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Abstract

We study languages with bounded communication compleritthe multiparty “input on
the forehead model” with worst-case patrtition. In the tvaotp case, languages with bounded
complexity are exactly those recognized by programs ovemeotative monoids [20]. This can
be used to show that these languages all lie in shallowACC

In contrast, we use different coding technigues to showttieae are languages of arbitrarily
large circuit complexity which can be recognized in consymmunication byt players for
k > 3. However, if a language has a neutral letter and bounded eonwation complexity in
the k-party game for some fixekl then the language is in fact regular and we give an algebraic
characterization of regular languages with this propéty.also prove that a symmetric language
has bounded-party complexity for some fixed iff it has bounded two party complexity.

1 Introduction

The “input on the forehead” multiparty model of communioati introduced by Chandra, Furst and
Lipton [7], is a powerful tool in the study of branching pragrs [2, 6, 7] and shallow-depth Boolean
circuits (among many others [11, 14, 15]). However, it i}, sti many regards, not well-understood
as both upper bounds [1, 12] and lower bounds [2, 7, 19] formbdel appear very challenging. In
particular, good lower bounds on theparty non-interactive communication complexity of an leip
function f whenk > logn have long been sought since they would yield size-lower tsdor ACC
circuits computingf [9], and even more modest lower bourfdog® n) for particular functions like
Disjointness in three-party setting would imply separatid different proof systems [5].

We obtain significant insight in the multiparty model by fsog on functions that have bounded
k-party complexity fork > 3 an arbitrary constant. For the two-party model, languagéshounded
communication complexity have many nice characterizatif2®] implying, in particular, that any
language with bounded two-party complexity can be compbiedery shallow AC@ circuits. In
contrast, we show in Section 3 that there are languages vhitnagily large uniform circuit complex-
ity whose three-party communication complexity is bountigda constant even for the worst-case
partition of the input instances among the players. An anaésult for non-uniform circuit com-
plexity can also be derived. These languages are conglrustag specially craftedrror-correcting
codes Because of these results, we cannot expect to obtain ¢barations of languages of bounded
multiparty complexity which are as nice as those for the phayer case.

There are several key features that make the multiparty agriwation model so powerful: first,
every input bit is seen by several players, second, effery 1)-tuple of input positions is seen by
at least one of thé players, and third, all players know the partitioning of thput, i.e., they know
which positions they actually see. Multiparty communicatcomplexity upper bounds typically rely
heavily on all these properties. If we remove the first twoperties then we obtain essentially the
multiparty “input in the hand” model which is computatiolyagéven weaker than the two-party com-
munication model. To understand how crucial the last pttygsr we consider two restricted classes
of languages/functions in which this advantage is in someeséaken away.



First, we consider in Section 4 languages witheatral letter[4, 3], i.e. a letter which can be
inserted or deleted at will in an input word. We show that gw&rch language having boundée
party communication complexity for some fixéds regular. Furthermore, we characterize this class
of regular languages in terms of algebraic properties of thaimal automaton. Our results indicate
that the presence of a neutral letter is thus a severe hanisiche multiparty game and suggests that
it might be easier to prove communication complexity lowenids under this assumption.

Finally, in Section 5 we use the Ramsey-like theorem of G§li@] to prove that for any fixed
k > 3 the symmetric functions that can be computed in bourigedrty communication complexity
by k-players are exactly the symmetric functions that have dedr2-party complexity.

Two of our main proofs rely on the same lower bound which is\dépendent interest: In Section 2
we show, using a Ramsey-theoretical argument reminis¢¢nl, ehat & parties need to exchangé1)
bits of communication to verify that thekrinputs in{0, 1}" represent a partition df.].

2 Multiparty Communication Complexity

The multiparty model of communication complexity was firstoduced by Chandra, Furst and Lipton
[7]. In this gamek playersP;, ..., P, wish to collaborate to compute a functigh: X" — {0, 1}.
The n input letters are partitioned intb sets X3, ..., X, C [n] and each participan®; knows the
values of all the inputgxceptthe ones ofX;. This game is often referred to as the “input on the
forehead” model since it is convenient to picture that ptayybas the letters of(; written on his
forehead, available to everyone but himself. Players exghaits, according to an agreed upon
protocol, by writing them on a public blackboard. The prolospecifies whose turn it is to speak,
and what the player broadcasts is a function of the commtioichistory and the input he has access
to. The protocol’s output is a function of what is on the blac#rd after the protocol’s termination.
We denote byDy(f) the k-party communication complexity of, i.e. the minimum number of bits
exchanged in a protocol fgt on the worst case input and for the worst-case partitionmitmn More
generally, we consider functions: X* — {0, 1} and thus viewDy(f) as a function of input length.

The information available to individual players overlapbtsince any input letter is known to
k — 1 of the k players. Thus, the power of the multiparty model increasiéls e number of players
involved as the fraction of inputs available to each plapereases.

