thertgi@ inequality.
Sinced, £ both have rankl k, (8) yields

k
&~ Ellr < V2P - E|| < V2k Y [[Brixy; — Evixys |

=1
=V2k D pulldvicyll+V2E Y (1= pi)|[Tvixy, |l
'LJPlJS_ 'LJle>2
k k
<V2k Z 2pi; (1 — pij )/ #Vid#V; < V8k Z pij (1 — pij)#V; < (2k)*/%¢* <In'' n,
i,j=1 1,5=1

because we are assuming that< In'® n. Hence, we obtain (14).
Finally, to establish (15) we note thatax,cy da,ug, (v) < 111n'°n by (12). ThereforeAl yields
[A* — &% < k(02 + 111n*" n) < 2¢3k2 In? n. Hence, as both*, £ have rankk, (8) entails

|A* — E||% < 2k||A* — £|]? < In*! n. (16)

Furthermore, as* < In'"n, we havep;;(1 — p;;) < In"'n < 0.01, becausetV; > nuyin > In''n by
Ad ando* > p;;(1 —p;;)#V; foralll < i,j < k. Hence, ifB,, # @uw, then|A%  — Euwl| > % and
thus|| B — &||% < 9||A* — &£||%. Therefore, (15) follows from (16).

4.3 Proof of Lemma 10
Throughout we assume that < In'" n. To prove Lemma 10, we need the following observation.

Lemma 12. Letl <4,j < k. If p;; > % then actuallyp;; > 0.9. Moreover,p;; < % in fact implies that
pij <0.1.

Proof. By Lemma 9 we havél B — £||% < log® n. Suppose thap;; > 1. If p;; < 0.9, then for all
v e V;and allw € V; we would have By, — Euw| > 0.1, which yields the contrad|ct|ohB &z >
0.01#V;#V; > 0.01n2,,, > In"" n (cf A4). A similar argument establishes the second assertion. O

Corollary 13. For all v,w € V we havd|B, — B,||?> < In**n < v, w are similar.

Proof. Suppose that € V; andw € V; are not similar. Let <[ < k be such thap;, > 3 andpj < %
Since||B — £||7 < In**n by Lemma 9, there are at maatn® n verticesu € V; such thatB,,, = 0.
Similarly, for at mose In*® n verticesu € V; we haveB,,,, = 1. Hence||B, — B, ||> > #V; —4In**n >
In** n by A4.

Conversely, assume thatw € V are similar. Letr = #{u € V : |Byy — Euo| > 1} andy = #{u €
Vi |Buw — Euwl| = 3} Since for alli, j we either havey;; < 0.1 orp;; > 0.9 by Lemma 12, we obtain

| B, — Bwl||> < = +y < 9||B — &||2 < In*" n, thereby proving the corollary 0
Corollary 14. Forall 1 <4, j < k the following holds:
if pij > 3, thene(V;, V;) > S#Vi#V; (i # ), resp.e(Vi, V) > 3(%)7) (i = ) (17)
1
3

2

it pij < 3, thene(V;, V) < 3#V#v (i # 5), resp.e(Vi, V) = § (%)) (i = (18)
Proof. To prove (17), suppose that; > 5. Since then we actually ha\m7 > 0.9 by Lemma 12, in
the casel # j we getu(V;,V;) > 0. Q#V#Vj, and ifi = j, thenu(V;) > 0.9(%)7%). Therefore A3
implies (17). A similar argument yields (18). a

Proof of Lemma 10Corollary 13 implies that two verticeas w € V are adjacent in the graph iff they
are not similar. Hence3 is a completeR-partite graph, whose color classgs ..., Tr are exactly the
equivalence classes of the similarity relation. Theref(t@) and (18) entail thap equals® and thus the
graphsG3, G5 constructed in Step 4 dfdent i f y coincide withG; andGs. Consequentlyl, denti fy
either outputs “fail” orp = @. Furthermore, it™* < In® n, then the maximum degree@fi UG, is < In*n
by (12), whence dent i f y outputsp = . a
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4.4 Proofof Lemma 11l

The basic idea of the proofis as followslIifient i f y does not fail, therkR < k£ and the maximum degree
of GT UGS is < In* n. Thus,G consists of< k partsTy, . .., Tr such that the graphs induced on the sets
T; and the bipartite graphs consistsing of theT; edges are eithexxtremelysparse (maximum degree
< In* n) or extremelydense (maximal number of “missing” edges per verte® n). However, according
to the matrix& of “expectations”,G should feature at least one piece of “moderate” density \(efage
degree between %lm10 nin G1 U Gs). Hence, ifl dent i f y does not fail, them(G) must be far apart
from &, which contradict#\1.

Let us now carry out this idea in detail. L&f = £ — A(G). ThenAl and (12) entail thaj M || <
ck+/o*nmin/ Inn. By contrast, we shall prove thatlident i f y does not fail, then

| M| > 107k 3/ Nmino™ > c2k\/0*nmin/ Inn, (29)

which is a contradiction.

Thus, assume thatdent i f y does not fail and hence outputs some magrjwhich is based on a
partition T3, ..., Tr With R < k. Let1 < 4,5 < k be such that#V;p;;(1 — p;;) > k~'o* (note that
possibly: = j). We may assume without loss of generality thgt < % (if pi; > % we just replaces
by its complement and by J — &). Clearly, for eactv € V; there is somd < ~(v) < R such that
e(v,V; NT, ) = R 'e(v,V;). Indeed, we will show below that

1
In® n<k—RU <HT, ) NV <e(v,V;NT) +In'n forallv eV, (20)

Now, let1 < a < R be such thagty~1(a) > R~14#V;. Choose a sef C v~ !(a) C V; of cardinality
s = #S = [10_4k_3nmm1 (21)

arbitrarily, setl’ = T, N V; \ S, and lett = #T'. Sincedg, (w) < 110* for all w € T4 by (12), and
becausec, (v (), Ta NV;) > 7o #7 () by (20), we conclude that

ea, (0 (@), TaNVy) _ #v7 M) #Vi | T

T.NV; > > 50s. 22
# I Z T maxeer, do,(w)  — 44k2  © 44k°R © 44k3 =0 (22)
Therefore,

(22) 1 (20) o*

Further, combining the right inequality from (20) with (28e conclude that(S,T) > s(t — In*n) >
0.9st, while (S, T) < p;;st < %st. Hence,

2
zst <e(S,T) = pu(8,T) = — (M1s,17) < [M]] - [1s] - 1]l = [ M]|V/st. (24)

Thus, combining (21), (23), and (24), we obtaiW || > 2v/st > 10~*k~3\/nmmo, thereby proving (19).
Finally, to prove (20) we first show that

H#To ) NVj > e(v,V; N Ty) = # Ty NV; —In'n forallve V. (25)
To see this, lett < 3(v) < R be the index such that € Tj,. If the entries ofy on the rectangle
T.Y(v) X Tg(v) were(, thendGI (v) > e(v, T,Y(U)) > R_le(v, Vj). As

(v, V;) > 50, V) 2 SHVipy > 50" (26)

Pij = 5

N —

by A3 and the choice of, j, we conclude thatlg: (v) > 4kchr > In* n. But thenl dent i f y would

fail. Consequentlyy attains the valué on T,y x Tj(,). Therefore#T,,) NV — e(v, V; N Ty ) <
daz(v) < In? n (because otherwis€, (v) > In* n, so thatl dent i f y would fail), whence (25) follows.
Furthermore, combining (25) and (26) we obtain (20), beea(s, V; N T,(,)) > R~ 'e(v,V;) by the
definition ofy(v).
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5 Approximating the Expected Densities

5.1 The ProcedureAppr ox

Algorithm 15. Appr ox(G, ¢) X
Input: A graphG = (V, E)) and a matrixp = (pyw)v,wev- Output: A matrix A.

1. Let G7 be the graph consisting of all edges {v, w} € F such that .., = 0. Further, let G5 consist
of all edges {v,w} ¢ F satisfying vuw = 1.
Let A =n, set Ry = 0, and let Ay = (ao,0w)v,wev = A(G).
2. Fort=1,...,log, Ado
3. LetA, =2""Aand R, = {'U eV: dg;ugz ('U) > At}
Let A; = (at,ow)v,wev be the matrix with entries a¢ v = @ow if (v,w) € Ry X VUV X Ry,
and a; v = at—1,0w Otherwise.
If there is an 0 < s < ¢ such that || As — A¢| > 4cok/As, then abort the for-loop and go to
Step 4.
4. Leti = max{0,¢t — 1} and return a rank k approximation of A;.

The aim of Appr ox is to compute a low rank matriX that approximateg. To this end Appr ox
analyses the spectrum df On the one hand, i > In? n, then byA1 thek largest eigenvalues in absolute
value of A yield a good enough approximation of the spectruré ¢€f. Section 3). On the other hand, if
Ais “small” — e.g.,0* < X\ = O(1) — then the “relevant” eigenvalues df do not necessarily stand out
anymore but may be hidden among “noise” that is due to fluictnabf the vertex degrees (cf. Section 2).
Indeed, the “relevant” eigenvalues corresponding to theetspm of £ are in general abouty/), while
vertices that have degrées k2 in the graphG; U G induce eigenvalueg'd > kv/).

Of course, if the parameter* were known to the algorithm, then we could just delete altivesv
such that, saylc,ua,(v) > 100* to “clean” the spectrum aofl(G). We do, howevemot assume that™
is given at the input, but that we are given meréhyandk. Furthermore, it is not feasible to just try all
possible values of* either. For the algorithm also does not quite know what kihplastition it is looking
for, and therefore we could in general not tell from the rsglpartition which value o&6* was correct.
For instance, for a wrong value of the algorithm may easily miss some small planted cladsit instead
split some other big clagdg; into two pieces erroneously.

Therefore Appr ox pursues the following “adaptive” approach. The algoritlngiven the grapld:
and the matrixp = @ (cf. Proposition 4). Thus, the two grapti§, G5 set up in Step 1 coincide with
G1,G9. Proceeding irx log, A stepst = 1,...,log, A, Step 2 ofAppr ox computes set®; of vertices
of degreedc:uc; (v) > Ay = 27YA and matrices4;. The A,’s are obtained fromi(G) by replacing
all entries indexed by x R, U R; x V by the corresponding entries ¢f the combinatorial meaning is
that all edges incident with vertices iR, get deleted frontG; U G>. Further, to ensure that actually the
matricesA; “converge” to€, Appr ox aborts the loop as soon gd; — A, || gets too large for some< ¢
(reminiscent of Cauchy’s criterion for the convergencesaafigences).

Why does this procedure yield a good approximatioof £ w.h.p.? Suppose that, > 500*, say. By
H1 andH3, the setR; consists just oK n.,;,/0** vertices of atypically high degree ii; U G». Thus,
deleting the vertice®R, removes the eigenvalues caused by the fluctuations of thexveegrees> A,
while leaving the planted partition essentially intacteféfore, we can estimafed; — £|| as follows.

Lemma 16. Suppose that\; > 50\ and thatpy = @. Then||A; — £|| < 2cokV A;.

Proof. By A1 we have

3
HSV\Rt — AV\Rt” < ok A + A < §COk\/ Ag. (27)

Thus, letting” = &g, + &g, xv\Rr, + Ev\R,x R, ANAM = YR, + PR, xV\R, T $V\R. xR, W€ just need
to bound the normof — M = & — A; — (Ev\g, — Av\g,)- Sincep = &, we have

®)
IF = M|* < |F = M|[% < 2l|€rxv — Proxv [T
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=23 3 (Pow — Purp)? <8 D D ot (1 — Powsw)]’

vER; weV vER; weV

ZZ#V N Re - #Vh - [pav(1 = pa)]”

< 80" Z #Va N Ry Zpab (1—pa)  [becauser* > #Vipap(1 — pas)]

= b=1
*2 k
S Nonin Zl #V N Rt [because}'* Z Zb nminpab(l _pab)]
* 2 * 2
_ 8 R _SHVAH [by H1 andH3]. (28)
Mmin Tmin
Combining (27) and (28), we obtaji; — &|| < [|Ev\r, — Av\r, || + |F — M|| < 2cokv/As. O

Proof of Proposition 5If | dent i f y fails, theno* > In® n by Proposition 4, and the matrik defined in
Step 2 ofPar ti t i on is a rankk approximation ofd. Sinces* > In® n, (12) implies thatlg, a, (v) <

200* forall v € V. Therefore||€ — A|| < ||€ — A|| + ||A — A] (%) 2|1€ — A Agl c2kV/\, as desired.

Let us now assume thadent i f y did not fail, and thusp = @. In this casePar ti ti on executes
Appr ox(G, ). Let s,t be such thatd, > A; > 50A. Then by Lemma 16 we haved, — A:|| <
|As — & + [|A: — || < 4eok/ Ay, and thus Step 3 ohppr ox will not abort the loop. Consequently,
A; < 100X Lett* be maximal such thatl;= > 50\. Then||4; — As+|| < 4eok/As-, because the exit
condition in Step 3 oAppr ox was not satisfied for = ¢ ands = t*. Therefore, Lemma 16 entails that

|4 = €|l < [|A; = A= || + | Ae= — E|| < 6eokn/Ap < 60cokV/A. (29)

Finally, if A is a rankk approximation of4;, then||A — A;|| < ||€ — A;|| by (9). Therefore, (29) implies
1A~ €] < |4~ 44| + | 4; - €] < 21| 4; - £]| < 120c0kv/X < Bkv/A. 0

6 Computing an Initial Partition

6.1 The Procedurel ni ti al

Algorithm 17. I ni ti al (4, k)
Input: A matrix A and the parametér.
Output:A partition Sy, . .., S, of VV and vectorg,, ..., & € RY.

1. Forj=1,...,2logn do

2. Let p; = n2~7 and compute Q) (v) = {w € V : ||A, — A,||? < 0.01p?} forallv € V.
Then, determine sets Q' ... ; QY as follows: for i = 1,. k do
3. Pick avertex v € V' \ |J;Z QZ(J) such that #Q(J) )\ U Z(J) is maximum.
) _ i ( j) 49 _
set Q) = QU (v )\Ul:1 7 and ¢V #Q(]) ZweQm Ay
4. Partition the entire set V" as follows.

— First, let 5Y) = Q¥ forall 1 < i < k.
— Then, add each vertex v € V\Uf:1 Ql(” to aset 5 such that | A, — £ || is minimum.

Setr; =31, 2, e 14w — €711
5. LetJ be such that 7* = r; is minimum. Return S\ ... 5%V and (7. &),

I ni tial isgiventhe approximatiod of £ and the parametér, and its goal is to compute a partition
of V that is “close” toVy,.. ., Vj. If the algorithm knew the parametgr then it could partition' as
follows. Since the number = #{v € V : [|A, — &,[* > 0.001p°} satisfiesl0*p*z < [|A — £||%, (13)



15

yields z < nmin/co. Thus, letv € V; be such thafl A, — &,||2 < 10~4p2, and define)(v) = {w € V :

A, — Ay||? < 0.01p2}. Since&,, = &, forall w € V;, we have#Q(v) N'V; > #V; — z > 0.9994V;.
Moreover#Q(v)\V; < z, because of the separation condithi Thus,Q(v) “almost” coincides with;.
Hence, we could obtain a good approximatiowof. . . , V;, by just picking iteratively: verticesvy, . .., vy
such that; ;1 € V' \ U;;ll Q(v;) andQ(v;) has maximum cardinality. This is essentially what Steps 2-3
of I nitial do,and a similar procedure is at the core of McSherry’s dlgor[27].

However, since here we dwt assume thap is known to the algorithml, ni t i al has to estimate
on its own. To this end| ni ti al applies the above clustering procedure for various “caatdidval-
uesp;, = n277,1 < j < 2log,n. Thus,I nitial obtains for eacly a coIIectioanj),..., Ej)
of pairwise disjoint subsets df and vectorfg'j). The idea is thafi(j) should approximatey, well
if QZ(.j) is a good approximation of;. Hence, ingj),...,Q,(f) is “close” to Vi,..., V4, thenr; =

S Y pesth |A, — €92 ~ ||A — €] will be small (cf. (13)). Therefore, the output bhi t i al

is just the partitionS@, ce S,(cj) with minmalr;. In Section 6.2 we shall derive the following bound on
this minimum.

Lemma 18. If p < p; < p, thenr; < §k3A.

Furthermore, in Section 6.4 we will establish that any partisuch that-; is small yields a good
approximation oV, ..., V4; Proposition 6 is an immediate consequence of Lemmas 18%nd 1

Lemma 19. LetSy, ..., Sy beapartitionandy, ..., & a sequence of vectors such t@le Zvesi
Ax||? < Sk2A. Then there is a bijectiony : {1,...,k} — {1,...,k} such that the following holds.

1. ]|& — &v,,) I < 0.001p% forall i = 1,... , k,
2. 38 #8iAV, i) < 0.0017in, and
3. Zs,bzl #Sa OV - [[Ev, ) — Ev,py II7 < 0.001nminp” forall 1 < j < k.