A subsetS of XX1%xXk js acylinder in theith dimensionif membership inS is independent

of theith coordinate, i.e. if for alk;, 9, . .., 1, and anyz, we have(x, ..., z;,...,z;) € Sif and
only if (z1,...,2},...,2) € S. We say thatS is acylinder intersectiorif S = () S; whereS;
1<i<k

is a cylinder in theith dimension. A cylinder intersection is callgdmonochromatidf the function f
evaluates to the same value on every input instance in teesattion. The following lemma underlies
all lower bound arguments for the multiparty model:

Lemmal(see[14]) Let f : ©X1xxXe — £0 1} be a function of-inputs. Anyk-party commu-
nication protocol of cost computingf partitions the input space into at mozt f-monochromatic



cylinder intersections corresponding to the communicaggchanged on a particular input.
We say that a set df elements o2 X1 %> Xk forms astar f it is of the form:

(), 0, .. wn), (21,25, 2, oo, (w1, T2, o, )

where ther; are values for the input bits letters &y for eachi with z; # /. In that case, we call
(z1,x2,...,2k) the centerof this star. These notions lead to a useful characterizatfocylinder
intersections.

Lemma2 A setS C XXXk is a cylinder intersection if and only if the center of anyrstan-
tained inS is itself an element of.

A k-rectangular reduction from L C {0,1}"** to K C {0,1}!("** is ak-tuple of functions
(r1,...,m) with eachr; : {0,1}" — {0, 1} suchthalz, ..., z) € Liff (ri(z1),...,m(xs)) €
K. We calll the length of the reduction. The following simple obsematshall be useful:

Observation 3 Let L C {0,1}**¥ and K C {0,1}/(™** pe languages such that there exists a
rectangular reduction froni to K of lengthl. Then,Dy(L)(n) < Di(K)(l(n)).

Lower bounds for thé-party communication complexity of the functiof®irt;, andGI Py ), will
be particularly useful. Both functions take as inputar & Boolean matrix4 and we think of the*®
column of A as representing a subsetof [n] = {1,...n}. We definePart,(A) = 1 iff each row
contains exactly ong (i.e. thex; form a partition ofjn]) andG1 P , = 1 iff the number of alli rows
of A (i.e. the size of the intersection of thg) is divisible byp. It is clear that for the:-party game
the worst input partition fo:1 P, ,, and Part;, is the one where playdr; holds the bits of column
on his forehead.

Lemma4 ([2,13]) Dy(GIP;,) = Q(n) for all constantsk, p > 2.

More precisely, the best known lower bounds F P are(n/2") [8, 19] and hold even fok
growing as a function of but we only consider the case whérés constant.

We establish a lower bound on tlheparty communication complexity aPart; by applying a
Ramsey-theoretical result known as the Hales-Jewett EheoiThen-tuplesv!, ... vt € [t]" are
said to form acombinatorial lineif the v/ are distinct and for each < i < n either all thev’ agree

on positioni (i.e.v! = v/ forall 1 < j < j/ <) or we haver) = jforall1 < j < t.

Theorem 5 (Hales-Jewett [10]) For any integers:, t there exists an integet such that if all vectors
in [t]" are colored withc colors then there is a monochromatic combinatorial line. .., v (i.e. a
line whose elements all were assigned the same color).

We now prove:



Lemma6 Forall k, Di(Part) = w(1).

Proof: Consider the input as a collection biubsets ofn]. Every input(Sy, ..., S) € P([n])* that
is accepteduy a protocol forPart; is such that for every < j < n, the elemenj lies in exactly one
of the S;. Using this observation, these inputs can be put in onexenrrespondence withrtuples
in [k]". As an example fok = 3 andn = 4, we haveParts3({4},{1,3},{2}) = 1 and this input
corresponds to the-tuple (2,3,2,1).

Suppose that the-party communication complexity dParty is bounded, for somg, by a con-
stantc. To every input accepted by a protocol Burty, (i.e. to every element ifk]™), we assign one
of 2¢ colors corresponding to the communication history resglfrom that particular input. If. is
large enough then by the Hales-Jewett Theorem this setiner@anonochromatic combinatorial line
vl ..., vk, LetT C [n] be the (non-empty) set of positions on which thediffer and for each < k
denote asS; the set of positions on which all thé arei. By definition of the above one-to-one corre-
spondence, we have th&t Sy, ..., S form a partition of[n] and all the input§.S; U T', S, ... Sk),
(51,82 UT,...S),...,(S1,52,...5 UT) induce the same communication history. By Lemma 2,
and since these inputs form a star, their cefigr S, . . . Si) alsoinduces that same communication
and must thus belong tBart,. HoweverS; U ... U S, = [n] — T # [n] so we get a contradictioml

Note that am x k matrix A belongs toPart, iff none of its rows contains twa and the total
number ofl entries inA isn. If £k > 3 thenk players can check the first condition usihdits of
communication since any pair of input bits is accessible teast one player. They are then left with
verifying that the sum of the input bits iswhich can, surprisingly, be achieved with a communication
cost much less than the triviél(log n) [7].

3 Functions with bounded multiparty complexity but high time/space
complexity

In this section we exhibit languages of arbitrarily largenguitational complexity but with bounded
multiparty communication complexity. For a languag@and anencodingC' : {0,1}* — {0,1}*, we
denote byC'(L) the set{C(z); = € L}. We prove that for a suitably chosen error-correcting aode
any languagé. is such that its encoding (L) has bounded multiparty communication complexity. We
will chooseC such that the corresponding encoding and decoding funatieefficiently computable
and hence the complexities 6fandC (L) will be closely related.

As a warm-up we start with thenary encoding”y; defined as follows: for: € {0,1}*, Cy(x) =
0710%"~*~1 wheren is the length ofr andz is interpreted as an integer between 0 ahd- 1. Hence,
C'y encodes bit strings of lengthinto strings of lengtl2™ having a singlel in a one-to-one way.

Lemma 7 For any languagel and integerk > 3, D, (Cy(L)) < 3.



Proof: Without loss of generalite = 3. On an inputw that is split among the three parties, the
players need to verify two things: 1) whetheris a valid encoding of some string and 2) whether
the corresponding string is in L. To verify the first property the players only need to checlethier

at least one of them seed @and whether none of them sees two or mige They can communicate
their observations regarding this using six bits in totakext\ one of the players who sees the one,
determines the unique stringwith Cy(xz) = w. He can do this solely based on the position of
the one since he knows how is partitioned. This player can also determine whethet L and
hencew € Cy(L). He communicates his conclusion to the other parties byisgrahe more bit.
Hence in total players exchange at most seven bits. Theqmiotan be optimized so that each player
simultaneously sends one bit of information for the totathoée bits. [ |

The disadvantage of the unary encoding is its inefficien@calnse codewords are exponentially
longer than the words they encode, we cannot provide efficegtuctions between andC(L). A
better encoding can be obtained by concatenating ReednBolaodes with the unary encoding. In
the 3-party scenario at least one of the parties has on its fodehekeast a /3-fraction of the input.
Hence, if the chosen encoding has the property that from laitray 1/3-fraction of the input the
whole word can be reconstructed (assuming the input is amdémg of some word, i.e., assuming that
the input is a codeword) the other two parties can recortstingcwhole input and verify whether the
parts on remaining foreheads are consistent with such an. ikgith the proper choice of parameters
Reed-Solomon codes have this property.

Let n be a large enough integern, = [log, 3n] andd = n/m. Any stringz € {0,1}" can be
interpreted as a sequencedélements fromG F[2™]. Definep, to be the degreé — 1 polynomial
over GF[2™] whose coefficients are given hy Define the Reed-Solomon encoding O)s(x) =
P2(90)pz(91) - - - px(g3d—1), whereGF[2"] = {go,01,...,mam_1} = {0,1}"™. Furthermore, de-
fine the concatenation of the Reed-Solomon encoding withutirey encoding byCrsou(z) =
Cu(pz(90)) - - Cu(p(g3s—1)). Codewords thus consist 6f blocks of 2™ bits (corresponding to
the 3d symbols of the Reed-Solomon encoding) with each block @minta exactly onel. Thus,
Crsou €ncodes strings of lengthinto strings of lengthO(n?). Furthermore(Crs.u can be encoded
and decoded in polynomial time and so the languagesd Crs.u (L) are polynomial-time equiva-
lent. Note that the decoding task at hand does not require psrform error correction in the usual
sense: we simply want to identify if an input is a codeworahgsi we reject all words that are not
codewords) and we only care about decoding true codewords.

Lemma8 For any languagel and anyk > 3, Dy (Crsou(L)) < 6

Proof: Without loss of generalitk = 3 as all but the first two players can pretend they are the
same party. Lein = [log,3n| andd = n/m. To check if an input is a codeword, the players
can easily check that there are never thgin a single block of input bits. They cannot, however,
verify at constant cost that each of tB blocks containgt leastone1 since this task is essentially
the partition problem whose complexity we lower bounded émima 6. We proceed differently: an



input w of length 3d - 2™ can only be a codeword if at least one player (say pldydras on its
forehead at least ones and this player can be identified with three bits of conmication. Thesel
ones determind elements of7F'[2™] hence playerg and3 can each privately reconstruct from them
the unique degreé — 1 polynomialp that coincides with these elements. Playzend3 now know
that if the input is a codeword then it must be the one cormeding top and player2 can check that
the bits on playeB’s forehead are consistent with that hypothesis while pldyean similarly cross-
check the input bits on play&'s forehead. If this cross-checking procedure is successiayer 2
can determine the uniquesuch thap, = p, verify z € L and send the result to all parties. Overall,
only six bits of communication suffice to decide if the inpsifiom Crsou (L). [ |

As an immediate corollary to this lemma and the fact that tmaplexity of Crsou (L) is polyno-
mially related to the complexity of we obtain:

Corollary 9 The class of languages with bounded multi-party commuioicatomplexity contains
languages with arbitrarily large time and space complexity

In order to obtain also languages with essentially the Ergessible circuit complexity we need
codes that map bits intoO(n) bits. We can obtain such codes by concatenating Reed-Solootes
with codes provided by the following lemma and the unary oGge

39n

Lemma 10 For any integern > 1, there exists a linear mag’s : {0,1}" — GF[8]”"" such that

everyw € Cs({0,1}") is uniquely determined by any one-third of its coordinates.

By concatenating’'rs with Cs andC'y we obtain the cod€'rs.s.u With polynomial time encod-
ing and decoding that mapsbit strings intoO(n) bit strings.

Corollary 11 Foranyk > 3, the class of languages with boundegharty communication complexity
contains languages witt™("™) circuit complexity.

4 Languageswith a neutral letter

A languagelL € X* is said to have aeutral lettere if for all u,v € 3* we haveuv € L iff uev € L.
Thus, adding or deleting anywhere in a wordv does not affect membership in If a language has

a neutral letter then membership incannot depend, as in Lemma 7, on having specific value on a
specific input position and, at least intuitively, this sedmtake away a lot of the power inherent to the
multiparty communication model. The neutral letter hygsik was helpful in obtaining length lower
bounds on bounded-width branching programs [4] and wasaléntthe Crane-Beach Conjecture [3].