&i—

6.2 Proof of Lemma 18

Suppose tha%p < p; < p. To ease up the notation, we omit the supersciifthus, we letS; = Si(j),

Qi =QY for1 < i <k, andQ(v) = QU (v) forv € V (cf. Steps 2—4 of ni ti al ). The following
lemma, whose proof we postpone to Section 6.3, shows that iha permutation such that; is “close”
to EVW.) forall 1 < < k, and that the set®; are “not too small”.

Lemma 20. Suppose thaip < p; < p. There is a bijectiony : {1,...,k} — {1,...,k} such that for
eachl <i < kwe have#Q; > 1#V, ) and||& — &y, , |I* < 0.1p°%

In the sequel, we shall assume without loss of generalitytttemapy from Lemma 20 is just the
identity, i.e.,y(i) = i for all i. Bootstrapping on the estimafg; — £v,||? < 0.1p% for 1 < i < k from
Lemma 20, we derive the following stronger estimate.

2 <1004#Q; " Y o, 1Av — Eu12.

Corollary 21. Forall 1 <i < k we have|¢; — &y,

Proof. By the Cauchy-Schwarz inequality,

1/2
& — &vill = #Q7 | 0 Av —éui|| < #Q; 7 | D 1A - v | . (30)
VEQR; vVEQR;
Furthermore, af¢; — Ev.||? < 0.1p% by Lemma 20, for alb € Q; \ V; we have
|4, = Ev|1? < 2() Av — &1 + (1€ — Evi]I?) < p*/3, (31)

because the construction ¢f; in Step 3 ofl nitial ensures thaﬂflv — &I < 0.01p2%. Hence, as
|Es — Ev,|I? > p* by A2, (31) implies that| A, — &,]| > 0.1|| A, — &y, ||. Therefore, the assertion follows
from (30). a
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Corollary 22. Forall v € S; \ V; we have|A, — & < 3||A, — &
Proof. Leti # [ and consider a vertexe S; N V;. We shall establish below that
1Ay = &l < 1Ay = &ll- (32)

Then by Lemma 204, — & < [ A, — & + [|E, &II < A, =& +p/3, and thup < €, —EvH <
Ay — &l + 116 — v =&l < 2|A, — &+ 2p. Consequently, we obtaid, — &,|| > £p, SO
that the assertion follows from the estimate

~ 32) . N Lemma20 . p o
||Av_§iH < HAv_ng < ”Av_gv”""”gv_gl” < HAv_gvH+§ S?’HAU_&)”'

Finally, we prove (32). Ib € ;N V;\ Q;, then the construction &f; in Step 4 ofl ni t i al guarantees
that||A, — & < |4, — &||, as claimed. Thus, assume that Q; N'V,. Then

| A, — &l < 0.15p [by the definition of@; in Step 3 ofl niti al ],
max{l&; — v, |6~ &) < 5p [y Lemma 20]
[Ev. =&l = p [by A2].
Therefore, if| A, — &|| < ||A, — &/, then we would arrive at the contradiction
p<|&v. =&l < Ev. = &ll + 1€ — &Il + 116 — &l
< 2o+ 4w — &l + 1Ay — & < Sp+ 2014, — & < 0.99.
Thus, we conclude thatd,, — & > || A, — &/, thereby completing the proof. O

Proof of Lemma 18Since#Q; > %#Vi by Lemma 20, we have the estimate

k k
Y Mu-glP<2Y Y [l - &l + 6w - &l

=1 wes;NV; i=1 wes;NV;
LA ez 2003 OV S A e <so0fi-gE (@39)
= #Q; fort

Furthermore, by Corollary 22
Yoo MAv—glP <9y Y 1A &P <9lA-£|lE. (34)
=1 veS;\V; =1 veS;\V;

Since||A — £||2 < ¢§k3 ) by (13), the bounds (33) and (34) imply the assertion. O

6.3 Proof of Lemma 20

Forl < i < kwe choose(i) so that#Q; NV, ;) is maximum. We shall prove below that for al< I < k
we have

& — ng(z) ”2 < 0-1/)27 (35)
#Q; > max{#V; i e {1,...;k}\v({1,...,1 = 1})} — 0.01nmin, (36)
#QiNVya) = #Q1 — 0.01nmin. (37)

These three inequalities imply the assertion. To see-thata bijection, let us assume thatl) = (')
for two indicesl < I < I’ < k. Indeed, suppose that= miny~1(I). Then#Q, > #Voa) — 0.01nmin
by (36), and thugtV, ;) \ Qi < 0.1nuyi, by (37). Therefore, we obtain the contradiction

(36 @7
0.997min S #Ql/ <L 1#Ql’ (l) < 11#V7(l) \ Ql < 0.117min-



17

Finally, asy is bijective, (36) entails thatQ; > 0.9V, forall 1 < < k. Hence, due to (37) we obtain
#Qu NV, > 0.9#Q; > S#V, ), as desired.

The remaining task is to establish (35)—(37). We proceechbydtion onl. Thus, let us assume that
(35)—(37) hold for all < L; we are to show that then (35)—(37) are truelfef L as well. As a first step,
we establish (36). To this end, consider a cléssuch that & ({1, . —1})andletz; = {v eVi:

Ay — Eu]]? < 0.001p%}. Then0.001p3(#V; — #7Z;) < ZUE%\Zl HA — &P < ||A- 5|\F < 5k3)\
whence the definitiop? = c§k3\/nmin Of p (cf. A2) yields

Moreover, for allv € Z; we have
Q) ={weV:|A, —Au|> <0.01p%} > Z;. (39)

In addition, letw € Q; for somel < L; since our choice of ensures that € V; # V), we have

A2 ~ ~ ~ ~
p< v,y —Ell < N1€ = Aull + [[Aw — Aol + 16 = Awll + & = € (40)

270 I
Now, the construction in Step 3 bhi ti al ensuresthdtA,, — & || < 0.1p. Furthermore)/¢; =&y, |l <
p/3 by induction (cf. (35)), an§| A, — &, < 0.1p, because € Z;. Hence, (40) entails thiltd,, — A, | >
0.1p, so thatw ¢ Q(v). Consequently, (39) yields

Z;NQ=0foralll < L. (41)

Finally, let vy, signify the vertex chosen by Step 3 ofii ti al to construct) ;. Then by construction

#Qr = #Q(vr) \ U Qi > #Q(v) \UH Q.. Therefore,

@ 9) (41) (38)
#QL = #Q(v) \ U Q = #Z; 2#Vi — 0.01nmin.

As this estimate holds for all¢ v({1, ..., L — 1}), (36) follows.
Thus, we know thaf);, is “big”. As a next step, we prove (37), j.e., we show t@at “mainly” consists
of vertices inV, (. To this end, letl <4 < k be such thall€y, — A, || is minimum. LetY = Qr \ V;.

Then for allw € Y we have[|€,, — AULH > ||&v, — A,||. Further, since b)AZ p < |€w — Evill <
Ew — Au, || + 1€, — Au, || < 2||Ew — Ay, ||, we conclude thatE,, — A, ||> > 1p*. On the other hand,

asw € Qr, we have|A,, — A,, ||? < 0.01p2. Therefore, we obtaifiA,, — &,[|2 > 0.1p2 forallw € Y,
so that
01#Yp* < Y [[ Ay = Eul* < A - £z e (42)
weY
As p? = k3N /nmin (cf. A2), (42) yields that#Y < 0.01n,i,. Consequently, (36) entails thatl; N
QL > 0.99#Q., so thati = v(L). Hence, we obtaitQr N V) = #Qr NVi = #QL \Y >
#Qr — 0.01ny,, thereby establishing (37).