In this section, we give a precise characterization of laggs with a neutral letter that have bounded
k-party complexity for some fixefdl. We first show that all such languages must be regular and then
characterize them in terms of algebraic properties of timgiimal automaton.



4.1 Proving Regularity

Let C' > 0 be an integer and l&} be a family of functions oveE™ with finite rangeR. We say that
inputs with weight at most’ determinethe functions ofj if every functiong : ¥<¢ — R has at most
one extension t&* in G. Now, letC;, . be the family of functions with a neutral letter akeparty
communication complexity at most We show:

Lemma 12 There is a constant’ = C'(k, ¢) such that functions af;, . are determined by inputs of
weight at most’.

We obtain this lemma as a corollary to

Lemma 13 For anyC > 0 if the functions of}, . are not determined by inputs of sicethen Part;,
can be solved by parties with2c + 2 communication for sets of siz& for someC’ > C'.

Lemma 13 implies Lemma 12, since if there were no boGiid, ¢) as stated in Lemma 12, then
Part;, would havek-party communication complexity at ma&t + 2 for arbitrary set size, resulting
in a contradiction with Lemma 6.

Proof:(Lemma 13)-or any wordw € ¥*, we shall denote by, the word obtained fronw by deleting
all occurrences of in w. Thejith letter ofw will be denoted byw®. Also, for k wordswy, ..., ws,
each of length, letw = w1 ¢ ... Qwy denote the word obtained by interleaving thevords in the
following way : |w| = ¢k and foralll <i < ¢k, w' = wiif i = (m—1)k+jwith0 < j < k+1. Let
us assume thgtandg are inCy, ., such that they are not identical, but the minimal string {3 —e}*
such thatf(v) # g(v) has length at least’. We consider the following:-party communication
problem: each player gets| bits on their forehead and let us denote the input on pldgdorehead
by y;. (Note that from our comments following Lemma 6, the funetiBart; requires unbounded
k-wise complexity even if the input sets are known to be paendisjoint.) Consider a family df
setsly,..., I C {1,...,|v|} = [Jv|], such thatl; N I; = () for all : # j. For each such choice &f
sets, we assign foreheads of the players in the following: vyéy: vif j € I, otherwisey{ =e.
We define the functioth(y,,...,yx) = 1 iff the corresponding family of subsets partition§v|],
i.e.,Uf_ I, = [|v]]. Notice thath is exactly the partition problem for a basis set of gize> C. The
reduction({y,...,Ix) — (v1,...,yx) is a rectangular reduction. We claim thet, . .., yx) = 1 iff
fi0... Oyk) # g(y10 - .- Qu)-

To see this we use the minimality propertywofon words of length less than| f andg agree. For
y = y10 ... Oy, we havely.| = |v| only if UX_, I; = [|v|] and in that casg. = v and f(y) # g(v).
Otherwise, we havey.| < |v| and thereforef (y) = g(y).

The functionf(v) # g(v) can be computed witBc bits of communication by running thebit
protocol onf andg separately. FoPart; we also need to verify using two extra bits of communica-
tion that no row contains two ones. [



Let f : ¥* — R be a function irC;, .. For a wordw € ¥*, we define the functiorf,, : ¥* — R
by fu(z) = f(wz). All the f,, are also irCy . and so the function§f,, } are determined by inputs of
length at most'. It follows that the equivalence relation ait defined byu ~ v iff f(uz) = f(vz)
for all z € ¥* has at most|X| + 1)¢ equivalence classes. It is well-known thatifhas finite index
then f is regular and we obtain

Theorem 14 If f is a function with a neutral letter such tha,(f) = O(1) for some fixed:, then f
is regular.

4.2 Regular languages with bounded complexity

A monoid M is a set with a binary associative operation and a distihguisdentity element;. A
languagel C X* is recognizeduy a finite monoid)/ if there is a morphismy from the free monoid
¥*to M and asef’ C M such thatl = ¢~ (F). A restatement of Kleene’s Theorem states that
regular iff it is recognized by some finite monoid. ifis regular, thesyntactic monoid\/ (L) of L is
the transformation monoid df’s minimal automaton [16] and is the smallest monoid recoiggi L.
The word problemfor M is the functioneval which maps a stringy = wy...w, € M* to
the producteval(wy ... wy,) = wy - wy - -+ - - wy,. We define thek-party communication complexity
of M, denotedDy (M) as the communication complexity of its word problem. Two loé fauthors
gave a complete classification result for the two-party camication complexity of finite monoids
[21] and this led to a similar classification for the two-gactomplexity of regular languages. The
communication complexity of monoids was first studied in][ft8Bm which we use the following:

Lemma15 Let L be a regular language with a neutral letter and l&f = M (L) be its syntactic
monoid. Then for any > 2 we haveDy (L) = ©(Dy(M)).

A finite group isnilpotentif it is the direct product ofp-groups and a monoid lies in the class

G if all its subgroups are nilpotent. The claB¥O consists of monoids satisfying the identity
(zy)*” (ya)“ (wy)” = (wy)~.

Lemma 16 If M is a finite monoid outside dO then Dy, (M) = w(1) for all .