Finally, to show (35), we note that by constructiff, — A,, || < 0.01p% and||A,, — 4,, ||> < 0.01p?
forallw € Qr NV, 1) (cf. Step 3 oft ni ti al ). Therefore,

#QLNVyplleyry — &l <3 D0 1€ — Au 1P+ [Aw — A, I + [ Aw — £y 1P
wGQLﬂVW(L)
. i D006, _ .
< 0.06p°#Q N ny(L) + 3” - ”F < 0.06p°#Q1 N V’Y(L) + 3cgk” A (43)
Since#Qr N V(1) > 0.9nmin due to (36) and (37), and becayse= c{k>\/nmin (cf. A2), (43) entails
that[|€, 1) — €211 < 0.07p% + 852 < .12 Thus, (35) follows.
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6.4 Proof of Lemma 19

SetSu = Sa NV, forl < a,b < k. Moreover, foreach < a < kletl < ~(a) < k be such that
1€V, 4y — &all is minimum. Then for alb # ~(a) we have

p< ||5V'y(a) - ngH < Hgv’y(a) - gaH + ”ng - gaH < 2H5Vb - 5@”7 (44)

so that||Ey, — £,.]| > p/2. Therefore, by our assumption tHa}"_, " & — A2 < 8k3 ), we have

vES;

9 k k k A X
pz Z Z #Sab < Z #Sab”ng _§a|‘2 <2 Z Z Hgv - Av”2 + ”Av - gaHQ

a=11<b<k:b#v(a) a,b=1 a,b=1v€ESq
~ k ~ (13)
<2A-E1F+2 )] Y A —&ll? < AN+ 2¢5kP N < ik A, (45)
a,b=1vES,

Hence A2 entails that

b ScTk3A
D #S AV, = > 248, < (:) —= < 0.0017min- (46)
a=1

1<a,b<k:b#y(a)

Combining (45) and (46), we obtaig=(|Ey, ., — &ull* < #Sa N Vo (a)ll€y ) — &all* < kA, whence

2clk3\ A2
R 2 0 001p2 foralll <a < k. (47)

€ (a) — &all* <

min

Thus, we have established the first two parts of the lemmadditian, observe that (46) implies thatis
bijective (because the sefs, . .., Sy are pairwise disjoint angtV, > ny, forall 1 < a < k). Finally,
the third assertion follows from the estimate

k k
Z #S‘lengw - 5Vw<b>H2 <2 Z #Sab (Hnga) _ga”z + Hng(b) _gaH?)

a,b=1 a,b=1

k
(44) (45) A2
<38 § #SabllEv., ) — Eall® < 8cgk®A < 0.001p* .-

a,b=1
7 Local Improvement
7.1 The Procedurel nprove
Having computed the initial partitiofiy, . .., S, with the “centers’¢y, ..., &, finally Par ti ti on calls
the proceduré npr ove to home in on the planted partitidn, . . ., Vi on the subgrapli. In contrast to

the previous steps éfart i t i on, | npr ove does not rely on spectral methods anymore but just performs
a “local” combinatorial procedure.

Algorithm 23. | mprove(G, S1, ..., 5%, &1, -, &)
Input: The graphz = (V, E), a partitionSy, ..., S, of V, and vectorgy, . . ., &.
Output: A partition of G.

1. Repeat the following [log, n] times:

2. Forallve V,alll=1,...,k, and all w € S; compute the numbers 6 (v, w) = e(v, Si)/#5S:.
Let §(v) = (6(v,w))wev € RY.
Forall v € V pick 1 < «(v) < k such that |[6(v) — &) || = mini<i<k [|[6(v) — & (ties are
broken arbitrarily). Then, update S; =y~ *(i) fori =1,... k.

3. Return the partition S1,. .., Sk.
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The basic idea behindnpr ove is to compare for each vertexthe actual values(v, S;) with the
expected valueg(v, V;), where the latter are approximated by the entrie§; oMore precisely, for each
vertexv | npr ove sets up the vectaf(v) that encodes the densitie&, S;)/#S5;. Then,l npr ove up-
dates the partitio, . . ., Sy, by putting each vertexinto that classS; such that|é(v) — &;| is minimum.

To analyze this procedure, we need a few definitions. For gtiparS = (S1,...,S;) and a vertex
v € V, we define a vectods(v) = (ds(v, w))wev by lettingds (v, w) = e(v, S;)/#S; forall w € S;
and alll < j < k; we shall omit the indeX$ if it is clear from the context. Moreover, we call a partition
R = (Ri,...,Rx) animprovemendf S ifforall i = 1,...,k and allv € R; we have||ds(v) — &|| =
ming << [|[ds(v) — &;||. Thus, each step dfnpr ove just computes an improvemeRt of the previous
partitionS.

Furthermore, we say tha is feasibleif %#Vi < #S; < 24V, for all 4. In addition, we seSS;; =
S; NV; and callS tightif 3., #S;;(|Ev, — &, | < 0.001p%*nmin. Then Proposition 6 entails that the
initial partitonS = (S1,...,S5%) given tol nprove as an input is both feasible and tight. Therefore,
Proposition 7 will follow from the next two lemmas, which weadl prove in Sections 7.2 and 7.3.

Lemma 24. If S is feasible and tight, then any improvem&hbf S is tight.

Lemma 25. Suppose thasS is feasible and tight and thaR is an improvement of. Then we have
Z#J.#RijﬂHglio Z.#J.#SijﬂH.

Proof of Proposition 7Let S = (S1, ..., Sk) be a feasible and tight partition such t@le #S;AV; <
0.001mmin,and letR be an improvement of. Then by Lemma 24R is tight, and by Lemma 25 we
have Zle H#R, AV, < O.lZfZl #S;AV; < 10" *nmim, WhenceR is feasible. Thus, as the parti-
tion (S1,...,Sk) thatl npr ove starts with is feasible and tight by Proposition 6 and in featisfies

Zle #5;AV; < 0.001ny;,, all the partitions generated byrpr ove remain feasible and tight. Finally,
let 7 denote the partition returned bypr ove. Then due to Lemma 25 we ha@i# #71,;,NH =0,
whenceZ; "NH =V,NnHforalli=1,..., k. O

To facilitate the proof of Lemmas 24 and 25, we introduce saotation. LetA = A(G) and
M =&y — Ag. (48)

Then byAl andH3 we have the bound
M| < EkVA. (49)

Moreover, forasef C V and avertew € V we lety/(v, S) = (€,,1s). Then

IM1s]? =3 le(v, S) — ' (v, )] forall S ¢ V(H). (50)
veH

The relation betweep(v, S) andy/'(v, S) is thaty/ (v, S) = (v, S) + Py If v € S, andu(v, S) =
W, S)ifvog S IfS=(S,...,8;)is apartition ofV/, then forv € V; andw € §; we set

§(v,w) = M/;ngl)

Thus,0(v) € RY basically is the “expectation” o¥(v).

ands(v) = (6(v, w))wey -

7.2 Proof of Lemma 24

Forve VandS C V welety)(v,S) =3 co.a,.—0Eow, 12(v,8) = X cs.p,.,—1 1 — Evw- We shall
prove that ifS is feasible and tight an® is an improvement af, then the two inequalities

k
> #RwlE— &P <9 [6(v) = 6(v)]* < 0.001p*Nmin (51)

a,b=1 veV
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hold, so that Lemma 24 follows. Observe that by the defingtiof¥(v), 5(v)

D lI6(w) = 3(v)))* = Z#s — 1 (v,84))° (52)

vev
Lemma 26. LetS be a feasible partition. Thelr, _;; [[6(v) — 6(v)[|? < 107 p*nmin.
To prove Lemma 26, we need the following estimate.
Lemma 27. For any setS C V and anyv € V we have
e(0,8) = 1 (0.9)] < lex(v,8) = 1y (0.5) = (e2(0, S) = (v, S))] + L.
Moreover, ifv € S, thene(v, S) — i/ (v, S) = e1 (v, S) — 1) (v, S) — (e2(v,S) — ph(v, S)).
Proof. Let S, = {w € S : &, = 0} andSy = {w € S : &, = 1}. Moreover, let = 1if v € S5 and
t = 0 otherwise. Then by the definition of the graphs, G we have
e(v, §) — ' (v, 8) = e (v, 81) — py (v, 51) + (#52 — v — e2(v, S2)) — (#52 — (v, S2))
= e1(v,8) — iy (v, 5) — (e2(v, ) — (v, 5)) —
whence the assertion follows. O
Proof of Lemma 26.et A(v) = S2F_, #8771 [e(v, Su N H) — i/ (v, S, N H)]* . Then

k k
50 _ 1 2 (49) A2
S A0 @S s nrtsaen P < Y0 Bt < e S kn S 107 . (59

veH a=1 a=1
Furthermore, set

k

AI(U) = Z #Sa_l((e(vvsa) - :U'/(Uvsa))2 —(e(v,SaNH) — MI(’UvSa n H))z) =

a=1

Z#S W0, 8a)+e(v,Sa NH) — p'(v,Sa N H)] [e(v,Sa \ H) — i/ (v,S, \ H)]. (54)
Then Lemma 27 entails that for alle H and alll < a < k we have

2
|6(’U,Sa) - ,LL/(’U,SG) + G(U,Sa N H) - ;L/(U,Sa N H)| < 2+2 ZeGi (U,Sa) + /L;(’U,Sa)

=1
H3 Al
= 2+ 2dg,uae, (V) + 2(py (v, V) + ps(v, V) < 250* < 25X, (55)

becaused, (v, V) + uh(v, V') < (v, V) < 20* by the definition ofo*. Applying Lemma 27 once more,
we obtain

2

k k
S0 D lelw, S\ ) = (0,8 V) £ 30 DTS e (0,80 \ H) + (0,80 \ H)

vEH a=1 veH a=1i=1

= Zea (H.V\H)+ Y i, H)SZecAHW\HH > w(w, V)
veEH =1 weV\H
< eque,(H,V\H)+ <20" - #V\H+ Y dg,ue,(v)
veV\H