The lemma is proved in the appendix: we show thatiflies outsideDO then for anyk there
exists a rectangular reduction of linear length from eitdé; ,, or Part;, to the word problem ofi/.

Theorem 17 ([18]) Let G be a group. IfG is in Gy; then there exists a constakht> 2 such that
Di(G) = O(1). OtherwiseDy,(G) = Q(n) for all .

In this case also, the lower bound is obtained through amgatar reduction fromGI1P; , to
the word problem of any non-nilpotent finite group. The upbeund, on the other hand, stems

8



from a combinatorial description of languages recognizgailpotent groups. We say that a word
u = aj...a With g¢; € ¥ is asubwordof the wordw if w can be factorized asgaw; . . . wi—1a:w;
and we denote b{(ﬁj) the number of such factorizations. We say that a languageunts subwords
of lengthk modulom if membership ofw in L depends on the values moduioof ('), ..., (. ) for
someu; with |u;| < k. One can show that the syntactic monoid of a regular langiiaigea nilpotent
group iff there exisk, m > 2 such thatl counts subwords of lengthmodulom [23].

Fora € ¥ andL, K C ¥*, the concatenatioh.a K is said to beperfectly unambiguous L C
(X—{a})*orK C (X—{a})*. If LaK is perfectly unambiguous then anyc LaK can be uniquely
factorized asvawg with wy, € L andwg € K since thex can only be the first or last occurrencenof
in w. LetVy, be the smallest class of regular languages dvérat contains both the subword-counting
languages and the languade$ for eachX, C ¥ and which is closed under Boolean operations and
perfectly unambiguous concatenations. The next lemmaeanférred from [21].

Lemma 18 A languageL C X* is recognized by a monoid PO N Gy iff itis in V..

We can now give a characterization of monoids that have bedimdultiparty communication
complexity for some suitably large constdnt

Theorem 19 Let . C ¥* be a regular language with a neutral letter and syntactic widn\/. If
M lies inDO N Gy, then there exists a constahtsuch thatDy (L) = O(1). Otherwise, we have
Dy(L) = w(1) for all £.

Proof: To obtain the upper bound, it suffices to show, by Lemma 18,abery language iy, has
boundedk-party complexity for somé and we argue from the definition d%.

First, any languag&j has bounded two-party communication complexity sincegigpnly need
to check that the input letters they have access to indeathdpad >3. Furthermore, ifK counts
subwords of lengthk modulo m, then Dy, (K) = O(1) because any-tuple of input letters is
available to at least one player in tfie+ 1)-party game and the value ¢f) modulom can thus be
computed with communicatioh - [logm| if |u| < k. Clearly, Boolean combinations of languages
with boundedk-party complexity also have boundéeparty complexity and it remains to show that if
L andK have bounded-party complexity and. C (X —{a})* thenLaK has boundedk + 1)-party
complexity. Players proceed as follows: each party brastddhe identity of the player which, in their
opinion, holds on the forehead the first occurrence of the input. This requires - [log k] bits of
communication and the player holding that first occurrenitiebe the only dissenting voice since that
letter is seen by all other parties. Since- 1 > 3, thek remaining players now know the position of
the firsta and they simulate the-party protocols for, and K on the prefix and suffix at constant cost.

For the lower bound, if\/ is not in DO then D (M) = w(1) for all £ by Lemma 16. IfM
contains a non-nilpotent group then Dy (G) = Q(n) for all £ by Theorem 17 and we clearly have
Dy(M) > Dy(G). So for allk, we haveDy (M) = w(1) and, by Lemma 15Dy (L) = w(1). n

Combining this result with Theorem 14 we get

9



Theorem 20 If L is a language with a neutral letter and boundiegbarty communication complexity
for some fixed: then L is regular andM (L) € DO N Gyj.

Note that the clasBPO N G,,; is decidable. Also, the corresponding regular languages aaice
logical characterization [22] and one can see from the digfinof Vy, that they all lie inACC®.

5 Symmetric Functions

Forw € ¥*, we denote agv|, the number of occurrences ofin w. A function f : ¥* — {0,1} is

symmetridf its value depends only on the valups|, for a € X. Intuitively £ > 3 parties computing

a symmetric function only get limited benefits from the featuof the multiparty model since their

protocol cannot significantly rely on the precise set of inpositions accessible to each player or on

the fact that anyk — 1)-tuple of bits is seen by one party. We formalize this idealiysng that any

symmetricf with boundedk-party complexity for a fixed in fact has bounded two-party complexity.
Let us first deal with functions with boolean inputs. To anynsyetric functionf : {0,1}" —

{0,1} we naturally associate the functign: {0, . -.,n} — {0,1} such thatf(z) = f(|z|1) for every

x € {0,1}" and say thaf is (¢, r, p)—periodicif f(a) = f(a+p)for{ <a <n-—r.

Theorem 21 If f: {0,1}"™ — {0, 1} is symmetric and has boundéeparty communication complex-
ity then in factf has bounded two-party complexity.

In the appendix, we extend this theorem to symmetric funsti@ith non-Boolean domains. The
result in the Boolean case is established through the nexhie Recall that aimultaneous protocol
is one in which each player sends a single message to an extya(iherefereg who then computes
the answer solely based on the messages he received. kufartthe message sent by a party does
not depend on messages sent by other parties. Sihgeagty protocol of communication costcan
be easily turned into A-party simultaneous protocol with casit2¢, functions of bounded complexity
in the simultaneous model are exactly those with boundedtiity in the standard model.

Lemma 22 For any constants;, c with k£ > 1 there exists an integeN;,; = N(k + 1, ¢) such that
every symmetric boolean functign {0,1}" — {0, 1} that has &+ 1-party simultaneous protocol of
complexitye for the input partition in which players, . .., X} each getVy, bits and playerXj
gets the remaining — kN1 bits is (¢, r, p)-periodic for somée,r < kNj1 and some < Ny.

Theorem 21 then follows by observing that@nr, p)-periodic function has 2-party simultaneous
communication complexity roughlg - [log(¢ + r + p)]. The proof of Lemma 22, given in the
appendix, proceeds by induction fnThe base case is due to [20] and our induction step uses a non-
trivial “player elimination” technique similar to that o1}]. More precisely, we use the Ramsey-like
theorem of Gallai [10] to show that jf has &k + 1)-party protocol of bounded cost then there exists
a large set of input® for the foreheads of the firét players on which playeP; ; always sends the
same communication. This renders tliet 1)st player irrelevant if the input lies iR and allows the
use of the induction hypothesis.

10



References

[1] A. Ambainis. Upper bounds on multiparty communicatiasmplexity of shifts. InProc. 13"

2]

[3]

[4]

[5]

[6]

Symp. on Theoretical Aspects of Comp.,peiges 631-642, 1996.

L. Babai, N. Nisan, and M. Szegedy. Multiparty protogofsseudorandom generators for
logspace, and time-space trade-offsComput. Syst. Sci45(2):204—-232, 1992.

D. A. M. Barrington, N. Immerman, C. Lautemann, N. Schkeedt, and D. Thérien. The Crane
Beach conjecture. IRroc. 16th Symp. on Logic in Comp. Sci. (LICS;QBges 187-196, 2001.

D. A. M. Barrington and H. Straubing. Superlinear low@ulnds for bounded-width branching
programs.J. Comput. Syst. S¢b0(3):374—-381, 1995.

P. Beame, T. Pitassi, and N. Segerlind. Lower bounds forész-Schrijver systems and be-
yond follow from multiparty communication complexity. Proc. 32nd Int. Conf. on Automata,
Languages and Programming (ICALP’Q®ages 1176-1188, 2005.

P. Beame and E. Vee. Time-space tradeoffs multipartyrmanication complexity and nearest
neighbor problems. 184th Symp. on Theory of Computing (STOC,@8)ges 688-697, 2002.

[7] A.K.Chandra, M. L. Furst, and R. J. Lipton. Multi-partygtocols. InProc. 15th ACM Symp. on

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Theory of Computing (STOC’83)ages 9499, 1983.

F. Chung and P. Tetali. Communication complexity andsijrandomness.SIAM J. Discrete
Math,, 6(1):110-123, 1993.

M. Goldmann and J. Hastad. Monotone circuits for cotiniég have depth (log %'(1). SIAM J.
Comput, 27(5):1283-1294, 1998.

R. L. Graham, B. L. Rotschild, and J. H. SpencBamsey TheoreySeries in Discrete Mathe-
matics. Wiley Interscience, 1980.

V. Grolmusz. Separating the communication complegitof MODm and MODp circuits. In
Proc. 33rd IEEE FOCSpages 278-287, 1992.

V. Grolmusz. The BNS lower bound for multi-party protde in nearly optimal.Information
and Computation112(1):51-54, 1994.

V. Grolmusz. A weight-size trade-off for circuits andD m gates. InProc. 26" ACM STOG
pages 68-74, 1994.

E. Kushilevitz and N. NisanCommunication ComplexityfCambridge University Press, 1997.

11



[15] N. Nisan. The communication complexity of tresholdegat InCombinatorics, Paul Erds is
Eighty, Vol. 1 pages 301-315, 1993.

[16] J.-E. Pin. Syntactic semigroups. Handbook of language thearyolume 1, chapter 10, pages
679-746. Springer Verlag, 1997.

[17] P. Pudlak. An application of Hindman’s theorem to aljeon on communication complexity.
Combinatorics, Probability and Computinj2(5—6):661-670, 2003.

[18] J.-F. Raymond, P. Tesson, and D. Thérien. An algelajazoach to communication complexity.
Lecture Notes in Computer Science (ICALP’9B}43:29-40, 1998.

[19] R. Raz. The BNS-Chung criterion for multi-party comnaaiion complexity. Computational
Complexity 9(2):113-122, 2000.

[20] M. Szegedy. Functions with bounded symmetric commatio complexity, programs over
commutative monoids, and ACQ. Comput. Syst. Sc47(3):405-423, 1993.

[21] P. Tesson and D. Thérien. Complete classificationsh®icommunication complexity of regular
languagesTheory of Computing Systen88(2):135-159, 2005.

[22] P. Tesson and D. Thérien. Restricted two-variabléesaes, circuits and communication com-
plexity. InProc. 32nd Int. Conf. on Automata, Languages and Programgrti@ALP’05), pages
526-538, 2005.

[23] D. Thérien. Subword counting and nilpotent groupsChmmbinatorics on Words: Progress and
Perspectivespages 195—-208. Academic Press, 1983.