< 20" -#V\H+ \/#V \H Z da,uc, (V) [by Cauchy-Schwarz]

veV\H

Al
< (2020 X ) nmin < 220 2ngmin. (56)
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Finally, as(S,)1<q<k IS feasible, we havets, > %nmin for all a. Therefore, plugging (55) and (56)
into (54), we obtain

75n 150
Al(v min <—=x<1 57
UGZH =% ming <o<k #Sa ~ A* T &7

by our assumption that > ¢* > ¢, for some large enougdy > 0. Combining (52), (53), and (57), we
obtain the desired estimate. O

Lemma 28. LetS be a feasible partition. Thep ., Sk #87(e(v,8a) — 1 (v,84))2
Proof. We decompos& \ H into two partsU; = {v € V \ H : max;=12¢eg,(v,V) < 1000*}, Uy =

{v € V\H : max;=12¢€¢,(v,V) > 100c*}. SinceS is feasible, we havets, > %nmin for all a.
Moreover, the definition of* ensures that' (v, V) < 20* for all v. Therefore,

k 3 42 3 %2
S S S (0, Sa) — (0, S < 30 W (VT HVARA (g

Nmi Nmi
veU; a=1 vel; min min

Further, by Lemma 27 and the feasibility 8f

u 2 H1
S #S Heln, ) — (0,8, < 3 2]y (59)
veUs a=1 veUs Thmin
Finally, the assertion follows from (58) and (59). a

Combining Lemmas 26 and 28, we obtain the right inequalifpit). To prove the left one, the follow-
ing lemma is instrumental.

Lemma 29. Let S be any partition. Then for all < i < k and allv € V; we have||§(v) — &% <
A5k s #Sab(Pia — i)

Proof. Let (v, w) = py forallw € S;, and seb(v) = (5(v, w))wey. Then

k
[6(v) = &ull* = Z #Sab(Pia — Piv)*. (60)
a,b=1
Moreover,
2 b 2
16(v) = &(v)|* = Z#S (0, 8)#S, " = pia]” =Y #8. [1 (v, Sa) — #Sapial
=1
k 2k k 2
Z Z ,U, v Sab #Sabpia] = Z #Sl;l Z #Sab(pib - pia)]
a=1 b=1 a=1 b=1
k
< Z #Sub(Pia — Piv)? [by Cauchy-Schwarz]. (61)
a,b=1
Combining (60) and (61) completes the proof. a

Corollary 30. If Sistight, theny_% | #Ral|€a — &2 < 93,0y 10(v) — 6(v)]|12.
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Proof. Sincel|&, — &7 < 0.001p? by Proposition 6, Lemma 29 entails that for ale R,
16(0) = &l < [16(v) = Ell + 1€ = &l < N16(v) = 6(0)]| + 16(v) = &l + p/30
< N16(0) = 8)| + 2=+ 23" #Sap(pre — Prs)?

30 =
< 14 #Sozﬁ
< _ r _ 2
< Jo(e) ~ 3w} + 22 + w > Bty gl
a#p
_ p 2
< ll6v) = o)l + 55+ /7= > #8apll€a — EslI?
min Ot?éﬁ
< |6(v) — 3(v)|| + % [becausés is tight]. (62)

Furthermore, ifv € Rap, thenv € V;, but ||§(v) — & || < [|6(v) — & || Since||&, — Eall?, | — &) <
0.001p? by Proposition 6 ang&, — &||? > p* by A2, we obtain

p <€ =&l < [1€a—Lall + 1€ = &l + [I6a — &
P P
< — - — < _
< 15 TI0) = &all +118(v) = &l < & +2[19(v) = &ll,
and thus|5(v) — & || > 2||E. — &l Hence, (62) yield§d(v) — (v)[| > (€. — &|- 0

As Corollary 30 implies the left inequality in (51), we hawenepleted the proof of Lemma 24.

7.3 Proof of Lemma 25

Forallv € Rup, alla € {1,...,k}, and allw € S, we set
/
Av,w) = %, Alv,w) = %, and we recall that
/
S(v,w) = 76(;‘;:‘), §(v,w) = F2e) s;):s.jo‘).

Moreover, we let\(v) = (A(v, w))wer, A(v) = (A(v, w))wen, and remember thdtv) = (5(v, w))wev,

5(“) = (6(’05 w))wev-

Lemma 31. Suppose tha$ is feasible and tight. LR be animprovement &. Then for allv € Ry, N H
we have|A(v) — A(v)||2 > 0.1|Ev, — Ev, I (1 < a,b < k).

Proof. Let 6 (v) = (6(v, w))wen anddg (v) = (6(v, w))wen, i-€.,6r(v), du(v) are the restrictions of
d(v), 0(v) to H. We claim that for alb € R, N H we have

[0 (v) = 6m (v)]| = 0.134 €y, — Ev, |- (63)

For asR is an improvement of and becausgs, — Ev, |, [|1& — Ev, || < p/33 by Proposition 6, we have
2
p v, —Enll < 110(v) = &ll + 10(v) = &all + 160 — vl + 116 = Evill < 5o+ 2[10(v) — &l

2 4
< o 2l — Ev |+ 216(0) - &, | < oop +2010(0) — Ev, |

Hence||d(v) — &v, || = 22| €y, — &y, || Furthermore, by Lemma 29 and becaissis tight,

#SaslEv, — Ev, 12
#V,

k k
Hg(’U) - gVaHQ < 4 Z #Saﬁ(paa _paﬁ)z < 4 Z < 0004p2

a,f=1 a,f=1
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Thus,||§(v) — 6(v)|| > 0.37||Ev, — v, || Therefore, agtV \ H < 10~ *ny,i, by H1 and asS is feasible,
we obtain

— 1 (0,82)\?
_ 2 < 2 Sa) = 1, Sa
0.136[|Ev, — v, [I* < [16(v) — 6(v)]| Z#S ( S

#

e(v,S0) — (vv&v)) = 101185 (v) — 5 (0)]]2,

31.012#&0}1( m
a=1 @

whence (63) follows.

Now, we shall compare the vectdig (v)—dz (v) andA(v)—A(v), so that we can use (63) to bound the
norm of the latter vector. Lek, (v) = {w € V : pyypw) < 1/2}, Pa(v) = {w € V i pyoypw) > 1/2}.
Then for allv € H we have

(62 (v) = 81(0)) = (A(w) = ADI* = Y Br(v,w) = 81(v,w) = (Av, w) — Alv,w)))?

weH

e(v, 8o \ H) — ' (v,8a \ H)]?

IN

k

2 #S:
k
Z e(v, D1 () 1 Sa \ H) — 1 (0,81 (v) 1 Sa \ H)J?

48 e(v, Ba(v) N Sa \ H) — i/ (v, Bo(v) NS \ H)*.  (64)

Sincev € H, by H4 we have

e(v,P1(v) NSy \ H) < 100, (65)
e(v,P2(v) NSo \ H) > #P2(v) NS, \ H — 101. (66)

MoreoverH1 entails that

NMmin 20"

N | =

k
Z (0,81(0) NSa \ H) < ' (0,Gr \ H) < #V \ H- max pas <

1<a,B<k:pas< i A N T

whenceX"*_ | 1/(v,®1(v) N S, \ H)? < 1. Consequently, as the fact thtis feasible implies that
#Sa > 2nmin, We obtain

a - 2nmin

k A2

A similar argument shows that

k o 2
Z (#P2(v) NS, \ H ;S(v,gﬁg(v)ﬂSa\H)) <1042, (68)
Plugging (65)—(68) into (64), we get
5 A 2 —4 2 L 10° 4o, 109 A2 g,
I(5m(2) = (1) = (A0) = AENIF <2105+ 30 2o < 4107457+ =2 210
Therefore, (63) entails thdtA(v) — A(v)||2 > 0.1||E, — & ||* forall v € Ry, N H. 0

Proof of Lemma 7.3.et M be the matrix defined in (48). We shall prove below that

S Y a0 - AP <0023 4R i+ ISy pas, 69)

e
a£b vERWNH a#b mm gy
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On the other hand, Lemma 31 implies in combination withthat
S AW - A2 201D #Ray N Hp (70)
a#b, vERpNH a#b
Combining (69) and (70), we thus get
1OOO||M||2 1
S #RaNH < Z#S 5 2 #San N H,

ab p Nmin atb

(49),A2

as desired.
Hence, the remaining task is to establish (69). To this emdnete that for alb € R,, N H such that
a # bwe have

1A() — |\2<22#3 e(v, HNS,) — ' (v, HNS,)]
<6. Z#S v HNV,) = (0, HO V)

16 Z#s e(v, HN S, \ Va) — 1 (v, HN 8, \ V)]

46 Z#s e(v, HN Vo \ Sa) — 1/ (v, H NV, \ So)]

< 12[||d(v) — 5|\2+Z#v e(v, HNVy\ Sa) — i (v, H NV, \ Sa))?
a=1

+Z#V e(v, HN Sy \ Vo) — i/ (v, H N Sa \ Va))?, (71)

where the last inequality follows from our assumption thas feasible. Since € H, due toH2 we have
ld(v) = &> < 0.001p%. (72)

Furthermore,

k

k
SOS felo, HNVa\ Sa) = 1/ (0, HA VA S)> @3 M1y |1

a=1lveH a=1

< M2 I mavasI? = 1M #H NV, \ S,

a

and analogously_F_, Sven le(H NS\ VL) — i/ (v, HN S, \ Vo)]* < | M2 Sk #HNS,\ Ve
Thus,

ST e Va\Sa) = 1/ (0, Va \ Sa)]” + [e(Sa \ V) = 1 (v, 80\ Va)|” < 4[M|* Y #Sa 0 H(73)
a#b vERGpyNH a#b

Combining (71), (72), and (73), we obtain (69), thereby ctatipg the proof. a

8 The Random GraphG,, (v, p)

In this section we prove Theorem 2. We start with some prelimeés on random graphs in Section 8.1.
Then, we discuss the construction of the coreGgf, (), p) in Section 8.2. Finally, in Section 8.4 we
investigate the components 6f, ;. (¢, p) — core(Gn (¢, p)). Throughout this section, we let, p, &,
Nmin, aNdo™ be as in Sections 1.2 and 1.3. Furthermore, we always aschae is sufficiently large.
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8.1 Preliminaries onGy, (v, p)

We need to bound the probability that a random variable desiom its mean significantly. To this end,
let ¢ denote the function : (—1,00) — R, 2 — (14 2) In(1+z) — 2. A proof of the following Chernoff
bound can be found in [22, pages 26—29].

Lemma 32. LetX = S°~ | X, be a sum of mutually independent Bernoulli random variatii#s vari-
anceo? = Var(X). Then for anyt > 0 we have

max{P(X < E(X) —1),P(X > E(X) +1t)} <exp (—a2¢ (%)) < exp (‘2@%&/3)) . (74)

The following bound, whose proof can be found in Sectioni8.&,consequence of Azuma’s inequality.
Lemma 33. Let X be a function from graphs to reals that satisfies the follguifpschitz condition.

LetG = (V,FE) be a graph, and leb,w € V. Let G’ be the graph obtained fro& by  (75)
removing the edgév, w} if it is present inGG, and letG” be the graph obtained by adding
{v,w} to G ifitis not present. ThehX (G') — X (G")| < 1.

ThenP [| X (G ik (¥, p)) — E(X(Gp (¥, p)))| > Vornln®n] < n=10,

In Section 9.2 we shall use Lemma 33 to derive the followirtgreste on the upper tail of the degree
distribution ofG,, 1. (¢, p).

Lemma 34. LetU; = #{v € V : max,_1 2 dg, (v) > 2""'o*}. Then W.h.p#U; < exp(—2'"20*)n for
alli=2,...,[logyn].

Furthermore, in Section 9.3 we shall establish that thelgéapu G5 does not contain any “atypically
dense spots” w.h.p.

Lemma 35. W.h.p.G = G,, (¥, p) enjoys the following property.
For all setsT C V such thattT < n (’j;"T)z we haveeg, ug, (T) < 104T. (76)
Furthermore, with probability> 1 — exp(— In® n) the following holds.
Forall T C V such thain® n < #T < n (22:2)* we haveeq, ua, (T) < 104T. 77)
Finally, we need the following result on the spectrum of tt@eency matrix of7,, x (¢, p).
Lemma 36. LetA > 0andX = {v € V : max;—1 2 dg, (v) < A}. Then||Ax — Ex|| < ckv/or + A.

In Section 9.4 we indicate how Lemma 36 follows from speatmisiderations of Alon and Kahale [1],
Feige and Ofek [17], and Furedi and Komlos [20].

8.2 The Core

In this section our objective is to construct a subgragpie(G) of G = G,, (¢, p) such that for all vertices

v € core(G) the numbers(v, V; N core(G)) do not deviate from the expectation&, V;) “too much”. To
this end, we assign to eache V' a vectord(v) as in (1), which represents the actual numberg of V;)-
edges. By compariso#, represents thexpectechumbers of)-V;-edges. The first step of the construction
is as follows.

CR1. Initially, remove all vertices such that|d(v) — &,]| > 0.01p from G; that is, setd = G — {v €
Vi |ld(v) — &]| > 0.01p}. (Herep? is the r.h.s. of (6).)
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Moreover, recall the decomposition 6f= G,, (1, p) into the “sparse” par&’; and the “dense” part
G- from Section 1.6. Thel(dg,ua,(v)) < 20* for all v € V. Nevertheless, in the casé = O(1) as
n — oo there may occur vertices such that, u, (v) exceedf2c* significantly. Therefore, as a second
step we remove such vertices

CR2. Remove all vertices such thatig, uc, (v) > 100* from H.

However, in general the result of CR1-CR2 will notbe such that(v, V; N H) approximateg(v, V;)
well for all v € H. The reason is that there may occur vertices H such that “many” neighbors aefgot
removed. Hence, in the final step of our construction weftitesly remove these verticesfrom H.

CR3. While there is a vertex € H such thatg,ug, (v, V' \ H) > 100, removev from H.

The outcome of the proce€R1-CR2 is core(G) = H. In Section 8.3 we shall prove that w.h.p.
core(G) constitutes a huge fraction 6f.

Proposition 37. Suppose that (6) holds. Then w.legre(G,, 1 (¢, p)) contains> n—npmino* ~10 vertices.
For all v € core(G) we have|d(v) — &,]] < 0.01p, dg,uc,(v) < 100*, andeg, ua, (v, G — H) < 100.

In addition, adapting proof techniques from [1], we shatiye in Section 8.4 thak — core(G) has the
following simple structure w.h.p.

Proposition 38. If (6) holds, then w.h.p. all components(6}; U G2) — core(G) have size< In n.

Proof of Theorem 2Assuming thaty is a sufficiently large constant and letting= ¢* > ¢q, we note
that Lemma 36 implies that,, ;. (¢, p) satisfiesAl w.h.p. Moreover, our assumptid®B ensures thah2
is true. Further, for each vertexe V; and each < i < k the numbee(v, V;) has a binomial distribution
with variance#V; P,; (1 — p;;) < o*; therefore, the Chernoff bound (74) entails that

*2L—2 4 4
A B L (PR (78)
300(c* + In“n)

P [|e(v, Vi) = (v, Vi) > 1o+ In? n] < 2exp [—

Thus, we conclude that in both cag3 holds w.h.p. Finally, assumptid®2 yields A4.

With respect toH1, letting H = core(G) we observe that Proposition 37 entails that’ \ H <
NminA~*. Furthermore, let/; = {v € V : 2°"'¢* < max;_1 2 dg, (v) < 2°"%¢*}. Then Lemma 34 and
our assumption that* > ¢, for a large enough numbeg entail that w.h.p.

Z dGlLJGz(’U)Q < 2100,* 2#V\H+222i+40*2#[]1'
veV\H i>2

< 210nming* -2 + Z Qi+2 ;%2 exp(—2i72a*)n
i>2

1 R11
< inmin + 8n eXp(—U*/Q) < §nmin ~+ 8Mmin eXP(— V 0*/2) < Nmin,

whenceH1 follows. MoreoverH2, H3, andH4 follow directly from Proposition 37. a

8.3 Proof of Proposition 37

To estimate#V (core(G)), we consider the following modification of the procé3R1-CR3. Setw =
o + # and note thab > n/nmim > k.

K1. Initially, let K be the subgraph @ obtained by removing all verticese V' such that

max |e(v,V;) — p(v, V;)| > 104 [\/#Vipij(l —pij)nw+Inw|.

1<i<k

K2. While there is a vertex € K such thakg, ug, (v, V' \ K) > 50, removev from K.
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To establish Proposition 37, we proceed in two steps. Rirstshow thatore(G) D K. Then, we
bound#V (G — K).

Lemma 39. We haveore(G) D K.
Proof. Suppose that € K. Then

ld(w) - & = Z#v( H e ) Z#v Vi) — v, V0))?