12



Appendix

We give here proofs of lemmas that were omitted in the exiadbstract.
Proof of Lemma 10

39n

Lemma 10 For any integern > 1, there exists a linear mag’s : {0,1}" — GF[8]”"" such that

everyw € Cs({0,1}") is uniquely determined by any one-third of its coordinates.

Proof:
To prove the existence of our code we only need to prove th@afmlg claim.

Claim Forc > 37, with high probability a random matrix ov&¥ F'[8] of dimensionn x cn has the
property that each submatrix of dimensiorx cn/3 has ranka.

For anyn’ < n, n’ vectors ovelGF'[8] of lengthcn /3 span less thaf™ different vectors. Thus
the probability that a new random vector of lengtty 3 falls into the space spanned by these vectors
is at most8”~“"/3, Hence, the probability that a random maitrix 0@&F'[8] of dimensionn by cn/3
is of rank less tham is at mostn - 8”~<"/3, (We pick the vectors step by step and at each step we fail
to pick a linearly independent vector with probability atsh&*—<*/2.) Thus the expected number of
singularn by cn/3 submatrices of a random matrix of dimensieby cn is at most-8™~"/%. (7).
Since(cfb’;g) < 2H(/3)en if ¢ > 37 then3 — ¢ + H(1/3)c < 0 and the expected number of singular
submatrices i2 " for somee > 0. The claim follows. [

By concatenatingrs with Cs andCy we obtain the cod€'rsosou With polynomial time encod-
ing and decoding that mapsbit strings intoO(n) bit strings. Note thaCs can be constructed by
brute force in polynomial time as it is used only for strinddamarithmic length. Further speed-up
can be achieved by usindrs.rs.s0u codes where one would only need to constigfor strings of
log-log length. Using Fast Fourier Transfor@izs.rs.s0u €an be encoded and decoded in time close
to linear, whereby we obtain Corollary 11.

Proof of Lemma 16

We want to establish

Lemma 16 If M is a finite monoid outside dO then Dy, (M) = w(1) for all .
Recall from Section 4 thd O is the class of finite monoids satisfyifgy)“ (yz)“ (zy)* = (xy)*

for somew > 1. The following lemma (see e.g. [21]) gives a more useful abi@rization oD O. An
elemente € M isidempotentf e = 2.
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Lemma 23 If the finite monoidV/ is not inDO then either

1. There exist idempotentsb € M and an integep > 2 such that(aba)? = a but (aba)! # a if
I1<t<p-1;

2. There exist elemenisb € M x M such thatab is idempotent but for alk,y € M x M we
haveza’y # ab andxb®y # ab.

We can now proceed to establish Lemma 16.

Proof: (Lemma 1%

Suppose first that there are idempotents € M such thataba)? = a but (aba)! # aif 1 <t <
p — 1. We claim that for any: there is a linear-length rectangular reduction fr6thp; ,, to the word
problem of)M. The reduction maps am x k instanceA of GI1P; , to a string of(k + 2)n elements
of M with each block of + 2 elements corresponding to a columnAf The first and last elements
of each block are always and the(i + 1)th element of the block is &if the ith bit of the column is
0 and the identityl 5; otherwise. Sincé is idempotent, the output of each such block thus multiplies
out toaba if some bit in the column i and toa otherwise. Hence, the value of the whole produet is
iff the number of alll columns is0 modulop. SinceDy(GIPy ) = (n), we haveDg (M) = (n)
because the length of the reduction is linear.

Suppose that there are elememnts € M x M such thaub is idempotent but for alé, ¢ € M x M
we havesa’t # ab andsb?t # ab. Then we claim thaPart;, reduces to the word problem &f x M.
Again, our reduction producesblocks ofk + 2 elements of\/ x M. The first element of each block
is always aru and the last one is alway, while the(i + 1)th element i$ if the ith bit of the column
is 1 and the identityl 5; 57 otherwise. Thus, if a column of containsr 1's, the product of monoid
elements in the corresponding blockiig ab. The product of the: blocks is thugab)?" = ab if each
column contains exactly onle If some column ofd contains two or moré’s, then the corresponding
block evaluates ta(b?)b"~2ab and so the product of theblocks can be written ash?y and cannot be
ab. Similarly, if a column is all, the corresponding block evaluatesitéh and then blocks multiply
out to somera’®y # ab. Since Dy (Party) = w(1), we getDy(M x M) = w(1). Furthermore
Dy (M x M) is atmost - Di(M) so we also geDy (M) = w(1). [

Proof of Lemma 22

We now prove:

Lemma 22 For any constantg;, c with k£ > 1 there exists an integeWN,,; = N(k + 1,¢) such that
every symmetric boolean functigh {0, 1} — {0, 1} that has a+ 1-party simultaneous protocol of
complexitye for the input partition in which players, . .., X} each getVy, bits and playerXj
gets the remaining — kN1 bits is (¢, r, p)-periodic for somée,r < kNj1 and some < Nj.
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We recall definitions and notations of Section 5: to any symimé&inction f : ﬂ), 1}" — {0,1}
we naturally associate the functigh: {0,...,n} — {0,1} such thatf(z) = f(|z|;) for every
x € {0,1}". A symmetric boolean functioli onn variables ig¢, r, p)—periodic if f(a) = f(a +p)
fort<a<n-—r.

In order to specifyN (k, c¢) we need to recall the following Ramsey-type theorem which lve
used in our proof. This theorem is a consequence of Galléi&niem (see page 38 and the example
on page 39 in [10]).

Proposition 24 For any integersC, k,m > 0, there is an integeRR = R(C, k,m) such that for each
C-coloring of {0, ..., R}*, there exist:}, ..., ) < Randl < d < R such that all points of the set
P = {(z1,...,21) : z; =20 +dy;,0 < y; < m} have the same color and all lie §0, ..., R} .

Now, N (k + 1, ¢) is defined by induction o. We setN (2,¢) = 2¢ 4+ 1 and fork > 2, N(k +
1,¢) = R(2°k,N(k,c)! + 2(k — 1)N(k, c)). We are ready to prove lemma 22.

Proof: (Lemma 22)Our idea is the following: given a constant c@st+ 1)-party protocol for the
symmetric functionf, we use the Ramsey-theoretic fact to ‘eliminate’ the 1)st player by restricting

f to a set of inputs on which that player’s message is alwaysah®e. This enables us to construct a
bounded cosk-party symmetric functiory’ closely related tgf. Our inductive hypothesis applies to
/" and we show that the periodicity ¢f implies the periodicity off.

For £ = 1 the lemma was observed in [20] and we briefly mention the aeguirhere. By the
pigeonhole principle, there are two inputsandz’ for the first player withz|; < |2/|; < 2°+1 =
N(2,¢) such that the second player sends the same messagexwdrerd are on the first player’s
forehead. One can verify thagtis (x|, |2'|1 — |z|1,]2'|1 — |=|1)-periodic: since the referee does
not know whether the second player seesr =’ we must havef(y) = f(y + |2'|; — |z|;) for any
|z}y <y <n—|z|; + |2'|;. We now prove the lemma by induction érfor & > 2.

LetII be a simultaneou§: + 1)-player protocol of cost that computeg under a partition of the
following form. Playerdl, . .., k each haveVy_ ; bits written on the forehead, and playef 1 gets the
remainingn — kN bits. Color each pointzy,...,z) € {0,..., Ny, }* by the communication
of the (k + 1)-st player wheni®:0"Nx+1=%i is on the forehead of the playg&rBy Proposition 24 there
is a setP of points in{0, ..., Ny,1}¥, such that playek + 1 sends the same message for every point
in

P = {(x1,...,2) : 2 =20 +dy;, 0 < y; < N +2(k —1)Ny},

for somel < d < Ny and some:? < Ny 1.

Let/ =d(k — 1)Ny + Zle 29,7 = kNy,1, andp = d - Ny!. Clearly,, r, p satisfy the required
bounds from the lemma. Lete {(,{+1,...,n —r}. We claim thatf(m) = f(x +p).

Define a functionf., : {0,..., Ny! 4+ 2(k — 1)Ni} — {0, 1} by setting

~

Fiw) = flz +ud—d(k — 1)N,).
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The functionf/, corresponds to a symmetric functigiy : {0, 1}Ve!+2(:=DNe _, {0 1}. We claim
that there is & bit k-party communication protocol fof!, under the input partition in which the first
— 1 players getVy, bits on their foreheads and the remaining bits are on plagdorehead. Indeed,
suppose that the playetsthrough% have on their foreheads strings of weightsthroughy,. To

computef’ (ZZ 1 ¥i) the players take advantage of the fact that

k k

k
A0 y) = fla+ O yid) — d(k — 1)Ny) = Zx +yid) + (z — d(k — )N, = Y al)).
=1

i=1 i=1

Consequently, the players simply simulate the protdédwhich computesf) on the input where
playersl, ..., k have on their respective forehead strings of weight- dy, 29 + dys, ..., 20 + dyy
and the playek + 1 has on its forehead a string of weight- d(k — 1) Ny, — Zle xY. The simulation
of the missing party poses no problem since the inputs of thtkf'players belong t@.

By the induction hypothesg‘” is periodic for some’,r’ < (k — 1)N, andp’ < Nj. Hence,
Flz) = fL((k—1)Ng) = FL(Ng!+ (k—1)Ni) = f(z+dN,!), where we use the facts thatdivides

Nil, (kK —1)Ny, > ¢ andNi! + (k — 1) Ny < Ni! 4 2(k — 1) Ny, — /. This concludes the proof.®
Theorem 21 now follows as well as:

Corallary 25 If f : ¥ — {0,1} is symmetric and has boundéeparty communication complexity
then in factf has bounded two-party complexity.

Proof: Let® = {aq,...,a;}. Foranyx’ C ¥ and any wordw in (¥ — £°)*, we denote ag.°
the symmetric function over alphabgf defined byf>°(z) = f(wz). We now argue by induction
on t the cardinality of¥. Our base case is Theorem 21.t1& 3 then let¥y = {a1,a2} Since f
has bounded-party complexity then so dod%o for anyw. Applying our result for binary alphabets
we get that for anyw we get thatf” is (¢, r, p)-periodic fort = r = (k — 1)N, andp = Nj!. In
particular this means that the functigiy —>° is determined by the numbeys|,, and|z|,, up to the
thresholds, » and modulg. This can be computed at constant cost by two players ane ¢ is
a symmetric with bounded-party communication complexity over an alphabet of caatiliyy smaller
thant it can be evaluated at constant bounded two-party cost binduction hypothesis.

|

16

ECCC ISSN 1433-809
http://eccc.hpi-web.de/