<210 Z #V, 1 [#Vipi;(1 — pij) nw + In w] [due toK1]

< 10742

2

. ko2
In"w
<2-10% lZpij(l —piy)nw+ Y &
i—1 =1

where the last step follows from (6) amil. Thus, none of the verticas € K gets removed byR1.
Further,K1 ensures thaig,ua, (v) < 100* for all v € K, so thatK is contained in the subgraph 6f
obtained inCR2. Finally, ask2 is more restrictive tha€R3, we conclude thatore(G) D K. O

Our next aim is to boungtV (G — K). We first estimate the number of vertices removedKity

Lemma 40. W.h.p. there are at mostw !9 verticesv such thatmax;<;<g e(v, Vi) — u(v,V;)| >
103 [\/#VIPij(l —pij)Inw +1In w} . Moreover, ifw < n'/190 then with probability> 1 — exp(— In® n)
there are at mostw—?° such vertices.

Proof. By the Chernoff bound (74), for each vertex V; we have

Py = |e(w V) = o, 5)| 2 10° (\ Vi (1= iy o+ )|
109(#Vips; (1 — pij) + In’ w)
2(#Vipij (1 = pij) +103(y/#Vipi;(1 — pij) Inw + Inw)

10%%#Vip; (1 — pij) Inw + 10° ln2“’] < 27200
5-103(#Vipij (1 — pij) + Inw) '

< 2exp l—

< 2exp [—

Hence, lettingZ;; = # {v eV le(w,V;) — (v, Vi)| > 103 (\/#V]Pij(l —pij) Inw + huu)} , we
have
E(Zi;) < 24 Vw2, (79)

To obtain a bound o%;; that actually holds w.h.p., we consider two cases.

1st casew > Inn. Then Markov's inequality entails that w.h.J; tim1 #Zij < nkw™9 <nwT S,

2nd casew < Inn. As adding or removing a single edge= {u, v} affects only the numbers(u, V;)
ande(v, V;), the random variablg;, /2 satisfies the Lipschitz condition (75). Furthet, < w < Inmn,
and#Vj > Nmin > n/w > n/Inn. Hence, Lemma 33 entails that

(79)
P[Zi = #Vjw '] < P |2 — B(Zyy) = Vornlnn| = o(1),

and thusy ¥

Now, assume that < n'/190, Then the inequalities > o* andw > n/nuy;, imply thaty/ne* In® n <
vnw In? n < n%/190 while nw=92 > n9%/19_ Therefore, Lemma 33 entails

199 —198
i1 Zi; < knw < nw w.h.p.

(79)
P [Zij > nw_92] <P [Zij —-E(Z;;) > Vornin®?n| < exp(— In* n).

Hence, with probabilitk 1 — exp(— In® n) the boundZ;; < nw=92 holds for alll < i,j < k simultane-

ously, and thuiu L Zij < kw2 < nw %, O
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Lemma 40 implies that w.h.gX1 removes at mostw '8 vertices. Finally, we need to bound the
number of vertices that get removed durk.

Lemma 41. W.h.p.K2 removes at mostw 198 vertices.

Proof. LetS be the set of vertices removed K . By Lemma 40 we may assume thae #5 < nw~ 198,
Moreover, letvy, . . ., v, be the vertices removed W§2 (in this order). Assume that > s, and letT’ =
SU{v,...,vs}. We shall prove thal violates (76), so that Lemma 35 entails that actually s w.h.p.

To see thafl" is an “atypically dense” set ifiY; U G2 that violates (76), observe that by construction
eachv; satisfieseq,ug, (vi, S U {v1,...,v;1}) > 50. Thereforeeq,ua,(T) > 50s > 25#T, while
#T =25 < nw 197, O

Combining Lemmas 39-41, we obtain the following corollaviijch implies Proposition 37.

Corollary 42. W.h.p. we havetV (K) > n(1 — w=197).

8.4 Proof of Proposition 38

If w = 0% + 2= > n!/1%, then Lemma 39 and Corollary 42 yield thatre(G) = G w.h.p., and thus

there is nothing to prove. Hence, we assume in the sequebthat'/2°°. We shall prove that in this case

w.h.p. the grapliG; U G2) — K does not contain a tree dnn vertices w.h.p., wher& is the outcome of

the proces&1-K2 defined in Section 8.3. Sineere(G) D K by Lemma 39, this implies the assertion.
Thus, letT’ = (Vr, Er) be a tree with vertex séty C V ont = #Vr = [lnn] vertices { is not

necessarily a subgraph 6f, but just a tree whose vertex set is contained’in We shall estimate the

probability thatT" is contained iNG, U G2) — K. To this end, we considdir = {v € Vr : dr(v) < 4}

andJr = Vp \ Ir; as#Er = t — 1, we have#Ir > t/2. Moreover, letKr be the outcome of the

following modification of the proceds1—K2 (cf. Section 8.3). Set = o™ + .

KO'. Let G* be a graph obtained fro¥ by replacing the edges iy by fresh random edges. That is,
each edge = {v,w} € Er is presentinG* with probability p,,,(.) independently of all others
and of the choice off, andG* — Er = G — Er.

K1'. Let K7 be the subgraph a#* obtained by removing the vertices

Jr U {v eV: max lec(v, Vi) — pa(v, V)| > 10? {\/#V[Pij(l —pij) Inw + 1nw} } .

K2'. While there is a vertex € Ky such thainax;—1 2 eg, (v, V \ K1) > 40, removev from K.

Lemma 43. Let K be the result of the processl—K2 (cf. Section 8.3). TheAr C K, regardless of the
outcome of ste0’.

Proof. Since every vertex € Iy is incidentwith< 4 edges ofl’, the graph defined in stéfl’ is contained
in the graph defined in stdfl. Consequently, all vertices removed kg also get removed b2'. O

Let us callG goodif for all treesT as above we havg:V (G — Kr) < nw~88, regardless of the
outcome of stefk0’.

Lemma 44. We haveP [G is good > 1 — 2exp(— In®n).

Proof. Let S be the set of vertices removed Byl’, and lets = #5. Sincew < n'/'9° Lemma 40
entails that with probability> 1 — exp(—1In®n) we haves < #Jp + nw™° < nw=3. Furthermore,
if K2' removes; > nw~% verticesvy, ..., vy, then consider the s@t = S U {v1,...,v[,,-s01}. Then
In*n < nw 8 < H#T < s+nw 3 +1 < nw 38, buteg,ua, (T) > 40#T/2 = 204T (cf. the proof
of Lemma 41). Hencel violates (77). Consequently, Lemma 35 entails that nw—3° with probability
> 1 — exp(— In® n), whence the assertion follows. O
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Proof of Proposition 38Since the construction okt is independent of the presence of edge§’ah
G1 U G5 due toKO’, Lemma 43 yields

P[TCGlUGg/\VTﬂK:@]SP[TCGlUGQ]-P[ITﬂKT:@]. (80)

Given their cardinalities, the set§ N Hr are uniformly distributed random subsetsaf\ Jr, as due
to KO’ the distribution ofG* — Jr is invariant under permutations of the vertices within thassesl;.
Therefore, letting; = #Ir N'V; andv = [nw~38], we obtain

k (#V«;*vti)
PlIr nKr=0] < P|Gisnotgood+ H (l;;‘ﬁ)
(#Vi —ti)v—t, (V)4
#Vi)v—t, #Vi — v+ 1)y,

k ti k ti
v
exp(—In®n) + H ( > < exp(—In®n) H ( >
i NV =1

k
< exp(—In®n) 4w 2t < exp(—In®n) + w43 < w12, (81)

Lemma 44

k
< exp(—In®n) + H L7

IN

To boundP [T' C G U G2, we note thaP [{v,w} € E(G1 U G2)] < 2py(v)yw) (1 = Py)pw)) <
20* /nmin by the definition ob-* (v, w € V). Consequently,

T'min

e\ t—1
P[TCG1UG2]§(20 ) . (82)
Combining (80), (81), and (82), and recalling that ¢* + i, We conclude

20"

t—1
P[TCGIUGAVrNK =0] < ( ) w2 < et 739t (83)

Tmin
Finally, we are going to apply the union bound to estimatepttobability that therexistsa treeT” as

above such thal’ C G1 UG, andVy N K = (). Since by Cayley’s formula there afé)¢'~2 ways to
choose the tre@, (83) entails that

PET:TCG UG AVINK =(] < (?) 720! w3 < exp(t)nw 3 <

because > Inn. Hence, w.h.p(G; U G2) — K contains no tree ok lnn vertices. O

9 Proofs of Auxiliary Lemmas

9.1 Proof of Lemma 33

The proof relies on the following general tail bound, whislaiconsequence of Azuma'’s inequality (cf. [22,
p. 38] for a proof).

Lemma45. Let 2 = Hf\;l £2; be a product of probability space@;,...,2y. LetY : 2 — R bea
random variable that satisfies the following condition fira< ;7 < N.

lf W = (wz)l<z<N7

= (w))1<i<n € 2 differ only in thej’th component (i.ew; = Wi if i # j),
then|Y (w) — Y ()| < 7.

Further, assume thd(Y) exists. The® [|Y — E(Y)| > A] < 2exp (—A?/(272N)) for all A > 0.
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To derive Lemma 33 from Lemma 45, we Bt = {{v,w} : v,w € V, v # w} be the set of all
(g) possible edges. Further, for eaeh= {v,w} € P we let {2, denote a Bernoulli experiment with
success probability,, (). Then we have the product decomposit@n (v, p) = [[.cp 2., because
the edges occur independentlyGy, ;. (v, p). However, we cannot apply Lemma 45 to this decomposition
directly, because the number of factors is too large. Tloeeefve are going to set up a different product
decompositiorG,, (¢, p) = Hfil 2;, where eacli?; is a product of severdp..

To this end, we partitiof? into KX < 20*n/Inn subset$y, ..., Pk suchthaE(#FE(G1UG2)NP;) =
Yeep, Ple € G1UG:] <Innforall 1 <i < K;hereG, G are the graphs defined in (4), (5). Then we

have the decomposition
K

G, p) =] 2, where; = J] .. (84)
i=1 e€P;
Let us callP; critical if #E(G1 U G2) N'P; > 100lnn. As #E(G1 U G2) N P; is a sum of mutually
independent Bernoulli variables, the generalized Chébwmfnd (74) entails thadt [P; is critical < n~2L.
Therefore, by the union bound
P [3i : P;is critical < n ™. (85)
Now, for G = GnN,k(l/J, p) we defineG = G — Ui:p, is critical Z(G1) VPi+U,.p, is critical E(G2) NPi
and setV (G) = X (G). Then (85) yields

P[X(Gni(¥,p)) =Y (Gup(¥,p))] 21 —n~ 1. (86)

Furthermore, by the Lipschitz condition (75) we hawe(G) — Y (G)| < n? for all possible outcomes
G = G, (¢, p). Therefore, (86) entails that

E (X (Gue(¥,p)) = E (Y (Gni(v,p))] <n* ¥ < 1. (87)
Moreover, we claim that forall < j < K

if G,G’ are such tha — P; = G' — P;, i.e.,G, G differ only on edges corresponding to

the factor(2;, then|Y (G) — Y (G')| <2001nn (88)

To prove (88), we let?, G2 andGY, G} be the decompositions ¢f andG’ into the sparse/dense part as
defined in (4), (5).

1st case: neither inG nor in G’ the setP; is critical. ThenG’ can be obtained fror& by either adding
or removing the edges iR; N (E(G)AE(G")). SinceP; is not critical in bothG andG’, we have
#P; N (E(G)AE(G")) < 2001nn, so that (88) follows from the Lipschitz condition (75).

2nd case:P; is critical in both G and G’. ThenG’ = G, so thatY (G) = Y (G).

3rd case:P; is critical in G but notin G'. ThenG' is obtained fronG by adding or removing the edges
inP; N E(G’); since#P; N E(G") < 1001nn, the Lipschitz condition (75) implies (88).

4th case:P; is critical in G’ but notin G. Analogous to the 3rd case.

Due to (88), Lemma 45 applied ¥6(G,, » (¢, p)) and the decomposition (84) yields

o*In*n

p [|Y(Gn,k(¢ap)) - E(Y(Gn,k(w,p)))l > %V o*nln’ n} < exp [—m

]Snlawm
provided that: is sufficiently large. Thus, we finally obtain

P [1X(Gu k(6. ) = E(X (G r(¥,p))| = Vornn®n]

< PIX(Gurl(t,D)) # V(G p))] + P IV (Gus(¥,9)) — E(X (Gl p)))] = Vorn i n]

(86),(87) (89)
< n

< n—19 +n—11 < n—lO’

_m+pDmewﬂm—Ew«%ummmz§¢FMﬁ4

as desired.
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9.2 Proof of Lemma 34

Since for allv anda = 1,2 the degreeig, (v) of v in G, is a sum of mutually independent Bernoulli
variables with mearx 20*, the Chernoff bound (74) entails thBtjv € U;] < exp [-32'0*] . Hence,
E(#U;) < exp [—42%c*] n. To obtain a bound of-U; that actually holds w.h.p., we consider two cases.

1st case2ic* > 24Inlnn. By Markov's inequality, we have

p [#Ul > exp (—27:_20'*) n] < E(#U;)

_— < —Qig* <Iln~2 .
S 2o n = exp[ 2o /12] <Iln"*n (90)

2nd case2’c* < 24Inlnn. Thenexp [—32'0*] n > n'~°(), Therefore, Lemma 33 yields
1 .
P {#UZ > 2exp <—§210*> n] <P [#UZ —E(#U;) > Vornln? n} <n~ 10 (91)

Finally, combining (90) and (91) and invoking the union bduwe conclude that with probability
1 —O(In"" n) we have#U; < exp (—2°"20*) nforalli =1,..., [log, n].

9.3 Proof of Lemma 35

For any two vertices, w € V the probability that, w are connected itr; U G5 is

20"

P [{v,w} € E(G1UG2)] < 2py(0)p(w) (1 = Pyoyp(w)) < (92)

Let S C V be a set of cardinalitg = #S < Smax = 1 (%)2 As there are(%)s) ways to choose
a graph with vertex sef that containd 0s edges, the union bound entails in combination with (92) that

s * 10s * 10s
Plec,uc,(S) > 10s] < (53)5) (QL) < ( (20 ) .Hence, once more due to the union bound we

Mmin 10nmin

- 10s
obtain thatP; = P [35 C V : #5 < smax A €c,u6, (S) = 10#45] < (1) (lgfl‘jmn) .Consequently, we
can estimateé’, as follows:

()

Thus, for anys,,;,, > 1 we have

en\2 [ eso* \ ’ TNomin \ 85
(—) < ( ) <1. (93)
s 10N min no*

Smax —1
P[ES CV : Smin < #S < Smax A €a,0a,(8) > 1048] < Z P, < 2(8". > .

Finally, (94) entails that w.h.p. there is no $etC V of cardinalityl < #5S < spyax Suchthatg,ue, (S) >
1045, whence the first part of Lemma 35 follows. Furthermorejsgtt,,i, = [ln?’ n} in (94), we obtain
the second assertion.

9.4 Proof of Lemma 36

The proof relies on the following two general lemmas, whighienplicit in the work of Alon and Kahale,
Feige and Ofek, and Firedi and Komlos [1, 17, 20]; both lemare stated and proved explicitly in [11,
Chapter 5].

Lemma 46. There are constants;, co such that the following holds. Lét;;)1<;<;<., be a family of
mutually independent Bernoulli random variables with méafp < 1. Seta;; = aj; for1 < j <4 < v,
and leta;; = 0 forall 1 < ¢ < v. Moreover, letA = (a;;)1<ij<» and M = pJ — A. Further, let
d>0,andsetX = {i € {1,...,v}: Z;Zl a;; < d}. Then with probability> 1 — O(v~!) we have

| M| < cy/max{vp, d}.
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Lemma 47. There are constants, co such that the following holds. Lét;;)1<; j<, be a family of mu-
tually independent Bernoulli random variables with meéarc p < 1. Moreover, letA = (a;5)1<i j<v
andM = pJ — A. Further, letd > 0, and setX = {i € {1,...,v} : 377, a;; + a;; < d}. Then with

probability > 1 — O(v~!) we have| Mx|| < cay/max{vp,d}.

Proof of Lemma 36Let A = A(G) be the adjacency matrix, and set*?) = p;;Jv, v, — Av, xv,. Then
by Lemmas 46 and 47 (applied to the matriegs v, ) for all 4, j such thap;; < % w.h.p. we have

[ME]| < ev/max{a, o7} (94)

for a certain constant > 0. Furthermore, applying Lemmas 46 and 47tg «v, — Av, xv,, we conclude
that w.h.p. (94) holds for afl, j such thap,; > % as well.

To bound|| M ||, let¢é,n € RV be unit vectors. We decompoge= Y%, ¢;, where the entries df;
equal the entries af on the coordinates iff;, andg; is 0 on V' \ V;. Similarly, we letn = Zle n;. Then

k

k
©9
[(xn, &)1 = | > (M6 < S0 (M| Nl - Ingll < < eky/max{A o7,

5,J=1 3,J=1

k k
because;_, [|£]I* = Y., [Imill* = 1. Thus, w.h.p. we hav@Mx|| = supg ¢ =(nj=1 | (Mxn,€)| <

cky/max{A,c*}, as desired. O
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